
Computer Physics Communications 205 (2016) 32–47
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Modern multicore and manycore architectures: Modelling,
optimisation and benchmarking a multiblock CFD code
Ioan Hadade ∗, Luca di Mare
Whole Engine Modelling Group, Rolls–Royce Vibration UTC, Mechanical Engineering Department, Imperial College London, South Kensington, SW7 2AZ,
London, United Kingdom

a r t i c l e i n f o

Article history:
Received 3 October 2015
Received in revised form
4 April 2016
Accepted 13 April 2016
Available online 22 April 2016

Keywords:
Computational fluid dynamics
Code optimisation
SIMD
SandyBridge
Haswell
Xeon Phi
Parallel performance

a b s t r a c t

Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide
range of architectural features such as SIMD for data parallel execution or threads for core parallelism.
The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on
current and future processors. This paper presents the performance tuning of a multiblock CFD solver
on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor.
Code optimisations have been applied on two computational kernels exhibiting different computational
patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at
great length the code transformations required for achieving efficient SIMD computations for both kernels
across the selected devices including SIMD shuffles and transpositions for flux stencil computations and
global memory transformations. Core parallelism is expressed through threading based on a number of
domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects
found in multi-socket compute nodes. Results are correlated with the Roofline performance model
in order to assert their efficiency for each distinct architecture. We report significant speedups for
single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi
coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the
multicore processors and up to 24X on the Xeon Phi manycore coprocessor.

© 2016 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Modern research and engineering rely heavily on numerical
simulations. In research, improvements in the speed and accuracy
of scientific computations can lead to new discoveries or facilitate
the exploitation of recent breakthroughs [1]. In engineering,
improvements in solution time can lead to better designs and to a
reduction of the development phase – and costs – of new products.
There is a constant need, therefore, for sustained improvements in
the speed of execution of scientific and engineering codes.

Historically, performance gains in scientific and engineering ap-
plications have been obtained through advances in hardware en-
gineering which required little or no change to the programming
paradigms. Examples of such innovations were out-of-order exe-
cution, branch prediction, instruction pipelining, deeper memory
hierarchies and, of course, the increase in clock frequency [2] all of

∗ Corresponding author.
E-mail address: i.hadade@imperial.ac.uk (I. Hadade).

http://dx.doi.org/10.1016/j.cpc.2016.04.006
0010-4655/© 2016 The Author(s). Published by Elsevier B.V. This is an open access art
which guaranteed improvements in serial performance with ev-
ery new CPU generation and limited code intervention. Those days
are now gone partly due to the recognition that clock frequency
cannot be scaled indefinitely because of power consumption, and
partly because circuitry density on the chip is approaching the limit
of existing technologies which is problematic as innovations in se-
quential execution require a high fraction of die real estate [3].

The current trend in CPU design is parallelism [4] and has led
to the rise of multicore andmanycore processors whilst effectively
ending the so called ‘‘free lunch’’ era [5,6] in performance scaling.
Modernmulticore andmanycore processors now consist of double
digit core numbers integrated on the same die, vector units with
associated instruction set extensions, multiple backend execution
ports and deeper and more complex memory hierarchies with
features such Uniform-Memory-Access (UMA) and Non-Uniform-
Memory-Access (NUMA), to name a few. Consequently, achieving
any reasonable performance on these architectures mandates
the exploitation of all architectural features and their intrinsic
parallelism across all granularities (core, data and instruction) [6].

Core and data parallelism are exposed in modern applications
through two principal mechanisms: threads and Single Instruction

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cpc.2016.04.006
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.04.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:i.hadade@imperial.ac.uk
http://dx.doi.org/10.1016/j.cpc.2016.04.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47 33
Multiple Data (SIMD) constructs. In order for core parallelism to
be exploitable, the computations need to be arranged in such a
way as not to contain dependencies among data being processed
concurrently. Additionally, good data locality and temporality is
needed to achieve efficient execution on a thread’s local working
set. The same considerations apply for efficient data parallelism
where SIMD computations require data to be packed in sets of size
matching the width of the underlying vector registers whilst being
aligned at correct memory address boundaries.

Optimising existing applications tomake full use of all available
levels of parallelismcan result in considerable speedups –up to one
order of magnitude – in many fields of scientific computing [7,8].
However, extracting performance from SIMD and thread-level
parallelism is not trivial and a careless implementation can easily
obliterate the advantages of modern processors [9,10,6].

Firstly, the compiler may detect data dependencies, even when
none really exist, unless the source code is made un-ambiguous
through directives. In some cases, the data layout of the original
application is not suitable for efficient execution of vector load and
store operations. This happens if the data items are not aligned
within the boundaries of vector registers. An example of this sit-
uation occurs in stencil computations on discretised PDEs: values
at several neighbouring points on a lattice are used simultane-
ously, but values that would naturally be loaded in the same vec-
tor register appear in different operands. Algorithms which access
simultaneously data stored at addresses far from each other, or
access the same data repeatedly with separate load or store op-
erations also do not performwell on modern multicore andmany-
core architectures. This is due to memory bandwidth limitations
and Transfer-Lookaside-Buffer (TLB) misses. Furthermore, on the
majority of these platforms, not all addresses in memory can be
accessed by all cores with the same latency. This effect, known as
Non-UniformMultiple Access (NUMA) can limit scalability onmul-
ticore platforms. Finally, scalability deteriorates as single-core ex-
ecution is optimised, because the latency of synchronisation and
communication operations becomes more and more difficult to
hide and because resources such as memory bandwidth become
increasingly saturated.

A number of techniques have been used in literature to alleviate
these issues. These techniques aim at hiding the latency of
memory transfers, or at arranging the data in a way that is better
suited for vector load/store operations. Henretty [11] applied data
transposition for SIMD optimisations of stencil operations in PDE-
based applications. Rostrup [12] applied similar techniques with
the addition of SIMD shuffles for hyperbolic PDE solutions on Cell
processors and NVIDIA GPUs. Rosales et al. [13] studied the effect
of data transformations for SIMD execution and thread-scalability
in a Lattice Boltzmann code for the manycore Intel Xeon Phi
(Knights Corner) processor. Datta [14], Jaeger [15] and Schafer [16]
studied the problem of determining and applying automatically
the necessary architectural optimisations for stencil computations
on modern multicore and manycore processors.

Incorporating these techniques in existing codes is no small
task: accessing some of the features of the hardware may require
very specialised, non portable code. On occasions, sections of code
may need to invoke platform-specific intrinsic functions or to be
written in assembler. For certain application fields, active research
is under way towards automatic tuning [17].

For the general practitioner, however, the issue remains of
finding a trade-off between programming effort and gains in
performance, both in the short and in the long term [1]. For this
purpose it is essential to expose domain scientists to the whole
range of techniques available, and to their impact on realistic
applications and up-to-date hardware.

This paper addresses a number of optimisation techniques
and compares their effect on three different leading platforms.
The practicalities of SIMD/threading optimisation in a solver
of complexity and structure representative of industrial CFD
applications are discussed in detail. A fair and meaningful
assessment of the gains afforded by each technique and on each
platform is ensured by the use of a performance model.

2. Numerical algorithm

The test vehicle for this study is a fast Euler solver designed for
quick calculations of transonic turbo-machinery flows. The solver
computes inviscid flow solutions in the m′

− θ coordinate system
[18].1

A typical computational domain is shown in Fig. 1 and consists
of a number of blocks. The blocks are connected by stitch lines.

The Euler equations are solved in semi-discrete form

d
dt

Wi,jUi,j = Fi−1/2,j − Fi+1/2,j + Gi,j−1/2 − Gi,j+1/2 + Si,j

= RHSi,j. (1)

In Eq. (1),Wi,j is the volume of cell i, j,Ui,j is the vector of conserved
variables and the vectors Fi−1/2,j, Gi,j−1/2 and Si,j denote fluxes
through i-faces, j-faces and source terms, respectively and are
evaluated as follows:

Fi−1/2,j = sζi−1/2,j

ρwζ

ρwζum + pnζ
m

ρwζuθ + pnζ
θ

ρwζh − pwζ

i−1/2,j

(2)

Gi,j−1/2 = sηi,j−1/2

ρwη

ρwηum + pnη
m

ρwηuθ + pnη

θ

ρwηh − pwη

i,j−1/2

(3)

Si,j = Wi,jρi,j

 0
u2

θ sinφ
umuθ cosφ

0

i,j

. (4)

For the purpose of flux and source term evaluation, the con-
travariant velocitieswζ/η , the normals nζ

m,θ and nη

m,θ and the radial
flow angle φ are also needed. Further details are reported in the
Appendix.

Convergence to a steady state is achieved by a matrix
free, implicit algorithm. At each iteration, a correction to the
primitive variable vector V is determined as solution to the linear
problem [19]

δ

Wi,jUi,j

δt

= RHSi,j + Jh,ki,j δVh,k (5)

or, equivalently

(Wi,jKi,j − Jh,ki,j)δVi,j = −

δWi,j

IUi,j + RHSi,j (6)

whereVi,j is the vector of primitive variables at the cell i, j andKi,j is
the transformation Jacobian from primitive variables to conserved
variables. The linear problem in Eq. (6) can be approximated by a
diagonal problem if the assembled flux Jacobian Jh,ki,j is replaced by

1 θ is the angular position around the annulus. m is the arc length evaluated
along a stream surface dm =

√
dx2 + dr2 and m′ is a normalised (dimensionless)

curvilinear coordinate defined from the differential relation dm′
=

dm
r . The m′

−

θ system is used in turbomachinery computations because it preserves aerofoil
shapes and flow angles.

34 I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47
(a) Computational grid with block boundaries highlighted. (b) Block and stitch line coordinate systems.

Fig. 1. Computational domain and topology.
amatrix bearing on themain diagonal the sum of the spectral radii
|Λ̃| of the flux Jacobian contributions for each cell

Jh,ki,j ≈ −diag

s
Λ̃

max

i,j

. (7)

At a fixed Courant number σ =
δti,j

s|Λ̃|max

Wi,j
this approximation

yields the following update

δVi,j =
1

Wi,j (1 + σ)
K−1

i,j

−Ui,jδWi,j + RHSi,j

. (8)

The solver has been validated againstMISES [20] for turbine test
cases.

For the purpose of implementation, the baseline solver stores
the primitive variables Vi,j at each cell. Auxiliary quantities such as
speed of sound and total enthalpy at each cell are also stored.

Inspection of Eqs. (1)–(8) reveals the existence of two types of
operations. The first type evaluates cell attributes and is performed
by looping over the cells. The evaluation of Si,j in Eq. (1) or the
block diagonal inversion in Eq. (8) falls within this category. The
second type evaluates stencil operators and needs to be performed
by looping over the neighbours of each cell or by looping over the
cell boundaries. The evaluation of the numerical fluxes Fi±1/2,j and
Gi,j±1/2 in Eq. (1) is an example of such stencil kernels.

An example of the solver’s solution output in terms of computed
static pressure in first stage turbine blade configurations can be
seen in Fig. 2. The application is implemented as a set of C++ classes.
Eqs. (1)–(8) are grouped in the methods of a class embodying
an abstraction of a gas model. The methods of this class are
called at appropriate points in the execution of the program to
compute fluxes, updates, etc. All the remaining elements of the
discretisation, e.g. block geometry and layout, are handled by a
different set of classes.

All floating point operations are carried out in double precision.
The solver spends 75% of time in computing the Roe fluxes and
approximately 15% on updating the primary flow variables after
each main iteration. The aim of this work is to evaluate and
compare the optimisation process of both the quasi-stencil-based
Roe flux computations and the cell-wise primary flow variable
update on the three different hardware platforms.

3. Hardware and performance model

The three architectures chosen for this study are representative
of modern multicore and manycore processors in terms of SIMD
features and core count, namely the Intel R⃝Xeon R⃝ Sandy Bridge,
Intel R⃝Xeon R⃝ Haswell and Intel R⃝Xeon PhiTMKnights Corner.
The following sections will delve deeper into the architectural
characteristics of the selected processor candidates including
details of the system configuration and applied performance
model.

3.1. Intel R⃝Xeon R⃝ Sandy bridge

The SandyBridge microarchitecture introduces 256 bit vector
registers and an extension to the instruction set known as
Advanced Vector eXtensions (AVX) [21]. The AVX extensions
are backward compatible with SSE and, to this effect, the AVX
registers on SandyBridge are implemented as two fused 128 bit SSE
lanes. This complicates somewhat cross-lane elemental operations
such as shuffle and permute. AVX supports three non-destructive
operands for vector operations, e.g. x = y + z, as well as
functions for merging and masking registers. On SandyBridge
vector loads are performed using two ports simultaneously. This
prevents the overlap of store and load operations when operating
on whole 256 bit registers and has an impact on instruction level
parallelism [22]. For arithmetic purposes, SandyBridge can execute
one vector multiplication and one addition in the same clock cycle.
The memory subsystem comes with an improved 32KB L1D cache
compared to Nehalem which is required by AVX and can sustain
two 128 bit loads and a 128 bit store every cycle. The 256KB
L2 cache is similar to the previous generation implementation
providing 8-way associativity and a 12 cycle load-to-use latency
with awrite-back design. The L3 cache is shared by all cores within
a ring interconnect and is sliced and distributed across the ring
allowing for better proximity to cores.

The SandyBridge-EP node evaluated in this paper holds a two-
socket Xeon E5-2650 configuration with 16 physical cores and
32 GB of DDR3 main memory (ECC on). The CPUs are clocked at
2.0 GHz with HyperThreading and TurboBoost disabled. The node
runs Scientific Linux 6.7 (Carbon) kernel version 2.6.32-504. Code
compilation has been performed with Intel icpc 15.0 with the
following flags: -O3 -xAVX -fargument-noalias -restrict -openmp.

3.2. Intel R⃝Xeon R⃝ Haswell

The Haswell microarchitecture is based on a 22 nm design
and is a successor to IvyBridge. Whereas IvyBridge did not
contain any major architectural changes compared to its Sandy
Bridge predecessor, Haswell provides a number of modifications
through a new core design, improved execution unit based on
the AVX2 extensions and a revamped memory subsystem [23].
The major improvements to the execution unit in the Haswell
microarchitecture regard the addition of two ports, one for

I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47 35
Fig. 2. Static pressure solutions for first stage stator (a) and first stage rotor (b).
memory and one for integer operations which aids instruction
level parallelism as the remaining five can target floating
point arithmetic. To that end, there are two execution ports
for performing FMA operations as part of AVX2 with peak
performance of 16 double precision FP operations per cycle,
double that of SandyBridge and IvyBridge. Further improvements
provided by AVX2 are gather operations which are particularly
useful for packing non-contiguous elements within a vector
register and whole register permutations and shuffles with the
implementation of the vpermd instruction. From a memory
standpoint, the Haswell fixes the backend port width issue by
providing 64 byte load and 32 byte store per cycle functionality
therefore alleviating the stalls in memory bound codes which
occurred in SandyBridge and IvyBridge.

The Haswell-EP node consists of 2x 10-core Xeon E5-2650 CPUs
(20 physical cores in total) clocked at 2.3 GHz and 64 GB of DDR4
main memory (ECC on). The node runs Oracle Linux Server 6.6
kernel 2.6.32-504. Code compilation has been done via the Intel
icpc 15.0 compiler with the following flags: -O3 -xCORE-AVX2 -
fargument-noalias -restrict -openmp.

3.3. Intel R⃝Xeon R⃝Xeon PhiTMknights corner

Knights Corner is the first commercial iteration of the Intel Xeon
Phi manycore processor. The device can be described as an x86-
based Shared-Memory-Multiprocessor-on-a-chip [24] with over
50 cores on the die and up to four hardware threads per core.
The main computational device in each core is a Vector Processing
Unit (VPU). The VPU operates on 32 512 bit wide registers and
8 mask registers. The VPU offers functionalities geared towards
scientific computations such as FMA, gather and scatter, horizontal
reductions and support for cross-lane permutations similar to
AVX2 [25]. In theory, the VPU can execute one FMA (512 bit)
operation every cycle, giving it a 16 DP FLOP per cycle ratio
similar to the Haswell microarchitecture. However, due to the in-
order execution nature of the core design, one must run on at
least two hardware threads in order to hide memory latency and
achieve peak FLOPS [24]. The cores are connected to a high-speed
bidirectional ring interconnect providing full cache coherence.
Communication with the host CPU is done via the PCI-Express bus
in a similar fashion to Graphics Processing Units (GPUs). For this
study the Xeon Phi cardwas used in nativemode, i.e. the algorithm
was executed by a process started by the card’s own operating
system. The card can be used alternatively in offload mode or in
symmetric mode.

The Intel Xeon Phi Knights Corner coprocessor evaluated in this
study is based on the 5110Pproduct series and contains 60 physical
cores (4 hyperthreads each) clocked at 1.053 GHz and 8 GB of
GDDR5 memory. The coprocessor runs a bespoke version of Linux
kernel 2.6.32-504.8.1 and Intel Manycore Platform Stack (MPSS)
version 3.4.3 used for host and coprocessor communication.
Compilation and runtime environments were performed via
Intel’s icpc 2015 compiler with the following flags: -O3 -mmic -
fargument-noalias -restrict -openmp.
3.4. The roofline model

In order to determine the effect of interventions on the code
rigorously, performance models are built and correlated with each
platform. A good performance model can highlight how well
the implementation of an algorithm uses the available hardware
both in terms of in-core and intra-core performance. The Roofline
[26,17,27] performance model is used in this work. The model is
based on the assumption that the principal vectors of performance
in numerical algorithms are computation, communication and lo-
cality [17]. The Roofline model defines computation as floating
point operations, communication as unit of data from memory re-
quired by the computations and locality as the distance inmemory
from where the data is retrieved i.e. (cache, DRAM, etc.). However,
due to the fact that modelling the performance of the entire cache
system is a complex task for one architecture, let alone three, the
locality component for this work will be set to DRAM main mem-
ory, similar to previous work performed in literature [17]. The cor-
relation between computation and communication is defined by
themodel as the arithmetic intensity of a given kernelwhich can be
expressed as the ratio of useful FLOPS to the corresponding number
of bytes requested from the data source, in our case, main mem-
ory. As the units of measurement for both flops and byte transfers
in current CPU architectures are given as GigaFLOPS/sec and Gi-
gaBYTES/sec, the maximum attainable performance of a computa-
tional kernel, measured in GigaFLOPS/sec, can be calculated as:

Max. GFlops/sec

= min

Peak FP Performance
Max. Memory Bandwidth × Kernel Flops/Bytes. (9)

Peak floating point is obtained from the processor’s documen-
tation manual whilst maximum DRAM memory bandwidth from
the STREAM [28,29] benchmark. The model visualises the met-
rics in a diagram [26] where the attainable performance of a ker-
nel is plotted as a function of its arithmetic intensity. This acts
as the main roofline of the model and exhibits a slope followed
by a plateau when peak FLOPS is reached. The position at which
the arithmetic intensity coupled with the available memory band-
width equals peak FLOPS is called the ‘‘ridge’’ and signifies the
transition from memory to compute bound. However, achieving
either maximum memory bandwidth or peak FLOPS on modern
multicore and manycore processors requires the exploitation of a
plethora of architectural features even though the algorithmmight
exhibit a favourable arithmetic intensity. For example, achieving
peak FLOPS requires a balance of additions and multiplications for
fully populating all functional units, data level parallelism through
SIMD and loop unrolling for instruction level parallelism. Reach-
ing the memory roofline requires that memory accesses are per-
formed at unit strides, some form of prefetching and that NUMA
effects are catered for when running at full chip concurrency
[17,30]. To this extent, subsequent rooflines can be added which
need to be ‘‘pierced’’ through by specific optimisations in order to
reach maximum attainable performance.

Roofline diagrams for all three architectures can be seen in
Fig. 3. Memory bandwidth saturation effects [31] i.e. the inability

36 I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47
Fig. 3. Core (top) and Node (bottom) Roofline plots of all architectures.
of a single core to utilise all available controllers, mandates
that separate diagrams are built for single-core and full node
configurations. The primary flow variable update kernel (cell)
and flux computations (stencil) are plotted at their respective
arithmetic intensity in order to visualise their optimisation
space and maximum attainable performance across all platforms.
Rooflines for in-core performance optimisations are added with
respect to the particularities of each processor for both single-core
and full node configurations. Rooflines for memory optimisations
horizontal to peak memory bandwidth are added only in the full
node diagrams as most of them such as NUMA apply only at full-
chip and full-node concurrency. The order of the rooflines is set in
regard to how likely it is for the compiler to automatically apply
such optimisations without external interventions [17].

For the SandyBridge Xeon E5-2650 core, a balance between
additions and multiplications is required due to the design of the
execution ports where one multiplication and one addition can be
performed every clock cycle. An imbalanced code will fully utilise
the addition or multiplication execution unit whilst the other sits
idle therefore reducing throughput by a factor of two. Furthermore,
lack of SIMD computations via AVX (256 bit) further decreases
performance by a factor of four from the previous roofline. Poor use
of instruction level parallelism brings forth another factor of four
in performance due to the reduced number of in-flight instructions
from four to one in the worst case scenario.

On the Haswell Xeon E5-2650 core, lack of FMA operations
produces a factor of four performance drop. This is the case for
kernels that contain a large number of additions and a minimal
number of multiplications such as PDE-based stencil operations
and as such, similar to the application presented in this work. The
reason for such a drastic performance drop is due to the fact that
the two FMA units sit idle whilst the separate single ADD unit
gets overloaded. A possible solution to the above would be the
manual insertion of a 1.0 multiplier, however, such optimisation
would suffer from portability issues on other architectures that
do not implement FMA i.e. SandyBridge. Furthermore, absence of
AVX/AVX2 execution on Haswell leads to another factor of four
decrease in performance, similar to SandyBridge.

On the Knights Corner 5110P core, the out of order execution
mandates the use of multiple threads to hide memory latency
and fully occupy the VPU unit. In theory, the VPU unit can be
filled by running between two or three threads on the core.
Runningwith only one thread in-flight reduces the attainable peak
performance by a factor of two as the VPU would be capable
of performing an FMA operation every other cycle. Furthermore,
similarly toHaswell, an imbalanced kernel that cannot fully exploit
FMA operations on Knights Corner will suffer a factor of four drop
in performance when also running in single thread mode. Lack of
SIMD brings forth an eight fold performance decrease due to the
wide SIMD nature of the VPU (512 bit).

The node Roofline diagrams extend on their core counterparts
by presenting memory optimisations such as NUMA on Sandy-
Bridge and Haswell and pre-fetching for Knights Corner. The op-
timisations applied to both the flow variable update and Roe
numerical fluxes kernels and presented in the following section
aim at piercing through the in-core and intra-core rooflines and

I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47 37
Fig. 4. Primary variable update SIMD optimisations with rooflines.
achieve a high percentage of the predicted maximum attainable
performance for serial and full concurrency execution. The aim is
also to highlight the fact that certain optimisations, such as effi-
cient SIMDexecution, have a high impact onperformance across all
architectures for kernels with moderate to high arithmetic inten-
sity, as is the case for the stencil-based flux computations. For ker-
nels which exhibit a low arithmetic intensity such as the cell-wise
flow variable update, the model predicts that SIMD would only af-
fect runs on the Knights Corner coprocessor. However, the nature
of the optimisations required for vector computations usually leads
to a higher degree of instruction parallelism due to loop unrolling
and instruction dispatch reduction. Consequently, thesemight also
provide speedups on SandyBridge and Haswell.

4. Results and discussions

This section presents in detail a number of optimisation
techniques that have been applied to the selected computational
kernels introduced in Section 2. Results are reported as GFLOPS/sec
so as to validate them against the performance model and have
been obtained as averagewall clock times spent in the kernels over
102 main iterations, in order to mimic the natural utilisation of the
application.

4.1. Flow variable update

The cell-wise kernel computes the primitive variables updates,
based on the residuals of the discretised Euler equations, as defined
in Eq. (8). The kernel accesses the arrays storing the flow variables,
the residuals, an array storing auxiliary variables and an array
storing the spectral radii of the flux Jacobians. The arrays are passed
to the function through their base pointers. The flow and auxiliary
variables are used to compute the entries of the transformation
Jacobian K−1

i,j between conserved variables and primitive variables.
The kernel performs 40 FLOPS per cell and accesses 35 double
precision values giving it a 0.14 flops/byte ratio. Fig. 4 presents the
results derived from applying SIMD optimisations. Fig. 6 provides
the results from applying SIMD and memory optimisations
whilst results for full node concurrency (thread-level parallelism)
performance and speedup can be examined in Figs. 7 and 8
respectively.

4.1.1. Data-level parallelism
Autovectorisation (autovect + unaligned — Fig. 4) has been

achieved through the use of #pragma omp simd directive
(OpenMP4.0). The use of OpenMP4.0 directives is found preferable
to compiler-specific directives because it is more portable. In
order to achieve efficient vectorisation, the qualifier restrict
needs to be added to the function arguments. This guarantees to
the compiler that arrays represented by the arguments do not
overlap. In absence of further provisions, the compiler generates
code for unaligned loads and stores. This is a safety precaution, as
aligned SIMD load/store instructions on unaligned addresses lead
to bus errors on the Xeon Phi Coprocessor. SandyBridge-EP and
Haswell-EP processors can dealwith aligned access instructions on
unaligned addresses, albeit with some performance penalty due to
inter-register data movements that are required. On SandyBridge-
EP andHaswell-EP, even the auto-vectorised kernel performs twice
and three times faster than the baseline kernel. On Knights Corner,
the improvement is almost one order of magnitude as the VPU and
therefore wide SIMD lanes were not previously exploited.

38 I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47
Fig. 5. Array of Structures, Structures of Arrays and hybrid Array of Structures Structures of Arrays format.
Aligned vector accesses (autovect + aligned — Fig. 4) can
be achieved by issuing the aligned qualifier to the original
simd directive and by allocating all the relevant arrays using the
_mm_malloc function. _mm_malloc takes an extra argument
representing the required alignment (32 bytes for AVX/AVX2 and
64 bytes for KNC VPU). A number of additional directives may be
needed to persuade the compiler that aligned loads can be issued
safely, as shown in the snippet below for a pointer storing linearly
four variables in Structures of Arrays (SoA) arrangement, at offsets
id0, id1:

1 __assume_aligned(rhs, 64);
2 __assume(id0%8==0);
3 __assume(id1%8==0);
4 __assume((id0*sizeof(rhs[0]))%64==0);
5 __assume((id1*sizeof(rhs[0]))%64==0);

Listing 1: Example of extra compiler hints needed for
generating SIMD aligned/load stores on KNC.

The assume_aligned construct indicates that the base
pointer is aligned with the SIMD register boundary. The following
__assume statements indicate that subscripts and indices access-
ing the four sections of the array are also aligned on the SIMD reg-
ister boundary. Stack-resident variables have to be aligned on the
vector register boundary through the aligned attribute:

1 double du,dv,dp,dt; __attribute__((aligned(64))
);

Listing 2: Declaring stack variables on aligned boundaries on KNC

Aligned vs. unaligned accesses see no benefit on SandyBridge-
EP and for smaller problem sizes a marginal improvement on
Haswell-EP, due to better L1 cache utilisation. The aligned access
version outperforms its unaligned counterpart on Knights Corner
as a 512 bit vector register maps across an entire cache line
therefore allowing for efficient load and store operations to/from
the L1 cache.

SIMD execution with aligned load and stores can also be
achieved invoking compiler intrinsics (intrinsics aligned— Fig. 4)
or by using a vector class (vector-class aligned — Fig. 4). For this
work, we have used Agner Fog’s Vector Class Library (VCL) [32]. Its
main advantage is that ugly compiler intrinsics are encapsulated
away allowing for a more readable code. On Knights Corner, an
extension of the VCL library was used which was developed by
Przemysław Karpiński at CERN [33]. The utilisation of intrinsics
and a vector class did not bring forth any speedups to the directive
based vectorisation for this particular kernel. This would indicate
the fact that the compiler was able to vectorise the code efficiently.
4.1.2. Memory optimisations
A simple way to improve the performance of a memory bound

kernel is to replace stored values with re-computed ones. This
technique is applied to the data set memory-reduction in Fig. 6.
The technique is beneficial on Haswell-EP, but holds no palpable
improvements on SandyBridge-EP or Knights Corner. A reason for
this being that re-computing the conservative variables requires a
number of divisions and square root operationswith a large latency
penalty. Although the overall flop/byte ratio is improved, there is
no palpable performance gain.

4.1.3. Software prefetching
Software prefetching (intrinsics-aligned-prefetch — Fig. 6)

can also be used to improve the performance of memory-bound
codes. A prefetching kernel was built upon the previous intrinsics-
aligned implementation, by using the compiler directive #pragma
prefetch on SandyBridge-EP and Haswell-EP. On the Knights
Corner coprocessor, the available _mm_prefetch intrinsics was
evaluated. This instruction can take as arguments the level of
cache the prefetch is to appear in. When using _mm_prefetch
it is advisable to disable the compiler prefetcher using the -
no-opt-prefetch compilation flag (Intel compilers). Prefetching is
marginally beneficial on SandyBridge-EP and positively beneficial,
for smaller problem sizes, on Knights Corner. This is due to the
fact that the compiler might not be able to estimate the overall
loop count i.e. input based on geometry file which leads to a less
aggressive prefetching regime compared to manual intervention.

4.1.4. Data layout transformations
A version using the Array of Structures Structures of Arrays

(AoSSoA) data layout (intrinsics-aligned-aossoa – Fig. 6) has also
been studied. Four sub vector lengths were tested: 4, 8, 16, 32
double precision values on the multicore processors and 8, 16, 32,
64 on the coprocessor. The best performing sub vector length of
AoSSoA proved to be the one equal to the SIMD vector width of
the processor (i.e. 4 and 8 respectively). The difference between
the AoS, SoA and hybrid AoSSoA format can be seen in Fig. 5.
Although AoS exhibits very good intra and inter structure locality
by grouping all elements together, it is inefficient from a SIMD
perspective as same type operands would have to be manually
packed within a single vector register. The generic data layout
advisable for SIMD is SoA where large contiguous arrays are fused
together allowing for contiguous SIMD load and stores. This was
also the initial format of our test vehicle application. However, the
latter can lead to performance penalties such as TLBmisses for very
large arrays. A hybrid approach such as the AoSSoA can alleviate
them by offering the recommended SIMD grouping in sub vectors
coupled with improved intra and inter structure locality, similar to
the AoS layout.

I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47 39
Fig. 6. Primary variable update SIMD + Memory optimisations with rooflines.
4.1.5. Thread parallelism
Thread parallelism of the primary variable update kernel was

performed using the #pragma omp parallel for simd
OpenMP 4.0 construct for the auto vectorised version which
complements the initial #pragma omp simd statement and
further decomposes the loop iterations across all of the available
threads in the environment. The intrinsics-based versions used
the generic pragma omp parallel for construct. The work
decomposition has been carried out via a static scheduling clause,
whereby each thread receives a fixed size chunk of the entire
domain. Additionally, the first touch policy has been applied for
all data structures utilised in this method in order to alleviate
NUMA effects when crossing over socket boundaries. The first
touch is a basic technique which consists in performing trivial
operations – e.g. initialisation to zero – on data involved in
parallel loops before the actual computations. This forces the
relevant sections of the arrays to be loaded on the virtual pages
of the core and socket where the thread resides. The first touch
needs to be performed with same scheduling and thread pinning
as the subsequent computations. In terms of thread pinning,
the compact process affinity was used for SandyBridge-EP and
Haswell-EP running only with one thread per physical core. On
Knights Corner, the scatter affinity brought forth better results
compared tocompact. The kernel under consideration ismemory-
bound on all three architectures and is therefore very sensitive to
NUMA effects. For Haswell-EP, not using the first touch technique
can lead to a large performance degradation as soon as the active
threads spill outside a single socket. This can be seen by the
behaviour of the data sets autovect and autovect+numa in Fig. 7.

On the SandyBridge-EP node, all single core optimisations
coupled with first touch (Fig. 7) managed to pierce through the
predicted memory roofline. The same applies to Haswell-EP runs
where all versions utilising NUMA optimisations have exceeded
the model’s performance prediction achieving good scaling. A
reason as to why discrepancies in NUMA and non-NUMA runs
are larger on Haswell-EP when compared to SandyBridge-EP is
due to the larger core count on the former which means that
the QPI interconnect linking the two sockets gets saturated more
quickly due to the increase in cross-socket transfer requests. On
Knights Corner there are no NUMA effects due to the ring-based
interconnect and the interleaved memory controller placement.
However, aligned loads play an important role on this architecture:
the SIMD length is 64 bytes (8 doubles)whichmaps to the size of an
L1 cache line. If unaligned loads are issued, the thread is required
to go across cache boundaries, loading two ormore cache lines and
performing inter register movements for packing up the necessary
data. This wastes memory bandwidth and forms a very damaging
bottleneck. This can be seen from the drop in performance above
60 cores in the intrinsics + unaligned and autovect data set in
Fig. 7. The best performing versionwas based on the hybrid AoSSoA
format and obtained the predicted Roofline performance when
run on 96, 128 and 240 threads. Aligned intrinsics combined with
manual prefetching performed second best followed by aligned
intrinsics with compiler issued prefetches.

Finally, Fig. 8 presents scalability results plotted as parallel
speedup (performance on p processors divided by its correspond-
ing p = 1 run).

4.2. Roe numerical fluxes

The flux computations kernel loops over a set of cell interfaces
and computes numerical fluxes using Roe’s approximate Riemann
solver. The kernel accepts pointers to the left and right states, to

40 I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47
Fig. 7. Primary variable update kernel scalability performance on 106 grid cells.
the corresponding residuals, and to the normals of the interfaces.
The computations performed at each interface are: the evaluation
of Euler fluxes for the left and right states — Eqs. (2) and (3),
evaluation of Roe averages and corresponding eigen-vectors and
eigen-values—Eqs. (A.2)–(A.10), assembly of the numerical fluxes,
and accumulation of residuals. The kernel computes two external
products (left and right Euler fluxes), and one 4 × 4 GAXPY. A
judicious implementation requires 191 FLOPS and accesses 38
double precision values per direction sweep. The pointers to the
left and right states, and corresponding residuals are accessed
through indirect references in the baseline implementation. This
makes the kernel directly reusable in an unstructured solver, but at
the same time complicates the generation of auto-vectorised code.
In fact, it is not possible to guarantee, at compile time, the absence
of race conditions unless special arrangements are made with
regard to the order by which the faces are visited. Furthermore,
the arguments passed as left and right states in most situations are
alias for the same pointer. This is a source of ambiguity and it too
prevents auto-vectorisation.

4.2.1. Data-level parallelism
Code vectorisation has been achieved by evaluating a number

of avenues such as autovectorisation via compiler directives,
intrinsics and the VCL vector class, similar to the cell-wise flow
variable update kernel.

In order for the code to be vectorised by the compiler, a number
ofmodifications had to be performed. First of all, the indirect refer-
ences for obtaining the neighbours indiceswere removed and their
position explicitly computed for each iteration. As these increase in
a linear fashion by a stride of 1 once their offset is computed, the
compiler was then able to replace gather and scatter instructions
with unaligned vector loads and stores, albeit with the help of the
OpenMP4.0 linear clause. This had a particularly large effect on
Knights Corner where performance of unaligned load and stores
was a factor of two higher compared to gather and scatter oper-
ations. Furthermore, the restrict qualifier was also necessary
for any degree of vectorisation to be attempted by the compiler.
The autovectorised version (autovect—Fig. 9) brought forth a 2.5X
improvement on SandyBridge-EP, 2.2X on Haswell-EP and 13X on
Knights Corner when compared to their respective baseline.

In multiblock codes, it is natural to group the faces according
to the transformed coordinate that stays constant on their surface,
e.g. i-faces and j-faces. Thus fluxes can be evaluated in two separate
sweeps visiting i-faces or the j-faces, respectively. Each operation
consists of nested i- and j-loops. When visiting i-faces, if the
left and right states are stored with unit stride, they cannot be
simultaneously aligned on vector register boundary and prevent
efficient SIMD execution. When visiting j-faces this problem
does not appear, as padding is sufficient to guarantee that left
and right states of all j-faces can be simultaneously aligned on
vector register boundary. The intrinsics-unaligned and vector-
unaligned versions use unaligned loads and stores when visiting
i-faces, but aligned load/store instructions when visiting j-faces,
for the reasons discussed above. The penalty for unaligned access
on the i-faces is better tolerated on SandyBridge-EP and Haswell-
EP, where inter-register movements can be performed with small
latency, but is very damaging on Knights Corner, as already seen.
Furthermore, the VPU ISA does not contain native instructions for
unaligned vector loads and stores that are found in AVX/AVX2.
To this extent, the programmer has to rely upon the unpacklo,
unpackhi, packstorelo and packstorehi instructions and
their corresponding intrinsics. Examples of intrinsic unaligned
load and store functions used in this work for Knights Corner

I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47 41
Fig. 8. Primary variable update kernel scalability speedup on 106 grid cells.
can be seen in code snippet 4.2.1 and 4.2.1 which requires two
aligned load/store and register manipulations hence the penalty in
performance compared to their aligned counterparts.

1 inline __m512d loadu(double *src)
2 {
3 __m512d ret;
4 ret = _mm512_loadunpacklo_pd(ret, src);
5 ret = _mm512_loadunpackhi_pd(ret, src+8);
6 return ret;
7 }

Listing 3: Unaligned SIMD loads on KNC

1 inline void storeu(double *dest, __m512d val)
2 {
3 _mm512_packstorelo_pd(dest, val);
4 _mm512_packstorehi_pd(dest+8,val);
5 }

Listing 4: Unaligned SIMD stores on KNC

The lack of alignment for the arguments of the i-faces loop can
be resolved by two techniques. Shuffling or dimensionally lifted
transposition. Shuffling consists in performing the loads using
register-aligned addresses, and thenmodifying the vector registers
to position correctly all the operands. On AVX, shuffling requires
three instructions as registermanipulations can only be performed
on 128 bit lanes. The kernel using intrinsics and register shuffle
(intrinsics + shuffle — Fig. 9) issues aligned load and store op-
erations combined with register vector shuffling operations when
handling i-faces. The use of register shuffling also saves a load at
each iteration, as the current right state can be re-used as left state
in the next iteration therefore allowing for register blocking.

The optimisation of the vector register rotations and shifts,
however, is critical. On AVX, register rotation was achieved by
using permute2f128 followed by a shuffle. AVX2 supports the
vpermd instruction which can perform cross-lane permutations,
therefore a more efficient approach can be used. The Intel Xeon
Phi also supports vpermd although the values have to be cast from
epi32 (integers) to the required format (double in the present
case). The choice of the intrinsics for each operation is based on its
latency and throughput: functions with throughput smaller than
one can be performed by more than one execution port, if these
are available, leading to improved instruction level parallelism. As
an example, the AVX/AVX2 blend intrinsic has a latency of one
cycle and a throughput of 0.3 on Haswell-EP, and one cycle latency
and throughput 0.5 on SandyBridge-EP, therefore it is preferable
to the AVX shuffle instruction, which has one cycle latency, but
unit throughput on both chips. The code snippets below show how
shuffling can be achieved on the three architectures.

1 // vl = 3 2 1 0
2 // vr = 7 6 5 4
3 __m256d t1=_mm256_permute2f128_pd(vl,vr,33);

// t1 = 5 4 3 2
4 __m256d t2=_mm256_shuffle_pd(vl,t1,5);

// t2 = 4 3 2 1

Listing 5: Register shuffle for aligned accesses on the i-face sweep
with AVX.

1 // vl = 4,3,2,1
2 // vr = 8,7,6,5
3 // blend = 4,3,2,5
4 __m256d blend = _mm256_blend_pd(vl,vr,0x1);
5 // res = 5,4,3,2
6 __m256d res =_mm256_permute4x64_pd(blend,

_MM_SHUFFLE(0,3,2,1));

Listing 6: Register shuffle for aligned accesses on the i-face sweep
with AVX2.

42 I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47
Fig. 9. Flux computations SIMD optimisations with rooflines.
1 // vl = 8,7,6,5,4,3,2,1
2 // vr = 16,15,14,13,12,11,10,9
3 __m512i idx =

{2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,1};
4 // blend = 8,7,6,5,4,3,2,9
5 __m512d blend = _mm512_mask_blend_pd(0x1,vl,vr

);
6 // res = 9,8,7,6,5,4,3,2
7 __m512d res = _mm512_castsi512_pd(

_mm512_permutevar_epi32(idx,
_mm512_castpd_si512(blend)));

Listing 7: Register shuffle for aligned accesses on the i-face sweep
with MIC VPU.

Generating aligned load/stores in the VCL library (vecclass-
aligned— Fig. 9) can be performed by using the blend4dmethod
which requires as argument an index shuffle map. However, this
was found to be less efficient than the authors’ intrinsics functions
since an optimised implementation targeting each architecture
was not available.

The unaligned intrinsics version delivers a 4X speedup over the
baseline implementation on SandyBridge-EP and Haswell-EP and
13.5X on Knights Corner. Comparison with the autovectorised ver-
sion sees a 60% speedup on SandyBridge-EP and 50% on Haswell-
EP although no noticeable improvements on the coprocessor. The
increase in performance for the intrinsics version on the multi-
core processors is due to the manual inner loop unrolling when
assembling fluxes which allows for more efficient instruction level
parallelism. The intrinsics and shuffle kernel perform similarly on
SandyBridge-EP compared to the unaligned version due to AVX
cross-lane shuffle limitationswhilst performing 30% and 10% faster
on Haswell-EP and Knights Corner. As earlier mentioned, the vec-
tor class versions performworse on bothmulticore CPUs due to the
inefficient implementation of shuffling in the blend4d rou-
tine however on Knights Corner, these were replaced with the
intrinsics-based kernels listed in 4.2.1 as they were not imple-
mented in the VCLKNC library. For this reason, the aligned vector
class version on the manycore processor delivers very similar per-
formance compared to the hand-tuned intrinsics + shuffle.

Another technique for addressing the alignment stream con-
flict issue is via Henretty’s dimension-lifted transposition [11]
(intrinsics-transp — Fig. 10). Transposition solves the alignment
conflict for i-faces by changing the stride of the left and right states.
There is however a penalty in that the data has to transposed be-
fore the i-face loop and re-transposed prior to the j-face sweep.
Furthermore, since the result of the transposition is an array with
the number of columns equal to that of the SIMD length (i.e. rect-
angular matrix transposition), the transposition kernel can have a
degrading effect on performance as the working set is increased
and cannot be held in cache. This can be seen across all architec-
tures, especially SandyBridge-EP where the drop in performance
is significant. On problems of small size transposition is more effi-
cient than shuffling (SandyBridge-EP), because of the high cost of
shuffling. For larger problems, however, the shuffling version was
preferable.

4.2.2. Cache blocking
In the kernels tested up to this point, the loops visiting i-faces

and j-faces have been kept separate. Data locality and temporality
can be improved by fusing (blocking) the evaluation of fluxes
across the j-face and the i-face of each cell. This technique is known
as cache blocking and the corresponding results are shown as
the data set intrinsics-shuffle-cacheblocked in Fig. 10. The cache
blocking kernel fuses both i- and j-passes and it is based on the
shuffling kernels described above for allowing aligned loads and

I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47 43
Fig. 10. Flux computations SIMD+Memory optimisations with rooflines.
stores on the i-faces. The cache blocking kernel further benefits
from the fact that it can save an extra load/store operation when
writing back results for each cell. It should be noted that in a
multiblock code, a first level of cache blocking can be achieved
by visiting the blocks in succession, rather than sweeping through
the whole domain. The second level is obtained by nesting loops
visiting i- and j-faces, but without re-arranging the data. The
nesting of i- and j-face loops allows data to be reused before being
evicted from the cache. The blocking factor should be a multiple
of the SIMD vector length as to allow for efficient vectorisation.
Across all three platforms, cache blocking did not bring forth any
palpable benefits for single core runs. The reason for this is that
although data cache reuse is increased, fusing both loops brings
forth an increase in register pressure and degrades performance as
the fused kernel performs 382 FLOPS for every iteration.

4.2.3. Data layout transformations
Discussion so far for the flux computations has assumed a

SoA data layout format. A kernel using the AoSSoA data layout
(intrinsics-shuffle-aossoa — Fig. 10) and based on the shuffling
kernel was tested. The best performing sub vector size was the size
of the SIMD register, just like for the primitive variables update
kernel.

Similarly, the intrinsics-shuffle-aossoa-cacheblocked (Fig. 10)
kernel uses the new hybrid data layout on top of the fused kernel.

4.2.4. Thread parallelism
For the purpose of studying performance at full chip and node

concurrency, domain decomposition is performed within every
block in order to avoid load-imbalance due to discrepancies in
block size (see Fig. 11). Decomposition is performed in two ways.
One option is to split each block into slabs along the i- and j-planes
depending on sweep, the number of slabs being equal to the num-
ber of available threads. The second option is to split each block
into square tiles. This method increases locality and complements
the cache-blocking processing of the flux reconstruction scheme
discussed above. For the non-fused kernels where separate plane
sweeps are performed, the first decomposition method was cho-
sen due to the elimination of possible race conditions. For the fused
kernels, the latter decomposition was required together with han-
dling race conditions at the tile boundary.

Thread and process affinity has been applied similar to the
flow variable update kernel i.e. compact for the multicore CPUs
and scatter for the coprocessor. Task and chunk allocation have
been performed manually as required by the custom domain
decomposition within the OpenMP parallel region. Another reason
for doing the above and not relying on the OpenMP runtime
is due to the observed high overhead that this caused on the
Knights Corner processorwhen running onmore than 100 threads.
Furthermore, all runs imply NUMA-aware placement via applying
the first touch technique.

The performance on both SandyBridge-EP and Haswell-EP
at full concurrency beats the roofline prediction attaining 53
GFLOPS and 101 GFLOPS respectively. On Knights Corner, the
best performing version achieves 95% (94 GFLOPS) performance
efficiency compared to its corresponding roofline when running
on 180 threads. While on the multicore CPUs, the best performing
kernels were based on the intrinsics-based cacheblocked and
hybrid data layout optimisations, the scaling on the coprocessor
of this particular kernel was second best. This can be attributed
to register pressure as more threads get scheduled on the same
corewhich compete for available resources. Our assumption can be
validated by examining the scaling behaviour of the cacheblocked

44 I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47
Fig. 11. Flux computations scalability performance on 106 grid cells.
kernel without the hybrid AoSSoA data layout which suffers from
poor scalability as more than one thread gets allocated per core.

A key consideration to take into account is the fact that piercing
through or achieving near parity to the performance roof on all
architectures required both the advanced SIMD optimisations for
efficient load store operations and memory optimisations such
as cacheblocking and hybrid data layout transformations. The
only exception is on the Haswell-EP where kernels implementing
aligned SIMDwith the SoA arrangement attained a speedup similar
to the prediction model although not piercing through it. This can
be attributed to the new core design thatwas focused on high SIMD
throughput via the increase in back-port bandwidth and number of
functional units.

Comparing best performing results to their respective baselines
reveals a 3.1X speedup on SandyBridge-EP andHaswell-EP and 24X
on the Knights Corner coprocessor at full concurrency.

If we were to analyse speedup metrics (Fig. 12), an interesting
observation could be made. Perhaps surprisingly, the baseline
kernel scales best although it is performing significantly worse
compared to all others on the merits of actual attained compute
performance. This further highlights the importance of choosing
the correct metrics to judge computational performance on
modern architectures with the aid of performance models and
not solely on the basis of scalability. The slowest kernels
will undoubtedly achieve superior speedup if efficient domain
decomposition and load balancing are performed, as it was in
our case, since there is ample room for available resources such
as memory bandwidth and FLOPS that can be utilised. In reality
however, the baseline kernel utilises approximately 30%–35% of
the attainable performance on the multicore CPUs and only 5% on
the coprocessorwhile the best optimised versionsmatch or exceed
it on all architectures.
4.3. Roofline visualisation

A validation of the Roofline model based on the results of the
applied optimisations can be seen in Fig. 13. For brevity, the main
classes of optimisations were grouped as baseline, autovect
for autovectorised versions, intrinsics+aligned assuming
best performing intrinsics version on that particular kernel and
platform (i.e. shuffle, transposition, etc.) and intrin.+aligned
that encapsulates best performing aligned intrinsics and specific
memory optimisation (cacheblocked, AoSSoA, etc.).

Observations on the single core diagrams highlight interesting
aspects on the two computational kernels and their evolution in
the optimisation space. For the cell-wise flow variable update,
applying autovectorisationmanaged to pierce through the ILP wall
on the multicore CPUs and the SIMD roofline on the coprocessor.
This is due to the fact that SIMD execution automatically
brings forth improvements in instruction level parallelism on
the SandyBridge and Haswell CPUs due to loop unrolling as
it was earlier mentioned. On Knights Corner, autovectorisation
allowed for instructions to be routed towards the more efficient
VPU unit. The reason as to why autovect performed as well
as the hand-tuned kernels on all three platforms can also be
evidenced by the fact that there is little to no optimisation space
remaining as the kernel obtains 80%–90% efficiency and is limited
by the reduced available memory bandwidth since only one
memory channel is utilised by the core. For flux computations,
the baseline sits above the ILP roof on the multicore CPUs due
to the considerable higher FLOP count of the kernel and better
arithmetic intensity. Autovectorisation pierces through their
respective SIMD wall whilst hand tuned intrinsics and subsequent
memory optimisations deliver close to the attainable performance

I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47 45
Fig. 12. Flux computations scalability speedup on 106 grid cells.
prediction. On Haswell-EP and Knights Corner however, speedup
is limited by the fact that the FMA units are not fully utilised due
to the algorithmic nature of PDE-based stencils and their inherent
lack of fused mul/add operations. Even so, for single core runs, our
best optimised version in the intrin.+memopt class achieves
between 80%–90% of the available performance compared to the
baseline which delivers 20% on the multicore CPUs and 1.67% on
the coprocessor.

At full node and chip concurrency, the sizeable increase in
memory bandwidth permits the baseline implementation to
obtain a larger degree of speedup across all architectures. For
the cell-wise flow variable update kernel, NUMA first touch
optimisations applied to all versions allows them to bypass the
NUMA optimisation wall. On the coprocessor, prefetching only
works when coupled with SIMD due to the poor performance
of the scalar processing unit compared to the VPU. As more
memory bandwidth becomes available, subsequent optimisations
such as the hybrid data layout transformation that prevents TLB
misses and provides better data locality performs better than
the autovectorised and SoA-based hand tuned intrinsics version.
For flux computations, vectorisation through compiler directives
and intrinsics delivers close to peak roof performance whilst
subsequent memory optimisations bypass the model’s prediction
as earlier stated. On Haswell-EP, the baseline model is placed
above the SIMD roof due to the significantly higher in-core
bandwidth and the fact that the compiler is still able to vectorise
some inner loops of the kernel i.e. flux assembly. The highest
speedup can be seen on Knights Corner, bearing in mind the log
scale nature of the axes where the provision of further memory
optimisations such as data layout transformations to existing
efficient SIMD kernels (i.e. via shuffling) delivers close to peak
attainable performance.
5. Conclusions

We have applied a wide variety of optimisation techniques
on two distinct computational kernels in a multiblock CFD code
and evaluated their performance on three modern architectures.
A detailed description was given on the exploitation of all lev-
els of parallelism available in modern multicore and manycore
processors through efficient code SIMDisation and thread paral-
lelism.Memory optimisations described in thiswork included soft-
ware prefetching, data layout transformations through hybrid data
structures such as Array of Structures Structures of Arrays and
multi-level cache blocking for the numerical fluxes.

The practicalities of enabling efficient vectorisation were
discussed at great length. We have established that for relatively
simple kernels such as the primary flow variable update, the com-
piler can generate efficient SIMD code with the aid of portable
OpenMP 4.0 directives. This approach however does not fully ex-
tend to more complex kernels such as flux computations involv-
ing a stencil-based access pattern where best SIMD performance
is mandated through the use of aligned load and store opera-
tions made possible via inter-register shuffles and permutations.
Implementations of such operations were performed using com-
piler intrinsics and the VCL vector library and included bespoke
optimisations for each architecture. Vectorised and non-vectorised
computations exhibit a 2X performance gap for the flow variable
kernel and up to 5X in the flux computations on the SandyBridge-
EP and Haswell-EP multicore CPUs. The difference in performance
is significantly higher on themanycore Knights Corner coprocessor
where vectorised code outperforms the non-vectorised baseline by
13X in updating the flow variables and 23X for computing the nu-
merical fluxes. These figures correlated with projections that fu-
ture multicore and manycore architectures will bring forth further

46 I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47
0

Fig. 13. Core (top) and node (bottom) roofline plots correlated with applied optimisations.
improvements to the width and latency of SIMD units mandates
efficient code SIMDisation as a crucial avenue for attaining perfor-
mance in numerical computations on current and future architec-
tures.

Modifying the data layout from Structures of Arrays to a
hybrid Array of Structures Structures of Arrays brought forth
improvements for the vectorised kernels by minimising TLB
misses when running on large grids and increasing locality.
Performance gains were particularly noticeable when running
at full concurrency and performed best on the Knights Corner
coprocessor. Cache blocking on the flux computations coupled
with the hybrid data layout delivered best results on the multicore
CPUs when running across all available cores however performed
second best on the coprocessor due to increased register pressure.

Core parallelism has been achieved through the use of
OpenMP4.0 directives for the flow variable update kernel which
offers mixed SIMD and thread granularity through common
constructs. For the numerical fluxes, the domain was decomposed
into slabs on the i and j faces for implementations that performed
separate plane sweeps and into tiles for the fused sweep
implementationwith cache blocking. For the primary flow variable
updatewe achieved a 2X speedup on SandyBridge-EP andHaswell-
EP and 20X on the Knights Corner coprocessor when compared to
their respective baselines. Computations of the numerical fluxes at
full concurrency also obtained a 3X speedup on themulticore CPUs
and 24X on the coprocessor over the baseline implementation.

The Roofline performancemodel has been used to appraise and
guide the optimisation process with respect to the algorithmic
nature of the two computational kernels and the three compute
architectures. For single core execution, the optimised flow
variables update kernel achieved approximately 80% efficiency on
themulticore CPUs and 90% on the coprocessor. Flux computations
obtained 90% efficiency on SandyBridge-EP, 80% onHaswell-EP and
approximately 60% on Knights Corner. The reason for the relatively
low efficiency on the coprocessor is due to the out-of-order core
design which requires at least 2 threads for fully populating the
coprocessor VPU. The computational efficiency at full concurrency
outperforms the model’s predictions for both kernels across all
three platforms the only exception being Knights Corner where
flux computations deliver a maximum of 94% efficiency when
running on 180 threads.

On a core-to-core comparison among the three processors, the
Haswell-based Xeon E5-2650 core performs on average 2X and
4-5X faster compared to a single SandyBridge Xeon E5-2650 and
Xeon Phi Knights Corner 5110P core across both kernels. However,
at full node and chip concurrency, the two socket Haswell Xeon
E5-2650 node is approximately on par with the Knights Corner
coprocessor for flux computations and 25% faster for updating the
primary flow variables. The Xeon Phi Knights Corner coprocessor
and Haswell node outperform the two socket SandyBridge
Xeon E5-2650 node by approximately a factor of two on flux
computations and 50% to 2X on the flow variable update. However,
on a flop per watt and flop per dollar metric, the Knights Corner
5110P coprocessor delivers superior performance compared to
both multicore CPUs at the cost of higher development and
optimisation time needed for exploiting its underlying features in
numerical simulations. The increase in time spent on fine tuning
the code on the coprocessor is attenuated by the fact that the
majority of optimisations targeting fine and coarse grained levels
of parallelism such as SIMD and threads are transferable when
porting from multicore to manycore including GPGPUs.

I. Hadade, L. di Mare / Computer Physics Communications 205 (2016) 32–47 47
Acknowledgements

This work has been supported by EPSRC and Rolls–Royce plc
through the Industrial CASE Award 13220161. We are also very
much indebted to Christopher Dahnken of Intel Corporation for his
invaluable help and guidance on intrinsics optimisations andAgner
Fog for the support provided in using the VCL library. Furthermore,
wewish to thank Sophoclis Patsias and Paolo Adami of Rolls–Royce
plc for approving publication clearance and Simon Burbidge of
Imperial College London for providing access to Haswell-EP nodes.

Appendix. Further details

The physical fluxes are approximated with second order TVD-
MUSCL [34–36] numerical fluxes

F∗

i−1/2,j =
1
2

Fi−1,j + Fi,j

−

1
2
R|Λ|L

Ui,j − Ui−1,j

−

1
2
R|Λ|ΨL∆Ui−1/2,j. (A.1)

The term R|Λ|ΨL∆Vi−1/2,j represents the second order contribu-
tion to the numerical fluxes. Ψ is the limiter and the flux eigenvec-
tors and eigenvalues R, Λ, L are evaluated at the Roe-average [36]
state.

L is the matrix of the left eigenvectors of the Roe-averaged flux
Jacobian.

L =

1 0 0 −

1
ã2

0 tm tθ 0

0 nm nθ −
1
ρ̃ã

0 nm nθ −
1
ρ̃ã

 . (A.2)

The evaluation of the numerical fluxes also requires the Roe-
averaged eigen-values and right-eigenvectors of the flux Jacobian,
which are evaluated as follows

Λ = diag

ũn, ũn, ũn + ã, ũ − ã

+ ε (A.3)

R =

1 0 1 1
0 tm (ũn + ã)nm (ũn − ã)nm
0 tθ (ũn + ã)nθ (ũn − ã)nθ

k̃ ũt h̃ + ũnã h̃ − ũnã

 (A.4)

where ε is Harten’s entropy correction [37]. TheRoe-averaged state
is defined by

ũm = ωui+1,j
m + (1 − ω)ui,j

m (A.5)

ũθ = ωui+1,j
θ + (1 − ω)ui,j

θ (A.6)

h̃ = ωhi+1,j
+ (1 − ω)hi,j (A.7)

ã2 = (γ − 1)(h̃ − k̃) (A.8)

ρ̃ =

ρ i+1,jρ i,j (A.9)

ω =

ρ i+1,j

ρ i+1,j +

ρ i,j
. (A.10)

Similar definitions are applied for the G∗

i,j−1 numerical flux vector.

References

[1] P. Prabhu, T.B. Jablin, A. Raman, Y. Zhang, J. Huang, H. Kim, N. P. Johnson, F. Liu,
S. Ghosh, S. Beard, T. Oh,M. Zoufaly, D.Walker, D.I. August, State of the Practice
Reports, SC’11, ACM, New York, NY, USA, 2011, pp. 19:1–19:12.

[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,
N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, K. Yelick, Commun.
ACM 52 (2009) 56–67.
[3] D.A. Patterson, J.L. Hennessy, Computer Organization and Design: The
Hardware/software Interface, Newnes, 2013.

[4] D.S. McFarlin, V. Arbatov, F. Franchetti, M. Püschel, Proceedings of the
International Conference on Supercomputing, ICS’11, ACM, New York, NY,
USA, 2011, pp. 265–274.

[5] H. Sutter, J. Larus, Queue 3 (2005) 54–62.
[6] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M.

Girkar, P. Dubey, Proceedings of the 39th Annual International Symposium on
Computer Architecture, ISCA’12, IEEE Computer Society,Washington, DC, USA,
2012, pp. 440–451.

[7] M. Bader, A. Breuer, W. Holzl, S. Rettenberger, High Performance Computing
Simulation (HPCS), 2014 International Conference on, pp. 193–201.

[8] S.J. Pennycook, C.J. Hughes,M. Smelyanskiy, S.A. Jarvis, Proceedings of the 2013
IEEE 27th International Symposium on Parallel and Distributed Processing,
IPDPS’13, IEEE Computer Society, Washington, DC, USA, 2013, pp. 1085–1097.

[9] X. Tian, H. Saito, S.V. Preis, E.N. Garcia, S.S. Kozhukhov, M. Masten, A.G.
Cherkasov, N. Panchenko, Proceedings of the 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing Workshops and PhD
Forum, IPDPSW’13, IEEE Computer Society, Washington, DC, USA, 2013,
pp. 1149–1158.

[10] N.G. Dickson, K. Karimi, F. Hamze, J. Comput. Phys. 230 (2011) 5383–5398.
[11] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, P. Sadayappan,

Proceedings of the 20th International Conference on Compiler Construction:
Part of the Joint European Conferences on Theory and Practice of Software,
CC’11/ETAPS’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 225–245.

[12] S. Rostrup, H.D. Sterck, Comput. Phys. Comm. 181 (2010) 2164–2179.
[13] C. Rosales, Extreme Scaling Workshop (XSW), 2013, pp. 1–7.
[14] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,

J. Shalf, K. Yelick, Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, SC’08, IEEE Press, Piscataway, NJ, USA, 2008, pp. 4:1–4:12.

[15] J. Jaeger, D. Barthou, High Performance Computing (HiPC), 2012 19th
International Conference on, pp. 1–10.

[16] A. Schäfer, D. Fey, High Performance Computing for Computational Science
- VECPAR 2012, in: Lecture Notes in Computer Science, vol. 7851, Springer,
Berlin, Heidelberg, 2013, pp. 451–466.

[17] S. Williams, L. Oliker, J. Carter, J. Shalf, Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC’11, ACM, New York, NY, USA, 2011, pp. 55:1–55:12.

[18] M. Vavra, Aero-Thermodynamics and Flow in Turbomachines, JohnWiley, Los
Alamitos, CA, USA, 1960.

[19] F. Grasso, C. Meola, Handbook of Computational Fluid Mechanics, Academic
Press, London, 1996.

[20] MIT, Mises, http://web.mit.edu/drela/Public/web/mises/, 2009, Accessed: 13-
05-2015.

[21] P. Gepner, V. Gamayunov, D.L. Fraser, Procedia Computer Science 4 (2011)
452–460. Proceedings of the International Conference on Computational
Science, ICCS 2011.

[22] W. Eckhardt, A. Heinecke, R. Bader, M. Brehm, N. Hammer, H. Huber,
H.-G. Kleinhenz, J. Vrabec, H. Hasse, M. Horsch, M. Bernreuther, C. Glass, C.
Niethammer, A. Bode, H.-J. Bungartz, in: J. Kunkel, T. Ludwig, H. Meuer (Eds.),
Supercomputing, in: Lecture Notes in Computer Science, vol. 7905, Springer,
Berlin, Heidelberg, 2013, pp. 1–12.

[23] T. Piazza, H. Jiang, P. Hammarlund, R. Singhal, Technology Insight: Intel(R)
Next Generation Microarchitecture Code Name Haswell, Technical Report,
Intel Corporation, 2012.

[24] J. Jeffers, J. Reinders, Intel Xeon Phi Coprocessor High Performance Program-
ming, Morgan Kaufmann, Boston, United States, 2013.

[25] I.D. Zone, Avx-512 instructions, http://software.intel.com/en-us/blogs/2013/
avx-512-instructions, 2013, Accessed: 04-03-2014.

[26] S. Williams, A. Waterman, D. Patterson, Commun. ACM 52 (2009) 65–76.
[27] G. Ofenbeck, R. Steinmann, V. Caparros, D. Spampinato, M. Puschel, Perfor-

mance Analysis of Systems and Software (ISPASS), 2014 IEEE International
Symposium on, pp. 76–85.

[28] J.D. McCalpin, IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter (1995) 19-25.

[29] J.D. McCalpin, STREAM: Sustainable Memory Bandwidth in High Per-
formance Computers, Technical Report, University of Virginia, Char-
lottesville, Virginia, 1991–2007, A continually updated technical report.
http://www.cs.virginia.edu/stream/.

[30] H.D. Bailey, F.R. Lucas, W.S. Williams, Performance Tuning of Scientific
Applications, CRC Press, NY, United States, 2011.

[31] J. Treibig, G. Hager, Proceedings of the 8th International Conference on Parallel
Processing and AppliedMathematics: Part I, PPAM’09, Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 615–624.

[32] A. Fog, C++ vector library class, http://www.agner.org/optimize/, 2015,
Accessed: 10-05-2015.

[33] VCLKNC, https://bitbucket.org/veclibknc/vclknc, 2015, Accessed: 10-08-2015.
[34] G. Albada, B. Leer, J. Roberts, W.W., in: M. Hussaini, B. Leer, J. Rosendale (Eds.),

Upwind and High-Resolution Schemes, Springer, Berlin, Heidelberg, 1997,
pp. 95–103.

[35] C. Hirsch, Numerical Computation of Internal and External Flows, John Wiley
and Sons, Chichester, West Sussex, UK, 1990.

[36] P. Roe, J. Comput. Phys. 43 (1981) 357–372.
[37] A. Harten, P.D. Lax, B. van Leer, SIAM Rev. 25 (1983) 35–61.

http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref1
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref2
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref3
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref4
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref5
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref6
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref8
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref9
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref10
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref11
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref12
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref14
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref16
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref17
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref18
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref19
http://web.mit.edu/drela/Public/web/mises/
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref21
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref22
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref23
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref24
http://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref26
http://www.cs.virginia.edu/stream/
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref30
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref31
http://www.agner.org/optimize/
https://bitbucket.org/veclibknc/vclknc
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref34
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref35
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref36
http://refhub.elsevier.com/S0010-4655(16)30095-9/sbref37

	Modern multicore and manycore architectures: Modelling, optimisation and benchmarking a multiblock CFD code
	Introduction
	Numerical algorithm
	Hardware and performance model
	Intel®Xeon® Sandy bridge
	Intel®Xeon® Haswell
	Intel®Xeon®Xeon Phi™knights corner
	The roofline model

	Results and discussions
	Flow variable update
	Data-level parallelism
	Memory optimisations
	Software prefetching
	Data layout transformations
	Thread parallelism

	Roe numerical fluxes
	Data-level parallelism
	Cache blocking
	Data layout transformations
	Thread parallelism

	Roofline visualisation

	Conclusions
	Acknowledgements
	Further details
	References

