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a b s t r a c t

Association schemeswere originally introduced by Bose and his co-
workers in the design of statistical experiments. Since that point
of inception, the concept has proved useful in the study of group
actions, in algebraic graph theory, in algebraic coding theory, and
in areas as far afield as knot theory and numerical integration.
This branch of the theory, viewed in this collection of surveys
as the ‘‘commutative case’’, has seen significant activity in the
last few decades. The goal of the present survey is to discuss the
most important new developments in several directions, including
Gelfand pairs, cometric association schemes, Delsarte Theory,
spin models and the semidefinite programming technique. The
narrative follows a thread through this list of topics, this being the
contrast between combinatorial symmetry and group-theoretic
symmetry, culminating in Schrijver’s SDP bound for binary codes
(based on group actions) and its connection to the Terwilliger
algebra (based on combinatorial symmetry). We propose this new
role of the Terwilliger algebra in Delsarte Theory as a central topic
for future work.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of (symmetric) association schemes was first given in the design of experiments [27,
28]. It can also be viewed as a purely combinatorial generalization of the concept of finite
transitive permutation groups.1 The Bose–Mesner algebra, which is a fundamental tool in the theory,
was introduced in [26]. The monumental thesis of Delsarte [52] proclaimed the importance of
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1 The theory of association schemes is famously said to be a ‘‘group theory without groups’’ [20].
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commutative association schemes as a unifying framework for coding theory and design theory.
In [52], the method of linear programming was successfully combined with the duality of the
(commutative) Bose–Mesner algebra, and it has been serving as one of the underlying principles in
the theory of commutative association schemes.
The theory continues to grow rapidly, enlarging its diverse connections and applications to other

branches of mathematics.2 However, a number of important topics are either just glanced upon or not
treated at all in this paper. We are limited not only by length, but also by our own limited expertise.
Notable omitted areas include: distance-regular graphs,3 the Terwilliger algebra,4 and the role of
association schemes in designed experiments. In fact, if we had tried to cover all of these topics in
full detail, then this survey article would have been a book rather than a paper! However, fortunately
there are a number of excellent articles/books on the theory of (commutative) association schemes
and Delsarte Theory, e.g., [52,20,30,59,37,14,8]. The following are a few of the books which include
accounts on commutative association schemes: [110,35,73,104]. Thus, naturally guided in part by own
current research interests, we shall in this paper focus on recent progress in the theory that has not
been treated (in detail) in previous literature. Thus our hope is to contribute an addendum to the
important references listed above; in no way do we intend to supplant any of them or summarize
their content.
We now give a summary of the present paper, together with some additional comments. Section 2

reviews the basic theory of commutative association schemes, the goal of the exposition being to
provide just enough background to support the later sections. We refer the reader to [20,30] for
a more comprehensive and detailed account of the theory. In Section 3 we consider commutative
association schemes obtained from transitive group actions. The Bose–Mesner algebra of such an
association scheme coincides with the corresponding centralizer algebra, and its eigenmatrices are
equivalent to the zonal spherical functions. We briefly introduce a beautiful phenomenon which can
be observed in many families of commutative association schemes related to classical groups over
finite fields, and discuss its recent application to the construction of Ramanujan graphs which are of
great interest in computer science. The topics of Section 4 are metric (or P-polynomial) association
schemes and cometric (or Q -polynomial) association schemes.5 These concepts were introduced by
Delsarte [52], and certain systems of orthogonal polynomials naturally come into play in the theory.
The association schemes which are both metric and cometric may be viewed as finite analogues
of rank one symmetric spaces [20, pp. 311–312], and many researchers have been working on the
classification of such association schemes. Special attention will be paid, however, to the class of
cometric (but not necessarily metric) association schemes, which has become an active area of
research in its own right over the last decade.
Sections 5–8 discuss Delsarte’s theory and related topics. We especially recommend the survey

articles [59,37] for the (major) progress up to 1998.We shall see that codes and designs are dealt with
in a unified manner within the framework of commutative association schemes. While the minimum
distance and dual distance (or maximum strength) are two important parameters of a code or design
in Delsarte Theory, a similar theory exists – with an entirely different class of examples – for two
new parameters, namely width and dual width, which were introduced by Brouwer et al. in [31].
These parameters will also be briefly reviewed in Section 5. In Section 6, we first recall standard facts
on translation association schemes and their group codes. The duality between codes and designs
observed in Section 5 becomes more than formal in this case. We also discuss dualities of association
schemes in connection with spin model theory (see e.g., [90]). The subject of Section 7 is the famous
linear programming bound of Delsarte. Delsarte himself explored the specialization of this technique

2 Bannai [11, p. 108] also states that ‘‘it seems that commutative case forms a fairly closed universe, similar to the compact
symmetric homogeneous spaces’’.
3 Indeed, a separate, comprehensive update on distance-regular graphs by different authors is reportedly in preparation.
4 While we cannot begin to cover this important topic in the present paper, we shall encounter the Terwilliger algebra,
particularly in our vision for Delsarte Theory and our treatment of semidefinite programming.
5 The concept of metric association scheme is essentially the same as that of a distance-regular graph, which is in turn a
combinatorial version of the concept of a distance-transitive graph.
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to metric/cometric association schemes in [52], and there are a number of excellent treatments
on the impact of this technique in coding theory (e.g., [110,103]). Our update takes as its point of
departure the striking 2001 result of Samorodnitsky [141] which says that something beyond the
linear programming bound will be required to resolve the most fundamental problem in algebraic
coding theory, namely the determination of the asymptotically optimal rate of a binary block code
for a communication channel with given bit-error probability. This serves as strong motivation for
what is to come in Section 10. But we also aim to extend the techniques beyond the metric/cometric
cases in support of the applications in Section 8. Delsarte’s theory has been quite successful for
codes/designs in metric/cometric association schemes, but the purpose of Section 8 is to introduce
far broader applications of his theory. Working mainly on the ‘‘eigenspace side’’, we demonstrate
the great value in extending the theory beyond the class of cometric schemes by simply listing a
variety of unusual settings where Delsarte’s theory applies. That is, we shall characterize various
combinatorial objects as codes or designs in certain association schemes. Here, the linear ordering
of eigenspaces fundamental to a cometric association scheme is replaced by a partial order and
certain well-known posets play a key role in the study of designs, and in finding solutions to the
linear programming bound. For example, (t,m, s)-nets [136,117] – which provide quasi-Monte Carlo
methods for numerical integration, simulation and optimization – are closely related to the Delsarte
designs in the ‘‘ordered Hamming scheme’’, a family of association schemes generalizing the ordinary
Hamming scheme. Here the eigenspaces are indexed by the members of a downset (or ‘‘lower ideal’’)
in Young’s lattice.
In Section 9, we briefly investigate the Terwilliger (or subconstituent) algebra of an association

scheme [163–165]. This noncommutative matrix algebra contains much more structural information
about the association scheme than the (commutative) Bose–Mesner algebra. The Terwilliger algebra
has proven to be a powerful tool in the study of metric & cometric association schemes. Despite
the importance of this connection, our focus in this section is instead on the use of this algebra in
the analysis of codes and designs, mirroring the use of the Bose–Mesner algebra in Delsarte Theory.
This is still quite a new approach, but we have included the account here to propose it as a possible
research direction. Section 10 is devoted to a discussion of the semidefinite programming bound
introduced recently by Schrijver [143]. This new bound was first established for binary codes and
constant weight codes in [143] using the Terwilliger algebra, and then for nonbinary codes in [70].
The semidefinite programming bound is always at least as good as Delsarte’s linear programming
bound, and numerical computations show that there are many cases where it in fact improves upon
known upper bounds. For simplicity, our exposition is restricted to binary codes. A survey paper [173]
also contains an account on this bound for binary codes based on the results in [62], but we shall
particularly emphasize a viewpoint centered on the Terwilliger algebra. The current formulation of the
semidefinite programming bound relies heavily on certain group actions, so that strictly speaking it
doesnot belong to the ‘‘association scheme theory’’ yet. However, experience shows that group actions
can be supplanted with assumptions of combinatorial regularity and our treatment here reflects our
hope that, for awide class of schemes, Delsarte Theorywill be reconstructed entirely in the near future
based on the Terwilliger algebra and the semidefinite programming method.

2. Commutative association schemes

Let X be a finite set and CX×X the set of complex matrices with rows and columns indexed by X .
Let R = {R0, R1, . . . , Rn} be a set of nonempty subsets of X × X . For each i, let Ai ∈ CX×X be the
adjacency matrix of the graph (X, Ri) (directed, in general). The pair (X,R) is an association scheme6
with n classes if

(AS1) A0 = I , the identity matrix;
(AS2)

∑n
i=0 Ai = J , the all ones matrix;

(AS3) ATi ∈ {A0, A1, . . . , An} for 0 6 i 6 n;

6 The notion coincides with that of homogeneous coherent configuration; see [64].
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(AS4) AiAj is a linear combination of A0, A1, . . . , An for 0 6 i, j 6 n.

By (AS1) and (AS4) the vector space A spanned by the Ai is an algebra; this is the Bose–Mesner (or
adjacency) algebra of (X,R). The Ai are linearly independent by (AS2) and thus form a basis of A.
We say that (X,R) is commutative if A is commutative, and that (X,R) is symmetric if the Ai are
symmetricmatrices. A symmetric association scheme is commutative. Beloware listed a fewexamples
of (symmetric) association schemes:

Example 2.1. The Johnson scheme J(v, n)(v > 2n): X is the set of all n-element subsets of a fixed set
Ω with v points, and (x, y) ∈ Ri if |x ∩ y| = n− i.

Example 2.2. The Hamming scheme H(n, q) (q > 2): X is the set of all words of length n over an
alphabetQ with q symbols, and (x, y) ∈ Ri if x and y differ in exactly i coordinate positions.

Let CX be the set of complex column vectors with coordinates indexed by X , and observe that
CX×X acts on CX from the left. For each x ∈ X let x̂ be the vector in CX with a 1 in coordinate x and
0 elsewhere. We endow CX with the standard Hermitian form 〈, 〉 so that the x̂ form an orthonormal
basis for CX .
For the rest of this section, let (X,R) be a commutative association scheme with adjacency

matrices A0, A1, . . . , An and Bose–Mesner algebra A. By (AS3) A is closed under conjugate
transposition. Since A is commutative, it follows that there is a unitary matrix U ∈ CX×X such that
U−1AU consists of diagonal matrices only. In other words, CX is decomposed as an orthogonal direct
sum of n+ 1 maximal common eigenspaces7 of A:

CX = V0 ⊥ V1 ⊥ · · · ⊥ Vn. (1)

For each i, let Ei ∈ CX×X be the orthogonal projection onto Vi. Then the Ei form a basis of the primitive
idempotents of A, i.e, EiEj = δijEi,

∑n
i=0 Ei = I . Note that |X |

−1J is an idempotent in A with rank one,
hence must be primitive; we shall always set E0 = |X |−1J . It also follows from (AS2) that A is closed
under entrywise (Hadamard or Schur) multiplication, denoted ◦. The Ai form a basis of the primitive
idempotents of Awith respect to this multiplication, i.e., Ai ◦ Aj = δijAi,

∑n
i=0 Ai = J .

The intersection numbers pkij and the Krein parameters q
k
ij (0 6 i, j, k 6 n) of (X,R) are defined by

the equations

AiAj =
n∑
k=0

pkijAk, Ei ◦ Ej =
1
|X |

n∑
k=0

qkijEk. (2)

The pkij are nonnegative integers. On the other hand, since each Ei ◦ Ej (being a principal submatrix
of Ei ⊗ Ej) is positive semidefinite, it follows that the qkij are real and nonnegative. This important
restriction is known as the Krein condition.
The change-of-basis matrices P and Q are defined by

Ai =
n∑
j=0

PjiEj, Ei =
1
|X |

n∑
j=0

QjiAj. (3)

We shall refer to P and Q as the first and second eigenmatrix of (X,R), respectively. Note that
P0i, P1i, . . . , Pni give the eigenvalues of Ai. The matrix P is also called the character table of (X,R),
and in fact it can be viewed as a natural generalization of the character table of a finite group8; see
Example 3.3. Let

ki = P0i, mi = Q0i. (4)

7 They are sometimes called the strata [8].
8 It is a long-standing problem whether the Pij are contained in a cyclotomic number field or not in general [20, p. 123]. It is
known that this is the case if the qkij are rational [130]. A negative answer to the problemwould imply that the character theory
of commutative association schemes is ‘‘far’’ from that of finite groups. See also [96].
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It follows that ki is the valency of the regular graph (X, Ri) and mi = trace(Ei) = rank(Ei). The mi
are called the multiplicities of (X,R). For convenience, set ∆k = diag(k0, k1, . . . , kn) and ∆m =
diag(m0,m1, . . . ,mn). Then we have

∆mP = Q
T
∆k. (5)

This is verified by evaluating trace(AiEj) in two ways. Combining this with the obvious equality
PQ = QP = |X |I , we get the following orthogonality relations:

PT∆mP = |X |∆k, Q T∆kQ = |X |∆m. (6)

We record here the eigenmatrix P for Examples 2.1 and 2.2. See [52,53,55,20,147] for the details.

Example 2.3. Suppose (X,R) = J(v, n). Then ki =
( n
i

) (
v−n
i

)
,mi =

(
v

i

)
−
(
v

i−1

)
and the Pij are given

by dual Hahn polynomials [95, Section 1.6]:

Pij
kj
= 3F2

(
−i,−j, i− v − 1
n− v,−n

∣∣∣∣ 1) .
Example 2.4. Suppose (X,R) = H(n, q). Then ki = mi =

( n
i

)
(q − 1)i and the Pij are given by

Krawtchouk polynomials [95, Section 1.10]:

Pij
kj
= 2F1

(
−i,−j
−n

∣∣∣∣ q
q− 1

)
.

We remark that the polynomials in Examples 2.3 and 2.4 belong to the so-called Askey scheme of
(basic) hypergeometric orthogonal polynomials [95], and the equations in (6) for the corresponding
association schemes amount to the orthogonality relations of these polynomials and their duals; see
Section 4.
An association scheme (X, S) on the same vertex setX is called a fusion of (X,R) if each S ∈ S is the

union of some of the Ri.9 As the adjacencymatrices (resp. primitive idempotents) of a fusion of (X,R)
must be 01-linear combinations of the Ai (resp. Ei), it is theoretically possible to find all fusions of
(X,R) from the eigenmatrix P . This is accomplished using the Bannai–Muzychuk Criterion [12,134].10
We close the section with a brief review of subschemes and quotient schemes. For a subset Y ⊆ X ,

define RY
= {RYi : 0 6 i 6 n, R

Y
i 6= ∅} where we write R

Y
= R ∩ (Y × Y ) for R ⊆ X × X . We

call (Y ,RY ) a subscheme of (X,R) if it is an association scheme. For example, J(v, n) can be naturally
viewed as a subscheme of H(v, 2).
We say that (X,R) is primitive if the graphs (X, Ri) (1 6 i 6 n) are connected, and imprimitive

otherwise. Let Ir (resp. Jr ) denote the r × r identity (resp. all ones) matrix. Then

Lemma 2.5. The following are equivalent:

(i) (X,R) is imprimitive.
(ii) There is a subset I ⊆ {0, 1, . . . , n} such that

∑
i∈I Ai = Ir ⊗ Js for some integers r, s > 2 and an

ordering of X.11

(iii) There is a subset J ⊆ {0, 1, . . . , n} such that
∑
i∈J Ei = s

−1Ir ⊗ Js for some integers r, s > 2 and an
ordering of X.

(iv) There exist i ∈ {1, 2, . . . , n} and x, y ∈ X(x 6= y) such that Eix̂ = Eiŷ.

9 By (AS1), R0 ∈ S. As an extreme case, we call (X,R) amorphous (or amorphic) if every ‘‘merging’’ operation on
{R1, R2, . . . , Rn} yields a fusion; see [50] for a recent survey on this topic.
10 See e.g., [12,156,66,83] for examples of explicit constructions of fusions using this criterion.
11 Such a subset is often said to be closed; see [177].
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(To prove this, proceed e.g., in the order (i)⇔(ii)⇔(iii)⇒(iv)⇒(ii).) Suppose now that (X,R) is
imprimitive and let a subset I be as in (ii) above, so that

⋃
i∈I Ri is an equivalence relation on X . Each

equivalence class affords a subscheme of (X,R). We also have a natural structure of an association
scheme on the set of all equivalence classes [20, Section 2.9], called a quotient (or factor) scheme of
(X,R).12 In fact, there is a concept of a ‘‘composition factor’’ of (X,R) as well as a ‘‘Jordan–Hölder’’
theorem. See [177,178] for the structure theory of (general) association schemes. Finally, it should
be mentioned that if (X,R) is primitive and symmetric then X can be viewed as a set of points on a
sphere in Rmi for each i ∈ {1, 2, . . . , n} in view of (iv) above. This ‘‘spherical embedding’’ is known to
be quite useful; see e.g., [30, Chapter 3], [16].

3. Gelfand pairs

Suppose that a finite group G acts transitively on a finite set X (from the left). Let R =

{R0, R1, . . . , Rn} be the set of the orbits13 of G on X × X under componentwise action, where R0 =
{(x, x) : x ∈ X}, then (X,R) forms an association scheme.14 Let π : G → CX×X be the permutation
representation of G on X , i.e., π(g)xy = δx,gy (x, y ∈ X, g ∈ G), and observe that the Bose–Mesner
algebra A of (X,R) coincides with the centralizer (or Hecke) algebra of π :

A = {M ∈ CX×X : π(g)M = Mπ(g) for all g ∈ G}. (7)

Hence, by Schur’s lemma it follows that (X,R) is commutative if and only if π is multiplicity-free,
i.e., if and only if π is equivalent to a direct sum of inequivalent irreducible representations of G. We
note that (X,R) is symmetric if and only if π is multiplicity-free and each irreducible constituent is
realizable inR; this is also equivalent to the condition that the action of G on X is generously transitive,
i.e., for any distinct x, y ∈ X there is an element g ∈ G such that gx = y and gy = x.
The G-set X can be identified with the set of left cosets G/K for some subgroup K of G. Note that

π = (1K )G, where 1K is the trivial representation of K . For brevity, in this case we shall also let the
symbol G/K denote the corresponding association scheme. It follows that G/K is primitive if and only
if K is maximal in G. The pair (G, K) is called a Gelfand pair if (1K )G is multiplicity-free [107, Chapter
VII], i.e., if G/K is commutative. If (G, K) is a Gelfand pair, then the determination of the eigenmatrices
of G/K is in fact equivalent to describing the zonal spherical functions of (G, K) [20, Section 2.11].
The Johnson and Hamming schemes are obtained by actions of symmetric groups and their wreath

products, respectively:

Example 3.1. J(v, n) = Sv/(Sn × Sv−n).

Example 3.2. H(n, q) = (Sq o Sn)/(Sq−1 o Sn).

Concerning finite groups, we introduce another important example:

Example 3.3 (The Group Association Scheme15). Suppose that X is a finite group and let G = X × X act
on X by (x, y)z = xzy−1. Thus (X,R) = (X×X)/X̃ in the above sense, where X̃ = {(x, x) : x ∈ X}. We
have (x, y) ∈ Ri if yx−1 ∈ Ci, where C0 = {1}, C1, . . . , Cn are the conjugacy classes of X . In this case
A is isomorphic to the center of CX (viewed naturally as the group algebra of X) by Ai 7→

∑
x∈Ci
x̂.

Hence (X × X)/X̃ is commutative and the Ei are in bijection with the irreducible characters εi of

12 Let E = s−1Ir ⊗ Js be as in (iii) above. Then the Bose–Mesner algebra of the quotient scheme is canonically isomorphic to
the ‘‘Hecke algebra’’ EAE (which is also an ideal of A).
13 These orbits are also referred to as the orbitals or the 2-orbits of G on X; see [64,175].
14 Association schemes of this type are sometimes called Schurian [64].
15 E. Bannai (personal communication) pointed out that the concept of supercharacters and superclasses of finite groups
introduced in [60] is equivalent to that of fusions of group association schemes (in view of the Bannai–Muzychuk Criterion).
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X . Let T be the group character table of X in the usual sense, and set ∆k = diag(k0, k1, . . . , kn),
∆f = diag(f0, f1, . . . , fn), where ki = |Ci| and fi is the degree of εi (0 6 i 6 n). Then we have16

∆f P = T∆k, Q = T
T
∆f .

Note that (X × X)/X̃ is primitive if and only if X is a simple group.

The eigenmatrices of commutative association schemes have been extensively studied in the
context of spherical functions. They are of significant interest in the theory of orthogonal polynomials
(see e.g., [146]). See also [162,39] for a wide variety of applications.17 Besides, there are many other
commutative association schemes whose eigenmatrices possess quite beautiful structure.18 As a
typical example we consider the association schemes O2m+1(q)/O±2m(q), where for brevity we assume
that q is even.19We first recall that O3(q)/O−2 (q) is symmetric with q/2− 1 classes (cf. [155,79]). The
first eigenmatrix P is of the following form20:

P =


1 q+ 1 · · · q+ 1
1
... P0
1

 ,
where P0 is a square matrix of size q/2 − 1. (Recall that the top row of P gives the valencies.)
Next, let ε ∈ {+,−} and suppose m > 1 if ε = −. Then O2m+1(q)/Oε2m(q) is symmetric with
q/2 classes and the nontrivial valencies are given by k1 = (qm−1 + (ε1))(qm − (ε1)), k2 = k3 =
· · · = kq/2 = qm−1(qm − (ε1)). Moreover it turns out that the first eigenmatrix of O2m+1(q)/Oε2m(q)
contains−(εqm−1)P0 as its lower-right submatrix.21 In this situation, we say that the eigenmatrix of
O2m+1(q)/Oε2m(q) is controlled by that of the smaller association scheme O3(q)/O

−

2 (q). There are a lot
of fascinating examples of this kind; see [11,145] and the references therein.
We close this section with an application of this theory. A connected k-regular graph is called

Ramanujan if all eigenvalues θ such that |θ | 6= k satisfy |θ | 6 2
√
k− 1. Ramanujan graphs are good

expanders and there are broad applications in computer science. Moreover, these graphs are precisely
the regular graphs whose Ihara zeta functions satisfy the Riemann hypothesis. See [162] for the
details.
Observe that O3(q)/O−2 (q) = PGL(2, q)/Dq+1 where Dq+1 is a dihedral subgroup of order 2(q+ 1),

so that it is a quotient scheme of GL(2, q)/GL(1, q2). The latter association scheme (for both even and
odd q) is symmetric with q − 1 classes, and its q − 2 graphs with valency q + 1 are called the finite
upper half plane graphs [162]. These graphs are shown to be Ramanujan,22 from which it follows that
the (q + 1)-regular graphs attached to O3(q)/O−2 (q) are Ramanujan as well. An implication of the

16 The central primitive idempotent corresponding to εi is given by fi|X |−1
∑
x∈X εi(x)x̂; see e.g., [48].

17 The goal of the book [162] is to consider finite analogues of the symmetric spaces including Rn and the Poincaré upper half
plane, partly in order to ‘‘develop an understanding of the continuous theory by developing the finite model’’ [162, p. 1].
18 Concerning the character theory of finite groups, we especially refer to [21,77] for a strong analogy between the character
tables ofGL(n, q),GU(n, q2) and the eigenmatrices ofGL(2n, q)/Sp(2n, q),GL(n, q2)/GL(n, q),GL(n, q2)/GU(n, q2). See also [11].
19 These association schemes arise from the action of O2m+1(q) on each of the sets of plus-type and minus-type hyperplanes.
See [19] for the preceding results in the case of odd q.
20 It is also known that all nontrivialmultiplicities coincide (and equal q+1), i.e.,O3(q)/O−2 (q) is pseudocyclic [30, Section 2.2B].
Pseudocyclic association schemes can be used to construct strongly regular graphs as well as distance-regular graphs with
diameter three; see [30, Section 12.7].
21 The proof is based on comparing the intersection numbers of these association schemes. Note that the other entries are
determined from the orthogonality relations (6).
22 The proof amounts to estimating several exponential sums over finite fields, such as Soto-Andrade sums, based on the work
of A. Weil, N. Katz, W. Li and many others. See [162].
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above comments on the eigenmatrices is that all graphs with valency qm−1(qm + 1) associated with
O2m+1(q)/O−2m(q) are Ramanujan

23; see [22].
This systematic construction of Ramanujan graphs is an interesting application of the approach

from the eigenmatrices of commutative association schemes.24 In fact, the same method works for
many other examples of controlling association schemes; see [23,22]. See also [102,51] for related
constructions of Ramanujan graphs and [174] for an application of the results in [23,22] to the Erdős
distance problem.

4. Metric/cometric association schemes

Suppose that (X,R) is a symmetric association scheme. We say that (X,R) is metric (or P-
polynomial) with respect to the ordering {Ai}ni=0 if for each i (0 6 i 6 n) there is a polynomial vi
with degree i such that Pji = vi(Pj1) (0 6 j 6 n). Such an ordering is called a P-polynomial ordering.
Dually, we say that (X,R) is cometric (or Q -polynomial) with respect to the ordering {Ei}ni=0 if for each
i (0 6 i 6 n) there is a polynomial v∗i with degree i such that Qji = v∗i (Qj1) (0 6 j 6 n). Such an
ordering is called a Q -polynomial ordering. Note that in each of the above definitions the vi (resp. v∗i )
form a system of orthogonal polynomials by (6). Note also that (X,R) is metric (resp. cometric) with
respect to the above ordering if and only if for all i, j, k (0 6 i, j, k 6 n)we have pkij = 0 (resp. q

k
ij = 0)

if i+ j < k and pkij 6= 0 (resp. q
k
ij 6= 0) if i+ j = k.

A connected undirected graph (X, R) with diameter n and path-length distance ∂ is called
distance-regular if the n + 1 relations Ri = {(x, y) ∈ X × X : ∂(x, y) = i} (0 6
i 6 n) define an association scheme [20,30]. Thus metric association schemes, with specified P-
polynomial ordering, are in bijection with distance-regular graphs. We refer the reader to [30]
for the basic theory on this topic,25 and briefly comment on metric association schemes which
are also cometric. (Henceforth we will use the phrase ‘‘metric & cometric’’ to describe such
association schemes.) This class contains J(v, n), H(n, q) and many other important examples
which arise from finite classical groups and classical forms over finite fields, e.g., Grassmann
schemes and bilinear forms schemes26; see [20, Section 3.6], [30, Chapter 9] and [49]. The famous
theorem of Leonard [100] states that in this case the above polynomials vi and v∗i belong to the
terminating branch of the Askey scheme [95] (up to normalization), so that they are q-Racah
polynomials [95, Section 3.2] or their special/limiting cases27; see also [20, Section 3.5]. Recently,
Leonard’s theorem has been reformulated in the purely linear algebraic framework of Leonard
pairs [166,169]. Leonard pairs are used to describe certain irreducible modules for the Terwilliger
algebra (Section 9) of metric & cometric association schemes.28 We also remark that Leonard pairs
arise naturally in other various contexts, such as in representation theory29; see [168,171] for the
details.
Compared with metric association schemes, the systematic study of cometric (but not necessarily

metric) association schemes has begun rather recently. As we shall discuss below, they are of

23 Using a simple number-theoretic argument, it is also shown that for each fixed q there are infinitely many values ofm such
that the graphs attached to O2m+1(q)/O+2m(q) are Ramanujan.
24 Note, however, that this construction yields only finitely many Ramanujan graphs for each fixed valency.
25 See also ‘‘Additions and corrections’’ to the book [30] available at A.E. Brouwer’s webpage: http://www.win.tue.nl/~aeb/(cf.
footnote 3).
26 These are q-analogues of J(v, n) and H(n, q), respectively.
27 Note that we also allow the specialization q→ −1. Leonard’s theorem was obtained just shortly after the 1979 discovery
of the q-Racah (or Askey–Wilson) polynomials, and led Andrews and Askey [3] to their definition of the classical orthogonal
polynomials. Bannai [14, p. 27] states that ‘‘it is very interesting that combinatorics gave a meaningful influence to the theory
of orthogonal polynomials in this way’’.
28 Some problems on metric & cometric association schemes can be unified and most elegantly stated in terms of Leonard
pairs; see [159].
29 For example, we may obtain Leonard pairs from the finite dimensional irreducible modules for the Lie algebra sl2 as well
as the quantum algebra Uq(sl2).

http://www.win.tue.nl/~aeb/
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particular interest because of their connections, e.g., to spherical designs, (Euclidean) lattices and also
mutually unbiased bases in quantum information theory. See also [17].
The famous Bannai–Ito Conjecture [20, p. 237] states that there are only finitely many distance-

regular graphs with any given valency k > 2 (the polygons are all distance-regular with k = 2).
For recent activity on this conjecture, see e.g., [97,10] and the references therein.30 The dual to this
conjecture is the following:

Theorem 4.1 ([123]). For each fixed m > 2, there are only finitely many cometric association schemes
with Q -polynomial ordering {Ei}ni=0 satisfying rank(E1) = m.

A key step in the proof of this theorem is to bound the degree of the splitting field, based on
the results of [150]; see also [40, Section 3]. The splitting field of (X,R) is the smallest extension of
the rational number field Q which contains all the Pij.31 While most distance-regular graphs with
classical parameters have rational splitting field, the regular n-gon has splitting field Q(ζ ) where
ζ = cos(2π/n) which, when n is prime for example, gives a degree (n − 1)/2 extension of Q. In the
case of distance-regular graphs of valency k > 2, only one known example – the Biggs–Smith graph
– has an eigenvalue not belonging to a quadratic extension of Q. To push this a bit further, to our
knowledge, the only distance-regular graphs known with splitting field not contained in a quadratic
extension of Q are

• the Biggs–Smith graph, with spectrum

31, 218, 017,

(
1+
√
17

2

)9
,

(
1−
√
17

2

)9
,
(
−1+ 2 cos

π

9

)16
,

(
−1− cos

π

9
+
√
3 sin

π

9

)16
,
(
−1− cos

π

9
−
√
3 sin

π

9

)16
• incidence graphs of generalized hexagons GH(q, q), with eigenvalues

±(q+ 1), 0, ±
√
q, ±

√
3q.

(These can be viewed as point graphs of thin generalized 12-gons of order (1, q).)
• line graphs of the above graphs, with eigenvalues

2q, q− 1, −2, q− 1±
√
q, q− 1±

√
3q,

which are the point graphs of generalized 12-gons of order (q, 1).

The question arises as to whether there exists a bound on the dimension of the splitting field
of a distance-regular graph in terms of its valency. Any such result would immediately imply the
Bannai–Ito Conjecture since the interval [−k, k] would then contain a limited number of potential
eigenvalues (since it must contain all their conjugates). But such a bound seems beyond our reach at
this point. In [30, p. 130], Brouwer, et al. ask if a distance-regular graph with k > 2 must have at least
two integral eigenvalues. Even this apparently simple question remains unresolved to date.

Conjecture 4.2 (Bannai and Ito [20, p. 312]). For n sufficiently large, a primitive association scheme with
n classes is metric if and only if it is cometric.

While no counterexamples are known to this conjecture, there are imprimitive distance-regular
graphs – the doubled Odd graphs – which are not cometric yet have arbitrarily large diameter, and
there are someQ -bipartite doubles of certain Hermitian forms dual polar spaces [20, p. 315]which are
cometric yet not metric. So the ‘‘primitive’’ condition in the conjecture is necessary. Still, no progress
has beenmade toward proving the conjecture. From the ‘‘cometric viewpoint’’, perhaps the following
questions will prove easier to attack:

30 As of this writing, it has been announced that the full conjecture has been proven by Bang, Koolen and Moulton.
31 See footnote 8.
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Question: Suppose that (X,R) is cometric with Q -polynomial ordering {Ei}ni=0 and the Ai ordered so
that Q01 > Q11 > · · · > Qn1. If n is sufficiently large, must A1 have n+ 1 distinct eigenvalues?
Question: Does there exist an absolute constant ν such that, for any cometric association scheme
(X,R) with Q -polynomial ordering {Ei}ni=0 and the Ai ordered so that Q01 > Q11 > · · · > Qn1, we
have pk1j = 0 whenever k > j+ ν?
It is easy to prove that the valencies of any distance-regular graph with diameter n satisfy the

unimodal property:

k0 = 1 < k1 6 k2 6 · · · 6 kn′ > kn′+1 > · · · > kn (8)

for some 1 6 n′ 6 n, possibly n′ = n. For cometric association schemes, we have

Conjecture 4.3 (Bannai and Ito [20, p. 205]). If (X,R) is cometric with Q -polynomial ordering {Ei}ni=0,
then the mi satisfy the unimodal property:

m0 = 1 < m1 6 m2 6 · · · 6 mn′ > mn′+1 > · · · > mn

for some 1 6 n′ 6 n.

In personal communication with P. Terwilliger, the following stronger claim was made for all
cometric association schemes:

Conjecture 4.4 (D. Stanton). For i < n/2, mi 6 mi+1 and mi 6 mn−i.

Stanton’s conjecture has been proven under the added assumption that the association scheme is
dual thin (Section 9) [140] or metric [137].
It is well known that a metric association scheme admits at most two P-polynmial orderings [30,

Theorem 4.2.12]. Section 4.2D in [30] examines the possibilities for a second P-polynomial ordering of
a distance-regular graph and obtains substantial parameter conditions. In the cometric case, we have
the following result of [150]:

Theorem 4.5 ([150]). If {Ei}ni=0 is a Q -polynomial ordering for a cometric association scheme (X,R),
then any second such ordering must be one of:
• E0, E2, E4, . . . , E3, E1;
• E0, En, E1, En−1, . . .;
• E0, En, E2, En−2, . . . (n odd);
• E0, En−1, E2, En−3, . . . (n even);
• E0, E5, E3, E2, E4, E1.

Further conditions were given in [150] (e.g., (X,R)must be almost Q -bipartite,32 in the first case).
It is possible that the last case may be ruled out.
The Krein parameters of a cometric scheme (X,R) are entirely determined by its Krein array

ι∗(X,R) = {b∗0, b
∗

1, . . . , b
∗

n−1; c
∗

1 , c
∗

2 , . . . , c
∗

n }, (9)

where b∗i = q
i
1,i+1 (0 6 i 6 n− 1) and c

∗

i = q
i
1,i−1 (1 6 i 6 n). We also define a

∗

i = q
i
1i (0 6 i 6 n). It

is well known [20, p. 315] that an imprimitive distance-regular graph with valency k > 2 is bipartite
or antipodal (or both). The dual situation is not yet fully resolved. In 1998, Suzuki proved

Theorem 4.6 ([149]). If (X,R) is an imprimitive cometric association scheme with Q -polynomial
ordering {Ei}ni=0, then at least one of the following holds

33:
(i) (X,R) is Q -bipartite: a∗i = 0 for 1 6 i 6 n;
(ii) (X,R) is Q -antipodal: b∗i = c

∗

n−i for 1 6 i 6 n, except possibly i = bn/2c;

32 A cometric association scheme with n classes is almostQ -bipartite if its parameters satisfy a∗i = 0 for all i < n, yet a
∗
n > 0.

33 With the notation of Lemma 2.5, types (i)–(iv) correspond to J = {0, 2, 4, . . .}, J = {0, n}, J = {0, 3} and J = {0, 3, 6},
respectively.
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(iii) n = 4 and ι∗(X,R) = {m,m− 1, 1, b∗3; 1, c
∗

2 ,m− b
∗

3, 1}, where a
∗

2 > 0;
(iv) n = 6 and ι∗(X,R) = {m,m− 1, 1, b∗3, b

∗

4, 1; 1, c
∗

2 ,m− b
∗

3, 1, c
∗

5 ,m}, where a
∗

2 = a
∗

4 + a
∗

5 > 0.

Schemes of type (iii) in the theorem have recently been ruled out [40]. No examples are known
of type (iv); it is quite possible that none exist and then the theorem exactly mirrors the result for
imprimitive distance-regular graphs.
Let us briefly review the known examples of such imprimitive ‘‘polynomial schemes’’ with three

or four classes. In the metric case, a bipartite distance-regular graph of diameter three is necessarily
the incidence graph of some symmetric (v, k, λ) block design. Any such scheme is cometric as well.
An antipodal distance-regular graph of diameter three is a cover of a complete graph [74]; these are
cometric precisely when the cover has index two. The only distance-regular graphs of diameter three
which are both bipartite and antipodal are the complete bipartite graphs with a perfect matching
deleted. These trivial examples are both metric and cometric.
The 3-class imprimitive cometric schemes follow a landscape dual to this. The Q -bipartite

examples are all Taylor graphs; they are all index two distance-regular antipodal covers of the
complete graphs. A 3-class Q -antipodal scheme is equivalent to a linked system of symmetric
designs [36,119]; these are only metric when there are two Q -antipodal classes, these being the
incidence graphs of symmetric designs mentioned above. The only examples which are both Q -
bipartite and Q -antipodal are again the complete bipartite graphs with a one-factor deleted.
In the case of imprimitive 4-class schemes, the bipartite distance-regular graphs of diameter four

are incidence graphs of various designs and geometries (e.g., generalized quadrangles) while the
antipodal distance-regular graphs of diameter four are antipodal covers of strongly regular graphs.
The distance-regular graphs of diameter four which are both bipartite and antipodal are characterized
as incidence graphs of symmetric (m, µ)-nets [30, p. 18]. On the cometric side the 4-class schemes
which are Q -bipartite correspond to systems of lines with two angles, one of which is π/2; the 4-
class Q -antipodal schemes are roughly the linked systems of strongly regular designs. Interestingly,
the 4-class schemes which are both Q -bipartite and Q -antipodal are in one-to-one correspondence
with sets of real mutually unbiased bases [99], which we now define. (See also [1].)
Let {b1, b2, . . . , bd} and {b′1, b

′

2, . . . , b
′

d} be two orthonormal bases for Cd. We say these bases are
unbiased (relative to one another) if |〈bi|b′j〉| = 1/

√
d for all 1 6 i, j 6 d where 〈|〉 is the standard

Hermitian inner product on Cd. A collection of orthonormal bases for Cd is mutually unbiased if any
two distinct bases from the set are unbiased relative to one another. For d a prime power, there is
a construction of d + 1 mutually unbiased bases (MUBs) in Cd. For other dimensions this is mostly
an open question. Such constructions are useful for several applications in quantum information
theory, such as quantumkey distribution and quantum state tomography. (See [29] and the references
therein.)
When we restrict the bases to be real, the problem changes qualitatively. Indeed, for unit vectors

b and b′ from distinct bases, we must have 〈b|b′〉 = ±1/
√
d. Let Md denote the maximum possible

number of real MUBs in dimension d. It follows from an old result of Delsarte et al. [58] that Md 6
d/2+1; see also [32]. This bound is achieved for d = 4k via a construction using Kerdock sets. In [29],
it is established for example that

• Md = 1 unless d = 2 or 4|d;
• Md > 2 if an only if there exists a Hadamard matrix of side d;
• Md 6 3 unless d/4 is an even square.

Using the results of [99], each of these results gives either a construction or a nonexistence result
for cometric association schemes with four classes which are both Q -bipartite and Q -antipodal;
specifically,Md is an upper bound on the number k of Q -antipodal classes in such association scheme
on 2kd vertices with Q -antipodal classes of size 2d.
If (X,R) is Q -bipartite with Q -polynomial ordering {Ei}ni=0, then the set {E1x̂ : x ∈ X} is closed

under multiplication by−1; so, viewed as points on the unit sphere in Rm1 , these schemes are really
best viewed as sets of lines through the origin. The imprimitivity system here has all equivalence
classes of size two and the quotient scheme, on |X |/2 vertices, is often interesting. Examples include
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the schemes arising from the shortest vectors in the E6, E7, E8 and Leech lattices, as well as an
overlattice of the Barnes–Wall lattice in R16; these have Krein arrays

• ι∗(E6) =
{
6, 5, 92 , 3; 1,

3
2 , 3, 6

}
• ι∗(E7) =

{
7, 6, 499 ,

35
8 ; 1,

14
9 ,

21
8 , 7

}
• ι∗(E8) =

{
8, 7, 325 , 6; 1,

8
5 , 2, 8

}
• ι∗(Leech) =

{
24, 23, 28813 ,

150
7 ,

104
5 ,

81
4 ; 1,

24
13 ,

18
7 ,

16
5 ,

15
4 , 24

}
• ι∗(OBW16) =

{
16, 15, 1289 , 8; 1,

16
9 , 8, 16

}
.

Further Q -bipartite examples come from Q -bipartite doubles of certain strongly regular graphs,
such as the two subconstituents of the McLaughlin graph.
Concerning the structure of Q -antipodal schemes, again very little is known. The quotient scheme

is a one-class scheme. With the natural ordering on the Ai, we have I = {0, 2, 4, . . .} in the notation
of Lemma 2.5. The following theorem has been referred to as the ‘‘Dismantlability Theorem’’34:

Theorem 4.7 ([119]). If (X,R) is Q -antipodal and Y ⊆ X is a union of ` Q-antipodal classes, then
(Y ,RY ) is a cometric subscheme, which is Q -antipodal as well, provided ` > 1.

In Section 6, we shall investigate duality among association schemes. As a special case, if (X,R)
is the coset scheme of an additive completely regular (Section 5) code Y in H(n, q), then the dual of
(X,R) (induced on the dual code Y ◦) is a cometric subscheme inside H(n, q). In this way, we obtain a
number of cometric schemes from the perfect binary and ternary Golay codes and some codes derived
from them [30, p. 356].What is newhere is that, since several of these coset graphs are antipodal, their
dual schemes are Q -antipodal and the above theorem gives us new cometric schemes which are not
metric. We give two examples here.

• The dual scheme of the coset graph of the shortened ternary Golay code is a Q -antipodal scheme
on 243 vertices with three Q -antipodal classes. If we dismantle this, taking two of these classes
only, we obtain a Q -antipodal scheme with Krein array {20, 18, 3, 1; 1, 3, 18, 20}. It is interesting
to note that the dual parameter set remains open for a possible antipodal diameter four distance-
regular graph.
• Example (A16) on p. 365 of [30] is the coset graph of an additive binary code derived from
the extended binary Golay code. Its dual scheme has 2048 vertices and four Q -antipodal
classes. If we take only three of these, we obtain a Q -antipodal scheme with Krein array
{21, 20, 16, 8, 2, 1; 1, 2, 4, 16, 20, 21}. In this case, the dual parameter set has been shown to be
unrealizable as a distance-regular graph by counting hexagons in such a graph [30, p. 365].

In a terse summary of spherical designs [131], Munemasa gives numerous examples of cometric
schemes arising from lattices which are not distance-regular graphs. Martin et al. [119] build on
this list, including some schemes coming from error-correcting codes, block designs and the above
theorem applied to known Q -antipodal schemes. Higman’s paper [78] on strongly regular designs
contains further examples.
We have already mentioned some imprimitive examples. It is remarkable that very few primitive

cometric association schemes are known which are not metric. The only known examples, to our
knowledge, are the following35:

• the block scheme of the 4-(11, 5, 1) Witt design, with n = 3, |X | = 66 and Krein array
{10, 242/27, 11/5; 1, 55/27, 44/5}
• the block scheme of the 5-(24, 8, 1) Witt design, with n = 3, |X | = 729 and Krein array
{23, 945/44, 1587/80; 1, 345/176, 207/20}

34 This theorem is formally dual to an unpublished result of C. Godsil (personal communication) which states that, in an
antipodal distance-regular graph, any subset of an antipodal class is a completely regular code (Section 5).
35 See also an on-line table of cometric association schemes which are not metric, maintained by W.J. Martin:
http://users.wpi.edu/~martin/RESEARCH/QPOL/.

http://users.wpi.edu/~martin/RESEARCH/QPOL/
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• a spherical design derived from the Leech lattice with n = 3, |X | = 2025 and Krein array
{22, 21, 625/33; 1, 11/6, 30/11}
• the block scheme of a 4-(47, 11, 48) design arising from codewords of weight 11 in a
certain quadratic residue code of length 47, with n = 3, |X | = 4324 and Krein array
{46, 77 315/1782, 24 863/847; 1, 37 835/19 602, 2162/231}
• the ‘‘antipodal’’ quotient of the association scheme on shortest vectors of the Leech lattice, with
n = 3, |X | = 98 280 and Krein array {299, 1800/7, 4563/20; 1, 156/35, 195/4}
• a spherical design derived from the Leech lattice with n = 4, |X | = 7128 and Krein array
{22, 21, 121/6, 2187/125; 1, 11/6, 363/125, 6}
• another derived spherical design arising among the shortest vectors of the Leech lattice, with n =
5, |X | = 47 104 and Krein array {23, 22, 529/25, 184/9, 483/25; 1, 46/25, 23/9, 92/25, 23/3}.

5. Codes and designs

Suppose that (X,R) is a commutative association scheme. Throughout this section, let Y be a
nonempty subset of X with 1 < |Y | < |X |. Let χ =

∑
x∈Y x̂ be the characteristic vector of Y . The

inner distribution of Y is the vector a = (a0, a1, . . . , an) defined by

ai =
1
|Y |
χTAiχ =

1
|Y |
|Ri ∩ (Y × Y )|. (10)

Note that the ai are nonnegative, a0 = 1 and (aQ )0 = |Y |.36 Since (aQ )i = |X ||Y |−1χTEiχ it follows
that the (aQ )i are also real and nonnegative; this simple fact underlies Delsarte’s linear programming
method; see Section 7. We remark that (aQ )i = 0 if and only if Eiχ = 0.
For a subset T of {1, 2, . . . , n}, we call Y a T -code (resp. (Delsarte) T -design) if ai = 0 (resp.

(aQ )i = 0) for all i ∈ T . A {1, 2, . . . , t}-design is simply called a t-design.37 Codes in H(n, q) are
the familiar ‘‘block codes of length n’’, and codes in J(v, n) are precisely the binary constant-weight
codes.We remark that codes in the bilinear forms schemes also have applications to space–time codes;
see [76].
If Y is a T -code and if Z ⊆ X is aU-code with inner distribution b where T ∪U = {1, 2, . . . , n},

then by the right side of (6) we have

|Y ||Z | 6 (aQ )∆−1m (bQ )
T
= |X |a∆−1k bT

= |X | (11)

with equality if and only if (aQ )i(bQ )i = 0 (1 6 i 6 n). This ‘‘Anticode Bound’’ is a special case of the
linear programming method. A similar argument gives an ‘‘Antidesign Bound’’ for T -designs: if Y is a
T -design and Z is aU-design where T ∪U = {1, 2, . . . , n}, then |Y ||Z | > |X |.
In some cases, certain T -designs have natural geometric interpretations. For example, if (X,R) is

induced on the top fiber of a short38 regular semilattice (P ,4) (see [53]), then Y is a t-design39 if and
only if the number |{x ∈ Y : u 4 x}| (called the index) is independent of u ∈ P with rank(u) = t [53].
For Examples 2.1 and 2.2 we have:

Example 5.1. Let P = {u ⊆ Ω : |u| 6 n}. Then (P ,4), where the partial order is given by inclusion,
forms a short regular semilattice (truncated Boolean lattice) with rank function rank(u) = |u|. In the
top fiber J(v, n), a Delsarte t-design is just a combinatorial t-design.40

36 In general, for a vector c = (c0, c1, . . . , cn)we call cQ theMacWilliams transform of c .
37 Inwhat follows, if we define a concept/parameterwhich depends on the ordering of the Ai or the Ei (such as a t-design) then
we shall understand that such an ordering is implicitly fixed. Whenever we state a result involving these concepts/parameters,
the orderings will be explicitly specified or clear from the context.
38 A ranked, meet semilattice (P ,4)with top fiber X is short if X ∧ X = P .
39 Here we are using the ordering {Ei}ni=0 defined naturally by the semilattice structure.
40 A t-(v, n, λ)design is a collection of n-subsets (called blocks) of a v-set such that every t-subset is contained in exactly λ
blocks.
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Example 5.2. Introduce a new symbol ‘‘·’’ and let P be the set of words of length n over Q ∪ {·}.
For u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ P , we set u 4 v if and only if ui = · or
ui = vi, for all i. Then (P ,4) defines a short regular semilattice (Hamming lattice) with rank function
rank(u) = |{i : ui 6= ·}|. In the top fiber H(n, q), a t-design is an orthogonal array of strength t .41

See [129,148] for geometric interpretations of t-designs in other classical families of metric &
cometric association schemes. More ‘‘exotic’’ types of codes and designswill be discussed in Section 8.
See also [33,57] for another approach to the regularity of T -designs in J(v, n) and H(n, q) in terms of
their t-form spaces.
The outer distribution of Y is the |X | × (n+ 1)matrix

B = [A0χ, A1χ, . . . , Anχ ]. (12)

We also recall the following four fundamental parameters of Y :

δ = min{i 6= 0 : ai 6= 0}, δ∗ = min{i 6= 0 : (aQ )i 6= 0}, (13)

s = |{i 6= 0 : ai 6= 0}|, s∗ = |{i 6= 0 : (aQ )i 6= 0}|. (14)

We call δ, δ∗, s, s∗ the minimum distance, dual distance, degree and dual degree of Y , respec-
tively.42 These are related with |Y | as follows:

Theorem 5.3 ([52]). Suppose that (X,R) is metric with P-polynomial ordering {Ai}ni=0. Then δ 6 2s
∗
+1

and

b(δ−1)/2c∑
i=0

ki 6
|X |
|Y |
6

s∗∑
i=0

ki. (15)

If δ > 2s∗−1 then Y is completely regular, i.e., the xth rowof B depends only on ∂(x, Y ) = min{i : Bxi 6= 0}.

Theorem 5.4 ([52]). Suppose that (X,R) is cometric with Q -polynomial ordering {Ei}ni=0. Then δ
∗ 6

2s+ 1 and

b(δ∗−1)/2c∑
i=0

mi 6 |Y | 6
s∑
i=0

mi. (16)

If δ∗ > 2s− 1 then (Y ,RY ) is a cometric subscheme with s classes.

The inequality in the left side in (15) (resp. (16)) is the sphere-packing bound (resp. Fisher-type
inequality), and Y is a perfect code (resp. tight design) if it satisfies equality. It follows that Y is a perfect
code (resp. tight design) if and only if δ = 2s∗+ 1 (resp. δ∗ = 2s+ 1). We remark that the codes with
δ ∈ {2s∗ − 1, 2s∗} in Theorem 5.3 are precisely the uniformly packed codes [30, p. 348]. Completely
regular codes have been actively studied because of their importance in the theory of distance-regular
graphs; see [30, Chapter 11] and [116].
Suppose now that (X,R) is metric with P-polynomial ordering {Ai}ni=0. Pick any x ∈ X and set

Zx = {y ∈ X : (x, y) ∈
⋃e
i=0 Ri}, where e = b(δ − 1)/2c is the packing radius of Y . We may obtain the

sphere-packing bound via (11) with Z = Zx. Thus, if Y is perfect, then since the characteristic vector
ψx =

∑e
i=0 Aix̂ of Zx satisfies ψ

T
x Ejψx = (

∑e
i=0 Pji)

2mj|X |−1, we find |{j 6= 0 :
∑e
i=0 Pji = 0}| =

e(= s∗). In other words, using the notation at the beginning of Section 4, all the zeros of the Lloyd
polynomial

∑e
i=0 vi must be in {P11, P21, . . . , Pn1}. We remark that this ‘‘Lloyd Theorem’’ has a dual, so

41 An orthogonal array OAλ(t, n, q) is a λqt × n matrix over an alphabet Q of size q in which each set of t columns contains
each t-tuple overQ exactly λ times as a row.
42 We also refer to τ = δ∗ − 1 as the (maximum) strength of Y .
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that we also obtain a strong nonexistence condition on tight designs in general cometric association
schemes in terms of theWilson polynomial

∑e
i=0 v

∗

i . See [52] for the details.
43

We may derive a lot more structural information on Y by just looking at the four parameters. For
example, it follows from BQ = |X |[E0χ, E1χ, . . . , Enχ ] that rank(B) = s∗ + 1. Hence, if (X,R) is
metric with P-polynomial ordering {Ai}ni=0, then the covering radius ρ = max{∂(x, Y ) : x ∈ X} of Y
must satisfy ρ 6 s∗. (The right side of (15) follows from this.)We call Y regular if x̂TAiχ is independent
of x ∈ Y (and thus equals ai) for all i. It is known that

Theorem 5.5 ([52]). Suppose that (X,R) is metric with P-polynomial ordering {Ai}ni=0. If δ > s
∗ then Y

is regular.

Theorem 5.6 ([52]). Suppose that (X,R) is cometric with Q -polynomial ordering {Ei}ni=0. If δ
∗ > s then

Y is regular.

We refer the reader to [59,37] for more detailed information and the (major) progress up to 1998.
We remark that Delsarte’s theory of codes and designs (inmetric/cometric association schemes) based
on the linear programmingmethod has been naturally extended to various compact symmetric spaces
with rank one,44 such as spheres Sn = SO(n+ 1)/SO(n); see [17] for a survey on this topic.
In 2003, Brouwer et al. [31] introduced the following parameters for Y :

w = max{i : ai 6= 0}, w∗ = max{i : (aQ )i 6= 0}. (17)

We callw,w∗ the width and dual width of Y , respectively. They obtained the following results:

Theorem 5.7 ([31]). Suppose that (X,R) is metric with P-polynomial ordering {Ai}ni=0. Thenw > n− s
∗.

If w = n− s∗ then Y is completely regular.

Theorem 5.8 ([31]). Suppose that (X,R) is cometric with Q -polynomial ordering {Ei}ni=0. Then w
∗ >

n− s. If w∗ = n− s then (Y ,RY ) is a cometric subscheme with s classes.

The above results are in contrast with the bounds on δ and δ∗ in Theorems 5.3 and 5.4. See [31,80] for
many interesting examples attaining the bounds in Theorems 5.7 and 5.8.
Suppose now that (X,R) is metric with P-polynomial ordering {Ai}ni=0 and cometric with Q -

polynomial ordering {Ei}ni=0. Sincew > s andw
∗ > s∗ we have

w + w∗ > n. (18)

If (X,R) is induced on the top fiber of a short regular semilattice (P ,4), then for every u ∈ P the
subset Yu = {x ∈ X : u 4 x} satisfies w = n − rank(u) and w∗ = rank(u).45 It is shown in [31] that
any code with w + w∗ = n in J(v, n) and H(n, q) is isomorphic to a code of the form Yu. This result
was later extended to their q-analogues in [157]. It should be remarked that for these examples the Yu
again affordmetric & cometric association schemes which belong to the same family as the original.46
This ‘‘hierarchical structure’’ appears to be a subject ripe for further investigation.
The Erdős–Ko–Rado Theorem [63] states that for each integer t such that v > (t + 1)(n − t + 1)

the largest codes satisfyingw 6 n− t in J(v, n) are the Yu with rank(u) = t . In fact, the original proof
in [63] based on the ‘‘shifting technique’’ establishes the conclusion under the stronger hypothesis
v > t + (n− t)

( n
t

)3, and the best possible bound v > (t + 1)(n− t + 1)was obtained in [176] as an

43 In fact, one may find an analogue of this Wilson polynomial in schemes which are not necessarily cometric. Let E ,
F ⊆ {0, 1, . . . , n}. Define E ? F to be the set of eigenspace indices k (0 6 k 6 n) such that qkij 6= 0 for some i ∈ E and
some j ∈ F . Then, if Y is a T -design and E satisfies E ? E ⊆ T ∪ {0}, we obtain the lower bound |Y | >

∑
j∈E mj . See [115] for

details and further conditions on the case when equality holds.
44 In this case, the corresponding orthogonal polynomials are Jacobi polynomials [95, Section 1.8].
45 The characteristic vectors of the Yu with rank(u) = ` span

∑`
i=0 Vi (0 6 ` 6 n); see [53].

46 At the algebraic level, this is explained from the results in [159].
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application of Delsarte’s linear programming method. The observation that the largest (or extremal)
codes in the Erdős–Ko–Rado Theorem are those codes satisfying w + w∗ = n led to the ‘‘q-versions’’
of the theorem in full generality; see [157].47

6. Duality

Suppose that (X,R) is a commutative association scheme and thatX is endowedwith the structure
of an abelian group (written multiplicatively) with identity element 1. We call (X,R) a translation
association scheme if for all 0 6 i 6 n and z ∈ X , (x, y) ∈ Ri implies (xz, yz) ∈ Ri. This
concept is equivalent to that of a Schur ring on an abelian group; see [138] for a survey on Schur
rings.
Let X∗ be the character group of X . To each ε ∈ X∗ we associate the vector ε̂ = |X |−1/2

∑
x∈X ε(x)x̂,

so that 〈x̂, ε̂〉 = |X |−1/2ε(x).48 Note that the ε̂ form an orthonormal basis for CX by the orthogonality
relations for the characters. Define a partition X = {X0, X1, . . . , Xn} of X by Xi = {x ∈ X : (1, x) ∈
Ri} (0 6 i 6 n).49 Then Ri = {(x, y) ∈ X × X : yx−1 ∈ Xi} (0 6 i 6 n) and we find

Aiε̂ =

(∑
x∈Xi

ε(x)

)
ε̂ (0 6 i 6 n, ε ∈ X∗). (19)

Hence we may also partition X∗ as follows: X∗ = {X∗0 , X
∗

1 , . . . , X
∗
n }, where X

∗

i = {ε ∈ X
∗
: ε̂ ∈

Vi} (0 6 i 6 n). It follows that

Pij =
∑
x∈Xj

ε(x) (ε ∈ X∗i ), Qij =
∑
ε∈X∗j

ε(x) (x ∈ Xi) (20)

for 0 6 i, j 6 n. The left-hand equation of (20) is immediate from (19), and the right-hand equation
follows by evaluating |X |(Ej)1x in twoways using Ej =

∑
ε∈X∗j

ε̂ε̂ T.50 LetR∗ = {R∗0, R
∗

1, . . . , R
∗
n} be the

partition of X∗ × X∗ defined by R∗i = {(ε, η) : ηε
−1
∈ X∗i } (0 6 i 6 n), and let A

∗

i ∈ CX
∗
×X∗ be the

adjacency matrix of (X∗, R∗i ) (0 6 i 6 n). If we identify CX
∗
×X∗ with CX×X via the orthonormal basis

{ε̂ : ε ∈ X∗}, then it follows from the orthogonality relations and (20) that

A∗i =
∑

(ε,η)∈R∗i

ε̂η̂ T
=

n∑
j=0

QjiE∗j , (21)

where E∗i is the diagonal matrix in CX×X with (x, x)-entry (E∗i )xx = (Ai)1x; so the vector space A∗
spanned by the A∗i is an algebra. Hence (X

∗,R∗) is again a translation association scheme, called
the dual of (X,R). By (21), (X∗,R∗) has eigenmatrices P∗ = Q and Q ∗ = P . This duality was
first formulated in [152], but the structure of the Terwilliger algebra (Section 9) is already visible
here.
Let Y be a subgroup of X with characteristic vector χ and inner distribution a = (a0, a1, . . . , an).

Note that Y is regular and thus ai = |Y ∩ Xi| (0 6 i 6 n). Set Y ◦ = {ε ∈ X∗ : ε(y) = 1 for all y ∈ Y }.
Then Y ◦ is a subgroup of X∗ and

(aQ )i =
|X |
|Y |
χTEiχ =

|X |
|Y |

∑
ε∈X∗i

|〈χ, ε̂〉|2 = |Y | · |Y ◦ ∩ X∗i |. (22)

47 This is a consequence of the previous work [65,81], together with the classification of codes with w + w∗ = n. The
construction of Singleton systems [56] (i.e., t-designs with index one) in bilinear forms schemes plays an important role in
the proof (in view of (11)); see also [81, p. 192].
48 See footnote 16.
49 Such a partition is sometimes referred to as a blueprint; see e.g., [8].
50 Note that {ε̂ : ε ∈ X∗i } forms an orthonormal basis for Vi .
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It follows that Y ◦ has inner distribution |Y |−1aQ . We remark that H(n, q) is a translation association
scheme if we take the alphabet Q to be an abelian group (cf. Example 2.2).51 Moreover, in this case
the dual of H(n, q) is again the Hamming scheme (with vertex set X∗ = (Q∗)n); in other words,
H(n, q) is self-dual. Thus, in view of the generating functions for the Krawtchouk polynomials [95,
Section 1.10], (22) turns out to generalize the well-known MacWilliams identity on the weight
distributions (or enumerators) of a linear code and its dual code. The following theorem is also
important (cf. Theorems 5.4 and 5.8):

Theorem 6.1 ([52]). With the above notation, (Y ,RY ) is a subscheme if and only if the outer distribution
of Y ◦ has s+ 1 distinct rows, where s is the degree of Y .

If (Y ,RY ) is a subscheme (with s classes), then its dual scheme has vertex set X∗/Y ◦ and the
relation containing a pair (εY ◦, ηY ◦) is determined by the (ηε−1)th row of the outer distribution of
Y ◦; see [52].
Certain dualities of commutative (but not necessarily translation) association schemes also arise in

connection with spin models and type II matrices. Let A be a nowhere zero matrix in CX×X with ‘‘Schur
inverse’’ A(−), i.e., A◦A(−) = J . (Henceforthwe shall not assume a group structure on X .) We call A type
II if AA(−)T = |X |I . The Nomura algebra of A is the spaceNA of matricesM in CX×X such that Ax̂ ◦ A(−)ŷ
is an eigenvector of M for all x, y ∈ X . If A is invertible, then A is type II if and only if J ∈ NA (cf. [43,
Lemma 2.1]). Define a linear mapΘA : NA → CX×X by

M(Ax̂ ◦ A(−)ŷ) = (ΘA(M))xy · (Ax̂ ◦ A(−)ŷ) (M ∈ NA, x, y ∈ X).

Jaeger et al. [90] showed that if A is type II thenΘA(NA) = NAT , and

ΘAT(ΘA(M)) = |X |M
T, ΘA(MN) = ΘA(M) ◦ΘA(N) (23)

for M,N ∈ NA. It follows that if A is type II then both NA and NAT are the Bose–Mesner algebras of
some commutative association schemes, andΘA gives an isomorphism between themwhich ‘‘swaps’’
the ordinary multiplication and ◦.
Spin models were introduced by Jones [91] as a tool for creating link invariants, and are

characterized (up to scalar multiplication) as those type II matrices A satisfying A ∈ NA [90,
Proposition 9]. If A is a spin model then in fact we have NA = NAT and ΘAT = ΘA [90, Theorem 11];
in this case (23) is equivalent to the condition that the corresponding association scheme is formally
self-dual, i.e., P = Q for some orderings of the Ai and the Ei; see [18]. In fact, it was shown that NA
is not just formally self-dual, but is ‘‘strongly hyper-self-dual’’ which is defined using the Terwilliger
algebra; see [47]. See e.g., [38,46] for more information on the connections to the Terwilliger algebra
and Leonard pairs. Spinmodels, aswell as four-weight spinmodels [15], have been studied via themore
general but crisp concept of Jones pairs [41,44,42].
A formally self-dual association scheme (X,R) is said to satisfy the modular invariance property

(with respect to P) if there is a diagonalmatrix∆ such that (P∆)3 is a nonzero scalarmatrix. This gives
a necessary condition that A = NA for a spin model A [18,90]. Themodular invariance property is also
quite relevant to fusion algebras in conformal field theory [13,68]. We remark that fusion algebras are
closely related to table algebras [25] and to character algebras [20, Section 2.5] which may in turn be
viewed as ‘‘Bose–Mesner algebras at the algebraic level’’.

7. The linear programming bound

Suppose that (X,R) is a symmetric association scheme. Let T be a subset of {1, 2, . . . , n}. In coding
theory, we are often interested in finding a sharp upper bound on the size of a T -code in X . The fact
that the inner distribution a of a code and its ‘‘MacWilliams transform’’ aQ are nonnegative leads to
the linear programming (or LP) bound developed by Delsarte:

51 The most familiar case is thatQ is a finite field Fq and Y is a linear code in the usual sense.
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Theorem 7.1 ([52]). With variable a = (a0, a1, . . . , an) ∈ Rn+1, set

`LP = `LP(X, T ) = max(aQ )0 (24)

subject to (i) a0 = 1; (ii) ai > 0 (1 6 i 6 n); (iii) (aQ )i > 0 (1 6 i 6 n); (iv) ai = 0 if i ∈ T . If Y ⊆ X
is a T -code, then |Y | 6 `LP.

The LP bound was shown to be a close variant of Lovász’s ϑ-bound [105] on the Shannon capacity
of a graph; see [142]. Many computational software packages implement the simplexmethod to solve
linear programming problems, and (24) does produce a lot of sharp upper bounds on the size of codes.
However, most analytic results give bounds using the dual linear program:

Theorem 7.2 ([52]). With variable b = (b0, b1, . . . , bn) ∈ Rn+1, set

`′LP = `
′

LP(X, T ) = min(bQ
T)0 (25)

subject to (i) b0 = 1; (ii) bi > 0 (1 6 i 6 n); (iii) (bQ T)i 6 0 if i ∈ {1, 2, . . . , n} − T . Then `LP = `′LP.

If a, b are feasible solutions to the programs (24) and (25) respectively, then

(aQ )0 6 aQbT 6 (bQ T)0 (26)

with equality if and only if (aQ )ibi = ai(bQ T)i = 0 for 1 6 i 6 n. Note that (11) also amounts to
constructing a feasible solution to (25); we saw in Section 5 that the optimality condition was the
key to prove and generalize Lloyd’s Theorem. In passing, (11) can be slightly strengthened as follows:
`LP(X, T )`LP(X,U) 6 |X |, where T ∪U = {1, 2, . . . , n} [161].
The LP bound for T -designs is formulated in a totally analogous manner, so we omit the details.

This method provides lower bounds on the size of designs; see [52]. Due to the divisibility conditions
on |Y | inherent in the definition of a T -design Y in the familiar cases, these bounds are not often
as sharp as the corresponding bounds for codes, but in many cases, these are still the best known
nontrivial bounds.52
From now on, suppose that (X,R) is the Hamming scheme H(n, q). The most traditional case here

is that T is of the form {1, 2, . . . , δ − 1} for some 1 6 δ 6 n, so that we seek an upper bound
on Aq(n, δ), the maximum size of a code in X with minimum distance (at least) δ. Since Qij = Kj(i)
is a (Krawtchouk) polynomial of degree j in i, the dual program can be stated entirely in terms of
‘‘Krawtchouk expansions’’ of polynomials: any polynomial f =

∑n
j=0 bjKj satisfying (i) b0 = 1; (ii)

bj > 0 (1 6 j 6 n); and (iii) f (i) 6 0 (δ 6 i 6 n), yields an upper bound Aq(n, δ) 6 f (0). Hence
one may demonstrate feasible solutions for given ranges δ without necessarily solving to optimality.
Examples of bounds which can be derived in this way are the Plotkin bound53 and the bound of
McEliece et al. [124]. See also [59] for detailed discussions on the bounds of V. Levenshtein.
In 2001, Samorodnitsky [141] proved that, asymptotically, the optimum solution to Delsarte’s LP

bound is no better than the average of the upper bound of McEliece et al. and the Gilbert–Varshamov
lower bound:

1− H2(θ) 6 R - H2

(
1
2
−

√
θ(1− θ)

)
(27)

where H2(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function and R =
lim supn→∞ n−1 log2 A2(n, θn) is the asymptotic rate of the largest binary code with ‘‘relative
minimum distance’’ θ (= δ/n). In fact, these two bounds do not coincide for all 0 < θ < 1/2, so that
even if the lower bound obtained from the Gilbert–Varshamov argument is close to the true optimal
value of R, the linear programming method, alone, will never be sufficient to prove this.

52 See, e.g., Table 4.44 in [93] where parameter sets for t-(v, k, λ) block designs are ruled out (actually by Haemers, Weug and
Delsarte) using linear programming.
53 For δ > (1−1/q)n, the Plotkin bounduses f = K0+b1K1where b1 = 1/(qδ−n(q−1)) to yieldAq(n, δ) 6 qδ/(qδ−n(q−1)).
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On the other hand, new ideas for obtaining upper bounds on codes are on the horizon. The theorem
of Schrijver [143] applies semidefinite programming to optimize over the positive-semidefinite cone
of the Terwilliger algebra of H(n, 2); see Section 10. There have also been attempts to add more
constraints to the program defining `LP using geometric arguments; see e.g., [127, Section IV]. See
also [127,128] for another approach which focuses on the ‘‘holes’’ of codes in metric association
schemes. It should be remarked that the recent determination of the kissing number54 in four
dimensions (i.e., k(4) = 24) [132,133] is also based on an improvement of the LP bound for spherical
codes. See [17].

8. The ubiquity of codes and designs

In this section, we summarize broad applications of Delsarte Theory and the LP bound to various
combinatorial objects. For the most part, these examples involve: an application; an association
scheme (X,R); a partially ordered set related to X; a partial order on the eigenspaces of (X,R),
somehow related to the first partial order. The short regular semilattices of Examples 5.1 and 5.2
are the paradigmatic examples, but we aim to emphasize more exotic settings of this same general
flavor. In the cometric case, the eigenspaces are naturally ordered linearly; the Ei are indexed by the
elements of the chain (totally ordered set) Cn = {0, 1, . . . , n}. We may also consider products.55 The
eigenspaces of a product of m cometric association schemes are naturally ordered by a product of
chains. Next, we consider extensions56 of cometric association schemes. In this case, the partial order
to consider on the eigenspaces is the quotient of the m-fold product of chains Cn under the action
of Sm. This poset is obviously isomorphic to a downset57 in Young’s lattice (all partitions, or Ferrers
diagrams, ordered by inclusion). It turns out that the theory allows us to take further products and
extensions of all of these examples to obtain more.
Since our main goal in this section is to demonstrate the widespread applicability of the theory

discussed here, we now give a number of design-theoretic settings where Delsarte’s concept of T -
design applies. For each, we describe the combinatorial objects in question, the association schemes
in which they can be found, the relevant partial order on the eigenspaces of these schemes, and –
relative to this indexing of eigenspaces – the subset T for which these objects are Delsarte T -designs.
Applications are discussed in the references.

Example 8.1. For block designs of strength t , i.e., t-(v, n, λ) designs, the association scheme is the
Johnson scheme J(v, n)with poset Cn and T = {1, 2, . . . , t}.

Example 8.2. For an orthogonal array of strength t , the ambient association scheme is the Hamming
scheme H(n, q)with poset Cn and T = {1, 2, . . . , t}.

Example 8.3. The incidence graph of a symmetric design is always distance-regular and has two Q -
polynomial orderings. In [114], a number of geometric substructures in finite projective spaces are
shown to be Delsarte T -designs in the corresponding cometric schemes. In all cases, the poset is C3
and we have T ⊆ {1, 2}.

Example 8.4. In [101], Levenshtein studies systems of resilient functions with an eye toward
cryptographic applications. The underlying combinatorial objects are split orthogonal arrays, which are

54 The kissing numberk(n) is the maximum number of unit spheres which can simultaneously touch the unit sphere in n-
dimensional Euclidean space without pairwise overlapping.
55 The product of two association schemes (X,R), (Y , S) with Bose–Mesner algebras A, B has vertex set X × Y and
Bose–Mesner algebra A⊗ B ⊆ CX×X ⊗ CY×Y = C(X×Y )×(X×Y ) .
56 The Bose–Mesner algebra of the m-fold extension [52] of an association scheme (X,R) is the mth tensor space of that of
(X,R). The eigenmatrices of extensions are described in [160] using generating functions and in [126] as Aomoto–Gelfand
multivariate hypergeometric functions. See also [2,125].
57 In a partially ordered set (P ,4), a subset S ⊆ P is a downset (or lower ideal) if x ∈ S and y 4 x always imply y ∈ S.
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Delsarte T -designs in a product H(n1, q)⊗ H(n2, q). Here, the eigenspaces are indexed by Cn1 × Cn2
and T = Ct1 × Ct2 − {(0, 0)}. Levenshtein was the first to derive the LP bound for these objects.

Example 8.5. For some time, statisticians have been using mixed-level orthogonal arrays for
experimental design, without knowing whether their constructions were as efficient as they could
be. If such an experiment has ni factors with qi possible levels (1 6 i 6 m), then, in order to evenly
test all t-tuples of factors, one seeks a Delsarte T -design in the product

⊗m
i=1 H(ni, qi). The poset

on eigenspaces is ×mi=1 Cni and T =
{
(j1, . . . , jm) : 0 <

∑m
i=1 ji 6 t

}
. The LP bound for mixed-level

orthogonal arrays was derived by Martin [112] and, independently and simultaneously, Sloane and
Stufken [144].

Example 8.6. One may consider the same set T for a product of Johnson schemes. An interesting
special case is that of bipartite block designs (or mixed block designs) [111], where points are colored
with two colors, say red and white, and each block contains k1 red points and k2 white points. For
i+j 6 t , we require a constant numberλi,j of blocks containing any i chosen redpoints and any j chosen
white ones. If there are v1 red and v2 white points in all, then this is a T -design in J(v1, k1)⊗ J(v2, k2)
where T = {(i, j) : 0 < i+ j 6 t}.

Example 8.7. A Room square of side n is a placement of all the unordered pairs of elements from
Ω = {1, 2, . . . , n + 1} into

(
n+1
2

)
of the cells of an n × n array in such a way that each symbol

appears once in each row and once in each column. A Room d-cube of side n is a d-dimensional cube
of side n in which each 2-dimensional projection is a Room square of side n [61]. In the product
scheme J(n + 1, 2) ⊗ H(d, n), a Room d-cube of side n is equivalent to a Delsarte T -design [112]
of (minimal) size

(
n+1
2

)
which is also an S-code where T = {(1, 0), (2, 0), (0, 1), (1, 1)} and

S = {(1, 1), (2, 1), . . . , (1, d− 2), (2, d− 2)}. No example is known in which d > (n− 1)/2.

Example 8.8. Another recent application of Delsarte’s theory of designs, and of the LP bound in
particular, is the discovery of the ordered Hamming scheme58 [121]. The most important designs
here are the ordered orthogonal arrays (OOAs), which in many cases give rise to (t,m, s)-nets [136,
117] which in turn provide quasi-Monte Carlo methods for numerical integration, optimization, and
simulation. For an alphabet Q of size q, form relations R0, R1, . . . , R` on Q` by putting (x, y) ∈ Ri
if their maximal common prefix has length ` − i.59 The ordered Hamming scheme H(s, `, q) is the
s-fold extension of the `-class symmetric association scheme that results from this construction. Its
eigenspaces are ordered by the downset of all Ferrers diagrams in Young’s lattice that fit inside a
rectangle with s rows and ` columns. OOAs of strength t are characterized as Delsarte T -designs in
H(s, `, q) where T contains all nonempty Ferrers diagrams with t or fewer cells. Since H(s, `, q) is
self-dual, it was natural in [121] also to define ‘‘ordered codes’’; these turned out to be equivalent to
the ‘‘codes for them-metric’’ studied in [139]. See also [122,24].

We remark that Camion [37] also uses extensions of certain commutative association schemes
to derive MacWilliams identities for various weight enumerators of linear codes, such as complete
(or spectral), Lee and split weight enumerators, all in a unified manner, together with the results of
Section 6.

Example 8.9. In the association scheme of the symmetric group Sn, a most interesting class of T -
designs are the λ-transitive sets of permutations [120]. Here the eigenspaces are indexed by partitions
of n and the partial order is reverse dominance order E. A set of permutations is λ-transitive if it is
a Delsarte T -design in this association scheme, where T = {µ : µ E λ} − {(n)}. This association

58 Some authors refer to this as ‘‘NRT space’’, after Niederreiter, Rosenbloom and Tsfasman, whose earlier papers contained
some properties of this association scheme without using the association scheme terminology at all.
59 In other words, we consider the `-fold wreath productH(1, q) o · · · o H(1, q) (see e.g., [135] for a definition).
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scheme also provides a framework for permutation codes (or arrays), and the corresponding LP bound
was studied in detail in [161]. These codes are of recent interest because of their application to data
transmission over electric power lines; see [45].

The concept of ‘‘design systems’’ [115] is a far-reaching generalization of the poset structures
associated with classical metric & cometric association schemes observed in e.g., [53,148], and
establishes a framework which includes all of the above types of Delsarte T -designs as well as the
most general bounds for them.60 It should be mentioned that there is another new approach to T -
designs based on ‘‘coset geometries’’ [84]. This approach has the advantage that we can totally forget
poset structures (though assuming transitive group actions), so that it may have the possibility to
enable more flexible applications.

9. The Terwilliger algebra

Suppose that (X,R) is a commutative association scheme. Fix a ‘‘base vertex’’ x ∈ X . For each
i (0 6 i 6 n) let E∗i = E

∗

i (x), A
∗

i = A
∗

i (x) be the diagonal matrices in CX×X with (y, y)-entries
(E∗i )yy = (Ai)xy, (A

∗

i )yy = |X |(Ei)xy. Note that E
∗

i E
∗

j = δijE
∗

i ,
∑n
i=0 E

∗

i = I , and moreover

A∗i A
∗

j =

n∑
k=0

qkijA
∗

k , A∗i =
n∑
j=0

QjiE∗j . (28)

The E∗i and the A
∗

i form two bases for the dual Bose–Mesner algebra A
∗
= A∗(x) with respect to x. The

Terwilliger (or subconstituent) algebra T = T (x) of (X,R) with respect to x is the subalgebra of CX×X
generated by A and A∗ [163–165]. The following are relations in T :

E∗i AjE
∗

k = 0 iff pkij = 0; EiA∗j Ek = 0 iff qkij = 0. (29)

(The latter follows by computing the squared norm of EiA∗j Ek.) With the notation of Section 3, we also
remark that if (X,R) = G/K where K denotes the stabilizer of x in G, then T is a subalgebra of the
centralizer algebra of π |K :

T ⊆ {M ∈ CX×X : π(g)M = Mπ(g) for all g ∈ K}. (30)

Equality in (30) is known to hold for H(n, q) = (Sq o Sn)/(Sq−1 o Sn), for example; see [70].
Since T is closed under conjugate-transpose, it is semisimple and any two nonisomorphic

irreducible T -modules inCX are orthogonal. Describing the irreducible T -modules is an active area of
research; see e.g. [170,108,87] and the references therein. By (29) we obtain

Lemma 9.1 ([163]). Let W be an irreducible T -module. Then the following hold:
(i) If (X,R) is metric with P-polynomial ordering {Ai}ni=0, then A1E

∗

i W ⊆ E
∗

i−1W + E
∗

i W + E
∗

i+1W (0 6
i 6 n), where E∗

−1 = E
∗

n+1 = 0.
(ii) If (X,R) is cometric with Q -polynomial ordering {Ei}ni=0, then A

∗

1EiW ⊆ Ei−1W+EiW+Ei+1W (0 6
i 6 n), where E−1 = En+1 = 0.

An irreducible T -module W is called thin (resp. dual thin) if dim E∗i W 6 1 (resp. dim EiW 6 1)
for all i. We remark that J(v, n) and H(n, q) are both thin61 and dual thin, i.e., every irreducible T (x)-
module is thin and dual thin for every x ∈ X . There are several infinite families of metric & cometric
association schemeswhich have nonthin irreducible T -modules [165, Note 6.2] such as classical forms

60 A design system attaches a poset (J,E) to the eigenspace indices and embeds the vertex set X in a poset (P ,4) with an
order-preserving surjection ϕ : (P ,4)→ (J,E) satisfying three conditions. IfM is the incidence matrix of X versus P (using
4where X ⊆ P ), then we requireM to have no repeated columns and, for each j ∈ J, the submatrixMj obtained by restricting
to columns xwith ϕ(x) = jmust have constant column sum and column spaceWj satisfying Vj ⊆ Wj ⊆ ⊕iEj Vi where Vi is the
ith eigenspace of the scheme.
61 This concept is in no way related to the ‘‘thin association schemes’’ of Zieschang [177].
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schemes (e.g., bilinear forms schemes). In such cases, in general, the determination of all irreducible
T -modules is yet to be settled, with the notable exception of the Doob schemes [153]. See also [9]. The
irreducible T -modules of metric & cometric association schemes are often studied using the theory
of tridiagonal pairs [85], these being a generalization of Leonard pairs (Section 4). Namely, if (X,R) is
bothmetric and cometric then in view of Lemma 9.1, A1 and A∗1 act on each irreducible T -moduleW as
a tridiagonal pair (over C). We remark thatW is thin (and dual thin) if and only if this tridiagonal pair
is a Leonard pair. As of this writing, the classification has been worked out by Ito and Terwilliger [89]
for the tridiagonal pairs over algebraically closed fields which have the most general ‘‘q-Racah’’ type.
Their proof involves the representation theory of the quantum affine algebra Uq(ŝl2). See also [88].
It was earlier shown [87] that for the forms schemes there are four natural algebra homomorphisms
from Uq(ŝl2) to T , and that T is generated by each of their images together with the center Z(T ).62 It is
also an important and urgent next step to ‘‘pull back’’ the above representation-theoretic information
to the classification problem of metric & cometric association schemes.
It would be a reasonable project to apply the progress on the Terwilliger algebra and the tridiagonal

pairs to the analysis of codes and designs. This approach is still in its infancy, but it turns out that we
may obtain several interesting results even from the elementary facts about T . As an example, we
discuss the Assmus–Mattson Theorem [4], which gives a criterion as to when the supports of the words
of a fixed weight k in a linear code in H(n, q) form a t-design (in J(n, k)).63

LetW be an irreducible T -module. We recall the following parameters64: r = min{i : E∗i W 6= 0}
(the endpoint); r∗ = min{i : EiW 6= 0} (the dual endpoint). Set 1 =

∑
y∈X ŷ. Then Ax̂ = A∗1,

which is called the primary T -module. It is thin, dual thin and is the unique irreducible T -module in
CX satisfying r = 0 or r∗ = 0.
Suppose (X,R) is cometric with Q -polynomial ordering {Ei}ni=0. A vector χ ∈ CX is a relative t-

design with respect to x if Eiχ ∈ CEix̂ for 1 6 i 6 t [54]. If (X,R) is induced on the top fiber of a short
regular semilattice (P ,4), then χ is a relative t-design with respect to x if and only if for each u ∈ P
with rank(u) = t ,

∑
y∈X,u4y〈χ, ŷ〉 depends only on rank(x∧u) [54, Theorem 9.8]. In [158], T was used

to give a new proof of the following analogue of the Assmus–Mattson Theorem:

Theorem 9.2 ([54, Theorem 8.4]). Suppose that (X,R) is cometric with Q -polynomial ordering {Ei}ni=0.
Let Y ⊆ X be a code with characteristic vector χ and dual distance δ∗. Set sx = |{i 6= 0 : E∗i χ 6= 0}|.
Then E∗`χ is a relative (δ

∗
− sx)-design with respect to x for 0 6 ` 6 n.

Proof. Let U = (Ax̂)⊥. Note that U is the linear span of all irreducible T -modules in CX with dual
endpoint r∗ > 0. Set S = {i 6= 0 : E∗i χ 6= 0}. Then

χ |U ∈

(
n∑
i=δ∗
EiU

)
∩

(∑
j∈S

E∗j U

)
,

where χ |U denotes the orthogonal projection of χ to U . Since A∗1 generates A
∗ and takes sx (=|S|)

distinct eigenvalues on
∑
j∈S E

∗

j U , it follows that A
∗χ |U is spanned by χ |U , A∗1χ |U , . . . , (A

∗

1)
sx−1χ |U .

Hence by Lemma 9.1(ii) we find

A∗χ |U ⊆
n∑

i=δ∗−sx+1

EiU .

This shows EiA∗χ ⊆ CEix̂ for 1 6 i 6 δ∗ − sx, and the proof is complete. �

62 These homomorphisms arise from an action of the q-tetrahedron algebra �q [86] on T , so that their images are actually
equal.
63 See [82] for detailed discussions on the interaction of error-correcting codes with combinatorial designs.
64 See footnote 37. Though we do not (explicitly) use in this paper, but the following are also fundamental in the theory:
d = |{i : E∗i W 6= 0}| − 1 (the diameter); d

∗
= |{i : EiW 6= 0}| − 1 (the dual diameter).
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If the irreducible T -modules with dual endpoint at most δ∗− sx are dual thin in Theorem 9.2, then
the conclusion can in fact be significantly strengthened:Mχ is a relative (δ∗ − sx)-design with respect
to x for any M ∈ T . Note also that by dualizing the above arguments we may get another variant
of the Assmus–Mattson Theorem for codes in metric association schemes. See [158] for the details.
Theorem 9.2 (as well as its dual) does not exactly coincide with the original when applied to H(n, q)
with q > 2. It is interesting, however, to note that if (X,R) is both metric and cometric then recent
results on the displacement and split decompositions [170] can be successfully used to generalize the
original version65:

Theorem 9.3 ([158]). Suppose that (X,R) is metric with P-polynomial ordering {Ai}ni=0 and cometric
with Q -polynomial ordering {Ei}ni=0. Let Y ⊆ X be a code with characteristic vector χ and dual distance
δ∗. Set δx = min{i 6= 0 : E∗i χ 6= 0}. Suppose t ∈ {1, 2, . . . , n} is such that for every 1 6 r 6 t we have

|{r 6 i 6 n− r : Eiχ 6= 0}| 6 δx − r, or |{r 6 i 6 n− r : E∗i χ 6= 0}| 6 δ
∗
− r.

If (X,R) is induced on the top fiber of a short regular semilattice (P ,4), then for each M ∈ T ,∑
y∈X,u4y〈Mχ, ŷ〉 is independent of u 4 x with rank(u) = t.

If (X,R) = H(n, q) and x is the zero vector (0, 0, . . . , 0) (where 0 ∈ Q), then Theorem 9.3
shows that (the complements of) the supports of the words of fixed weight k in Y form a t-design
(in J(n, k) ∼= J(n, n − k)) for every k. In particular, the conclusion of the original Assmus–Mattson
Theorem is also true for nonlinear codes as well.66
A similar approach was also used in [158] to give a new proof of theminimum distance bound [113]

for codes in H(n, q). We saw in Section 6 that the MacWilliams identities for the weight enumerator
of a linear code can be understood from the duality of A. The MacWilliams identities for the biweight
enumerator [109] of a binary linear code can then be proved in terms of T for H(n, 2); see [118]. The
harmonic weight enumerators of linear codes in H(n, q) and their MacWilliams identities studied in [5,
6] use the harmonic analysis for the group Sq−1 o Sn developed in [62,55], so that we may view these
as closely related to the theme discussed in this section. See also [34,5,154] for other proofs of the
Assmus–Mattson Theorem based on harmonic analysis.
We remark that thewidth and dualwidth of a codementioned in Section 5 is quite compatiblewith

the Terwilliger algebra theory. For instance, there is amore general approach [151] to thewidth, based
on the Terwilliger algebrawith respect to a code in metric association schemes. It is a generalization of
the results of [72,167] on thin irreducible T -modules with endpoint one, and the width of a code and
the tightness [92] of distance-regular graphs67 are discussed together in the unified context of tight
vectors; see also [80]. See [170, Section 8] for a generalization of Inequality (18).

10. The semidefinite programming bound

Throughout this section, suppose that (X,R) is the binary Hamming schemeH(n, 2) = (S2 oSn)/Sn,
so that X = Qn where Q = {0, 1}. Let x = (0, 0, . . . , 0) be the zero vector and write T = T (x),
E∗i = E

∗

i (x) (0 6 i 6 n). Recall that T coincides with the centralizer algebra of K = Sn acting on X .
Let Y ⊆ X be a code. We consider two subsetsΠ1,Π2 of G = S2 o Sn defined byΠ1 = {g ∈ G : x ∈

gY },Π2 = {g ∈ G : x 6∈ gY }. For i ∈ {1, 2}, let

M iSDP =
1
|Y |n!

∑
g∈Πi

χgY (χgY )
T
∈ CX×X

65 The assumption on the semilattice structure is only for the sake of simplicity; see [158, Example 5.4]. It is assumed in [158,
Theorem 5.2] that the irreducible T -modules with endpoint at most t and displacement [170] zero are thin, but it follows from
the results of [151] that this condition is always satisfied.
66 For example, the [12, 6, 6] extended ternary Golay code has covering radius three, and it follows from Theorem 9.3 that a
coset of weight three support 1-designs.
67 Tight distance-regular graphs have many interesting combinatorial and geometric properties, one of which is that every
local subgraph is strongly regular with certain special nontrivial eigenvalues; see [92,72].
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where χgY ∈ CX denotes the (column) characteristic vector of gY . Since Π1,Π2 are unions of right
cosets of G by K , it follows that M1SDP,M

2
SDP ∈ T . Moreover, since the χgY (χgY )T are nonnegative

and positive semidefinite, so are M1SDP,M
2
SDP. By computing the inner products with the 01-matrices

E∗i AjE
∗

k , we readily obtain

M1SDP =
∑
i,j,k

λijkE∗i AjE
∗

k , M2SDP =
∑
i,j,k

(λ0jj − λijk)E∗i AjE
∗

k ,

where

λijk =
|X |
|Y |
·
|{(y, y′, y′′) ∈ Y 3 : (y, y′, y′′) satisfies (*)}|
|{(y, y′, y′′) ∈ X3 : (y, y′, y′′) satisfies (*)}|

,

and condition (∗) is defined by

(y, y′) ∈ Ri, (y′, y′′) ∈ Rj, (y′′, y) ∈ Rk. (∗)

By viewing the λijk as variables we get the following semidefinite programming (or SDP) bound
established by A. Schrijver:

Theorem 10.1 ([143]). Set

`SDP = `SDP(n, δ) = max
n∑
i=0

(n
i

)
λ0ii

subject to (i) λ000 = 1; (ii) 0 6 λijk 6 λ0jj; (iii) λijk = λi′j′k′ if (i′, j′, k′) is a permutation of
(i, j, k); (iv)

∑
i,j,k λijkE

∗

i AjE
∗

k < 0; (v)
∑
i,j,k(λ0jj − λijk)E∗i AjE

∗

k < 0; (vi) λijk = 0 if {i, j, k} ∩
{1, 2, . . . , δ − 1} 6= ∅ (where <means positive semidefinite). Then A2(n, δ) 6 `SDP.

It is known that semidefinite programs can be approximated in polynomial time within any
specified accuracy by interior-point methods; see [172]. See also [69, Section 7.2] for a discussion on
how to ensure that computational solutions do give valid upper bounds on A2(n, δ). While Delsarte’s
LP bound is a close variant of Lovász’s ϑ-bound, Schrijver’s SDP bound can be viewed as a variant
of an extension of the ϑ-bound based on ‘‘matrix cuts’’ [106]; see also [69, Chapter 6]. In fact, if
we define a = (a0, a1, . . . , an) by ai = λ0ii

( n
i

)
(0 6 i 6 n), then the condition that aQ is

nonnegative is equivalent to the positive semidefiniteness of the matrixMLP =
∑n
i=0 λ0iiAi, but since

MLP = M1SDP +M
2
SDP this is in turn a consequence of the positive semidefiniteness ofM

1
SDP andM

2
SDP. A

hierarchy of upper bounds based on semidefinite programming was later proposed in [98]:

`
(1)
+ > `

(2)
+ > · · · > `

(k)
+ > · · · > A2(n, δ).

It turns out that `LP = `
(1)
+ > `SDP > `

(2)
+ . Each of the `

(k)
+ can be computed in time polynomial in n,

but the program defining `(2)+ already contains O(n7) variables. Two strengthenings of `SDP with the
same complexity are also given in [98].
The SDP bound was also applied to the problem of finding the stability number of the graph

(X, Rn/2) for even n (known as the orthogonality graph) in [94], where it is shown (among other results)
that for n = 16 the SDP bound gives the exact value 2304, whereas the LP bound only gives much
weaker upper bound 4096. This problem arises in connection with quantum information theory [67];
see also [75].
As M1SDP,M

2
SDP are 2

n
× 2n matrices, it is in fact absolutely necessary to simplify the program by

explicitly describing theWedderburn decomposition of the semisimple algebra T . The decomposition
of T (as a centralizer algebra)wasworked out in [62] in the study of addition theorems for Krawtchouk
polynomials, but our discussion below emphasizes the use of T , based on [71].
LetW ⊆ CX be an irreducible T -module with endpoint r . ThenW has dual endpoint r , and there

is a basis {wi}n−ri=r forW such that

wi ∈ E∗i W , A1wi = (i− r + 1)wi+1 + (n− r − i+ 1)wi−1 (r 6 i 6 n− r)
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wherewr−1 = wn−r+1 = 0. Thus, the isomorphism class ofW is determined by r . Moreover, it follows
that

〈wi, wj〉 = δij

(
n− 2r
i− r

)
‖wr‖

2 (r 6 i, j 6 n− r).

See [71] for the details. The actions of the Ai onW may be described from the above information as
the Ai are Krawtchouk polynomials in A1, but our argument goes as follows. For integers i, k, t such
that 0 6 k 6 i 6 n and 0 6 t 6 min{k, n− i}, we recall the following normalization of the dual Hahn
polynomials found in [33]:(

i
k

)
Q i,kt (λ

k(z)) =
(
i

k− t

)(
n− i
t

)
3F2

(
−t,−z, z − n− 1

i− n,−k

∣∣∣∣ 1) ,
where λk(z) = k(n− k)− z(n+ 1− z). If i+ j+ k is odd then E∗i AjE

∗

k = 0 since H(n, 2) is bipartite,
so suppose that i+ j+ k is even. Then it follows that

E∗i AjE
∗

k A2E
∗

k = γ
i,k
j+2E

∗

i Aj+2E
∗

k + α
i,k
j E
∗

i AjE
∗

k + β
i,k
j−2E

∗

i Aj−2E
∗

k ,

whereγ i,kj+2 = (t+1)(i+1−k+t),α
i,k
j = (k−t)(i−k+t)+t(n−i−t) andβ

i,k
j−2 = (k+1−t)(n+1−i−t),

with t = (j + k − i)/2. Using 2A2 = A21 − nI we find E
∗

k A2wk = λ
k(r)wk(r 6 k 6 n − r). Combining

these facts with the three-term recurrence relation for the Q i,kt [33, Theorem 3.1], we obtain

E∗i Ajwk = Q
i,k
t (λ

k(r))E∗i Ai−kwk = Q
i,k
t (λ

k(r))
(
i− r
i− k

)
wi

for r 6 k 6 i 6 n − r , 0 6 j 6 n such that i + j + k is even, where t = (j + k − i)/2. (The
Q i,kt for t > min{k, n − i} are formally defined by the recurrence relation [33, Theorem 3.1].) Hence,
after orthonormalization of the wi, we get the following algebra isomorphism which preserves the
positive-semidefinite cones:

ϕ : T →
bn/2c⊕
r=0

C(n−2r+1)×(n−2r+1)

where the rth block of ϕ(Aj) is the symmetric matrix (a
j,r
i,k)
n−r
i,k=r given by

aj,ri,k = a
j,r
k,i =

Q i,k(j+k−i)/2(λk(r))
(
i− r
i− k

)(
n− 2r
i− r

)1/2 (n− 2r
k− r

)−1/2
if i+ j+ k even,

0 if i+ j+ k odd,

for r 6 k 6 i 6 n− r , 0 6 j 6 n. See also [143,173].
The SDP bound has also been formulated for binary constant weight codes (i.e., codes in J(v, n))

in [143] and for nonbinary codes in [70,69]. The description of the irreducible T -modules becomes
more complicated in this case, but this method turns out to improve the LP bound for many
parameters. It seems to be an important problem to decide whether it is possible or not to
establish a suitable SDP bound for t-designs in J(v, n) or H(n, q). The SDP bound for spherical
codes was formulated in [7]; it provides a new proof of k(3) = 12 and k(4) = 24.68 See
also [17].
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