
Full Length Article

Test case minimization approach using fault detection and
combinatorial optimization techniques for configuration-aware
structural testing
Bestoun S. Ahmed a,b,*
a Istituto “Dalle Molle” di Studi sull’Intelligenza Artificiale (IDSIA), USI/SUPSI, Manno (Lugano), Switzerland
b Software Engineering Department, Salahaddin University-Hawler, Erbil, Iraq

A R T I C L E I N F O

Article history:
Received 21 June 2015
Received in revised form
22 October 2015
Accepted 3 November 2015
Available online 14 December 2015

Keywords:
Combinatorial testing
Test case design
Fault seeding
Software mutation testing
Software structural testing
Cuckoo search algorithm

A B S T R A C T

This paper presents a technique to minimize the number of test cases in configuration-aware structural
testing. Combinatorial optimization is used first to generate an optimized test suite by sampling the input
configuration. Second, for further optimization, the generated test suite is filtered based on an adaptive
mechanism by using a mutation testing technique. The initialized test suite is optimized using cuckoo
search (CS) along with combinatorial approach, and mutation testing is used to seed different faults to
the software-under-test, as well as to filter the test cases based on the detected faults. To measure the
effectiveness of the technique, an empirical study is conducted on a software system. The technique proves
its effectiveness through the conducted case study. The paper also shows the application of combinato-
rial optimization and CS to the software testing.

© 2016, Karabuk University. Publishing services by Elsevier B.V.

1. Introduction

Similar to any other engineering process, software develop-
ment is subjected to cost. Nowadays, software testing (as a process
of the software development life cycle) consumes most of the time
and cost spent on software development. This cost may decrease
rapidly as testing time decreases. Most of the time, a software may
be released without being tested sufficiently because of market-
ing pressure as well as the intention to save time and cut costs.
However, releasing low-quality software products to the market is
no longer acceptable because it may cause loss of revenue or even
loss of life. Thus, software testers should design high-quality test
cases that catch most of the faults in the software without taking
more than the scheduled time for testing. Thus, test case minimi-
zation mechanisms play a major role in reducing the number of test
cases without affecting their quality. However, reducing the number
of test cases especially in configurable software systems is a major
problem.

In recent years, configurable software systems have gained par-
amount importance in the market because of their ability to alter
software behavior through configuration. Traditional test design tech-

niques are useful for fault discovery and prevention but not for fault
elimination because of the combinations of input components and
configurations [1]. We consider that all configuration combina-
tions lead to exhaustive testing, which is impossible because of time
and resource constraints [2,3]. The number of test cases could be
minimized by designing effective test cases that have the same effect
as exhaustive testing.

Strategies have been developed in the last 20 years to solve the
aforementioned problem. Among these strategies, combinatorial
testing strategies are the most effective in designing test cases for
the problem. These strategies help search and generate a set of tests,
thereby forming a complete test suite that covers the required com-
binations in accordance with the strength or degree of combination.
This degree starts from two (i.e., d = 2, where d is the degree of
combinations).

We consider that all combinations in a minimized test suite is a
hard computational optimization problem [4–6] because searching
for the optimal set is a nondeterministic polynomial time (NP)-hard
problem [5–9]. Thus, searching for an optimum set of test cases can
be a difficult task, and finding a unified strategy that generates
optimum results is challenging. Two directions can be followed to
solve this problemefficiently and to find a near-optimal solution. The
first uses computational algorithms with a mathematical arrange-
ment; the other uses nature-inspiredmeta-heuristic algorithms [10].

Using nature-inspired meta-heuristic algorithms can generate
more efficient results than computational algorithms with a

* Tel.: +41 779158530.
E-mail address: bestoun@idsia.ch.
Peer review under responsibility of Karabuk University.

http://dx.doi.org/10.1016/j.jestch.2015.11.006
2215-0986/© 2016, Karabuk University. Publishing services by Elsevier B.V.

Engineering Science and Technology, an International Journal 19 (2016) 737–753

Contents lists available at ScienceDirect

Engineering Science and Technology,
an International Journal

journal homepage: ht tp : / /www.elsevier.com/ locate / jestch

Press: Karabuk University, Press Unit
ISSN (Printed) : 1302-0056
ISSN (Online) : 2215-0986
ISSN (E-Mail) : 1308-2043

Available online at www.sciencedirect.com

ScienceDirect

HOSTED BY

mailto:bestoun@idsia.ch
http://dx.doi.org/10.1016/j.jestch.2015.11.006
http://www.sciencedirect.com/science/journal/22150986
http://http://www.elsevier.com/locate/jestch
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2015.11.006&domain=pdf

mathematical arrangement [10,11]. In addition, this approach ismore
flexible than others because it can construct combinatorial sets with
different input factors and levels. Thus, its outcome is more appli-
cable because most real-world systems have different input factors
and levels.

Developed by Xin-She Yang and Suash Deb [12], the cuckoo search
(CS) algorithm is a new algorithm that can be used to efficiently solve
global optimization problems [13]. CS can solve NP-hard prob-
lems that cannot be solved by exact solution methods [14]. This
algorithm is applicable and efficient in various practical applica-
tions [9,13,15–17]. Recent evidence shows that CS is superior to other
meta-heuristic algorithms in solving NP-complete problems
[9,13,16,17].

Although combinatorial testing proves its effectiveness in many
researches in the literature, evidence showed that there are weak
points in this testing technique [18]. It supposes that the input factors
have the same impact of the system. However, practically the test
cases have different impact and some of the test casesmay not detect
any fault. In other words, most of the faults may be detected by a
fraction of the test suite. Hence, there should be a mechanism to
filter the test suite based on the fault detection strength of each test
case. Success to do so will lead to further optimize the generated
test suite by the combinatorial strategy. This paper presents a tech-
nique to overcome this problem systematically. It should be noted
that there could be constraints among the input configuration of
the software-under-test. This is out of the scope of this paper;
however, the method could be applicable for this issue too.

The rest of the paper is organized as follows: Section 2 pres-
ents the mathematical notations, definitions, and theories behind
the combinatorial testing. Section 3 illustrates a practical model of
the problem using a real-world case study. Section 4 summarizes
recent related works and reviews the existing literature. Section 5
discusses the methodology of the research and implementation. The
section reviews CS in detail and discusses how the combinatorial
test suites are generated using such an algorithm. Section 6 con-
tains the evaluation results. Section 7 gives threats to validity for
the experiments and case study. Finally, Section 8 concludes the
paper.

2. Combinatorial optimization and its mathematical
representation

A future move toward combinatorial testing involves the use of
a sampling strategy derived from a mathematical object called cov-
ering array (CA) [19]. In combinatorial testing, a CA can be
demonstrated simply through a table that contains the designed test
cases. Each row of the table represents a test case, and each column
is an input factor for the software-under-test.

This mathematical object originates essentially from another
object called orthogonal array (OA) [20]. An OAλ (N; d, k, v) is an
N × k array, where for every N × d sub-array, each d-tuple occurs
exactly λ times, where λ = N/vd; d is the combination strength; k is
the number of factors (k ≥ d); and v is the number of symbols or
levels associated with each factor. In covering all the combina-
tions, each d-tuple must occur at least once in the final test suite
[21]. When each d-tuple occurs exactly once, λ = 1, and it can be un-
mentioned in the mathematical syntax, that is, OA (N; d, k, v). As
an example, OA (9; 2, 4, 3) contains three levels of value (v) with a
combination degree (d) equal to two, and four factors (k) can be gen-
erated by nine rows. Fig. 1(a) illustrates the arrangement of this array.

The main drawback of OA is its limited usefulness in this appli-
cation because it requires the factors and levels to be uniform, and
it is more suitable for small-sized test suites [22,23]. To address this
limitation, CA has been introduced.

CA is another mathematical notation that is more flexible in rep-
resenting test suites with larger sizes of different parameters and

values. In general, CA uses the mathematical expression CAλ (N; d,
k, v) [24]. A CAλ (N; d, k, v) is an N × k array over (0, . . ., v − 1) such

that every B b bd= ∈
−{ }⎛

⎝⎜
⎞
⎠⎟

{ }−0 1
0 1

, ,
, ,

…
… k d

d
is λ-covered and every

N × d sub-array contains all ordered subsets from v values of size
d at least λ times [25], where the set of column B = {b0, . . ., b
d-1} ⊇ {0, . . ., k − 1}.To ensure optimality, we normally want d-tuples
to occur at least once. Thus, we consider the value of λ = 1, which
is often omitted. The notation becomes CA (N; d, k, v) [26]. We
assume that the array has size N, combination degree d, k factors,
v levels, and index λ. Given d, k, v, and λ, the smallest N for which
a CAλ (N; t, k, v) exists is denoted as CANλ (d, k, v). A CAλ (N; d, k, v)
with N = CANλ (d, k, v) is said to be optimal as shown in Eq. 1 [27].
Fig. 1(b) shows a CA with size 9, which has 4 factors each having 3
levels with a combination degree equal to 2.

CAN d k v N CA N d k v, , min : , , ,() = (){ }� (1)

CA is suitable when the number of levels v is equal for each factor
in the array. When factors have different numbers of levels, mixed
covering array (MCA) is used. MCA is notated as MCA (N, d, k, (v1,
v2, v3. vk)). It is an N × k array on v levels and k factors, where
the rows of each N × d sub-array cover all d-tuples of values from
the d columns at least once [2]. For more flexibility in the nota-
tion, MCA can be represented as MCA (N; d, v k)) and can be used
for a fixed-level CA such as CA (N; d, v k) [8]. Fig. 1(c) illustrates an
MCA with size 9 that has 4 factors: 2 of them having 3 levels each
and the other 2 having 2 values each. In addition, Fig. 2 shows an
example CA (4; 2, 23) of the way the d-tuples are generated and
covered using CA.

3. Problem definition through a practical example

With the development of communication systems, mobile phones
are among the latest industry innovations and a common mode of
communication among humans. Various operating systems have
been developed for these devices as platforms for performing basic
tasks, such as recognizing inputs, sending outputs, keeping track
of files, and controlling peripheral devices. This development has
paved the way for the emergence of smart phones. Smart phone
applications or “apps” installed on mobile platforms perform useful
tasks. Android is an important platform that includes a special-
ized operating system and an open-source development
environment.

In controlling the behavior of a smart phone, many configura-
tion options must be adjusted in the Android unit. In executing the
running apps on a variety of hardware and software platforms, this
adjustment of options plays an important role. Some smart phones,
for example, have a physical keyboard, whereas others have a soft
keyboard. Fig. 3 shows a sample of the resource configuration file

OA (9; 2, 4, 3) CA (9; 2, 4, 3) MCA (9; 2, 4, 32 22)
k1 k2 k3 k4 k1 k2 k3 k4 k1 k2 k3 k4
1 1 1 1 1 3 3 3 2 1 1 2
2 2 2 1 3 2 3 1 2 2 2 1
3 3 3 1 1 1 2 1 3 3 2 2
1 2 3 2 1 2 1 2 1 3 1 1
2 3 1 2 3 1 1 3 1 1 2 1
3 1 2 2 2 1 3 2 1 2 1 2
1 3 2 3 3 3 2 2 3 2 1 1
2 1 3 3 2 3 1 1 3 1 1 1
3 2 1 3 2 2 2 3 2 3 1 2

(a) (b) (c)

Fig. 1. Three different examples to illustrate OA, CA, and MCA.

738 B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

“configuration.java” source code for Android. The numerous con-
figuration factors in the code are highlighted and they must be
adjusted.

Fig. 3 shows that each factor has different options or levels. For
example, the NAVIGATION factor has five levels, which are DPAD,
NONAV, TRACKBALL, UNDEFINED, and WHEEL. Table 1 summa-
rizes these parameters and their possible values.

Testing any application on the device by applying a set of de-
signed test casesmay expose a set of faults. However, evidence shows
that applying the same set of test cases but with different configu-
rations may result in different faults [28,29], which in turn lead us
to consider different configurations for the same software-under-
test (i.e., configuration-aware testing). In addition, evidence shows
that considering the interaction between the configurations (i.e.,
combination of configurations) will also lead us to detect new faults
[30]. In this case, the tester may test the app against all the con-
figurations, which is called exhaustive testing. However, this testing
leads to an enormous amount of test cases, which make the testing
process intractable.

Around 35 options must be set in the app configuration file. To
test the entire configuration exhaustively, we need to test 33 44 52,
which translates to 172,800 configurations. However, this number
of test cases requires a significant amount of time and resources.

Using the combinatorial testing approach, a tester can test the
combination of configurations. In addition to the benefit of testing
unexpected combinations among the individual factors, this tech-
nique is an alternative to exhaustive testing. The use of combinatorial
testing reduces the exhaustive test cases based on the combina-
tion degree (d), which depends mainly on the CA notations and
mathematical models. For example, d = 2 represents the combina-
tion of two factors. Here, instead of 172,800 test cases, 29 test cases

are taken. Table 2 shows an example of the way this technique
reduces the exhaustive test cases based on d.

Evidence shows that taking the combinations of two and three
is appropriate for many applications. However, we still need higher
interactions for many other applications, especially for 2 ≤ d ≤ 6.

4. Related work and review of literature

Although the problem of CA generation is an NP-hard problem,
researchers have attempted to solve it using various methods. This
section focuses on the general techniques and tools that have been
developed by researchers. Some of these tools are freely available,
whereas others are presented only as evidence in the literature.

4.1. Test suite generation strategies

To date, many software tools and strategies have been devel-
oped for test suite generations. The first attempt of researchers
started from the algebraic approach and the OA that is derived from
mathematical functions. This way requires the input factors and levels
to be constructed by predefined rules without requiring any details
of combinations. This approach is performed directly by calculat-
ing a mathematical purpose for the value [8]. Despite its usefulness,
OA is too restrictive because it exploits mathematical properties,
thereby requiring the parameters and values to be uniform. To over-
come this limitation, the mutual orthogonal array (MOA) [31] has
been introduced to support non-uniform values. However, a major
drawback exists for MOA and OA, that is, a feasible solution is avail-
able only for certain configurations [8,31].

Another approach from the literature is the computational ap-
proach that uses one-factor-at-time (OFAT) and one-test-at-time

Fig. 2. Illustration of the way the d-tuples are covered by the CA.

739B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

(OTAT). In this strategy, a single test or a set of completed test cases
is a candidate for every iteration, after which the algorithm searches
for the test case that covers themost uncovered d-tuples to be added
to the final test suite. Based on this approach, several tools and strat-
egies have been developed in previous studies. Different well-

known strategies were developed in this approach, such as automatic
efficient test generator (AETG) by [32], classification-tree editor
eXtended logics (CTE-XL) developed by [33], test vector generator
(TVG) by [34], and test configuration (TConfig) by [35]. AETG has
been modified later to mAETG by [36]. In addition, Jenny [37],
pairwise independent combinatorial testing (PICT) [38], con-
strained array test system (CATS) [39], and intelligent test case
handler (ITCH) [10] were developed successfully. Tai and Lie [4] tried
to use a different and faster algorithm in this approach by devel-
oping in-parameter order (IPO), as well as its variant tools IPOG and
IPOG-D [8,40].

Fig. 3. Android resource configuration file.

Table 1
Android resource configuration factors and levels.

Factors No. of
levels

Actual values

SCREENLAYOUT_SIZE 5 LARGE, MASK, NORMAL, SMALL,
UNDEFINED

SCREENLAYOUT_LONG 4 MASK, NO, UNDEFINED, YES
TOUCHSCREEN 4 FINGER, NOTOUCH, STYLUS, UNDEFINED
KEYBOARD 4 12KEY, NOKEYS, QWERTY, UNDEFINED
KEYBOARDHIDDEN 3 NO, UNDEFINED, YES
HARDKEYBOARDHIDDEN 3 NO, UNDEFINED, YES
NAVIGATION 5 DPAD, NONAV, TRACKBALL, UNDEFINED,

WHEEL
NAVIGATIONHIDDEN 3 NO, UNDEFINED, YES
ORIENTATION 4 LANDSCAPE, PORTRAIT, SQUARE,

UNDEFINED

Table 2
Number of test cases and its reduction percentage compared to exhaustive testing.

d No. of tests % Reduction

2 29 99.98
3 139 99.91
4 632 99.63
5 2533 98.53
6 9171 94.69

740 B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

Various tools and strategies are still being developed to gener-
ate minimal combinatorial test suites. A few of them are available
as freeware on the Internet [41]. Each strategy has its own fea-
tures and advantages. None of them is the best for all input
configurations. Sometimes, they are used together, and then the best
result is chosen.

Most recently, important efforts have been made to implement
artificial intelligence (AI)-based strategies for the combinatorial test
suite generations. So far, genetic algorithm (GA) [42–44], simu-
lated annealing (SA) implemented in CASA tool [45], tabu search
(TS) [46], ant colony algorithm (ACA) [47], and particle swarm op-
timization (PSO) implemented in PSTG tool [48,49] have been
developed and successfully implemented for small-scale combina-
tion degrees [10].

On the one hand, in constructing combinatorial test suites, GA,
SA, and TS have been implemented by [50]. The implementation
supports small combinations of input factors d = 2 (i.e., pairwise).
The results confirm that GA has been the least efficient compared
with SA and TS. In addition, TS is effective for small search spaces,
whereas SA performs with better results for large search spaces.
When the combinations had been increased by three and greater,
Cohen [36] developed and implemented SA for d = 3 when a large
search space for this case was generated. The result confirms that
SA performed with better outcomes to find the optimal solution.

On the other hand, Shiba et al. [51] have developed two artifi-
cial methods GA and ACA combined with the compaction algorithm.
The results show that the generated CA is usually small. However,
they are not always optimal in size for the combination degree
2 ≤ d ≤ 3. Another technique in constructing CA is the particle swarm-
based test generator (PSTG) developed by [30]. This technique shows
that PSO supports a high combination between the input factors
2 ≤ d ≤ 6, which means that it obtains large search spaces. The result
shows that PSO has more effective roles than the other tech-
niques. However, the problem with the conventional PSO is the
reduction of convergence speed with the increase in the number
of iterations, which affects the particles in achieving the best value
[52]. PSO also appears to have the problem of parameter tuning
because of the varying performance of different parameter values.
In fact, most of the meta-heuristic algorithms use local search and
global search with a generated random initial population [11].
Gaining an optimal combinatorial test suite every time is next to
impossible because of its NP-completeness.

4.2. A brief review of generation tools

As mentioned previously, the two basic directions of generat-
ing combinatorial test suites are computational and AI-based
strategies. In this section, attention is paid to the recapitulation of
the tools using computational and AI-based approaches.

The implementations of the computational approach mainly use
two directions of algorithms: sequential and parallel implementa-
tion algorithms. Sequential implementation builds the test case
individually until completion. Parallel implementation consists of
multiple processing units that together construct the final test suite.
Here, a sequential algorithm functions better than the parallel al-
gorithm because a sequential algorithm is less difficult to implement.
However, the sequential algorithm tends to consumemore time than
the parallel implementation, especially for large input factors and
configurations [53].

As mentioned, some of the tools that have been implemented
by many developers are now available for generating test suites.
Many tools have been developed in the literature, such as AETG,
mAETG, PICT, CTE-XL, TVG, Jenny, TConfig, ITCH, IPO, IPOG, and
IPOG-D.

The AETG strategy uses OTAT and supports only uniform degrees
of interaction [32]. It initializes by generating some candidate test

cases and then selects one of them as a final solution that covers
most tuples. Thereafter, it randomly selects another case from the
remaining input factors. For each remaining input factor, choosing
values that cover the most uncovered d-tuples is necessary [32,53].
From the inability of this strategy to be evaluated, Cohen [36] imple-
ments it again with modifications in a tool called mAETG.

The PICT strategy uses the greedy algorithm and OTAT. PICT con-
tains two main phases: preparation and generation. The first phase
computes all the information needed for the second phase. The gen-
eration process starts by marking the first uncovered tuples from
the uncovered tuples list, and then the “don’t care” values are filled
iteratively by the value that covers the most uncovered tuples [38].
Although PICT formulates pseudo-random choices, it is always ini-
tialized with the same seed value (except when the user specifies
otherwise). As a result, two executions with the same input con-
struct the same output [53].

The TVG algorithm uses OTAT and generates test cases for each
execution with different results for the same inputs. TVG supports
all types of interaction degrees. It has been implemented as a Java
program with a GUI that covers d-tuples, where d is specified by
the tester [53].

The Jenny strategy uses OTAT that starts generating with 1-tuple
and then extends to cover 2-tuples until it covers all d-tuples (where
d is specified by the tester). Jenny only supports uniform combi-
nation degrees. It covers most of the combinations with fewer test
cases than other strategies [37,53].

TConfig is another test-suite generation strategy that uses OTAT
and OPAT. It is dependent on two main methods: recursive block
and IPO. The first method is used to generate the pairwise test
suite, and the second method is used for higher uniform degrees
of combinations. The recursive block method uses the algebraic ap-
proach to generate a test suite based on OA. It has been used as initial
blocks for the larger CA including all d-combinations that can be
generated by building CA from orthogonal arrays [53].

The IPO strategy uses OFAT, which begins the generation process
from 2-combinations and then extends by adding one parameter
at a time based on horizontal extension. To ensure the coverage of
all d-tuples, a new test case may be added from time to time based
on vertical extension [4]. Based on this idea, the technique gener-
alizes the IPO strategy from pairwise testing to multi-way testing
and produces the modern strategy called IPOG by [40]. However,
multi-way testing has time and space requirements because the
number of combinations is frequently very large. For this purpose,
based on the IPOG strategy [8], a new strategy named IPOG-D is in-
troduced, which is sometimes called doubling construct. The
doubling construct algorithm is used to raise the initial test suite
size. Thus, the number of horizontal and vertical extensions needed
by the IPOG-D strategy can be efficiently reduced as compared to
IPOG, which results in reduced execution time [53].

In addition to the aforementioned strategies and algorithms,
several attempts have been made to develop combinatorial strat-
egies based on AI (i.e., AI procedure). So far, the GA, ACA, SA, TS,
and PSTG AI-based techniques have been implemented successful-
ly to generate combinatorial test suites. In general, these techniques
are used to find the optimal solution among a finite number of so-
lutions. Each technique starts by initializing random populations and
then iteratively updates the population according to specific algo-
rithms and update roles.

GA is a heuristic search technique that has been widely used in
solving problems ranging from optimization to machine learning
[6]. It is initialized with random solutions that denote chromo-
somes. Thereafter, it formulates a new solution by exchanging and
swapping two good candidates. The procedure swapping has been
applied by specific processes, such as the mutation and crossover
processes. Finally, it chooses the best solution among the solu-
tions and adds to the final test suite.

741B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

In ACA, an individual ant makes candidate solutions in the first
round with an empty solution and then iteratively adds solution
components until the generated solutions are completed. After build-
ing the completed solutions, the ants offer feedback on the solutions,
and better solutions are used by many ants [54]. The searching op-
eration is performed by a number of ants. The best path implies the
best value for a test case because ants travel from one position to
another to find the best path [53].

Most recently, SA is implemented in CASA tool. The search pro-
gress in SA consists of twomain parts that take on search procedures.
The first part is the acceptance probability of the current solution,
and the second one is differences in objective value between the
current solution and the neighboring solution. It allows for fewer
restricted movements through the search space, and probability of
the search attractive stuck in local optima [11]. This algorithm starts
randomly, and after that it applies to a number of transformations
according to probability equation. The probability equation depends
greatly on input-factors [53].

The progresses in TS identify neighbors or a set of moves that
may be useful to a given solution to make a new one. It stores more
accurately and moves in a data structure that is called tabu-list. It
records information regarding a solution attribute that is useful for
modification of movement from one solution to another. Selecting
good solution is done by using adapted evaluation strategies that
help the introduction of current solution [54].

PSTG strategy uses PSO algorithm to initialize random popula-
tion in the beginning and that each solution has its velocity. The
whole population is named swarm, and each solution is the swarm
called particle. The fitness function is defined based on the cover-
age of d-tuples here. Each solution becomes a good candidate when
it covers most of the d-tuples combinations. The algorithm updates
the search space periodically based on the update role and veloc-
ity of the particle. Here, the role is based on parameters to adjust
themovement of the particles and their speed of convergence. These
parameters must be tuned carefully to get optimal solution and not
to get stuck to the local minima [30,55].

5. Cuckoo search for combinatorial testing

As shown in the literature, the nature-inspired and AI-based al-
gorithms and strategies can achieve more efficient results compared
with the other algorithms and methods. The AI-based algorithms
require greater computation time to generate final combinatorial
sets because of the heavy computation of the search process for cov-
ering d-tuples.

PSO attempts to solve this problem by using lighter weight com-
putation in the update and search processes as compared to the other
algorithms. Evidence in the literature shows better results of PSO
in most cases as compared to the other methods [30]. In fact, PSO
is not deprived of problems and drawbacks.

The performance of PSO generally depends on the values of the
tuning parameters. In other words, PSO combines two roles of
searching mechanisms: exploration and exploitation. In the former
mechanism, PSO performs global optimum solution searching, and
in the latter mechanism it seeks more accurate optimum solu-
tions by converging the search around a promising candidate. For
instance, selecting the right values for these parameters should be
based on the compromise between local and global explorations that
would facilitate faster convergence. Evidence shows that depend-
ing on the complexity of the problem, different values of these
parameters are required to achieve the optimum required solu-
tion [56,57]. Moreover, the search process in this algorithm becomes
stuck in the local optima. Thus, finding the best solution becomes
difficult after a certain number of iterations. In solving this issue,
new algorithms that contain few parameters to be tuned and do
not have drawbacks are more effective.

CS was developed by Yang and Deb [58] in 2009. It is one of the
newest nature-inspired meta-heuristic algorithms used to solve
global optimization problems [13]. Most recently, CSA enhanced by
the so-called Lévy flight method was used instead of simple random
walks [13,55].

The algorithm is mainly based on the nature-inspired behavior
of cuckoo birds. A species of cuckoo lays eggs in other nests. If a
host bird determines that the eggs are not its own, then it will either
throw these alien eggs away or simply abandon its nest and build
a new nest elsewhere. The main idealized roles of CSA show that
each cuckoo lays one egg at a time and dumps its egg in a ran-
domly chosen nest. The best nests with high-quality eggs carry over
to the next generations, and the number of available host nest is
fixed. Thus, an egg that is laid by a cuckoo bird is discovered by the
host bird with a probability between 0 and 1. In addition, CS can
workwith NP-hard problems and can obtain the best solution among
several solutions [9,14].

Based on these prospects, the hypothesis of this research sup-
poses that this algorithm could perform well to solve the
combinatorial optimizations problems.

This section provides the necessary details for the developed strat-
egy. Section 5.1 presents the necessary background and illustrates
the essential details of CS and its mechanism. Section 5.2 presents
the details of the “d-tuples generation” algorithm. Then, Section 5.3
presents the CS used for combinatorial testing and its optimiza-
tion process and implementation.

5.1. Cuckoo search (CS)

CS is one of the newest and the most modern strategies applied
in solving optimization problems. The algorithm is mainly used to
solve NP-hard problems that need global search techniques [13,58].
Fig. 4 shows the pseudocode that illustrates the general steps of this
algorithm.

The rules of CSA are as follows. (1) Each cuckoo randomly selects
a nest to lay an egg in it, in which the egg represents a solution in
a set of solutions. (2) Part of the nest contains the best solutions
(eggs) that will survive for the next generation. (3) The probabili-
ty of the host bird finding the alien egg in a fixed number of nests
is pa∈ [0,1] [59]. If the host bird discovers an alien eggwith this prob-
ability, then the bird either discards the egg or abandons the nest
to build a new one. Thus, we assume that a part of pa with n nest
is replaced by new nests.

Lévy flight is used in CSA to conduct local and global searches
[60]. The rule of Lévy flight is used successfully in stochastic simu-
lations of different applications, such as biology and physics. Lévy
flight is a random path of walking that takes a sequence of jumps,

 Algorithm 1: Cuckoo Search

1 Initialize a population of n host nests xi , i = 1, 2, . . . , n
2 for all xi do
3 Calculate fitness Fi = f (xi)
4 end
5 while (Number of iterations <Max Number of iterations)
6 or (Stopping criteria satisfied) do
7 Generate a cuckoo egg (xi) by taking a Lévy flight from random nest
8 Fj = f (xi)
9 Choose a random nest i

10 if Fi > Fj then
11 xi ← xj
12 Fi ← Fj

13 end
14 Abandon a fraction pa of the worst nests
15 Build new nests at new locations via Lévy flights to replace nests lost
16 Evaluate fitness of new nests and rank all solutions
17 end

Fig. 4. Pseudocode of CS [58].

742 B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

which are selected from a probability function. A step can be
represented by the following equation for the solution x(t+1) of
cuckoo i:

x xi
t

i
t+ ()= + ⊕ ()1 α λLevy´ (2)

where α the size of each step, in which α > 0 and depends on the
optimization problem scale. The product ⊕ is the entrywise mul-
tiplication, and Levy´ λ() is the Lévy distribution. The algorithm
continues to move the eggs to another position if the objective func-
tion finds better positions. This can be noticed clearly in Fig. 4 when
Fi is replaced with Fjwhere j is the indication of a new solution gen-
erated after update.

Another advantage of CSA over other stochastic optimization al-
gorithms, such as PSO and GA, is its lack of many parameters for
tuning. The only parameter for tuning is pa. Yang and Deb [15,58]
obtained evidence from the literature and showed that the gener-
ated results were independent of the value of this parameter and
could be fit to a proposed value pa = 0.25.

In using the algorithm for combinatorial test suite generation,
adapting the algorithm to the generation strategy is essential. Here,
the fitness function plays an important role in the adaptation and
application of CS. In this paper, after the population is initialized,
the CS takes the number of covered d-tuples in each nest in the pop-
ulation as a fitness function. This function selects the best rows that
cover most of the combinations in the d-tuples list.

5.2. The d-tuples generation algorithm

Generating the all-combination-list (i.e., d-tuples list) is essen-
tial in calculating the fitness function Fi = f(xi). The d-tuples list
contains all possible combinations of input factors k. This algo-
rithm mainly takes three inputs: number of input factors (k), level
of each input factor (v), and degree of combination (d). To gener-

ate the d-tuples list, the strategy first generates a binary digit (BD)
list that contains binary digits; this BD list starts from zero to space
limit (SL). SL is calculated by Eq. 3.

The BD list can be filled by binary digits, and the total number
of elements of the BD list is equal to (2k).

SL k numbers of input factork= ()− −()2 1 (3)

C
k

d k d
d
k =

× −()
!

! !
(4)

When the BD list is created, an algorithm filters the BD list based
on the combination degree. The algorithm counts the number of
1s in each binary number and passes only those binary numbers
that meet the combinatorial degree specified in the input at the
beginning. Fig. 5 shows the creation of BD and IFC. Basing on the
specified degree of combination, the check point compares each
element in the BD list to a degree number (d). The summation
repeats 1 for each row element in the BD list that has the same
degree number (i.e., ∑ =repeated d" "1). For example, if d = 2, then
each binary digit must contain two 1s, in which (011), (101), and
(110) pass the filter. The IFC is a list that represents input factor
combinations. Here, for each position that contains 0, a “don’t care”
value of the input factor is inserted. However, the 1s in the same
binary element are replaced by a level for that particular input
factor. For example, (011) represents three input factors (k1, k2, and
k3). In this case, the first input factor (k1 = 0) is counted as a “don’t
care,” whereas the combination is between the second and third
factors.

Here, the algorithm neglects elements in the BD list that do not
satisfy the combination degree conditions and adds the rest of the
elements to the IFC list. Fig. 6 illustrates a running example of this
algorithm through a simple diagram. The diagram shows an example
with d = 2 and k = 3. Thus, SL = ((2 × 2 × 2) − 1) = 7, which in turn

V

d

k

Data

Generation Space Limit
(SL)

Create
Binary Digit (BD)

Binary Digit (BD)

...

...

...

...

...

...

Input Factor Combination
(IFC)

...

...

...

...

...

Check for count of "1" equal "d"

k = Input-factor
v = Level for each input-factor
d = Degree of combination
SL = Space limit = 0------2

k -1
BD = Binary Digit = ------2

k

IFC= Input-Factor combination

Fig. 5. IFC algorithm diagram.

743B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

counts binary numbers from 0 to 7. The outcome of the algorithm
satisfies the results in Eq. 4, where the (c) represents the combi-
nations [61], that is, the number of combinations is equal to three
elements in IFC.

The output list of this algorithm can be noted clearly in the output
screen of the strategy shown in Fig. 7 for a system with CA
(4; 2, 24).

An algorithm is used to assess the search process for the com-
binations efficiently. In this paper, the rows in the d-tuples list are
stored in groups. Each group is assigned with an index number that
indicates its position in the list. The groups are selected based on
the combination of factors. The number of input factors equals four
(k1, k2, k3, and k4), and each input factor has two levels (vi = 2, 2, 2,
2) when the degree of combination equals two (d = 2). According
to Eq. 4, the number of input factor combinations can be deter-
mined as follows:

C2
4 4

2 4 2
4 3 2 1
2 1 2 1

24
4

6=
× −()

= × × ×
× × ×

= =!
! !

According to the results, six combinations are possible, as shown
in Fig. 8.

For each path, multiplying the levels can be combined [(k3, k4),
(k2, k4), (k2, k3), (k1, k4), (k1, k3), (k1, k2)], and then the results are
equal to [(2 × 2 = 4), (2 × 2 = 4), (2 × 2 = 4), (2 × 2 = 4), (2 × 2 = 4),
(2 × 2 = 4)], respectively.

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

 0 1 1

1 0 1

 1 1 0

2
k
-1

2
3
-1=7

0
1
2
3
4
5
6
7

2-comb

IFC BD

k
2
,k

3

k
1
,k

3

k
1
,k

2

2
k

= 8

k
1

k
2

k
3k

1
k

2
k

3

Fig. 6. The IFC and BD for d = 2, k = 3.

Fig. 7. Output screen shot of the strategy.

744 B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

According to these results, the search space is divided into six
partitions, and an indexing for each partition is created by consid-
ering the summation of each combination [(4), (4 + 4 = 8), (8 + 4 = 12),
(12 + 4 = 16), (16 + 4 = 20), (20 + 4 = 24)]. Thus, six categories are
created dynamically by the strategy, such as [(1–4), (5–8), (9–12),
(13–16), (15–20), (21–24)]. Fig. 9 illustrates this mechanism in detail
for the given example.

The advantage of this mechanism is the speedup of the search
process because the strategy searches only for related tuples in the
given index number. The index changes dynamically as the best test
case is found because the related tuples in the search space are
deleted immediately.

5.3. Optimization process with CS

After the d-tuples list is generated, the CS starts. In this paper,
the CS is modified to solve the current problem. The fitness func-
tion is used to derive the better solution among a set of solutions.

In this paper, a row with higher fitness weight is defined as a row
that can cover a higher number of rows in the d-tuples list. Fig. 10
shows the pseudocode of combinatorial test suite generation, in
which CS is modified for this purpose.

The strategy starts by considering the input configuration. Then,
the d-tuples list is generated. The CS starts by initializing a random
population that contains a number of nests. Given that the number
of levels for each input factor is a discrete number, the initialized
population is discrete, not an open interval. Thus, the population
is initialized with a fixed interval between 0 and vi. In this paper, a
system has different factors in which a test case is a composite of
more than two factors that form a row in the final test suite. As a
result of such an arrangement, each test case is treated as a vector
xi that has dimensions equal to the number of input factors of the
system. In addition, the levels for each input factor are basically an
integer value. As a result, each dimension in the vector-initialized
population must be an integer value.

Although the initial population is initialized in a discrete inter-
val, the algorithm can produce out-of-the-bound levels for the input
factors. Thus, the vector must be restricted with lower and upper
bounds. The rationale for this restriction is that the cuckoo lays its
eggs in the nests that are recognized by its eyes.

When the CSA iterates, it uses Lévy flight to walk toward the
optimum solution. The Lévy flight is a walk that uses random steps,
in which the length of each step is determined by Lévy distribu-
tion. The generation of random steps in the Lévy flight consists of
two steps [62], namely generating the steps and choosing a random
direction. The generation of direction normally follows a uniform
distribution. However, in the literature, the generation of steps
follows a few methods. This paper follows the Mantegna algo-
rithm, which is the most efficient and effective step-generation
method [62]. In this algorithm, a step length s can be defined as
follows:

K1

6
5

4

3
2

1 K4K3
K2

Fig. 8. Combination paths.

k
1

k
2

k
3

k
4 index

1 * * v
3

v
4 21 - 24

2 * v
2

* v
4 17 - 20

3 * v
2

v
3

* 13 - 16

4 v
1

* * v
4 9 - 12

5 v
1

* v
3

* 5 - 8

6 v
1

v
2

* * 1 - 4

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

Fig. 9. Indexing of the search space.

745B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

s
u

v
= 1

β
(5)

where u and v are derived from the normal distribution in which

u N v Nu u∼ ∼0 02 2, , ,σ σ() () (6)

σ
β πβ

β β
σβ

β

u v=
+() ⎛

⎝⎜
⎞
⎠⎟

+⎡
⎣⎢

⎤
⎦⎥

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

=−

Γ

Γ

1
2

1
2

2
1

2

1

sin
, 11 (7)

Based on the aforementioned design constraints, the complete
strategy steps, including the CSA, are summarized in Fig. 10.

As mentioned, the strategy starts by considering the input con-
figuration (Step 1). Normally, the input is a composite input with
factors, levels, and desired combination degree d. The combina-
tion degree is d > 1, which is less than or equal to the number of
input factors. Through the all-combination-list generation algo-
rithm described previously, the d-tuples list is generated (Step 1).
Thereafter, the strategy uses the CSA, which starts by initializing a
population with m nests, with each nest consisting of dimension-
al vectors equal to the number of factors with a number of levels

(Step 2). From a practical point of view, each nest contains a can-
didate test case for the final test suite (FTS). Thereafter, the CSA
assesses each nest by evaluating its coverage capability of the
d-tuples (Steps 3-5). For example, a nest that can cover 4-tuples has
a weight of coverage of 4. The strategy uses a special mechanism
described previously (Section 5.2) to determine the number of
covered tuples and to verify the weight. Using the results of cov-
erage for all nests, the strategy sorts the nests again in the search
space based on the highest coverage (Step 10). The lowest cover-
age in the search space is abandoned. For the abandoned nests, a
Lévy flight is conducted to verify the availability of better cover-
age (Step 13). If better coverage is obtained for a specific nest, then
the nest is replaced by the content of the current nest. Thereafter,
for the better nests, a Lévy flight is conducted to search for the best
local nests (Step 20). If better coverage is obtained after the Lévy
flight for a specific nest, then the nest is replaced with the ones with
better coverage (Steps 21 to 24). These steps (Steps 7 to 28) in the
CSA update the search space for each iteration.

Two stopping criteria are defined for the CSA. First, if the nest
reaches the maximum coverage, then the loop stops and the algo-
rithm adds this test case to the FTS and removes its related tuples
in the n-tuples list. Second, if the d-tuples list is empty, then no com-
binations are covered. If the iteration reaches the final iteration, then

Algorithm 2: Combinatorial test suite generation
Input: Input-factors k and levels v
Output: A test case

1 Let d-tuples list be a set of all combinations’ list that must be covered
2 Initialize a population of m host nests xi , i = 1, 2, . . . , m
3 for all xi do
4 Calculate the coverage of combinations and return the weight
5 end
6 Iteration number I ter ← 1
7 while (Number of iterations <Max Number of iterations)
8 or (d-tuples list is not empty) do
9 I ter ← I ter + 1

10 Sort the nest by the weight of combination’s coverage
11 for all nests to be abandoned do
12 Current position xi
13 Perform Lévy flight from xi to generate new egg xj
14 xi ← xj
15 Fi ← f (xi)
16 end
17 for all of the top nests do
18 Current position xi
19 perform Lévy flight from xi to generate new eggs xk
20 Fk ← f (xk)
21 if Fk >Fi then
22 xi ← xk
23 Fi ← Fk

24 end
25 end
26 end
27 Add the first nest to the final test suite
28 Remove all the related combinations from the d-tuples list

Fig. 10. Pseudocode of combinatorial test suite generation with CS.

746 B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

the algorithm selects the best coverage nest to be added to the FTS
(Step 27) and removes the related tuples in the d-tuples list (Step
28). This mechanism continues as long as n-tuples remain in the
list. Fig. 11 presents the general procedure of the strategy.

6. Evaluation results and discussion

To evaluate the effectiveness of the generated test suite, the strat-
egy is evaluated by adopting a case study on a reliable artifact
program to prove the applicability and correctness of the strategy
for a real-world software testing problem. The generated test suite
in the first stage does not consider the internal structure of the ar-
tifact program. However, after the generation, the test suite is filtered
based on structural testing methods and detected faults. In making
a fair comparison, the generation efficiency of the first stage (i.e.,
without filtering) is compared with that of other strategies.

Some strategies are available publicly as tools to be down-
loaded and installed, whereas other strategies are unavailable
publicly. Having all the tools installed in the same environment is
essential to ensuring a fair comparison. The proposed strategy is
compared with seven well-known strategies, namely Jenny, TConfig,
PICT, TVG, IPOG, IPOG-D, and PSO. The experimental environment
consists of a desktop PC with Windows 7 operating system, 64-
bit, 2.5 GHz, Intel Core i5 CPU, and 6 GB of RAM. The algorithms are
coded and implemented in C#.

6.1. The CS efficiency evaluation experiments

Efficiency of generation is measured by the size of the con-
structed test suites. All results are compared with those strategies

published in the literature and those available freely for down-
load. In addition to the input configuration of the selected artifact
used for case study, different benchmarks are selected from liter-
ature for better evaluation. The procedure of the comparison
categorizes the experiments into different sets. Since the test suite
basic components are input factors (k), the levels of these factors
(v) and the combination degree, the experiments are taking these
components as bases. The first set of experiment is the artifact
program used for case study.

Here, an artifact program is selected as the object of the empir-
ical case study. The program is used to evaluate the personal
information of new applicants for officer positions. The program con-
sists of various GUI components that represent personal information
and criteria to be converted into a weighted number. Each criteri-
on has an effect on the final result, which decides the rank and
monthly wage of the officer. The final number is the resulting point.
The program is selected because it has a nontrivial code base and
different configurations. Fig. 12 shows the main window of the
program.

The program regards different configurations as input factors. Each
input factor has different levels. For example, the user can choose
“No Degree,” “Primary,” “Secondary,” “Diploma,” “Bachelor,” “Master,”
and “Doctorate” levels for the “Degree” factor. Table 3 summarizes
the factors and levels for the program.

To this end, the input configuration of the program can be rep-
resented by one factor with seven levels, one factor with six levels,
eight factors with two levels each, and two factors with three levels
each. Thus, this input configuration can be notated in an MCA no-
tation as MCA (N; d, 71 61 28 32). We need 96,768 test cases to test

Start

Input Data
k,d,v

Generate d-tuples

Processing
and Indexing

Apply
CS

End

Generate IFC

Final Test Suit

d-tuples
is empty

No

Yes

Fig. 11. Flow chart of the CS strategy.

Fig. 12. Main window of the empirical study program.

Table 3
Summary of the input factors and levels for the case study program.

No. Factors Levels

1 Degree [No Degree, Primary, Secondary, Diploma,
Bachelor, Master, Doctor]

2 Children [Non, 1, 2, 3, 4, More_than_4]
3 Read [Checked, unchecked]
4 Write [Checked, unchecked]
5 Speak [Checked, unchecked]
6 Understand [Checked, unchecked]
7 New graduate [Checked, unchecked]
8 Experience [Checked, unchecked]
9 English [Checked, unchecked]
10 Disability [Checked, unchecked]
11 Marital status [Single, Married, Widow]
12 Resident [Local, Outsider, Foreigner]

747B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

the program with exhaustive configuration testing. In this paper,
a combinatorial test suite is generated by considering the input con-
figuration to minimize the number of test cases. Table 4 shows the
size of each test suite generated by CS strategy as well as the time
in seconds of generation, considering the combination degree com-
pared with other strategies. The best results for each configuration
in the table are shown in bold numbers.

Table 4 shows the size of the smallest generated sizes for the
combinatorial test suite when 2 ≤ d ≤ 6. In addition, the table shows
the time of generation for these configurations. The table shows that
PICT can generate the largest sizes and time in all cases as com-
pared to the other competitors. IPOG and IPOG-D perform effectively
in all configurations. However, IPOG and IPOG-D fail to generate op-
timized results of size in most of the cases. However, they are very
fast for test suite generation. IPOG-D is the fastest strategy for gen-
eration, although its size of generation is not superior. Jenny and
TVG can generate better results than IPOG and IPOG-D in term of
size. However, Jenny is faster than TVG, and in some cases it can
beat IPOG-D. TVG can generate better results than Jenny in most
cases in term of size. Aside from CSA, PSO generates better results
for most configurations. Similarly, CS can achieve better results for
all configurations and can achieve better results in terms of size as
compared with PSO. However, due to its light weight, CS is faster
than PSO. Notably, the size of the CA depends on the values and
degrees of combinations, which can be interpreted by the equa-
tion of the growth of size published in the literature as O(vt log p)
[40].

To make a fare comparison and to get better indication of the
test generation efficiency, benchmarks are considered from [4,42,63].
Tables 5 and 6 show the best size and execution time of each test
suite generated by CSA strategy compared with other strategies con-

sidering the combination degree equal to 2 for Table 5 and mixed
between 2 and 3 in Table 6. For those strategies that are not avail-
able freely for download, only the size of the generation is presented
in the table. The best results are represented in bold numbers, while
NA indicates that the results are not available for that configuration.

In these configurations from Tables 5 and 6, the results for GA,
ACA, and CASA performmore efficient than the other strategies and
generate better sizes than the others in Table 6. However, CSA is
able to generate better results most of the time in Table 5. PSO, AETG,
mAETG, and CSA are producing comparative results in these con-
figurations. However, they are failed to produce best results for most
of these configurations. Although the reported results for GA and
ACA are showing better results, these algorithms are using “com-
paction algorithm,” which optimizes the output of the GA and ACA
by further optimization of combining the rows of the constructed
CAs. As a result, the reported results do not show the actual effi-
ciency GA and ACA. CASA can generate best results in different
configurations. However, it can be noted that when the degree of
combination or the input factors with levels get higher in values,
it either fails to generate the final array or takes too long time for
generation due to the heavy weight of the algorithm. CS performs
well for these configurations; however, there is few evidence re-
ported by these algorithms to investigate and evaluate CS against
them since they are not freely available.

6.2. The CSA effectiveness evaluation through an empirical case
study

After the test suite is generated, it is further optimized by using
feedback from the software-under-test. In evaluating this ap-
proach, the software-under-test has been injected with various types

Table 4
Comparison of the test suite size generated and time of generation by different strategies for the case study.

Comb.
degree (d)

PICT IPOG IPOG-D Jenny TVG PSO CS
Size/Time Size/Time Size/Time Size/Time Size/Time Size/Time Size/Time

2 310/3.47 42/0.43 57/0.25 42/0.18 42/3.79 42/5.32 42/18.3
3 1793/8.36 141/2.45 195/0.76 156/1.54 144/9.43 139/25.82 136/21.65
4 6652/40.32 505/20.89 926/13.65 477/24.47 497/92.32 459/97.49 446/73.69
5 23014/475.22 1485/105.76 2811/24.65 1240/63.78 1234/204.81 1225/406.52 1205/203.52
6 46794/782.12 3954/187.54 7243/58.32 3041/92.13 3218/542.03 3078/865.37 2886/612.74

Table 5
Comparison of the test suite size generated by different strategies.

Configuration AETG PairTest TConfig Jenny DDA CASA AllPairs PICT CSA
Size Size Size/Time Size/Time Size Size/Time Size Size/Time Size/Time

34 9 9 9/0.11 11/0.09 NA 9/0.22 9 9/0.21 9/0.13
313 15 17 15/25.12 18/18.34 18 16/38.45 17 18/25.57 15/22.45
415317220 41 34 40/722.43 38/342.53 35 34/483.23 34 37/372.51 33/942.18
41339235 28 26 30/1534.26 28/1276.37 27 22/1638.22 26 27/1348.53 25/1749.12
2100 10 15 14/2437.56 16/1754.36 15 12/1734.45 14 15/1567.34 16/2367.23
1020 180 212 231/3890.43 193/2542.12 201 NA 197 210/2934.5 210/3950.2

Table 6
Comparison with existing meta-heuristic algorithms for different configurations.

Configuration AETG mATEG GA CASA ACA PSO CSA
Size Size Size Size/Time Size Size/Time Size/Time

CA(N; 2, 34) 9 9 9 9/0.15 9 9/0.14 9/0.14
CA(N; 2, 313) 15 17 17 16/19.54 17 17/18.45 20/25.34
MCA(N; 2, 51 38 22) 19 20 15 15/12.43 16 21/17.34 21/16.51
MCA(N; 2, 61 51 46 38 23) 34 35 33 30/18.52 32 39/120.37 43/147.29
MCA(N; 2, 71 61 51 46 38 23) 45 44 42 42/28.34 42 48/136.32 51/132.61
CA(N; 3, 36) 47 38 33 33/8.43 33 42/9.32 43/8.37
CA(N; 3, 46) 105 77 64 64/69.52 64 102/115.33 105/110.11

748 B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

of transition mutations (faults) using MuClipse [64] to verify the
effectiveness of the proposed strategy. MuClipse is a mutation in-
jection software that uses muJava as a mutation tool. MuClipse
creates various types of faults within the original program to test
the effectiveness of the generated test suites in detecting these faults.

In general, mutation testing has two advantages on the test suites
obtained from the strategy. The first is that it verifies the contri-
bution of different methods and variables defined in the class on
the calculation process within the class. The second is that it de-
termines whether any similar behavior or reaction exists between
the test cases. Deriving similar test cases and reducing the number
of cases used in the FTS are important.

As shown in Table 4, when the combination degree is 2, 42 test
cases are generated from the optimization algorithm, which covers
the entire code. muJava generates 278 mutation classes, which are
then reduced to 70 mutation classes as a result of similarities in the
mutation concept generating the same effect. Fig. 13 shows the re-
action of these test cases to the 70 mutation classes.

The blue strips in Fig. 13 represent the number of mutation
classes that achieve a correct result. In this case, the test case is not
affected by the injectedmutation because themutation has no effect

on the class calculation and the final result. By contrast, the red strips
represent the number of failed test cases that resulted from the effect
of the injectedmutation. In this case, the mutation has a direct effect
on the calculated result and thus achieves an incorrect result. In this
study, when d = 2, 12 faults are not detected during the 42 tests.

The number of failed test cases with various mutation classes
is used to determine the test cases with the same response. The cases
with the same number of failed tests are compared to detect any
behavioral similarity toward the mutations. From the obtained
results, test cases 22 and 29 exhibit the same response for all mu-
tation classes. As a result, test case 29 is an excess to the test cases
and can be deleted. Meanwhile, the remaining test cases respond
differently to the mutation classes and are thus retained.

When the combination degree is 2, 136 test cases are obtained
from the program-testing strategy. Fig. 14 shows the reaction to the
same 70 mutation classes used when the combination degree is 2.

As shown in Fig. 14, the 136 test cases are applied to verify sim-
ilarity in the same manner as in the previous case. The test cases
with the same response to the mutation are deleted to further op-
timize the FTS. Notably, many tests cannot detect many mutations
at once. However, the overall test cases successfully detect all the

0
5
10
15
20
25
30
35
40
45
50

Fig. 13. Reaction of the test cases with the configuration for the number of mutations detected when d = 2.

Fig. 14. Reaction of the test cases with the configuration for the number of mutations detected when d = 3.

749B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

mutations, including the 12 faults that are not detected by the test
suite with a combination degree of 2. The higher combination degree
(i.e., the test suites for d > 3) is also able to detect the faults. However,
as far as all the faults detected by the test suite of d = 3 are con-
cerned; the results are not reported in this study to avoid redundancy.

For further inspection of the results, the plot of fault detection
density for each test case is shown in the bubble charts in Figs. 15
and 16 for the case when d = 2 and d = 3, respectively.

Figs. 15 and 16 show the fault density when d = 2 and 3. Bubble
chart is useful to show the density of fault detection. Here the size
of the bubbles represents the density of fault detection. In other
words, for a given test case, when the size of the bubble is bigger
than other test case, this means that the fault detection density of
the former test case is better than the latter one. For better inspec-
tion and illustration, the graphs are divided into parts. In Fig. 15,
the graph is divided into two parts. In the same way, Fig. 16 is
divided into four parts because of the large number of test cases
when d = 3. The X-axis represents the test case number and the
Y-axis represents the number of detected faults that have been
injected. Different color is used for each test case to differentiate
between the cases.

The graphs show that the density of fault detection varies de-
pending on the test case. Some of the test cases have low density,
and they can detect faults that have been detected already by other
test cases. Thus, this test case can be omitted from the test suite.

The graph also reveals that the variation of the combination
degree may produce new faults. To this end, when the combina-
tion degree grows to three, the undetected faults by the lower degree
can be detected successfully. However, for this application, using

a higher degree does not lead to new faults because 70 faults have
been injected into the program manually, and they have been de-
tected. For better inspection, the code coverage is measured during
the testing process for each test suite. The results showed that the
code coverage is 84.57% when combination degree is equal to two,
whereas the code coverage is 99.36% when the combination
degree is equal to three. This finding in turn interprets the results
clearly.

In considering the aforementioned discussion, the generated test
suite is optimized further by omitting low density test cases and
ensuring the detection of those faults detected by the other test cases.
The new sizes are 36 and 112 when d = 2 and d = 3, respectively.

7. Threats to validity

This paper faces different threats to validity as in the case of other
studies. Attention focuses on reducing these threats by designing
and running different experiments. However, the threats must still
be addressed. First, because of the lack of results for the meta-
heuristic algorithms, more experiments are needed to further
evaluate the strengths and weaknesses of different algorithms.
Second, only one program is considered as a case study. Although
the program is an ideal artifact for functional testing, more case
studies and evidence can show the effectiveness of the approach.
In addition, the faults injected in the current program can be de-
tected when the test suite has a combination degree equal to three.
However, other kinds of faults that can be detected by a higher
degree of combination can exist within the same case study.

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

Test Case Number

Fa
ul

t N
um

be
r

0

10

20

30

40

50

60

70

Fa
ul

t N
um

be
r

22 24 26 28 30 32 34 36 38 40 42
Test Case Number

Fig. 15. Fault detection density for each test case when d = 2.

750 B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

105 110 115 120 125 130 135
0

10

20

30

40

50

60

70

Test Case Number

Fa
ul

t N
um

be
r

70 75 80 85 90 95 100
0

10

20

30

40

50

60

70

Test Case Number

Fa
ul

t N
um

be
r

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

Test Case Number

Fa
ul

t N
um

be
r

35 40 45 50 55 60 65
0

10

20

30

40

50

60

70

Test Case Number

Fa
ul

t N
um

be
r

Fig. 16. Fault detection density for each test case when d = 3.

751B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

8. Conclusion

In this paper, a technique is presented to detect the
“configuration-aware” faults in software. The technique is based on
combinatorial optimization and sampling. Through combinatorial
optimization, the input configurations are sampled systematically
to generate an optimized test set. CS is used to optimize and search
for an optimal solution by covering the d-tuples list. For the purpose
of evaluation, a user-configurable system is used as a case study.
In addressing the usefulness of the study more effectively, differ-
ent faults were seeded in the software-under-test throughmutation-
testing techniques. The evaluation results show that using CS to
optimize the combinatorial test suites can generate better results
most of the time. The strategy proved its effectiveness in detect-
ing faults in programs by using the functional testing approach. The
proposed strategy can be useful for different testing techniques as
long as test case design and minimization are used. For example,
regression testing can be useful for the test suite used for differ-
ent versions of the same program. It can also be useful for test case
prioritization for prioritizing the test case base on the fault density.

Several directions for future research are available. First, the per-
formance could be significantly improved in the future by designing
more efficient and effective data structures to hasten the search
process, whichmay help the strategy to support combination degrees
higher than 6. Extending the strategy is possible to support differ-
ent degrees of combination, including variable degree, as well as
to support the seeding and constraints of combination. The ap-
proach also opens new research directions in mobile application
testing and characterization.

Acknowledgments

The author would like to thank “Dr. Mouayad A. Sahib” for his
time and advice during thewriting of the paper. It is also worthmen-
tioning the IDSIA Institute and Swiss Excellence Scholarship for
hosting and supporting this research.

References

[1] M.B. Cohen, M.B. Dwyer, J. Shi, Interaction testing of highly-configurable systems
in the presence of constraints, in: International Symposium on Software Testing
and Analysis, London, United Kingdom, 2007, pp. 129–139.

[2] Q. Xiao, M.B. Cohen, K.M. Woolf, Combinatorial interaction regression testing:
a study of test case generation and prioritization, in: Software Maintenance,
2007. ICSM 2007. IEEE International Conference on, 2007, pp. 255–264.

[3] D.S. Hoskins, C.J. Colbourn, D.C. Montgomery, Software performance testing
using covering arrays: efficient screening designs with categorical factors,
presented at the Proceedings of the 5th International Workshop on Software
and Performance, Palma, Illes Balears, Spain, 2005.

[4] K.C. Tai, Y. Lie, In-parameter-order: a test generation strategy for pairwise testing,
in: 3rd IEEE International Symposium on High-Assurance Systems Engineering,
Washington, DC, USA, 1998, pp. 254–261.

[5] C. Yilmaz, M.B. Cohen, A. Porter, Covering arrays for efficient fault
characterization in complex configuration spaces, presented at the ACM SIGSOFT
Software Engineering Notes, 2004.

[6] V.V. Kuliamin, A. Petoukhov, A survey of methods for constructing covering
arrays, Programming and Computer Software 37 (2011) 121–146.

[7] S. Maity, A. Nayak, M. Zaman, N. Bansal, A. Srivastava, An improved test
generation algorithm for pair-wise testing, International Symposium on Software
Reliability Engineering (ISSRE), 2003.

[8] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG-IPOG-D: efficient test
generation for multi-way combinatorial testing, Softw. Test. Verif. Reliab. 18
(2008) 125–148.

[9] A. Ouaarab, B. Ahiod, X.-S. Yang, Discrete cuckoo search algorithm for the
travelling salesman problem, Neur. Comput. Appl. 24 (2014).

[10] C. Nie, H. Leung, A survey of combinatorial testing, ACM Comput. Surv. 43 (2011)
1–29.

[11] P. McMinn, Search-based software test data generation: a survey: research
Articles, Softw. Test. Verif. Reliab. 14 (2004) 105–156.

[12] X.-S. Yang, S. Deb, Cuckoo search via Levy flights, in: Nature & Biologically
Inspired Computing (NaBIC) 2009, 2009, pp. 210–214.

[13] X.-S. Yang, S. Deb, Cuckoo search: recent advances and applications, Neur.
Comput. Appl. 24 (2014) 169–174.

[14] S. Dejam, M. Sadeghzadeh, S.J. Mirabedini, Combining cuckoo and tabu
algorithms for solving quadratic assignment problems, Journal of Academic and
Applied Studies 2 (2012) 1–8.

[15] X.-S. Yang, S. Deb, Engineering optimisation by cuckoo search, International
Journal of Mathematical Modelling and Numerical Optimisation 1 (2010)
330–343.

[16] R. Rajabioun, Cuckoo optimization algorithm, Appl. Soft Comput. 11 (2011)
5508–5518.

[17] S. Kamat, A.G. Karegowda, A brief survey on cuckoo search applications, Int. J.
Innov. Res. Comput. Commun. Eng. 2 (2014).

[18] C. Nie, H. Leung, The minimal failure-causing schema of combinatorial testing,
ACM Trans. Softw. Eng. Methodol. 20 (2011) 1–38.

[19] S. Fouch, M.B. Cohen, A. Porter, Towards incremental adaptive covering arrays,
presented at The 6th Joint Meeting on European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering: companion papers, Dubrovnik, Croatia, 2007.

[20] B.S. Ahmed, K.Z. Zamli, A variable strength interaction test suites generation
strategy using particle swarm optimization, J. Syst. Softw. 84 (2011) 2171–2185.

[21] D. Hoskins, R.C. Turban, C.J. Colbourn, Experimental designs in software
engineering: d-optimal designs and covering arrays, in: ACM workshop on
interdisciplinary software engineering research, Newport Beach, CA, USA, 2004,
pp. 55–66.

[22] R.S. Pressman, B.R. Maxim, Software Engineering: A Practitioner’s Approach,
eighth ed., McGraw-Hill, 2015.

[23] A.H. Ronneseth, C.J. Colbourn, Merging covering arrays and compressingmultiple
sequence alignments, Discr. Appl. Mathemat. 157 (2009) 2177–2190.

[24] R.N. Kacker, D. Richard Kuhn, Y. Lei, J.F. Lawrence, Combinatorial testing for
software: an adaptation of design of experiments, Measurement 46 (2013)
3745–3752.

[25] C. Yilmaz, S. Fouche, M.B. Cohen, A. Porter, G. Demiroz, U. Koc, Moving forward
with combinatorial interaction testing, Computer 47 (2014) 37–45.

[26] A. Hartman, L. Raskin, Problems and algorithms for covering arrays, Discrete
Mathematics 284 (2004) 149–156.

[27] M. Chateauneuf, D.L. Kreher, On the state of strength-three covering arrays,
J. Combinat. Des. 10 (2002) 217–238.

[28] X. Qu, Testing of configurable systems, Chapter 4, in: M. Atif (Ed.), Advances
in Computers, vol. 89, Elsevier, 2013, pp. 141–162.

[29] X. Qu, M.B. Cohen, G. Rothermel, Configuration-aware regression testing: an
empirical study of sampling and prioritization, in: 2008 International
Symposium on Software Testing and Analysis, Seattle, WA, USA, 2008, pp. 75–86.

[30] B.S. Ahmed, K.Z. Zamli, C.P. Lim, Application of particle swarm optimization
to uniform and variable strength covering array construction, Appl. Soft Comput.
12 (2012) 1330–1347.

[31] C.S. Cheng, Orthogonal arrays with variable numbers of symbols, Ann. Statist.
8 (1980) 447–453.

[32] D.M. Cohen, S.R. Dalal, M.L. Fredman, G.C. Patton, The AETG system: an approach
to testing based on combinatorial design, IEEE Trans. Softw. Eng. 23 (1997)
437–444.

[33] E. Lehmann, J. Wegener, Test case design by means of the CTE XL, in: 8th
European International Conference on Software Testing, Analysis & Review
(EuroSTAR 2000), Copenhagen, Denmark, 2000, pp. 1–10.

[34] J. Arshem. <http://sourceforge.net/projects/tvg/>, 2000 (accessed 03.01.15).
[35] A.W. Williams, Determination of test configurations for pair-wise interaction

coverage, in: 13th International Conference on Testing Communicating Systems:
Tools and Techniques, Deventer, The Netherlands, 2000, pp. 59–74.

[36] M.B. Cohen, Designing test suites for software interaction testing (Doctor of
Philosophy PhD thesis), University of Auckland, 2004.

[37] B. Jenkins. <http://burtleburtle.net/bob/math/jenny.html>, 2005 (accessed
03.01.15).

[38] J. Czerwonka, Pairwise testing in real world. Practical extensions to test case
generators, in: Proceedings of the 24th Pacific Northwest Software Quality
Conference, Portland, Oregon, 2006, pp. 419–430.

[39] G.B. Sherwood, S.S. Martirosyan, C.J. Colbourn, Covering arrays of higher strength
from permutation vectors, J. Combinat. Des. 14 (2006) 202–213.

[40] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG: a general strategy for
t-way software testing, in: 4th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, Tucson, Arizona,
2007, pp. 549–556.

[41] J. Czerwonka, Available tools. <http://www.pairwise.org/tools.asp>, 2015
(accessed 07.03.15).

[42] T. Shiba, T. Tsuchiya, T. Kikuno, Using artificial life techniques to generate test
cases for combinatorial testing, in: 28th Annual International Computer Software
and Applications Conference, vol. 1, Hong Kong, 2004, pp. 72–77.

[43] R.P. Pargas, M.J. Harrold, R.R. Peck, Test-data generation using genetic algorithms,
Softw. Test. Verif. Reliab. 9 (1999) 263–282.

[44] S. Huang, M.B. Cohen, A.M. Memon, Repairing GUI test suites using a genetic
algorithm, in: 3rd IEEE International Conference on Software Testing, Verification
and Validation, Washington, DC, USA, 2010, pp. 245–254.

[45] B.J. Garvin, M.B. Cohen, M.B. Dwyer, An improved meta-heuristic search for
constraints interaction testing, in: International Symposium on Search-based
Software Engineering (SBSE), 2009.

[46] K.J. Nurmela, Upper bounds for covering arrays by tabu search, Discr. Appl.
Mathemat. 138 (2004) 143–152.

[47] X. Chen, Q. Gu, A. Li, D. Chen, Variable strength interaction testing with an ant
colony system approach, in: 16th Asia-Pacific Software Engineering Conference,
Penang, Malaysia, 2009, pp. 160–167.

752 B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0010
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0010
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0010
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0015
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0015
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0015
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0020
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0020
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0020
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0020
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0025
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0025
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0025
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0030
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0030
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0030
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0035
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0035
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0040
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0040
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0040
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0045
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0045
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0045
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0050
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0050
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0055
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0055
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0060
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0060
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0065
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0065
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0070
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0070
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0075
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0075
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0075
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0080
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0080
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0080
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0085
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0085
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0090
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0090
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0095
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0095
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0100
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0100
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0100
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0100
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0105
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0105
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0110
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0110
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0110
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0110
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0115
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0115
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0120
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0120
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0125
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0125
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0125
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0130
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0130
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0135
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0135
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0140
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0140
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0145
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0145
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0150
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0150
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0150
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0155
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0155
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0155
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0160
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0160
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0165
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0165
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0165
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0170
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0170
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0170
http://sourceforge.net/projects/tvg/
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0180
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0180
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0180
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0185
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0185
http://burtleburtle.net/bob/math/jenny.html
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0195
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0195
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0195
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0200
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0200
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0205
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0205
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0205
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0205
http://www.pairwise.org/tools.asp
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0215
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0215
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0215
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0220
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0220
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0225
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0225
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0225
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0230
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0230
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0230
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0235
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0235
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0240
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0240
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0240

[48] B.S. Ahmed, M.A. Sahib, M.Y. Potrus, Generating combinatorial test cases using
simplified swarm optimization (SSO) algorithm for automated GUI functional
testing, Engineering Science and Technology, an International Journal 17 (2014)
218–226.

[49] T. Mahmoud, B.S. Ahmed, An efficient strategy for covering array construction
with fuzzy logic-based adaptive swarm optimization for software testing use,
Exp. Syst. Appl. 42 (2015) 8753–8765.

[50] J. Stardom, Metaheuristics and the search for covering and packing arrays
(Master’s thesis), Simon Fraser University, 2001.

[51] T. Shiba, T. Tsuchiya, T. Kikuno, Using artificial life techniques to generate test
cases for combinatorial testing, in: 28th Annual International Computer Software
and Applications Conference, Hong Kong, 2004, pp. 72–77.

[52] H. Liu, A. Abraham, W. Zhang, A fuzzy adaptive turbulent particle swarm
optimisation, Int. J. Innov. Comput. Appl. 1 (2007) 39–47.

[53] R.R. Othman, K.Z. Zamli, S.M.S. Mohamad, T-way testing strategies:
a critical survey and analysis, Int. J. Dig. Cont. Technol. Appl. 7 (2013) 22–
235.

[54] H.M. Nehi, S. Gelareh, A survey of meta-heuristic solution methods for the
quadratic assignment problem, Applied Mathematical Sciences 1 (2007)
2293–2312.

[55] X.-S. Yang, Metaheuristic optimization, Scholarpedia 6 (2011).

[56] W. Huimin, G. Qiang, Q. Zhaowei, Parameter tuning of particle swarm
optimization by using Taguchi method and its application to motor design, in:
4th IEEE International Conference on Information Science and Technology
(ICIST), 2014, pp. 722–726.

[57] G. Xu, An adaptive parameter tuning of particle swarm optimization algorithm,
Appl. Mathemat. Comput. 219 (2013) 4560–4569.

[58] X.-S. Yang, S. Deb, Cuckoo search via Lévy flights, in: Nature & Biologically
Inspired Computing, 2009. NaBIC 2009. World Congress on, 2009, pp. 210–214.

[59] X. Li, M. Yin, Modified cuckoo search algorithm with self adaptive parameter
method, Inf. Sci. (Ny) 298 (2015) 80–97.

[60] T.T. Nguyen, D.N. Vo, Modified cuckoo search algorithm for short-term
hydrothermal scheduling, Int. J. Elec. Power Energ. Syst. 65 (2015) 271–281.

[61] D.J. Velleman, G.S. Call, Permutations and combination locks, Mathematics
Magazine 68 (1995) 243–253.

[62] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, second ed., Luniver Press,
2010.

[63] J. Czerwonka, Pairwise testing in real world: practical extensions to test case
generator, in: 24th Pacific Northwest Software Quality Conference, Portland,
Oregon, USA, 2006, pp. 419–430.

[64] MuClipse, MuClipse development web page. <http://muclipse.sourceforge.net/>,
2015.

753B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0245
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0245
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0245
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0245
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0250
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0250
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0250
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0255
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0255
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0260
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0260
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0260
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0265
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0265
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0270
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0270
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0270
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0275
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0275
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0275
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0280
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0285
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0285
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0285
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0285
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0290
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0290
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0295
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0295
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0300
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0300
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0305
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0305
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0310
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0310
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0315
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0315
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0320
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0320
http://refhub.elsevier.com/S2215-0986(15)00170-6/sr0320
http://muclipse.sourceforge.net/

	 Test case minimization approach using fault detection and combinatorial optimization techniques for configuration-aware structural testing
	 Introduction
	 Combinatorial optimization and its mathematical representation
	 Problem definition through a practical example
	 Related work and review of literature
	 Test suite generation strategies
	 A brief review of generation tools

	 Cuckoo search for combinatorial testing
	 Cuckoo search (CS)
	 The d-tuples generation algorithm
	 Optimization process with CS

	 Evaluation results and discussion
	 The CS efficiency evaluation experiments
	 The CSA effectiveness evaluation through an empirical case study

	 Threats to validity
	 Conclusion
	 Acknowledgments
	 References

