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Abstract

We present a formal view of cryptography that overcomes the usual assumptions of formal mod-
els for reasoning about security of computer systems, i.e. perfect cryptography and Dolev-Yao
adversary model. In our framework, equivalence among formal cryptographic expressions is pa-
rameterized by a computational adversary that may exploit weaknesses of the cryptosystem to
cryptanalyze ciphertext with a certain probability of success. To validate our approach, we show
that in the restricted setting of ideal cryptosystems, for which the probability of guessing infor-
mation that the Dolev-Yao adversary cannot derive is negligible, the computational adversary is
limited to the allowed behaviors of the Dolev-Yao adversary.

1 Introduction

The use of formal methods for modeling and analyzing cryptographic opera-
tions is well-established. Since the seminal paper by Dolev and Yao [10] intro-
duced a simple and intuitive formalization of cryptographic operations, many
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alternative definitions have been proposed on the basis of several approaches,
ranging from modal logics to process algebras (see, e.g., [8,17,14,12,19,18,11]).
Key to success of such a theory was the very simple idea behind the defini-
tion of ciphertext, which is based on the assumption of perfect cryptography.
Simply put, a message encrypted with a given key K can be decrypted if
and only if K is known, while in each other case such a message is a black
box. More formally, {M}K (representing the encryption of M with the key
K) and ⊗ (representing an undecryptable ciphertext) are always equivalent
if K is not known. On the basis of such an assumption, an adversary can (i)
decrypt ciphered information if and only if the needed key is known, (ii) cap-
ture plaintext, and (iii) encrypt plaintext with a known key. However, a real
computational adversary is an arbitrary algorithm that collects large amount
of ciphertext, exploits partial knowledge of information contained in a cipher-
text, and performs exhaustive searches in order to crack ciphertext, compute
ciphertext from a plaintext without knowing the related key, and guess secret
keys. For instance, in [5] it is shown that an improper use of the block cipher
Skipjack allows the adversary to perform an attack that is faster than exhaus-
tive search, thus increasing the probability of retrieving data ciphered with an
unknown key. As another example, the Wired Equivalent Privacy protocol for
wireless networks falls short of accomplishing its security goals [6], because of
an improper use of the stream cipher RC4. The lesson we learnt is that design
of secure protocols is difficult, even if the underlying cryptographic primitives
are believed to be secure. These considerations are discordant with the usual
assumptions made by formal models, which do not define security in terms
of the probability of successful attacks. As a consequence, in practice formal
proofs are not enough to guarantee system security or, at least, they need
specific assumptions about encryption.

In this paper, we overcome the limitations mentioned above. In partic-
ular, we interpret the adversary as a probabilistic polynomial time process
that may randomly guess data, perform statistical analysis of exchanged in-
formation, exploit keys weakness, use well-known attacks to the used ciphering
algorithm, and employ partial information to reduce the range of exhaustive
searches. For such a model of adversary the probability of illegally cryptan-
alyzing information from a particular ciphertext may be not negligible. In
other words, we abandon the perfect cryptography assumption and we take
into account encryption schemes that may be violated. To this purpose, we
use a probabilistic estimation of the robustness of the cryptosystem to decide
the equivalence between formal cryptographic expressions. More formally, we
define a function parameterized by the initial knowledge of the adversary,
whose outcome is strictly related to the considerations surveyed above. Such
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an outcome represents an estimation of the probability of obtaining useful
information from a given ciphertext. Consider, for instance, the expressions
N = ({M}K , {K}K ′), expressing a pair of ciphertexts, the second one con-
taining the key needed to decrypt the first one, and ({M}K , K), expressing a
ciphertext and the related key. The two expressions may be equivalent if, e.g.,
K ′ is a very short key, the used algorithm is a stream cipher, and in the initial
knowledge of the adversary there exists a large amount of data encrypted in
the same way by re-using K ′, so that, in practice, the probability for such
an adversary of retrieving M from N in polynomial time can be considered
equal to 1. Obviously, when computing the probability of retrieving data, the
knowledge of the adversary increases as it succeeds in obtaining new informa-
tion. Therefore, the probabilistic estimation of the adversary power always
depends on the current knowledge of such an adversary.

The notion of equivalence we adopt takes into consideration the compu-
tational power of the adversary in order to establish the indistinguishability
among different cryptographic expressions. However, it is possible that the es-
timation of the adversary capability of retrieving data is not accurate. More-
over, sometimes in practice the adversary cannot distinguish two expressions
that, instead, are not equivalent because of negligible differences. In essence,
the distinction between sets of cryptographic expressions may be too strong.
To this aim, we approximate the closure among cryptographic expressions
by introducing an ε-tolerance, which allows those expressions that require al-
most the same effort to reveal information to be indistinguishable from the
viewpoint of the computational adversary. For instance, expressions {M}K

and {rubbish}K are indistinguishable (both represent undecryptable text) if
a probabilistic adversary can infer with a negligible probability information
about M or rubbish from the ciphertexts encrypted with the unknown key K.
That means, by borrowing the same terminology used in [13], the encryption
scheme is ideal. Such an example suggests that equivalence in the formal view
implies indistinguishability in the computational view if ideal encryption is
assumed. In other words, if the probability of retrieving data that the Dolev-
Yao adversary cannot obtain is negligible, then the expressive power of the
computational adversary is limited to the allowed behaviors of the Dolev-Yao
adversary. This is, indeed, the result shown in [1], where the formal view and
the computational view of cryptography are related by providing a computa-
tional motivation for a formal treatment of encryption. Similarly, as a result
of this paper, we show that under the same assumption of ideal encryption,
our notion of approximate indistinguishability is implied by a classical notion
of equivalence inspired by the formal model of Dolev and Yao.

The rest of the paper is organized as follows. In Sect. 2 we show how we
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extended the Dolev-Yao formal model with probabilistic information used to
estimate the probability of successful attacks conducted by probabilistic poly-
nomial time adversaries. In this framework we introduce a notion of proba-
bilistic equivalence among cryptographic expressions. In Sect. 3 we relax such
an equivalence through an approximate notion of indistinguishability, which
relates expressions that can be considered the same up to small differences.
In Sect. 4 we present a soundness result showing that such an approximate
relation is implied by the equivalence relation of the Dolev-Yao model in the
case ideal encryption is assumed. Some related work and concluding remarks
are discussed in Sect. 5 and in Sect. 6, respectively.

2 Probabilistic Equivalence

The basic elements of our formal model are inspired by the Dolev-Yao encryp-
tion setting defined by Abadi and Rogaway [1]. However, in our setting, two
cryptographic expressions turn out to be probabilistically equivalent if they
yield the same information obtained with the same probability even through
cryptanalysis attempts. Therefore, we abandon the usual Dolev-Yao abstrac-
tion and we take into consideration cryptanalysis attacks.

2.1 Cryptographic Expressions and Probabilistic Adversaries

We start by introducing the formal expressions and the machinery needed
to compute an estimation of the adversary capability of retrieving informa-
tion from such expressions. We use String to denote a finite set of plain-
text messages, i.e. the set of binary strings of a fixed length (ranged over
by m, n, . . .), Keys to denote a fixed, nonempty set of key symbols (ranged
over by K, K ′, K ′′, . . . and K1, K2, K3, . . .), such that Keys and String are
disjoint, and Exp to denote the set of expressions defined by the grammar:

M, N ::= expressions

K key (for K ∈ Keys)

m string (for m ∈ String)

(M, N) pair

{M}K encryption (for K ∈ Keys)

Informally, (M, N) represents the pairing of M and N , and {M}K represents
the encryption of M under K via a symmetric encryption algorithm. Pairing
and encryption can be nested, like, e.g., in ({{(m, K)}K1

}K2
, K1).
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The entailment relation M �→ N says that N can be derived from M .
Formally, such a relation is inductively defined as the least relation satisfying
the following properties:

M �→ M

M �→ N1 ∧ M �→ N2 ⇒ M �→ (N1, N2)

M �→ (N1, N2) ⇒ M �→ N1 ∧ M �→ N2

M �→ N ∧ M �→ K ⇒ M �→ {N}K

M �→ {N}K ∧ M �→ K ⇒ M �→ N

In essence, M �→ N expresses what the adversary obtains from M without any
prior knowledge of the keys used in M . For instance, ({{K1}K2

}K3
, K3) �→ K3,

and ({{K1}K2
}K3

, K3) �→ {K1}K2
, but ({{K1}K2

}K3
, K3) ��→ K1. We point

out that the entailment relation models the expressive power of the classical
Dolev-Yao adversary and includes all the operations that such an adversary
can perform in order to construct ciphertexts or extract plaintexts.

We now extend the model of Dolev and Yao by taking into account the
possibility for an adversary of obtaining information from an expression {M}K

without knowing the key K. For our purpose, we define the notion of prob-

abilistic pattern P.p, which represents an expression P that does not contain
undecryptable blocks and is associated with a parameter p ∈]0, 1]. The param-
eter p models the probability of getting the plaintext contained in P . Formally,
we define the set pPat of probabilistic patterns with the grammar:

P.p, Q.p ::= probabilistic patterns

K.p key (for K ∈ Keys)

m.p string (for m ∈ String)

(P.p, Q.p).p pair

p ∈]0, 1]

A probabilistic pattern associated to a ciphertext is obtained by substituting
every ciphered block with the corresponding expression in clear associated
with the probability of obtaining information about it. Given any computa-
tional adversary A (described by a probabilistic polynomial time algorithm)
and the initial knowledge represented by expression G, the probabilistic pat-
tern associated with expression {m}K is expressed in terms of the probability
of obtaining information about m and is formally defined as m.pdec({m}K , G).
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Function pdec({m}K , G) returns the probability of obtaining useful informa-
tion from the ciphertext {m}K by employing the initial knowledge G. More
formally, a computational adversary A has a probability Pr at most equal to
the value expressed by pdec of retrieving m from {m}K by exploiting G:

Pr [m ← A({m}K , G)] ≤ pdec({m}K , G) for all A

Note that the outcome of pdec is a value strictly greater than 0, because, even
if with small probability, an adversary could always try to randomly guess
the key. Besides, the value of pdec depends on the knowledge G exploited to
conduct the cryptanalysis attempt.

Intuitively, we could figure out the adversary as an arbitrary algorithm, ex-
ecuting in probabilistic polynomial time, that makes computations on ciphered
texts in order to get information about the contained plaintext (see, e.g., [13]
for a detailed description of adversaries within a computational model). We
point out that the classical Dolev-Yao adversary obtains m from {m}K if
and only if K can be derived from G. In such a case, if G �→ K, then
pdec({m}K , G) = 1. On the other hand, in a classical computational model
assuming ideal encryption scheme [13] or type-0 secure encryption scheme [1],
pdec is a negligible function, as it turns out that the probability of guessing
information that cannot be derived through the classical Dolev-Yao model of
cryptography is negligible. In the following we will consider a formal definition
of negligible function and we will show that if pdec is negligible, then we ob-
tain a soundness result stating that the expressive power of the computational
adversary is limited by that of the Dolev-Yao adversary [1,13].

In a more general scenario, in this paper we assume that function pdec

provides an outcome that depends on many factors that can violate the ideal
encryption scheme assumption, such as the expected robustness of key K,
the particular ciphering algorithm, the information collected by A. However,
function pdec is not sufficient to define the probability of decrypting a ciphered
block. Consider, for example, the expression ({{m}K1

}K2
, {(K1, K2)}K). What

is the probability of getting information about m? A simple and immediate
answer could be pdec({{m}K1

}K2
) · pdec({m}K1

) 4 , that is the probability of
sequentially cracking the two keys K2 and K1. However, we observe that if
K is a weak key, then information about K1 and K2 can be easily derived
from {(K1, K2)}K and, as a consequence, the cryptanalysis of {{m}K1

}K2

may be simplified. Hence, the probability of success may vary according to
the strategy the adversary uses when trying to cryptanalyze an expression.
Obviously, since we have to assume that the adversary follows the optimal

4 For the sake of simplicity, in every example we omit the knowledge from the parameters
of pdec.
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attack, we always associate to a ciphered block the maximum probability of
getting information about it. As a consequence, we analyze all the possible
cryptanalysis paths that the adversary can follow. To this purpose, we em-
ploy some auxiliary structures and functions, which we informally introduce
as follows.

Given an expression M and initial knowledge G, we denote by pKeysG
M

the set of pairs of the form T.p, where T ⊆ Keys is a set of keys that can be
obtained from the expression M , and p ∈]0, 1] is the probability of cracking all
the keys contained in T by following a particular strategy. By employing the
values contained in the set pKeysG

M , we get the following information. On
the one hand, for each set T of keys that can be obtained from M we compute
pGuessG

M(T ), which is the maximum probability of cracking all keys in T . On
the other hand, we compute a parameter pMaxG

M , associated to the expression
M , expressing the maximum probability of getting information about all the
plaintext contained in the expression M . Finally, we define function pP G

M ,
which employs the results obtained by applying the function pGuessG

M(T ) in
order to turn the expression M into a probabilistic pattern. We formally detail
all these structures in the next subsections.

The novel equivalence relation captures when from two messages we can
derive the same information and this information is obtained with the same
probability in the case the adversary tries to cryptanalyze ciphered pieces of
data. Formally, we verify that two expressions M and N are equivalent if they
yield the same probabilistic pattern (obtained through the functions pP G

M and
pP G

N ) and if the probabilities of getting information about the overall plaintext
(expressed by the parameters pMaxG

M and pMaxG
N ) are equal. Throughout

the paper we usually assume that set G expressing the initial knowledge of the
adversary is empty. When we resort to such an assumption we omit G from the
structures. Obviously, it is worth noting that as the adversary gets additional
information, the enriched knowledge may be responsible for increasing the
estimation given by function pdec.

2.2 pKeys

The first step of our procedure that aims at turning an expression M into a
probabilistic pattern consists of generating set pKeysG

M . Such a set contains
pairs T.p, where T ⊆ Keys is a set of keys syntactically occurring in M ,
and p ∈]0, 1] is the probability of retrieving information useful to cryptana-
lyze ciphertexts obtained with the keys contained in T . The set pKeysG

M is
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generated by the following two-step algorithm:

pKeysG
M = {initKeys((M, G)).1};

addKeys((M, G), 1);

where initKeys : Exp → P(Keys) takes as input an expression L and returns
the set of keys recoverable from L through the entailment relation. Formally,
we have initKeys(L) = {K ∈ Keys | L �→ K}. Then, addKeys(H, p), with
H ∈ Exp and p ∈]0, 1], is the following recursive procedure:

addKeys(H, p) ::=

∀ {N}K : (H �→ {N}K ∧ H ��→ K) do begin

p′ = p · pdec({N}K , H)

L = (H, K)

T = {K ∈ Keys | L �→ K}

pKeysG
M = pKeysG

M ∪ {T.p′}

addKeys(L, p′)

end

Initially, pKeysG
M is set {initKeys((M, G)).1}, where initKeys((M, G)) is

the set of keys that can be derived from M and G with probability 1 (i.e., the
keys an adversary infers from the expression M and from the initial knowledge
G without cryptanalysis attempts). In particular, initKeys((M, G)) contains
each key K such that (M, G) �→ K.

Then, at each step, we add to pKeysG
M sets of keys (obtained from ex-

pression M) that are somehow cracked. In particular, for each cryptanalysis
strategy that an adversary may follow, pKeysG

M contains the set of keys vi-
olated by following that strategy and the probability of cracking such keys.
The procedure addKeys recursively adds to set pKeysG

M the results of each
cryptanalysis strategy.

Note that function pdec({N}K , H) (with N ∈ Exp, K ∈ Keys) computes
the probability, for an adversary with knowledge H , of obtaining useful infor-
mation from N without knowing the key K. In particular, H contains the
initial knowledge G of the adversary, and the knowledge obtained by cryptan-
alyzing expression M .

Example 2.1 Given M = (({{(m, K)}K1
}K2

, {(K1, K2)}K), K ′), pKeysM is
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initialized with the keys inferred from (M, G) with probability 1 through the
entailment relation. Besides, we assume that the adversary has no initial
knowledge, so we just have M �→ K ′, and we start with pKeysM = {{K ′}.1}.
Then, the addKeys procedure evaluates all the possible cryptanalysis se-
quences an adversary may follow, by adding at each step new elements to
set pKeysM (see Fig. 1). We observe that the set of keys {K ′, K, K1, K2}
appears three times in pKeysM (see Fig. 2) with different probabilities. This
is due to the alternative strategies the adversary may follow to obtain the
plaintext.

p′ = pdec({{(m, K)}K1
}K2

) · pdec({(K1, K2)}K)
L = ((M, K2), K)
T = {K ′, K2, K, K1}

p′ = pdec({{(m, K)}K1
}K2

) · pdec({(m, K)}K1
)

L = ((M, K2), K1)
T = {K ′, K2, K1, K}

�

break{(m, K)}K1

�

break{(K1, K2)}K

p′ = pdec({{(m, K)}K1
}K2

)
L = (M, K2)
T = {K ′, K2}

p′ = pdec({(K1, K2)}K)
L = (M, K)
T = {K ′, K, K1, K2}

M

�

break{(K1, K2)}K

�

break{{(m, K)}K1
}K2

Fig. 1. Computation paths of addKeys(M, 1)

2.3 pGuess

Function pGuessG
M(T ) computes the maximum probability for the adversary

of cracking all the keys in T according to the best cryptanalysis strategy that
can be followed to attack the expression M . Let allKeys(M) be the set of

pKeysM =




{K ′}.1,

{K ′, K, K1, K2}.pdec({(K1,K2)}K),

{K ′, K2}.pdec({{(m,K)}K1
}K2

),

{K ′, K2, K, K1}.pdec({{(m,K)}K1
}K2

)·pdec({(K1,K2)}K ),

{K ′, K2, K1, K}.pdec({{(m,K)}K1
}K2

)·pdec({(m,K)}K1
)




Fig. 2. pKeysM
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all key symbols that occur in M ; we define DpGuessG

M

= {T ⊆ Keys | T ⊆

allkeys(M)}.

Then, function pGuessG
M : DpGuessG

M

→ ]0, 1] is formally defined as:

pGuessG
M(T ) = max{p | J.p ∈ pKeysG

M ∧ T ⊆ J}.

It is worth noting that pGuessG
M(∅) = 1. Indeed, ∀M ∈ Exp, we have ∅ ⊆

initKeys((M, G)) and initKeys((M, G)).1 ∈ pKeysG
M .

Example 2.2 Consider again M = (({{(m, K)}K1
}K2

, {(K1, K2)}K), K ′). We
have that (see set pKeysM in Fig. 2):

pGuessM({K ′}) = 1

pGuessM({K2}) = max




pdec({(K1, K2)}K),

pdec({{(m, K)}K1
}K2

),

pdec({{(m, K)}K1
}K2

) · pdec({(K1, K2)}K),

pdec({{(m, K)}K1
}K2

) · pdec({(m, K)}K1
)




= max




pdec({(K1, K2)}K),

pdec({{(m, K)}K1
}K2

)




pGuessM({K ′, K, K1, K2}) = max




pdec({(K1, K2)}K),

pdec({{(m, K)}K1
}K2

· pdec({(m, K)}K1
)




2.4 pMax

Given an expression M , parameter pMaxG
M expresses the probability of get-

ting the maximum information from M . Therefore, pMaxG
M represents the

maximum probability of guessing all the keys used in M . Formally, pMaxG
M

is derived in the following way:

pMaxG
M = max{p | J.p ∈ pKeysG

M ∧ allKeys(M) ⊆ J}.

Given that pMaxG
M represents the probability of guessing all the keys used in

M , and by considering the definitions of pMaxG
M and pGuessG

M , we observe
that pMaxG

M can also be defined as:

pMaxG
M = pGuessG

M(allKeys(M)).
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Example 2.3 Consider M = (({{(m, K)}K1
}K2

, {(K1, K2)}K), K ′). Since
we have allKeys(M) = {K ′, K, K1, K2}, it follows that (see the values of
pGuessM in Example 2.2):

pMaxM = pGuessM({K ′, K, K1, K2})

= max




pdec({(K1, K2)}K),

pdec({{(m, K)}K1
}K2

) · pdec({(m, K)}K1
)




2.5 pP

The family of functions pP turns expressions into probabilistic patterns. In
particular, given an expression N contained in M , pP G

M saves in a set T the
set of keys needed to decrypt each ciphered block occurring in N , extracts the
information contained in N , and associates to such a plaintext the maximum
probability of obtaining it through the best cryptanalysis strategy that can
be applied to M . To this end, we employ function pGuessG

M to compute the
probability of cracking the keys needed to decrypt each ciphertext occurring
in N . Hence, a probabilistic pattern contains plaintext (which can be inferred
with a certain probability) instead of ciphertext.

The function pP G
M : Exp × DpGuessG

M
→ pPat is defined inductively as

follows:

pP G
M(K, T ) = K.pGuessG

M
(T ) (K ∈ Keys)

pP G
M(m, T ) = m.pGuessG

M
(T ) (m ∈ String)

pP G
M((N1, N2), T ) = (pP G

M(N1, T ), pP G
M(N2, T )).pGuessG

M
(T )

pP G
M({N}K , T ) = pP G

M(N, T ′) (T ′ = T ∪ {K})

The probabilistic pattern that can be obtained from an expression N through
the best cryptanalysis strategy applied to M is pP G

M(N, ∅). In the following,
given an expression M , we use the abbreviation pP G

M (with no arguments) to
stand for pP G

M(M, ∅).

Example 2.4 Consider again M = (({{(m, K)}K1
}K2

, {(K1, K2)}K), K ′). We
have that 5 :
pPM = pPM((({{(m, K)}K1

}K2
, {(K1, K2)}K), K ′), ∅) =

(pPM(({{(m, K)}K1
}K2

, {(K1, K2)}K), ∅), K ′)
where from

5 When equal to 1, we omit parameter p in every probabilistic pattern P.p.
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pPM(({{(m, K)}K1
}K2

, {(K1, K2)}K), ∅)
we get (given p̄ = pGuessM({K2, K1}))
pPM({{(m, K)}K1

}K2
, ∅) = (m.p̄, K.p̄).p̄

and (given p̂ = pGuessM({K}))
pPM({(K1, K2)}K , ∅) = (K1.p̂, K2.p̂).p̂.

Example 2.5 As another example, consider two expressions that yield the
same probabilistic patterns and have two different pMax values:

M = ({m}K , {n}K) N = ({m}K , {n}K ′), K �= K ′.

We have that:

pPM = (m.p̂, n.p̂),

where p̂ = pGuessM({K}) = max{pdec({m}K), pdec({n}K)}. The intuition
is that an adversary can get information contained in M by guessing K,
which is used to cipher both blocks. On the other hand, if pGuessM({K}) =
pGuessN({K}) = pGuessN({K ′}) we also have that:

pPN = (m.p̂, n.p̂) = pPM .

Hence, M and N have the same probabilistic patterns, even if to get in clear
the whole expression N an adversary should guess two different keys, namely
K and K ′. Such a difference is captured by the fact that:

pMaxM = pGuessM({K}) = p̂ �= p̂2 = pGuessN({K, K ′}) = pMaxN .

Therefore, pMax is needed to express the overall probability of getting the
entire expression in clear, while the probabilistic pattern is used to associate
to each piece of information contained in an expression the probability to get
it in clear.

2.6 Equivalence

Given the expressions M and N , we say that M and N are probabilistically

equivalent (M ≈ N) if they yield the same probabilistic pattern and if pMaxM

and pMaxN are equal. Formally we have:

M ≈ N ⇔ pPM = pPN ∧ pMaxM = pMaxN .

Intuitively, two expressions are probabilistically equivalent if one can derive
from them the same information and this information is obtained with the
same probability in the case it is ciphered with unknown keys.
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Example 2.6 Consider M = (({{(m, K)}K1
}K2

, {(K1, K2)}K), K ′) and N =
(({(m, K)}K1

, {(K1, K2)}K), K ′). On the one hand, we have that:

pKeysN =




{K ′}.1,

{K ′, K, K1, K2}.pdec({(K1,K2)}K),

{K ′, K1, K, K2}.pdec({(m,K)}K1
)




so if pdec({(m, K)}K1
) ≤ pdec({(K1, K2)}K) we have that pGuessN({K1}) =

pGuessN({K}) = pdec({(K1, K2)}K) and, given p̂ = pdec({(K1, K2)}K), we
have pPN = (((m.p̂, K.p̂).p̂, (K1.p̂, K2.p̂).p̂), K

′).

On the other hand, from the previous examples and from the condition
pdec({(m, K)}K1

) ≤ pdec({(K1, K2)}K) we obtain the probabilistic pattern
pPM = (((m.p̂, K.p̂).p̂, (K1.p̂, K2.p̂).p̂), K

′) and, since pMaxM = pMaxN = p̂,
we also obtain M ≈ N . In conclusion, we observe that ciphering the first block
(m, K) of M with both keys K1 and K2 is not meaningful, since M is proba-
bilistically equivalent to an expression where this information is ciphered with
one of those keys only. In fact, an adversary could gain information about m

by cryptanalyzing the second block {(K1, K2)}K .

Example 2.7 Consider an adversary with initial knowledge G = K1 and
again the expressions:

M = (({{(m, K)}K1
}K2

, {(K1, K2)}K), K ′)

N = (({(m, K)}K1
, {(K1, K2)}K), K ′).

We note that M �≈ N , since the adversary gets in clear the entire expression
N with probability 1. In fact, through the key K1 the adversary can get all
the other keys by means of the entailment relation. In particular, we have
that:

pKeysG
N = {{K ′, K1, K, K2}.1}

pKeysG
M =




{K ′, K1}.1,

{K ′, K1, K2, K}.pdec({{(m,K)}K1
}K2

),

{K ′, K1, K, K2}.pdec({(K1,K2)}K)




Example 2.8 Consider expressions M and N of Example 2.5. As we have
seen, M and N are not probabilistically equivalent, since they are associ-
ated with different pMax values. Now, let us add to both expressions the
ciphertext {o}K ′, thus getting the expressions M ′ = (({m}K , {n}K), {o}K ′)
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and N ′ = (({m}K , {n}K ′), {o}K ′). In this case, given pGuessM ′({K}) =
pGuessM ′({K ′}) = pGuessN ′({K}) = pGuessN ′({K ′}) = p̂, we obtain that
pPM ′ = pPN ′ = ((m.p̂, n.p̂).p̂, o.p̂) and pMaxM ′ = pMaxN ′ = p̂2, so that
M ′ ≈ N ′.

This example shows that our equivalence relation is not conservative under
the kind of operations as above. This is a reasonable consequence of the
intuition behind the notion of equivalence among cryptographic expressions.
Note that the information carried by expressions M ′ and N ′ is rather different
from that expressed by expressions M and N . In order to get the plaintext
from M ′ and N ′, an attacker has to break two different keys, similarly as
seen in the case of expression N . Instead, for expression M it is sufficient to
break key K only. Since the knowledge of the adversary changes by adding
pieces of information to an expression, the probabilistic equivalence cannot be
preserved by constructing (destructing) cryptographic expressions.

3 Indistinguishability through Probabilistic Similarity

The notion of probabilistic equivalence given above is very restrictive. In
practice, it could be very difficult to find blocks that can be decrypted exactly
with the same probability. As a consequence, two expressions containing the
same information and yielding probabilistic patterns with similar probability
(but not exactly the same) would not be probabilistically equivalent. Simi-
larly, two different probabilistic patterns that can be deduced with negligible
probabilities cannot be probabilistically equivalent.

In this section, we introduce a compatibility relation, called ε−probabilistic

similarity (≈ε), which (i) approximates the probabilistic equivalence by intro-
ducing a tolerance to small differences of the probabilistic parameters associ-
ated to the probabilistic patterns, and (ii) allows for considering indistinguish-
able those ciphertexts that can be decrypted with a negligible probability.

We say that expressions M and N are ε−probabilistically similar (M ≈ε

N) if pMaxM and pMaxN are “almost the same” and if M and N are com-
patible, according to the notion of compatibility specified below. Formally, we
have:

M ≈ε N ⇔ pPM ∼ε pPN ∧ |pMaxM − pMaxN | ≤ ε.

The compatibility relation ∼ε for probabilistic patterns expresses when two
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probabilistic patterns are indistinguishable. Formally, it is defined as follows:

P.p ∼ε Q.p′ if p, p′ ≤ ε P.p, Q.p′ ∈ pPat

K.p ∼ε K.p′ if |p − p′| ≤ ε K ∈ Keys

m.p ∼ε m.p′ if |p − p′| ≤ ε m ∈ String

(P.p1
, Q.p2

).p3
∼ε (P ′.p′

1
, Q′.p′

2
).p′

3
if |p3 − p′3| ≤ ε ∧

P.p1
∼ε P ′.p′

1
∧ Q.p2

∼ε Q′.p′
2

P.p1
, Q.p2

, P ′.p′
1
, Q′.p′

2
∈ pPat

According to such rules, note that two different pieces of information turn
out to be indistinguishable if they are associated with probabilistic parameters
that are smaller than the given tolerance ε. This is because the probability
of revealing the difference between them is negligible. Informally, we can use
this notion in order to consider as undecryptable a ciphertext that can be
decrypted with a probability smaller then the fixed threshold. In practice, if
the cryptosystem is secure enough (according to the security degree specified
by the given tolerance ε), then each ciphertext is really a black box.

Example 3.1 Consider the expressions M = {m}K and N = {n}K ′. Given
the associated probabilistic patterns pPM = m.p1

and pPN = n.p2
and a fixed

threshold ε, we say that M and N are indistinguishable if p1, p2 ≤ ε. In
such a case we have that pPM ∼ε pPN and, since pMaxM = p1 ≤ ε and
pMaxN = p2 ≤ ε, we have that |pMaxM − pMaxN | ≤ ε. Therefore, it follows
M ≈ε N .

Example 3.2 Consider M = {m}K and N = {m}K ′. If we assume p1 =
pdec({m}K) and p2 = pdec({m}K ′), we have that pPM = m.p1

, pPN = m.p2
,

pMaxM = p1 and pMaxN = p2. If p1 and p2 are similar, but not exactly the
same, then given a tolerance ε such that |p1 − p2| ≤ ε, we have that M ≈ε N

but M �≈ N .

Example 3.3 Consider M = ({m}K , {K}K ′) and N = ({m}K , K). If we
consider K ′ as a weak key, we may have that pdec({m}K) < pdec({K}K ′) = p

and, therefore, pPM = (m.p, K.p). Moreover, we also have pPN = (m, K). If
the probability of violating K ′ is close to 1, and, in particular, if (1 − p) ≤ ε,
we have that M ≈ε N . Intuitively, M is a ciphered variant of N that can be
easily cracked.

The following proposition holds.
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Proposition 3.4 Given M, N ∈ Exp it holds that:

M ≈ N ⇒ M ≈ε N ∀ε ∈ [0, 1].

Proof. By definition of ∼ε it follows that pPM = pPN ⇒ pPM ∼ε pPN ∀ε ∈
[0, 1]. Finally, we also have that pMaxM = pMaxN ⇒ |pMaxM −pMaxN | ≤
ε ∀ε ∈ [0, 1].

By the definition of ∼ε the following proposition also holds.

Proposition 3.5 Given M, N ∈ Exp it holds that:

M ≈ N ⇔ M ≈0 N.

4 Perfect Cryptography vs. Ideal Encryption

In this section we show how our notion of similarity is related to a classical
Dolev-Yao equivalence relation defined in an environment where perfect cryp-
tography is assumed. In particular, given a notion of ideal encryption, we
will show that if two expressions are equivalent within a classical Dolev-Yao
model that relies on perfect cryptography, then the two expressions will also
be probabilistically similar if we assume ideal encryption.

4.1 Equivalence within Perfect Cryptography

In [1], Abadi and Rogaway define an equivalence relation for cryptographic
expressions within a formal model where perfect cryptography is assumed.
The set Pat of patterns is defined as an extension of the set of expressions
that employs the new symbol ⊗ representing a ciphertext that an adversary
cannot decrypt.

P, Q ::= patterns

K key (for K ∈ Keys)

m string (for m ∈ String)

(P, Q) pair

{P}K encryption (for K ∈ Keys)

⊗ undecryptable text

Intuitively, a pattern is an expression that may contain some parts that an
adversary cannot decrypt. They define a function p that, given a set of keys
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T and an expression M , computes the pattern that an adversary can obtain
from M if the initial knowledge is the set of keys T .

p(K, T ) = K (for K ∈ Keys)

p(m, T ) = m (for m ∈ String)

p((M, N), T ) = (p(M, T ), p(N, T ))

p({M}K , T ) =




{p(M, T )}K if K ∈ T

⊗ otherwise

Moreover, they define pat(M), which expresses the pattern obtained from
an expression M without knowing a priori any auxiliary set T of keys. For-
mally, pat(M) = p(M, initKeys(M)). For example, pat(({{K1}K2

}K3
, K3)) =

({⊗}K3
, K3).

Finally, by abstracting from the initial knowledge, they say that two ex-
pressions are equivalent if they yield the same pattern:

M ∼= N ⇔ pat(M) = pat(N).

For example, we have ({{K1}K2
}K3

, K3) ∼= ({{m}K1
}K3

, K3) since both ex-
pressions yield the pattern ({⊗}K3

, K3).

In [20] we defined a probabilistic equivalence relation that is conservative
with respect to the one introduced by Abadi and Rogaway. In this paper we
decided to define a slight variant of that relation, which we consider more intu-
itive: two expressions should be equivalent when they yield the same informa-
tion, and when such information can be extracted with the same (or similar)
probabilities. By taking such a choice we lost the conservativeness with the
equivalence of [1]. For example, if we take the two expressions ({m}K , K) and
(m, K), it turns out that ({m}K , K) �∼= (m, K), since the two expressions yield
different patterns. However, the two expressions contain the same information,
which is extractable with the same probability (in this case with probability
1), so we have that ({m}K , K) ≈ (m, K) (note that the probabilistic pattern
associated with both expressions is (m.1, K.1)).

4.2 Ideal Encryption

The notion of ideal encryption intuitively assumes that it should be hard
for the adversary to decrypt a message ciphered with an unknown key. In
other words, the probability of breaking an encrypted message that cannot
be derived in the classical Dolev-Yao model should be small. We formalize
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the concept of small probabilities by introducing the definition of negligible

function (see, e.g., [13]).

Definition 4.1 A function f : N → R is negligible, if for any polynomial q,
∃η0 ∈ N : f(η) ≤ 1

q(η)
∀η > η0.

Then, the ideal encryption hypothesis assumes that pdec must be a negligible
function.

Definition 4.2 An encryption scheme is ideal if and only if

∀A, ∀{N}K ∈ Exp, ∀G ∈ Exp : G ��→ K, ∀ polynomial q

∃η0 ∈ N :

pdec({N}K , G) ≤ 1
q(η)

∀η > η0.

As a consequence, if the assumption of ideal encryption holds, given {N}K , G ∈
Exp such that G ��→ K, we also have that for all A:

Pr[m ← A({m}K, G)] ≤
1

q(η)
∀η > η0.

By following an approach also used in [7], we show that a result holding in the
perfect cryptography scenario also holds in our model if the ideal encryption
assumption is taken.

Theorem 4.3 Given M, N ∈ Exp, if the assumption of ideal encryption

holds for a natural η0, taken a polynomial q and a natural parameter η > η0,

then:

M ∼= N ⇒ M ≈ε N ∀ε >
1

q(η)
.

Proof. By the assumption of ideal encryption, either pMaxM = pMaxN = 1
or pMaxM , pMaxN ≤ 1

q(η)
< ε. As a consequence, given M ∼= N , in order to

prove that M ≈ε N we just need to check that pPM ∼ε pPN . The statement

derives by structural induction on the expression M and by observing that, by

hypothesis, M ∼= N ⇒ pat(M) = pat(N). In the following, we denote by TM

the set initKeys(M) and by TN the set initKeys(N).

(i) pat(M) = pat(N) = K K ∈ Keys

⇒
pPM = pPN = K.1 ⇒ pPM ∼ε pPN ∀ε ∈ [0, 1].

(ii) pat(M) = pat(N) = m m ∈ String

⇒
pPM = pPN = m.1 ⇒ pPM ∼ε pPN ∀ε ∈ [0, 1].
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(iii) pat(M) = pat(N) = ⊗
⇒ by the ideal encryption assumption

pPM = Q.p, pPN = Q′.p′ ∧ p, p′ ≤ ε ⇒ pPM ∼ε pPN .

(iv) pat(M) = {p(L, TM)}K = {p(L′, TN )}K = pat(N)
⇒ p(L, TM) = p(L′, TN)
⇒ by induction hypothesis

pPM(L, ∅) ∼ε pPN(L′, ∅) ⇒ pPM = pPM(L, ∅) ∼ε pPN(L′, ∅) = pPN ⇒
pPM ∼ε pPN .

(v) pat(M) = (p(L1, TM), p(L2, TM)) = (p(L′
1, TN), p(L′

2, TN)) = pat(N) ⇒
p(L1, TM) = p(L′

1, TN) ∧ p(L2, TM) = p(L′
2, TN )

⇒ by induction hypothesis

pPM(L1, ∅) ∼ε pPN(L′
1, ∅) ∧ pPM(L2, ∅) ∼ε pPN(L′

2, ∅) ⇒
pPM = (pPM(L1, ∅), pPM(L2, ∅)).1 ∼ε (pPN(L′

1, ∅), pPN(L′
2, ∅)).1 = pPN

⇒ pPM ∼ε pPN .

In general, the inverse implication of Theorem 4.3 does not hold. Consider
for example the expressions M = ({m}K , K) and N = (m, K). As we have
seen, the two expressions are probabilistically equivalent, i.e. M ≈ N , and,
by Proposition 3.4, also probabilistically similar, i.e. M ≈ε N ∀ε ∈ [0, 1].
However, since the two expressions yield different patterns, they cannot be
equivalent according to the Abadi-Rogaway equivalence relation. The result
does not change even in the case of ideal encryption, since the probabilistic
similarity holds for all ε ∈ [0, 1].

5 Related Work

The treatment of cryptographic operations within formal models is covered
by a quite large body of literature, but most of these efforts do not consider
cryptographic operations in an imperfect cryptography scenario.

This work represents a step toward the definition of a formal language
with cryptographic primitives and conditional statements for analyzing both
unwanted disclosure of data due to the nature of the protocols and information
leakage due to the nature of the cryptographic means. In the literature, both
probability and computational complexity are studied in formal settings.

Process algebra and computational view of cryptography are combined
in [16] where, in the setting of a subset of asynchronous π-calculus, an asymp-
totic notion of probabilistic equivalence is defined. The observational equiv-
alence defined in terms of such a notion can be related to polynomial time
statistical tests, i.e. equivalent processes are indistinguishable from the view-
point of polynomial time adversaries. Security is then stated in terms of
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indistinguishability between the protocol under analysis and an idealized pro-
tocol specification. More recently, a definition of probabilistic noninterference
which includes a computational case has been defined in [4] in the setting
of asynchronous probabilistic reactive systems. In particular, computational
noninterference means that the advantage of the external observer (which in-
teracts with the system under analysis) for a correct guess of the interfering
adversary behavior is a negligible function. A formal notion of computational
indistinguishability is also defined in [15] on the basis of a simple model where
public outputs are observed in order to infer the content of secret inputs. Fi-
nally, [7] compares the classical Dolev-Yao adversary with an enhanced com-
putational adversary which can guess the key for decrypting an intercepted
message (albeit only with negligible probability). The two adversaries are
shown to be equivalent with respect to a secrecy property.

We also point out that probabilistic notions of security as well as approx-
imate security properties can be found in the literature (see, e.g., [12,9,3,2]),
but they do not relate probability and cryptographic primitives.

6 Conclusions

In this paper we put the basis for defining a formal cryptographic language
where (i) information leaks due to the weaknesses of the cryptographic prim-
itives can be estimated by employing conditional statements and the equiv-
alence relation presented in Sect. 2, and (ii) probabilistic covert channels
can be revealed by verifying noninterference security properties (as done, e.g.,
in [9,3]). In particular, the approximate notion of indistinguishability of Sect. 3
can be used (together with an approximate definition of noninterference) to
verify whether security properties of cryptographic protocols can be guaran-
teed at a reasonable degree.

We did not sift through the details of the estimation of the information
leakage which is formally expressed by function pdec. We have partially miti-
gated the effect of such an abstraction by relaxing the probabilistic equivalence
through an approximate similarity relation, which allows us to relate expres-
sions that can be considered equivalent up to a given tolerance ε. Moreover,
similarly as the soundness result shown in [1], it turns out that if pdec is a
negligible function, i.e. the encryption scheme is ideal, equivalence in a formal
setting stating perfect cryptography implies similarity in our framework.
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