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Abstract. Store-and-forward deadlock (SFD) occurs in packet switched computer networks when, 

among some cycle of packets buffered by the communication system, each packet in the cycle 

waits for the use of the buffer currently occupied by the next packet in the cycle. In this paper, 

a deadlock-free algorithm as well as a livelock-free algorithm for packet switching is obtained 

using the strategy of the banker’s algorithm. Furthermore, the solution obtained is interpreted for 

the hyper-fast banker’s problem. 

1. Introduction 

In most cases, the occurrence of network deadlock has a horrendous impact upon 

network users. When the deadlocks are discovered, they are frequently corrected 

in an ad hoc fashion. Since changes in existing implementations can be costly, it is 

preferable to incorporate deadlock avoidance (or recognition and recovery) pro- 

cedures into the design as early as possible and in an orderly fashion. A primary 

concern with any deadlock avoidance procedure is that it has minimal effect upon 

system performance during normal operating conditions. 

SFD occurs in packet switching computer networks when some group of packets 

exists in the network communication system such that among this group no packet 

has arrived at its destination and none can make a next hop towards its destination. 

The simplest case of SFD is direct SFD, in which given two adjacent network nodes 

Ni and Nj, Ni’S packet buffers are full of packets destined for Nj and Nj’s buffers 

are full of packets for Ni; as a result, no packet can move. In more complex SFD’s 

a cycle of nodes is involved each holding packets for the next node in the cycle. 

Several algorithms have been proposed in the literature (see Merlin and Schweitzer 

[5], Toueg and Ullman [7], Gelernter [l]) for avoiding deadlock as well as livelock. 

In this paper, we first obtain a deadlock-free algorithm using the strategy for the 

banker’s algorithm. A simple correctness proof is given for this algorithm. Though 

the deadlock-free algorithm is not new, it has resulted in a simpler presentation 

with a simple correctness proof. The algorithm obtained is further transformed to 
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a livelock-free algorithm. We also interpret the solution obtained for the hyperfast 
banker’s problem (Latter et al. [4]). 

Before we discuss the algorithms, we formalize the packet switching network as 
given in [7]. 

DeJinitions 

A packet switching network is a directed graph G = ( V, E); the vertices V represent 
processors and the edges E represent communication links. Messages called packets 
are to be passed between processors. Each network has an associated constant, b, 
the number of buffers at each vertex; a buffer can hold exactly one packet. Associated 
with each packet is an acyclic route r,, r,, . . . , rq which is a path in G; r, is the 
source and rq is the destination of the packet. We assume a fixed routing procedure 
as in Kleinrock [3], where a packet’s route is determined at the source node. We 
may also assume that the route of a packet is included as part of the message in 
the packet, although in practice the packet could hold only the source and destination 
with each processor in the network responsible for deducing the next vertex to 
which the packet is to be passed. Also associated with the network G is a constant 
k, the length of the longest route taken by a packet in G. If we want to state explicitly 
the two constants associated with a network G, we write that G is a (b, k)-network. 
Note that k need not be the length of the longest path in the network: we may 
never wish to send messages between distant nodes. 

The moves made by the network can be classified in the following way: 
(1) Generation: A vertex V accepts a packet p created by a process residing in 

V and places in an empty buffer. 
(2) Passing: A vertex V transfers a packet in one of its buffers to an empty buffer 

of vertex W, where V+ W is an edge and the route for the packet has W following 
V The buffer of V holding the packet becomes empty. 

(3) Consumption: A packet in a buffer of V such that the destination for the 
packet is V, is removed from that buffer and the buffer is made empty (consumption 
is assumed to take only a finite amount of time). 

For the sake of simplicity, we assume that the edges are of length 1. We say that 
the algorithm (controller) is deadlock-free for a given network if it does not permit 
this network to enter a state in which one or more packets can never make a move 
permitted by that algorithm (controller) as long as no additional packets are 
generated. In other words, given a network and a set of source-destination pairs, is 
there a corresponding set of routes such that the un?estricted flow of packets is 
deadlock-free. 

Another interesting situation is termed livelock-a situation in which unfair 
scheduling of packets prevents one or more packets from reaching their destination. 
An algorithm is said to be livelock-free if there is no possibility of livelock in the 
network. It must be noted that livelock-freeness implies deadlock freeness. 

As our algorithm is based on the banker’s algorithm we will briefly discuss the 
Banker’s algorithm as discussed in Habermann [2]. 
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2. Banker’s algorithm 

Consider a nonemtpy set of processes, P, each of them engaged in a finite 

transaction for the completion of which it may need a (varying but bounded) number 

of units of some shared resource at its exclusive disposal (the units are all equivalent). 

A process may ‘borrow’ one or more units which are then added to its current ‘loan’, 

it may ‘return’ one or more units, which are then subtracted from its current loan. 

The act of borrowing is restricted by the condition that, for each process, the loan 

will never exceed a pre-stated ‘need’, i.e. the maximum number of units that may 

be simultaneously needed by that process for the completion of its transactions. 

The act of returning is restricted by the constraint that for no process the loan can 

ever become negative; upon completion of a transaction, the corresponding loan 

returns to zero. 

Treating the capital available as the total number of resources available, customers 

as processes, and the loans claimed as the resources required by the respective 

processes, we formalize the borrowing just described as follows: 

Let STOCK represent the total resources available of one type. Let P[O], 

P[l] ,..., P[i] ,..., P[N- l] be the processes requiring NEED[P[J']] units of the 

resource. Let ALLOC[P[~]] indicate the resources already allocated to process P[j] 

by the system and CLAIM[P[~]] = NEED[P[J’]] - ALLOC[P[~]]. Obviously, for any 

realizable state the following conditions are to be satisfied: 

(a) For all processes NEED[P[~]] G STOCK, i.e. no process claims more resources 

than are available; 

(b) For all processes ALLOC[P[~]] d rwxD[P[j]], i.e. no process will try to seize 

more resources than it has claimed; 

(c) Sum of the resources already allocated is at most equal to STOCK. 

Safe State: When a realizable state does not contain the deadlock danger, it is 

called a safe state; otherwise it is called an unsafe state. Now, let us formalize the 

notion of safe state with the following condition in mind: 

The claim by process P[k] must not exceed the sum of the free resources and 

those resources which will become free ‘in due time’. 

Obviously, under the above constraint the claim by P[k] could be realized in a 

finite time. If the above condition is satisfied for all processes in some state then 

we say that the state is safe. A safe state implies that the claims of the process can 

be linearly ordered such that the claim of each process does not exceed the sum of 

the free resources and those resources which will become free ‘in due time’. 

The condition is formalized as follows: 

For all 0s i< N, 

CLAIM[P[i]]s unused STOCK 

+the resources already allocated to 

processes (going to become free ‘in due time’) 

P[O], P[l], . . . , P[i - 11. 
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The above condition can be written as: 

For all OSi<N, 

CLAtM[P[i]]c (STOCK- ;c; ALLOC[P[j],) +;$ ALLOC[Pb]]. 

In other words, 

s-1 
VOS i < N, cLAlia[P[i]] C STOCK- 1 ALLOC[P[j]] 

> 
. (A) 

j=i 

It must be noted that it is only necessary that the condition is true for one permutation 
of process numbers. The Banker’s Algorithm tries to find a permutation of process 
numbers keeping the above relation invariant (for a proof see [2]). 

3. Deadlock-free packet switching algorithm 

In a fixed routing (6, k) network path lengths of packets can be at most k (if N 
is the number of nodes in the network then obviously k =S N - 1 assuming the length 
of all edges to be 1). In the following, we reduce the problem of packet switching 
to the problem of investigating whether a given pattern of loans and needs is safe. 

Let us consider vertex V The buffers of V could be filled by packets whose 
destinations are at a distance of at most k. A packet of length zero coming into 
vertex V implies that it is a packet for consumption at V, i.e. the destination of the 
packet is that node itself. At each node of the (b, k) network, we can partition the 
packets as follows: 

At each vertex V, the packets can be grouped into k + 1 groups (j,,, jr,. . . , jk) 
where ji gives the number of packets stored in V whose route from V to its destination 

is of length i. 

The conditions under which the (b, k)-network will be safe is given below: 

Assertion Al. The pattern of generation and passing of the packets is deadlock-free 
(safe) in (b, k)-network, if the following condition holds at all nodes of the network: 

Let V be a vertex and p be a packet with a route of length j from V to its 
destination. p will be accepted by V iff for all i, OSisj, 

r=i 

where jl is the number of packets 
node V. 

stored in V whose destinations are r hops from 

Note. It must be noted that we do not consider packets being sent along some 
non-zero path for itself (i.e. the routes are acyclic). Also, we assume that b > k and 
the decision whether a packet p will be accepted by a vertex V or not is made 
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according to local information alone. Further, it may be observed that the relation 

given here is identical in structure to (A) of the Banker’s Algorithm. 

Proof. Let us assume that the assertion holds and there is a deadlock. The presence 

of a deadlock implies the existence of a cycle of nodes in the network, each holding 

packets for the next node in the cycle (note that we are using a fixed routing for 

packets). The essential idea of our proof is to show that if V, is stuck on packet 

pI of length d, having V, as its next destination, then V, must be stuck on pz of 

length d2 such that d, cd,. 
Let V, get stuck on p, of length d, from its destination. Let V, be the next 

destination in the route of p,. Since there is a deadlock, there is at least one 

deadlocked packet in V,. Let p2 be a packet in V, whose distance dl to its destination 

is minimal with respect to the other deadlocked packets in V,. That is ifj,‘s are the 

number of packets of length i from their respective destinations at V2, then 

d2 = min{ d Ij, > 0). 

At V2, the partition of the packets is given by 

(O,... , o,_Lz,if2+lr.. . ,_h). (1) 

It must be noted dz # 0, since d2 = 0 implies V2 is stuck on a packet of length zero. 

However, this contradicts the hypothesis that the packet received by the node is 

consumed and hence the corresponding buffer is vacated in a finite amount of time. 

Let ps be the last packet accepted by V,. Let d, be the distance from V, to the 

destination node of pr. By definition of d2, we have dzs d,. From the assertion, d, 
will be accepted by V, provided for all i, 0 c i c d,, 

i<b-(j,+.** +(j,\-l)+*** +j,). 

Hence for i = d, we get 

i.e. 

d,sb- i jr. (2) 
r=dz 

Since p, is not accepted by V,, then there exists i0 such that 0~ i,G d, - 1 and 

k 

i,ab- 1 jr. (3) 
r=i, 

Suppose, for contradiction d,> d, - 1. Then, we have i,,f d, - 1 < d2. From (I), 

we get 

jr. (4) 
2 
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From (3) and (4) we get 

k 

i,Zb- 1 jr. 
r=d7 

(5) 

But d,> d, - 12 i,,. Hence d, > b -xb,, jn contradicting (2). Hence we conclude 

d,~d,-1 or d,<d,. 

As < is a partial order, it follows that if there is a deadlock, then there must be 
some node stuck on packets of length zero. However, as the latter is not possible, 
there could not have been a deadlock. 

Hence the assertion. Cl 

Deadlock-free algorithm 

1. Each node of the (b, k) network makes the moves preserving Assertion Al. 
2. Initially all the nodes satisfy Al. 

Note. It must be noted that we do not consider communication failures. 

4. Livelock-free algorithm 

In the above algorithm livelock can occur for the following reasons: 
(1) Packet passing at each node: Packets at each node (of varied destination 

lengths) already received may be arbitrarily selected for passing-which can lead 
to livelock; 

(2) Packet reception at each node: Packets may be received at each node from its 
neighbours arbitrarily subject to satisfying the relation given in Al-arbitrary selec- 
tion could lead to livelock. 

Algorithm. For the sake of simplicity, we consider packet passing and packet 
reception explicitly in the following scheme: 

Packet passing: Each vertex has a local timestamp: It must be noted that there 
is no need to synchronize the clocks of all the nodes of the network-it is sufficient 
to have one local timestamp for each node. A packet p can be passed from node 
V to its next node provided it satisfies the following conditions: 

(i) The relation given by Al is preserved: 
(ii) The packet has been waiting for the longest time (it is assumed that a node 

receives at most one packet or a message at a time-thus there is no question of 
‘after you-after you’ occurring). 

Packet reception: Whenever node V, wants to send a packet to V, (V, sends a 
message to V, to that effect), vertex V, associates a timestamp with each message. 
Now, V, agrees to receive packet p from V, provided the following conditions are 
satisfied: 
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(i) the relation given by Al is satisfied; 

(ii) V, is the neighbour of V, that has seen waiting for the longest time (compared 

to the other neighbours of V, which might also be waiting to pass packets to Vz); 

again from the earlier assumptions it follows that ‘after you-after you’ cannot occur. 

Note. It may be observed that both the situations are alike except that in the former, 

waiting packets are considered and in the latter waiting nodes (immediate neigh- 

bours) are considered. Further, it may be noted that a packet can be successfully 

passed if and only if one node satisfies the conditions for a packet passing and the 

other satisfies the conditions of packet-reception. 

Proof of correctness. Consider a node V Let the packets in its buffers be denoted 

by {i,, L,. . . , ik} where i, indicates the number of packets whose destinations are 

at a distance of j hops from node V. As there is no deadlock, we can assert that 

there exists at least one packet say p of length j hops, which can reach its destination 

in a finite amount of time. Further, if the node to which the packet is passed from 

V is W, then we know that conditions for packet passing at V and conditions for 

packet reception at W are to be satisfied. Hence, the packet received by V in place 

of p cannot override the other packets as we know that there is no deadlock. Hence 

it follows that no packet can be livelocked for ever. 

5. Hyperfast bankers algorithm (Lauer et al [4]) 

In this section, we will show how a generalized hyperfast Banker’s solution can 

be obtained from the solution. Let us first brief the hyperfast banker as described 

in [4]. 

The banker builds in his office as many windows as he has money and he lets 

the people queue at a window depending on the amount of money they ask for. 

Cyclically, he looks at how much money he may loan and opens the windows 

corresponding to loans not greater than this amount. At each open window, he 

serves a single customer, if any, by giving him a dollar and by sending him to the 

next window, i.e., that corresponding to a loan one less, and then he closes the 

window. Whenever a customer applies for a new loan, he verifies whether the loan 

can be given safely (so that there is no deadlock) and blocks them whenever it is 

unsafe (the term ‘safe’ is understood as discussed earlier). 

Now, we can generalize the scheme as follows: There is a network of banks, each 

bank functioning as described above. Further, each bank has its counter in each of 

the other nodes and the issue of the loan to a customer can be distributed through 

its various counters. Now, we can interpret the hyperfast banker’s scheme in terms 

of the livelock-free packet switching network as follows: 

Each banker at a node looks at how much money he may loan and describes a 

path of the counters at the various nodes from where the money can be collected. 
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The customer returns the money to the bank where he had applied for the loan. As 

in the hyperfast banker’s scheme, each node will not initiate any fresh path unless 

it gets back the money. The solution follows from the correspondence of the two 

schemes. 

6. Concluding remarks 

In this paper, a simple algorithm has been proposed based on the strategy of 

Banker’s algorithm. The strategy has resulted in a simple proof of correctness of 

the algorithm. It may be observed that the deadlock-free algorithm obtained using 

Al that uses the strategy of Banker’s algorithm is the same as the DF uniform 

controller as discussed in [7]. 

The connection of the banker’s problem with the allocation of nonshareable, 

non-preemptive and reusable resources in an operating system are well known. By 

deriving the packet-switching algorithm from the banker’s algorithm and the gen- 

eralization to the hyperfast banker’s scheme, we have shown that the generalization 

serves as interesting resource management model for distributed systems. 

Acknowledgment 

It is a pleasure to thank the referees for their suggestions and critical comments. 

References 

[I] D. Gelernter, A DAG-based algorithm for prevention of store-and-forward deadlock in packet 

networks, IEEE Trans. Compur. (IO) (1981) 709-715. 

[2] A.N. Habermann, Prevention of system deadlocks, Comm. ACM (7) (1969) 373. 
[3] L. Kleinrock, Queueing Systems Vol. II: Computer Applicafions (Wiley, New York. 1976). 

[4] P.E. Lauer, P.R. Torrigiani and R. Devillers, A COSY Banker: specification of highly parallel and 

distributed resource management, TR 15 I, University of Newcastle upon Tyne (1980). 

[5] P.M. Merlin and P.J. Schweitzer, Deadlock avoidance in store and forward networks-I: Store-and- 

forward deadlock, IEEE Trans. Comm. 28 (3) (1980) 345-354. 

[6] AS. Tanenbaum, Network protocols, ACM Compur. Surcen 13 (4) (1981) 353-JS9. 
[7] S. Toueg and J.D. Ullman, Deadlock-free packet switching networks, SIAM J. Comptrr. 10 (3) (1981) 

594-610. 


