
Making Optional Greater Equal Again

Document number: P0307R2
Date: 2016-03-15
Audience: LEWG/LWG
Reply-to: Tony Van Eerd. optional at forecode.com

tl;dr:

optional<X> opt =;

assert((opt >= opt) == true);
assert((*opt >= opt) == true);
assert((opt >= *opt) == true);
assert((*opt >= *opt) == false);

One of those is not like the others.

Similarly, for some classes Y:

optional<Y> opt =;

... (opt >= opt) ... // OK

... (*opt >= opt) ... // OK

... (opt >= *opt) ... // OK

... (*opt >= *opt) ... // compile error!!!

This inconsistency in optional is a very simple and small problem with a very simple and small fix:
optional>= needs to call T's operator>=. (optional currently instead calls !operator<(), which is
typically, but not always, the same result as X::operator>=, ie consider X == float)

If you agree with the small fix (or already assumed it worked that way) you don't really need to read
any further. It is that simple.

3 categories of classes

Aggregates: pair, tuple; struct { int m, n; }; struct { float m; }; class MyFoo {...};
Wrappers: optional, variant, any, expected, ...
Containers: int x[17], std::array, vector, vector, vector, ...

Notes:

you can argue that int x[17] is an Aggregate. But it is not a Wrapper.●

I hear there are other containers past vector, but you should just use vector :-)●

struct { float m; } is an aggregate, not a wrapper●

Wrappers

So what "defines" or at least hints at a Wrapper ('Proxy'? Some better name?)

implicit construction from the 'wrappee'●

conversion to the wrappee●

relational operators between wrapper and wrappee ie optional<X>{} < X{}●

in general trying to 'act like' the wrappee (proxy etc)●

The above is why struct { float m; } is not a Wrapper/Proxy, but an Aggregate.

Consistency

We want everything to be consistent. Sometimes this is not possible. What should we do?

The following is probably obvious when stated, but still needs to be stated sometimes:
Not all consistency is valued equally. There is a scale (from greatest to least value):

Self consistency●

Similar consistency●

...●

...●

Global Consistency●

So how does consistency apply to the current situation with optional? Wait. First, optional needs to
be correct. Being consistently wrong is not nearly as good as consistently right. Of these lines:

optional<float> opt = NaN;

assert((opt >= opt) == true);
assert((*opt >= opt) == true);
assert((opt >= *opt) == true);
assert((*opt >= *opt) == false);

only the bottom one is correct. (or you can argue that only the bottom one can't change, as we are
not changing how float works)

So we need to change the other three. And it is not that "we have to", it is what makes sense. If
optional>= calls T's >= we get (of course)

assert((opt >= opt) == false);
assert((*opt >= opt) == false);
assert((opt >= *opt) == false);
assert((*opt >= *opt) == false);

This makes optional consistent with itself and T.

Consistency with neighbours

This small fix makes optional closer to being consistent with aggregates - optional<float> now●

gives the same results as struct { float m; } (particularly if/when we get default generation of
relational operators from EWG). But optional is still slightly inconsistent vs Aggregates when
dealing with exotic types. For Aggregates, operator>= calls operator> and operator= instead of
calling memberwise >=. (We can't change how Aggregates work here. For aggregates with more
than one member, you cannot build a sensible lexicographical >= from only memberwise >=. For
single member, you could use >= directly, but then single-member aggregates would not be
consistent with multi-member aggregates.)
This small fix makes optional slightly inconsistent with Containers. Fine. Optional is not a●

Container, it is a Wrapper. And for "normal" types, they are all still consistent. More importantly,
they are each consistent within their own category.
(Also, regardless of this fix, Containers are not consistent with Aggregates (of floats, for example).●

We don't suggest changing Containers or breaking code. Also, Containers (often) are used to find()
things via an equivalence (not equality) relation, so maybe Containers aren't broken. Maybe.)
(Currently pair and tuple act like Containers (with respect to >=). They should probably act like●

Aggregates. This paper does not suggest changing them at this time.)

A Slight Alternative

Ville suggested that optional<T> use T's >= - if it exists - but that if T does not have >=, then
optional<T> could generate >= from <. If P0221R1 (default comparison operators) is implemented,
then it doesn't matter - T will already have a generated >= (unless, of course, the developer
intentionally deleted it).

As shown above (near the beginning) it may be more consistent to only define operator>= when T
defines >=, but falling back to a < based definition may be seen as "convenience".

Variant

Ditto for variant, particularly if accepted into C++17. And for any other potential wrapper classes
(std::expected, etc).

Acknowledgements

Thanks to Chandler and Nico and many others for encouraging me, and for Ville and Nevin for
putting up with me :-)

Wording

In sub-clause [optional.relops] apply the following changes to the relational operators.
The signatures didn't change. They are included for context.
~~Lines struck~~
are replaced by the corresponding lines that follow.

template<class T> constexpr bool operator==(const optional<T>&x, const optional<T>&y);

~~Requires: T shall meet the requirements of EqualityComparable~~
Requires: Expression *x == *y shall be well-formed and its result shall be convertible to bool.
[Note: T need not be EqualityComparable. - end note]

template<class T> constexpr bool operator!=(const optional<T>&x, const optional<T>&y);

~~Returns: !(x == y).~~
Requires: Expression *x != *y shall be well-formed and its result shall be convertible to bool.
Returns: If bool(x) != bool(y), true; otherwise, if bool(x) == false, false; otherwise *x != *y.
Remarks: Specializations of this function template for which *x != *y is a core constant expression
shall be constexpr functions.

template<class T> constexpr bool operator<(const optional<T>&x, const optional<T>&y);

[Dearest Esteemed Editor: no edits to this operator]

template<class T> constexpr bool operator>(const optional<T>&x, const optional<T>&y);

~~Returns: y < x.~~
Requires: Expression *x > *y shall be well-formed and its result shall be convertible to bool.
Returns: If !x, false; otherwise, if !y, true; otherwise *x > *y.
Remarks: Specializations of this function template for which *x > *y is a core constant expression,
shall be constexpr functions.

template<class T> constexpr bool operator<=(const optional<T>&x, const optional<T>&y);

~~Returns: !(y < x).~~
Requires: Expression *x <= *y shall be well-formed and its result shall be convertible to bool.
Returns: If !x, true; otherwise, if !y, false; otherwise *x <= *y.
Remarks: Specializations of this function template for which *x <= *y is a core constant expression,
shall be constexpr functions.

template<class T> constexpr bool operator>=(const optional<T>&x, const optional<T>&y);

~~Returns: !(x < y).~~
Requires: Expression *x >= *y shall be well-formed and its result shall be convertible to bool.
Returns: If !y, true; otherwise, if !x, false; otherwise *x >= *y.
Remarks: Specializations of this function template for which *x >= *y is a core constant expression,
shall be constexpr functions.

Comparisons with T

template <class T> constexpr bool operator==(const optional<T>& x, const T& v);

~~Returns: bool(x) ? *x == v : false.~~
Effects: Equivalent to return bool(x) ? *x == v : false.

template <class T> constexpr bool operator==(const T& v, const optional<T>& x);

~~Returns: bool(x) ? v == *x : false.~~
Effects: Equivalent to return bool(x) ? v == *x : false.

template <class T> constexpr bool operator!=(const optional<T>& x, const T& v);

~~Returns: bool(x) ? !(*x == v) : true.~~
Effects: Equivalent to return bool(x) ? *x != v : true.

template <class T> constexpr bool operator!=(const T& v, const optional<T>& x);

~~Returns: bool(x) ? !(v == *x) : true.~~
Effects: Equivalent to return bool(x) ? v != *x : true.

template <class T> constexpr bool operator<(const optional<T>& x, const T& v);

~~Returns: bool(x) ? *x < v : true.~~
Effects: Equivalent to return bool(x) ? *x < v : true.

template <class T> constexpr bool operator<(const T& v, const optional<T>& x);

~~Returns: bool(x) ? v < *x : false.~~
Effects: Equivalent to return bool(x) ? v < *x : false.

template <class T> constexpr bool operator<=(const optional<T>& x, const T& v);

~~Returns: !(x > v).~~
Effects: Equivalent to return bool(x) ? *x <= v : true.

template <class T> constexpr bool operator<=(const T& v, const optional<T>& x);

~~Returns: !(v > x).~~
Effects: Equivalent to return bool(x) ? v <= *x : false.

template <class T> constexpr bool operator>(const optional<T>& x, const T& v);

~~Returns: bool(x) ? v < *x : false.~~
Effects: Equivalent to return bool(x) ? *x > v : false.

template <class T> constexpr bool operator>(const T& v, const optional<T>& x);

~~Returns: bool(x) ? *x < v : true.~~
Effects: Equivalent to return bool(x) ? v > *x : true.

template <class T> constexpr bool operator>=(const optional<T>& x, const T& v);

~~Returns: !(x < v).~~
Effects: Equivalent to return bool(x) ? *x >= v : false.

template <class T> constexpr bool operator>=(const T& v, const optional<T>& x);

~~Returns: !(v < x).~~
Effects: Equivalent to return bool(x) ? v >= *x : true.

