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In this paper, we describe reachability computation for continuous and hybrid systems and
its potential contribution to the process of building and debugging biological models. We
summarize the state-of-the-art for linear systems and then develop a novel algorithm for
computing reachable states fornonlinear systems.We report experimental results obtained
using a prototype implementation applied to several biological models. We believe these
results constitute a promising contribution to the analysis of complex models of biological
systems.
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1. Introduction

The development of modeling formalisms and analysis techniques for the study of biological systems is a central topic
in systems biology. The formalisms proposed for representing biological processes are very diverse, differing at the levels
of abstraction, time scales and types of dynamics. The formalism chosen depends naturally on the level of details needed
to answer the specific biological question and on the granularity of available experiments. The contribution of this work is
at the level of abstraction of ordinary differential equations (ODEs), a widely used modeling formalism. Biological systems,
for instance metabolic networks consisting of sets of reactions, can be viewed as continuous dynamical systems with state
variables denoting concentrations. The resulting differential equations are derived, for example, from mass action rules or
enzyme kinetics and are, more often than not, nonlinear. Such equations can be numerically simulated from a given initial
condition provided that the exact values of the parameters and the external environmental conditions are known. In certain
restricted cases it is possible to determine global properties analytically.

Though widely used, ODEs suffer from several limitations. First, the passage from a finite number of molecules to
real-valued concentration is not always justified, especially when the number of molecules is small [22]. Second, many
biological phenomena, for example gene activation, aremore naturally modeled as transitions between discrete states. Pure
ODEs cannot easily accommodate this mixture of continuous evolutions and discrete events. Alternatively, purely discrete
formalisms, based on transition systems expressed in various syntactic forms, suffer from a similar reciprocal limitation in
the sense of not being amenable to quantitative reasoning.

Then, the lack of quantitative information concerning molecular concentrations, reaction rates and other parameters
is the rule, not the exception, in biology. Consequently, the utility of predictions obtained using numerical ODEs models,
where the values of the parameters are ‘‘guessed’’ or ‘‘tuned’’, is severely limited. Moreover, the validation of models based
on ODEs with poorly known parameters is difficult if not impossible because we are never sure to have covered all the
qualitative behaviors compatible with a model by performing only a finite number of simulations, each with a different
choice of parameters. This fact limits the applicability of such models for testing biological hypotheses.
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To deal with this problem, qualitative approaches, notably based on qualitative versions of differential equations, have
beenproposed for representing genetic regulatory networks,molecular interaction networks ormetabolic pathways [17,44].
In these models only the direction of influence between variables is encoded (e.g. activation vs. inhibition) and much of the
quantitative information is absent. As a consequence of such under-constrained descriptions, purely qualitative approaches
often lead to overly conservative results in the sense of admitting many spurious behaviors. We propose a technique that
can be used to analyze in a systematic manner quantitative models admitting this kind of uncertainty whose nature is set-
theoretic rather than stochastic.

The analysis techniques that we use and extend originate from the study of hybrid dynamical systems, a domain situated
in the intersection of control theory and computer science and are based on reachability analysis of hybrid automata. As their
name suggests, hybrid automata are the result of marrying automata with differential equations. Each discrete state (mode)
of the automaton is associated with one set of differential equations according to which the continuous variables evolve
while being in that mode. When the variables satisfy certain conditions (transition guards) the automaton may switch to
another mode where another set of equations will govern the evolution of the continuous variables. While hybrid automata
allow us to express piecewise-continuous processes and can underlie numerical simulation, much of the analytic reasoning
available for purely continuous systems (especially for linear ones) is lost due to switching. In the last couple of years, new
techniques have been developed for the algorithmic analysis of hybrid systems, which open as well new opportunities for
the analysis of purely continuous systems subject to uncertainties. These techniques combine ideas from control theory,
numerical analysis, graph algorithms and computational geometry in order to export algorithmic verification, also known
asmodel checking, to the continuous and hybrid domains.

The principles of algorithmic verification can be summarized as follows. The system in question is modeled as an
automaton whose transitions are labeled by input events. These inputs represent interactions of the automaton with its
external environment (users, other systems). Each sequence of input events induces one behavior of the automaton, a
trajectory over its state space. Simulation is the process of stimulating the automaton progressivelywith one input sequence
and observing the behavior that this sequence induces starting from a given initial state. The problem is that the number of
such sequences is prohibitively large. Verification is based, instead, on computing with sets of states: starting from an initial
set of states P0, one computes all the one-step successors of P0 (under all possible inputs) to obtain the set P1, to which the
same procedure is applied until all the states reachable from P0 under any admissible input are computed.1 Showing, for
example, that some ‘‘bad’’ set of states is never reached (a ‘‘safety’’ property) amounts to checking whether the reachable
set thus computed intersects the bad set. This computation replaces an infinite (or just huge) number of simulations. More
complexproperties that specify some temporal patterns of events canbe specified andverified aswell using similarmethods.

The adaptation of this idea to continuous systems works as follows. Consider a differential equation of the form ẋ =

f (x, v) where x is a vector of state variables and v represents external disturbances and parameter uncertainties which are
not known exactly but are always taken from a bounded convex set V . Given a subset P0 of the state space (in a form of, say,
a polytope) and a time step r , one can compute another polytope P1, which contains all the points reachable from P0 within
the time interval [0, r] under any admissible value of v during that interval. Repeating this process we can obtain an over-
approximation of all the reachable states for any desired time horizon. To give a concrete example, one can compute all the
possible evolutions of a reaction under all possible concentrations of a signalling molecule which are typically not precisely
known, but which remain in a known interval. The principal contribution of this paper is in developing a new technique for
conducting this type of analysis for nonlinear systems and in demonstrating its applicability on several biological models.

The rest of the paper is organized as follows. In Section 2we give a brief introduction to the state-of-the-art in reachability
computation for linear systems and explain why it cannot be applied in a straightforward manner to nonlinear systems. We
then describe the hybridization approach [5] for handling nonlinear systems. Hybridization is based on over-approximating
a nonlinear system by a piecewise-affine system, a restricted type of a hybrid automaton without discontinuous jumps.
Although, in principle, hybridization provides for the application of linear techniques to nonlinear systems, it suffers
from inherent limitations that restrict its applicability to very low-dimensional systems. Section 3 describes our major
contribution, a new dynamic hybridization scheme in which linearization is not based on a fixed partition of the state space
and thus avoids much of the associated state explosion. For this algorithmwe provide in Section 4 compelling experimental
results, analyzing complex nonlinear systems of 6, 9 and 10 variables taken from systems biology. We conclude with a
discussion of future work. Although we have tried to maintain the paper as self contained as possible, some readers might
want to consult books like [47,43,30,42] for some notions of geometry, linear algebra and dynamical systems or expository
articles such as [38,39] which discuss similarities and differences between transition systems and continuous dynamical
systems.

2. Reachability: linear and nonlinear systems

Computing the states reachable by all trajectories of a dynamical system subject to disturbances and parameter variations
emerged as a new research topic from the interaction between computer science and control. Reachability computation

1 More precisely, the computation is guaranteed to converge for finite-state systems. In continuous domains, we are currently satisfied with a bounded
time horizon [38].
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can be seen as a peculiar way to conduct exhaustive simulation which is useful for the analysis of control systems, the
verification of analog circuits, the debugging of biological models and, in fact, any other activity based on dynamical systems
models. After a decade of intensive research, [2,25,11,15,26,6,33,41,10,4,12,34] it is fair to say that a satisfactory solution
has been provided for time-invariant linear systems. Existing algorithms manage to produce, within seconds, high-quality
approximations of the reachable states of linear systems with hundreds of state variables, for time horizons of thousands of
integration steps [35,24,37,36]. Notwithstanding these achievements, the real challenge in almost any application domain,
including biology, is the treatment of nonlinear systems, a challenge that we address in the present paper.

Let us recall the rules of the game. Given a dynamical system S defined by a differential equation ẋ = f (x, v) with v
ranging over some bounded set V , a set P of initial states and some time horizon h, we would like to compute the set of
states reachable from points in P by trajectories of S within some t ∈ [0, h]. Fixing some time discretization step r , the
reachable set is approximated by the union of the sets in a sequence P0, P1, . . . where P0 contains all states reachable from
P within t ∈ [0, r] and each Pi+1 includes states reachable from Pi within r time. Actual computations often work first
in discrete time where Pi+1 is reachable from Pi in one time step and then some error terms are added to bloat Pi+1 and
compensate with respect to continuous time.

Reachability computation of linear systems is relatively easy. First, consider a discrete-time autonomous linear system
defined by xi+1 = Axi and a set P which admits a finite representation, for example, a polytope represented by its vertices
or supporting halfspaces, an ellipsoid represented by its center and deformation matrix or a zonotope represented by its
center and generators. Then the linear transformation ‘‘commutes’’ with the set representation. For example, if P = conv(P̃),
meaning a polytope P being the convex hull of its finite set of vertices P̃ , then

AP = A conv(P̃) = conv(AP̃), (1)

that is, the vertices of the polytope obtained by applying A to the whole set P are the result of applying A to the vertices of P .
The extension of this idea to systems with under-specified input, that is, xi+1 = Axi + vi where vi ranges over a bounded

convex set V , is more involved. The set of one-step successors of a set P under such a dynamics is captured by theMinkowski
sum P ′

= AP⊕V , which yields a polytope P ′ withmore vertices than P . This repeated growth in the size of the representation
of Pi makes it impractical to iterate for a long time horizon because the number of points on which A has to be evaluated
becomes huge. Two approaches are commonly used to alleviate this problem:

1. For ellipsoids as well as polytopes represented by their supporting halfspaces, optimization techniques can be used to
obtain an over-approximation of AP ⊕ V whose representation size is not much larger than that of P [45,13]. For dense
time, these techniques are based on the maximum principle.

2. Themodified recurrence schemeof [35,36] keeps the number of points towhich the linear transformation is applied fixed.
Its implementation using zonotopes [23,24], a subclass of polytopes which are closed under Minkowski sum, provides a
very efficient solution which is, practically, exact for discrete time. The same goes for its implementation using support
functions [37].

The technique that we present in this paper is invariant under the choice among these two approaches. Hence, we express
it in terms of an abstract successor operator σ which, given a set P , an affine differential inclusion (see below) of the form
ẋ ∈ Ax ⊕ V and a time step r , produces the set σ(P, A, V , r) containing all points reachable after exactly r time from points
in P by trajectories of the affine dynamics. The generic linear reachability algorithm can then be written as below.

Algorithm 1 (Linear Reachability).
P0 := R̃[0,r](P)
repeat i = 1, 2, . . .
Pi := σ(Pi−1, A, V , r)

until i = k

The set R̃[0,r](P), the over-approximation of the states reachable from P within the time interval [0, r], can be computed,
for example, by bloating the convex hull of P ∪ σ(P, A, V , r) as in [6,5] or [36].

Moving to nonlinear systems of the form xi+1 = f (xi) for arbitrary f one observes that ‘‘convexity’’ properties such as (1)
do not hold and new ideas are needed. In principle, it is possible to evaluate f on some representative finite sample P̃ ⊂ P
and then use the resulting points to construct a set which over-approximates f (P). However, the approximation can be very
coarse and will require a costly optimization procedure to be refined, something that cannot be afforded as part of the inner
loop of the reachability algorithm. The ‘‘hybridization’’ technique of [5], first proposed in the context of simulation [18],
suggests a good tunable compromise between the quality of the approximation, the difficulty of the computation and the
frequency in which it is invoked. Before explaining the idea, let us give some necessary definitions.

We consider a state space X , a bounded subset of Rn equipped with a metric ρ. Given two bounded closed subsets Y and
Y ′ of X , the Hausdorff distance between them (the lifting of ρ to sets) is

ρ(Y , Y ′) = max{max
y∈Y

min
y′∈Y ′

ρ(y, y′),max
y′∈Y ′

min
y∈Y

ρ(y, y′)}.

The trajectories of a dynamical system are viewed as signals over X .
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Fig. 1.Hybridization: a nonlinear system is over-approximated by a hybrid automatonwith an affine dynamics in each state. The transition guards indicate
the conditions for switching between neighboring linearizations.

Definition 1 (Signals). A signal over X is a partial continuous function ξ from T = [0, ∞) to X whose domain of definition
is T or a prefix [0, r] of it. In the latter casewe say that ξ is finite with duration r . The concatenation of a finite signal ξ defined
over [0, r] and a signal ξ ′ satisfying ξ ′(0) = ξ(r) is defined in the obvious way and is denoted by ξ · ξ ′.

The continuous equivalent of a non-deterministic automaton is the relational vector field, also known as differential
inclusion [7].

Definition 2 (Relational Vector Fields). A relational vector field over X is a function f : X → 2X
− {∅} which is assumed to

be K -Lipschitz, satisfying

ρ({x}, {x′
}) < a ⇒ ρ(f (x), f (x′)) < Ka.

When f is a (deterministic) function we write f (x) = y rather than f (x) = {y}.

Definition 3 (Dynamical Systems, Trajectories, Reachable Sets). A (continuous) dynamical system is a pair S = (X, f ) where
X is a state space and f is a vector field. A trajectory of S starting from x is a signal ξ over X with ξ(0) = x and for every t
in the domain of definition of ξ , ξ(t) ∈ X and dξ(t)/dt ∈ f (ξ(t)). The set of all trajectories of S starting from any x ∈ P is
denoted by L(S, P). The sets of states reachable from P within a time interval [h, h′

] is

R[h,h′](P) = {ξ(t) : ξ ∈ L(S, P) ∧ t ∈ [h, h′
]}.

Hybridization takes a nonlinear system S = (X, f ) and produces another dynamical system Ŝ = (X, f̂ ) which over-
approximates S, that is, L(S, P) ⊆ L(Ŝ, P) for every P , and then computes the reachable states of Ŝ. A formal definition of
Ŝ as a hybrid automaton can be found in [5]. Since our algorithm does not use hybrid automata explicitly we only give an
informal explanation; see also Fig. 1.

Consider a partition of X into hyper rectangles (we use the term box hereafter). For each box Xq one can compute a linear
function Aq and an error polytope Vq such that for every x ∈ Xq, f (x) ∈ Aqx ⊕ Vq. In other words, Aq is a local linearization
of f with maximal error over Xq bounded in Vq. Thus the vector field f̂ is defined as f̂ (x) ∈ Aqx ⊕ Vq iff x ∈ Xq. To perform
reachability computation on Ŝ one applies linear reachability using Aq and Vq as long as the reachable states remain within
boxXq.Whenever some Pi crosses the boundary betweenXq andXq′ it is intersectedwith the switching surface (the transition
guard, in the terminology of hybrid automata) and the obtained result is used as an initial set for reachability computation in
q′ using Aq′ and Vq′ , as illustrated in Fig. 2(a,b). The main advantage of hybridization is that the costly procedure of finding a
good linear approximation and computing the error bounds is not invoked in every step, only in the passage between boxes.
This clean and general approximation scheme suffers however from some serious difficulties on the way to realization.

• Although the intersection of the actual set of reachable states inside a box with a facet may be simple, sometimes
even convex, its computation can be inefficient and inaccurate. To see why, consider a subsequence of sets Pj, . . . , Pk
computed using some linear technique, each intersecting the boundary G as illustrated in Fig. 3(a). In this case we have
two possibilities: we can spawn several computations with the dynamics of the subsequent box, each starting with some
Pi ∩ G (Fig. 3(b)), but this may create a combinatorial explosion. Alternatively, we can over-approximate


i Pi ∩ G by a

convex set, an operation that may lead to a large over-approximation error (Fig. 3(c)).
• The size of the partition of the state space is, of course, exponential in the dimension; hence care should be taken in order

to avoid state explosion. As suggested in [5], the partition can be generated on-the-fly as the reachability computation
evolves, rather than being precomputed for the whole state space in advance. However, even on-the-fly generation
cannot cope with the fact that in high dimension, a tube of reachable states will typically leave a box via many facets,
as illustrated in Fig. 4(a). Since each of these parts of the reachable set goes to a different box, they have to be handled
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a b

Fig. 2. Computing reachable states of the hybridization: (a) applying linear reachability using A1 until intersection with the boundary; (b) taking the
intersection as an initial set for linear reachability using A2 .

a b c

Fig. 3. (a) The intersection with the boundary spans over several iterations; (b) continuing with each intersection separately; (c) continuing with an
approximation of the union of intersections.

Fig. 4. (a) The reachable set leaves a box through several boundaries; (b) the computation is continued separately for each intersection although the
computed sets remain close to each other and even go later to the same box.

separately (Fig. 4(b)) even though they continue to evolve close to each other.2 Merging these sets when they converge
to the same box is a tedious process and a source of further approximation errors. This problem is particularly severe
because making the boxes smaller is the recommended recipe for improving accuracy.

As a result of these problems, no application of hybridization-based reachability to systems with more than 3 dimensions
has been reported.

3. Dynamic hybridization

In this section, we describe our novel nonlinear reachability algorithm which, unlike the scheme of [5], is not based on
a fixed partitioning of the state space but rather generates overlapping linearization domains around the reachable states.
An important ingredient of any hybridization methodology is the linearization procedure that we first define formally.

Definition 4 (Linearization in a Domain). A linearization operator is a function Lwhich, for a given nonlinear function f and
a convex set B (linearization domain), produces a matrix A, a vector b and a convex polytope V such that for every x ∈ B,
f (x) ∈ {Ax + b} ⊕ V .

We use the notation L(f , B) = (A, b, V ). In what follows, we describe our method using boxes as linearization domains
but other forms are possible. In addition to the linearization operator L and the linear successor operator σ we assume a
procedure β which takes as input a set P and produces a linearization domain B = β(P) which contains P . The form of B,
the relation between its size and the size of P as well as the position of P inside B are important implementation details that
may vary according to the system in question and the desired accuracy. We first present in general terms, the algorithm for
approximating the reachable states, prove its correctness and then discuss a first implementation of L and β .

2 A similar phenomenon has been encountered in the analysis of timed automata [9].
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a b

Fig. 5. Dynamic hybridization: (a) computing in some box until intersection with the boundary; (b) backtracking one step and computing in a new box.

Algorithm 2 (Dynamic Hybridization).
Input: A nonlinear dynamical system S = (X, f ) and an initial set P
Output: A sequence of sets P0, P1, . . . Pk whose union contains R[0,h](P)

B := β(P)
(A, b, V ) := L(f , B)
P0 := R̃[0,r](P)
i := 0
repeat
Pi+1 := σ(Pi, A, {b} ⊕ V , r)
if Pi+1 ⊆ B
i := i + 1
else
B := β(Pi)
(A, b, V ) := L(f , B)

until i = k

The algorithm performs linear reachability in a linearization domain B as long as the computed sets remain inside B.
Once a newly computed set Pi+1 is not fully contained in Bwe backtrack to Pi and construct a new domain B′ around Pi along
with its corresponding linearization which is used for subsequent computations starting from Pi, as illustrated in Fig. 5.
The advantage of this approach is obvious: the linearization mesh is constructed along the reachable set and thus we avoid
artificial splitting of sets due to the structure of the mesh. Needless to say, the intersection operation is altogether avoided.

Theorem 1 (Correctness of Algorithm 2). Let P0, P1, . . . be a sequence of sets produced by Algorithm 2. Then for every k ≤ k′,
we have

R[kr,k′r](P) ⊆

k′
i=k

Pi.

Proof. The proof is by induction on the number of switchings between linearization domains that the algorithmmakes. The
base case where no switching occurs follows from the correctness of the linear reachability algorithm and the fact that the
linearized system over-approximates f . For the inductive case, assume the claim holds for s switchings and consider a run of
the algorithmwith s+1 switchings, the last ofwhich occurring after Pj, k ≤ j < k′. By the inductive hypothesis R[jr,jr](P) ⊆ Pj
and since Pj serves as the initial set for subsequent iterations inside a single linearization domain, the base case applies and
Pj+1, . . . , Pk′ includes R[(j+1)r,k′r](P) which, together with Pk, . . . Pj, include the states reachable within [kr, k′r]. �

Algorithm 2 is implemented in C and uses the polytope-based algorithms of d/dt [13]. Below we explain the novel
technical aspects, namely the dynamic construction of the linearization domain and its respective linearization.

Thedifference between the function f and its linear approximation relative to a domainB is∆B(f , A, b) = {f (x)−(Ax+b) :

x ∈ B}. To obtain a conservative approximation it is sufficient to find some V such that∆B(f , A, b) ⊆ V but in order to obtain
high-quality approximations, we need to choose B, A and b thatminimize ‖∆B(f , A, b)‖ = max{‖x‖ : x ∈ ∆B(f , A, b)}which
represents the error incurred by the linear over-approximation. Clearly the smaller is B, the smaller is the error but then
the linearization procedure has to be invoked more frequently. The problem of finding good B and A can be formulated, in
principle, as some sort of a constrained optimization problem but this computation can be very costly andwe use instead the
following easy-to-compute heuristic which turns out to work in practice despite not being optimal. The first simplification
thatwedowith respect to an optimized solution is to decouple the choice of the newdomainB = β(P) from the computation
of the linearization (A, b, V ) = L(B, f ).

The operator β(P) which produces a box containing P is realized as follows. Based on f = (f1, . . . , fn), X and the desired
accuracy we fix a standard rectangular frame B of size d1 × · · · × dn. Given a polytope P we let β(P) be a copy of B whose
center coincides the centroid c(P), defined as the average of the vertices of P . Once B is fixed we compute A, b and V . The
matrixA is obtained by evaluating (numerically) the Jacobianmatrix of f at the center y = c(B) ofB. In otherwords,A =

∂ f
∂x (y)
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Fig. 6. A set P and its bounding box B(P). The set is too large and is split in the vertical dimension into P1 and P2 , around which the respective linearization
domains B1 and B2 are constructed.

where Aij =
∂ fi
∂xj

. Then b = f (y) − Ay and a box V = V1 × V2 × · · · × Vn, guaranteed to contain ∆B(f , A, b), is computed as
follows. For each dimension i we let Vi be the interval [li, ui] where li = min{πi(∆B(f , A))} and ui = max{πi(∆B(f , A, b))}
with πi denoting projection on i. These intervals are over-approximated based on the Taylor expansion of f (x) − (Ax + b).

The quality of the approximation is measured by the distance between the trajectories (and hence the reachable sets) of
the original and approximating system. Since the linearization procedure is subject to ongoing improvements [16] we will
not provide detailed error analysis in this paper, but summarize themain results of [5] concerning static hybridizationwhich
hold also in the dynamic case. Bounds on the distance between trajectories can be derived from bounds on the distance
between the vector fields, that is, ρ = max{‖∆B(f , A, b)‖} over all B. This bound converges to zero as the size of B gets
smaller. The following theorem from [5] shows that the distance between original and approximate trajectories converges
to zero with the same rate as ρ.

Theorem 2. Let S = (X, f ) be a dynamical system with f being K-Lipschitz on X and let Ŝ = (X, f̂ ) be an approximate system
produced by hybridization such that ∀x ∈ X ‖f̂ (x) − f (x)‖ ≤ ρ . Then, the distance between a trajectory ξ of S and a trajectory ξ̂

of Ŝ such that ξ(0) = ξ̂ (0) satisfies:

∀t ≥ 0, ‖ξ(t) − ξ̂ (t)‖ ≤
ρ

K
(eKt − 1). (2)

Finally, let usmention a problematic situationwhich occurs when the reachable set P gets too large and cannot fit (either
immediately or after few steps) within the frame B. To prevent Algorithm 2 from getting stuck in the else branch, we split
P into two or more sets which are then treated separately. In principle, this splitting may lead to state explosion but, in
this case, the explosion is due to intrinsic properties of the set of reachable states and not due to an arbitrary choice of the
coordinate system underlying the mesh. This phenomenon will not occur too often while analyzing stable systems having
a contracting dynamics.

To handle the splittingwe first compute a tight bounding box B(P) around P . This computation is performed by projecting
the vertices on each of the dimensions and taking the minimum and maximum. Let us denote by e1 × · · · × en the size of
the obtained bounding box. If for every i, mei < di, where m > 1 is a fixed constant, then P is sufficiently small and no
splitting takes place. Otherwise we take the direction iwhich maximizes the ratio ei/di and split P into two parts along this
direction by intersecting it with complementary halfspaces orthogonal to direction i (see Fig. 6). We repeat the process until
the obtained sets are sufficiently small. We thus end upwith one or more polytopes around each of which we put a properly
centered copy of B.

4. Experimental results

To test the feasibility of our algorithm, we applied it to several nonlinear systems whose parameters and qualitative
behaviors are documented in the literature. We mention computation times of the analysis just to illustrate feasibility. Due
to the novelty of the technique it would be premature to make a systematic performance study.

4.1. Lac Operon

The Lac Operon is a biochemical feedback mechanism through which the bacterium E. Coli adapts to the lack of glucose
in its environment by switching to a lactose diet. We use the model appearing in [32] where the behavior of the system
is described by the system of differential equations of Table 1 where the variables denote the concentrations of different
reactants, such as Ra (active repressor), Of (free operator), E (enzyme), M (mRNA), Ii (internal inducer), and G (glucose).
We studied the behavior of this system around a quasi-steady state for the first 4 variables and the obtained results are
consistent with the simulation results obtained on a simplified two-dimensional model shown in [32], page 285. As a set of
initial states we take a small box where Ii ∈ [1.9, 2] and G ∈ [25.9, 26]. When k−1 = 2 the system exhibits a stable focus
and when k−1 = 0.008 the system exhibits a limit cycle (see Fig. 7). Computation times were 3 and 5 min, respectively.
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Table 1
The dynamics of E. Coli lactose response system.

dRa

dt
= τ − (k−1 + k−8)Ra − k2RaOf + k−2(χ − Of ) − k3RaI2i + k8RiG2

dOf

dt
= −k2raOf + k−2(χ − Of )

dE
dt

= νk4Of − k7E

dM
dt

= νk4Of − k6M

dIi
dt

= −2k3RaI2i + 2k−3F1 + k5IrM − k−5IiM − k9IiE

dG
dt

= −2k8RiG2
+ 2k−8Ra + k9IiE

Fig. 7. Lac operon: (a) a stable focus, k−1 = 2.0; (b) a limit cycle, k−1 = 0.008.

4.2. An aging model

Next we study a highly nonlinear model coming from the mitochondrial theory of aging that we describe below, based
on [32]. Mitochondria not only generate themajority of the cellular ATP but also produce reactive oxygen species (ROS). The
latter damage proteins, membranes and the mitochondrial DNA (mtDNA). The theory is based on the fact that damage to
the mtDNA impairs the genes responsible for ATP production but not those involved in the reproduction of mitochondria.
Therefore ROS-induced damage to the mitochondria could turn a symbiont into a parasite, leading to a progressive decline
in the cellular energy supply. Experiments have shown that in aging post-mitotic cells there is a clonal accumulation of
defective mitochondria with time. To understand the mechanism of accumulating energy-starved mutant mitochondria, a
possible approach is based on the fact that mitochondria have a certain turnover rate. It has been suggested that damaged
mitochondria accumulate because they have the slowest degradation rate. This hypothesis is called ‘‘survival of the slowest’’
(SOS) and we model it as a system of 9 differential equations (Table 2) taken from [32], page 252.

The mitochondrial population is divided into two major classes: intact mitochondria with no damage to their DNA and
defective organelles with mtDNA damage. Their numbers are modeled by the variables MMi and MDMi. Both major classes
are then divided into three additional groups based on the level of membrane damage: minimal (MM1 andMDM1), medium,
(MM2 and MDM2) and large (MM3 and MDM3). Variables RadM and RadDM stand for the radical concentrations in intact and
damaged mitochondria. Radical RadM can interact with the membranes of intact mitochondria with a rate kM and cause
them to move to a higher membrane damage class. It can also damage the mitochondrial DNA with a rate kD and convert
intact mitochondria into defective ones. Concerning mitochondria with DNA damage, reactions with the radicals RadDM can
only increase membrane damage. It can be shown that the radical levels RadM and RadDM are related by a factor called RDF
(radical difference factor). That is why the model includes only one equation describing the evolution of RADM . The model
also contains a generic antioxidant species (AOx) that destroys radicals, otherwise their number would increase beyond
limits.

Starting from a rectangular initial setwhereMM1,MM2 andMM3 are in [500, 502],MDM1 MDM2, andMDM3 are in [100, 102],
AOx ∈ [200, 202], RadM ∈ [500, 502] and ATP ∈ [19, 21], we run our algorithm with time step 0.00001. Fig. 8 shows the
reachable set after 300 steps projected on 3 variables, namely, the concentration of antioxidants (AOx), of radicals which
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Fig. 8. Results obtained for the aging model.

Table 2
The aging model and its parameters.

dMM1

dt
= S · MM1 +

2S · MM2

(GDF + 1)
− (α + (kM + kD) · RadM ) · MM1

dMM2

dt
=

−2SMM2

(GDF + 1)
+ 2S ·

MM3

GDF
+ kM · RadM · MM1 − (β + (kM + kD) · RadM ) · MM1

dMM3

dt
=

−2S · MM3

GDF
+ kM · RadM · MM2 − (γ + kD · RadM ) · MM3

dMDM1

dt
=

S · (MDM1 + MDM2)

GDF
+ kD · RadM · MM1 − (α + kM · RDF · RadM ) · MDM1

dMDM2

dt
=

−S · MDM2

GDF
+

2S · MDM3

GDF
+ kD · RadM · MM2 + kM · RDF · RadM · MM1 − (β + kM · RDF · RadM ) · MDM2

dMDM3

dt
=

−2S · MDM3

GDF
+ kD · RadM · MM3 + kM · RDF · RadM · MDM2 − γ · MDM3

dAOx
dt

=
ATP

(ATP + ATPc)
·

k2
1 + B

− δ · AOx

dRadM
dt

= kR −
k3 · (AOx · RadM )

(MM1 + MM2 + MM3 + MDM1 + MDM2 + MDM3)

dATP
dt

= kATP · MM1 + 0.5kATP · MM2 −
ATP

ATP + ATPc
·


kEM · k1

1 + (ATP/ATPc)3
+ kEC + kEP ·

k2
1 + B



where

S =
ATP

ATP + ATPc
·

k1
1 + (ATP/ATPc)3

·
1

MM1 + 2MM2/(GDF + 1) + (MM3 + MDM1 + MDM2 + MDM3)/GDF

B = PAOx/(RadM · (MM1 + MM2 + MM3) + RDF · RadM · (MDM1 + MDM2 + MDM3))

α β γ δ RDF GDF kM kD k1
0.01 0.05 0.1 0.693 0.2 5.0 0.003 0.003 100.0
k2 k3 kEM kEP kEC kR kATP ATPc PAOx

100.0 7000.0 400.0 0.0008 1000000 900.0 1200.0 100.0 1.0

suffer damages (RAdM ), and of ATP . After 1000 steps we observe convergence towards a steady state. The computation time
for 1000 iterations was 23.3 min.
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m2

t2

mt1

Fig. 9. Results obtained for the angiogenesis model.

4.3. Angiogenesis

Our third example is the biochemical network adapted from [46]. This is a system of 10 differential equations which
models the loosening of the extra-cellular matrix, a crucial process in angiogenesis, the sprouting of new blood vessels as a
reaction to signals that indicate the need for additional oxygen in certain tissues. Interferingwith angiogenesis is considered
a promising direction for fighting cancer tumors by cutting their blood supply. Themodel in [46] focuses on the degradation
of collagen C1 by two enzymes MT1 and M2. The latter has to be activated from its passive form MP

2 obtained by a chain of
reactions involving another protein T2 which also plays the role of an inhibitor for MT1, which leads to an overall complex
system of interactions.

In [46], the authors considered a closed system with finite initial concentrations where all variables eventually converge
to an equilibrium. Our experiments were based on a model (see Table 3) augmented with constant productions and self-
degradation terms for key species (Pxx and dxx parameters in the equations). We have computed reachable sets to verify that
the system still converges toward some equilibrium from a set of initial concentrations.

We have analyzed this system using dynamic hybridization enhanced with some optimization in the choice of
linearization domains as described in [16]. Essentially, each linearization domain is a simplex whose dimensions and
orientation are selected to optimize the error and keep the reachable set inside the domain for a longer period, based
on curvature characteristics of the vector field. The angiogenesis system largely benefits from these optimizations as its
vector field is quadratic and therefore its Hessian matrices are constant. The directional curvature in this systems varies a
lot depending on the direction.

Fig. 9 shows the projection of the reachable set evolution on the first three variables, namelyMT1,M2, and T2. The initial
set is a small set around the origin, highlighted in the figure in bold line. We observe that the variables converge towards
the dense part of the reachable set shown in the figure. The computation time was 40 s for 30 iterations.

5. Discussion

Wemade progress toward a very ambitious goal: automatic reachability analysis of nonlinear systems as a methodology
for investigating under-specified biological models. Let us mention other attempts to solve this problem starting with
methods that share with hybridization the idea of approximating the original systems by partitioning the continuous state
space and producing a hybrid automaton with a simpler dynamics in each state. In the extreme case where no continuous
dynamics remains, the finite automaton is the sole responsible for approximating the dynamics. This approach is used, for
example, in robotics planning and qualitative physics and has been applied extensively to biology [17,27]. The technique
of predicate abstraction applied to hybrid systems [3] is another elaboration of this idea where partition boundaries are
based on predicates appearing in specifications. A more refined approach, incorporated into the tools HyTech [29] and
PHAVer [21] over-approximates the nonlinear system by hybrid automata where in each state the dynamics is defined by
a constant differential inclusion of the form Aẋ ≤ c. Since in each state, the derivative does not depend on the real variables,
it is easy to compute the reachable states exactly using linear algebra, however the over-approximation with respect to
the original system is large (zero-order compared to first-order approximation in the hybridization of [5]). The translation
of continuous systems into timed automata [40] is another instance of this approach. It should be noted that the idea of
dynamic hybridization is not restricted to linear approximating function and can be applied to approximation by other
function, simpler or more complex.
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Table 3
The angiogenesis model and its parameters.

Variable Associated protein

MT1 Membrane Type 1 Matrix MetalloProteinase (MT1MMP)

T2 Tissue Inhibitor of MetalloProteinases 2 (TIMP2)

MT1T2 The MT1MMP/TIMP2 complex

M2 Matrix MetalloProteinase 2 (MMP2)

Mp
2 The proenzyme of MMP2

MT1T2MP
2 The MT1MMP/T2/M2P complex

M2T2 The MMP2/TIMP2 complex

M2T ∗

2 A stable isoform of the MMP2/TIMP2 complex

C1 Type 1 collagene

M2C1 The MMP2/Collagene I complex

C1MT1
d Collagene I degraded by MT1MMP

C1M2
d Collagene I degraded by MMP2

dMT1
dt

= Pmt1 − keffshed MT1 · MT1 − kmt1t2
on MT1 · T2 + kmt1t2

on kmt1t2
i MT1T2

dM2

dt
= km2

acteffMT1 · MT1T2M
p
2 − km2t2

on M2 · T2 + km2t2
off M2T2 − km2c1

on M2 · C1 + km2c1
off M2C1 + km2c1

cat M2C1 − Dm2M2

dT2
dt

= Pt2 − km2t2
on M2 · T2 + km2t2

off M2T2 − kmt1t2
on MT1 · T2 + kmt1t2

on kmt1t2
i MT1T2 − Dt2T2

dMT1T2
dt

= kmt1t2
on MT1 · T2 − kmt1t2

on kmt1t2
i MT1T2 − kmt1t2m2p

on MT1T2M
p
2 + kmt1t2m2p

off MT1T2M
p
2

dMT1T2M
p
2

dt
= kmt1t2m2p

on MT1T2 · Mp
2 − kmt1t2m2p

off MT1 · T2M
p
2 − km2

acteffMT1 · MT1T2M
p
2

dM2P
dt

= Pm2p − kmt1t2m2p
on MT1T2 · Mp

2 + kmt1t2m2p
off MT1T2M

p
2

dM2T2
dt

= km2t2
on M2 · T2 − km2t2

off M2T2 − km2t2
iso M2T2 + km2t2

miso M2T ∗

2

dM2T ∗

2

dt
= km2t2

iso M2T2 − km2t2
miso M2T ∗

2 − Dm2t2∗M2T ∗

2

dC1

dt
= Pc1 − km2c1

on M2 C1 + km2c1
off M2C1 −

kmt1c1
cat

kmt1c1
m

MT1 · C1

dM2C1

dt
= km2c1

on M2 · C1 − km2c1
off M2C1 − km2c1

cat M2C1

dC1MT1
d

dt
=

kmt1c1
cat

kmt1c1
m

MT1 · C1

dC1M2
d

dt
= km2c1

cat M2C1

keffshed kmt1t2
on kmt1t2

i kmt1t2m2p
on kmt1t2m2p

off km2
acteff km2t2

on km2t2
off km2t2

iso km2t2
miso km2c1

on

2100 4500 1970 2900000 1e–10 1.6e–9 8e–10 5e–10 0.01 0.01 0.01

km2c1
off km2c1

cat kmt1c1
cat kmt1c1

m Pmt1 Pt2 Pm2p Pc1 Dm2t2∗ Dm2 Dt2

2800 3540000 4.9e9 1400000 4700 3620 5900000 6.3 33 2e8 2600

Other, more direct, approaches perform reachability on the original nonlinear systems without relying on convexity
properties. For example, the face lifting technique [25,15,26], which is based on computing the maximal projections of f on
all the normals of the facets of a polyhedron, may lead to large over-approximation errors. Other approaches use more
complex classes of sets which are not necessarily convex. In [41], the evolution of the reachable states is transformed
into a partial differential equation (PDE) where the boundary of the set is represented as the set of zeros of a function
defined over the state space. The work of [14] uses Bezier simplices to represent reachable states for systems defined by
polynomial differential equations. Finally in [28,1], dynamic linearization and computation of error bounds is performed
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at every reachability step. None of these methods, to the best of our knowledge, can cope with systems of the size and
complexity of the examples presented in this paper.

Let us also mention the whole domain of interval analysis [31], a branch of numerical analysis motivated by producing
rigorous numerical answers to diverse mathematical questions despite round-off errors. As its name suggests, for the
computation of a scalar function, the result is typically an interval guaranteed to contain the correct answer. The
generalization to many dimensions leads naturally to bounding boxes. Although the motivation is different from ours as
the uncertainty is due to the computation itself rather than the imperfection of the model, there are similarities between
some of the techniques and we foresee more future cross fertilization between the domains.

Parameter uncertainty in biological models is a well-known problem that has been subject to extensive work using
various techniques.Wemention two recent attacks on the problem of parameter synthesis, namely, finding or approximating
the range of model parameters for which some qualitative behavior is exhibited. The work of [8] takes a hybrid model
(piecewise multi-affine dynamics) with parameter uncertainty and abstracts it into a finite automaton. When the property
in question is violated by the automaton, the domain of parameter values is refined, a new abstraction is created and so on.
A more direct and efficient way to explore the space of parameter values is described in [19] based on adaptive sampling of
the parameter space and using ordinary numerical simulation. This technique uses numerical sensitivity information [20]
to guide the refinement of the parameter space.

To go beyond this proof of concept to a fully automatedmethodology, the following technical aspects should be improved.
First we need to combine dynamic hybridization with the new linear reachability algorithms of [24,35,36] which can treat
linear systems, an order of magnitude larger than those treated in the present paper. Second, more sophisticated and
accurate linearization operators are needed, so that the reachable state will remain for a longer time in each linearization
domains, while accumulating small approximation error. In [16], we have recently developed such a scheme based on
simplices whose size and orientation are adapted to the properties, such as curvature, of the vector field and applied it
to the model described in Section 4.3. As the reader might have noticed, we have focused in this paper on systems where
the uncertainty is restricted to the initial set of parameters and we need to extend our linearization operator to nonlinear
functions with input, something that can be done using similar principles.

To conclude, we have demonstrated the feasibility of our approach by computing reachable states for nonlinear systems
of unprecedented size and complexity. We intend to pursue this direction further and make reachability computation a
useful tool for analyzing complex biological systems. A parallel effort should be invested in making modelers of biological
systems aware of the potential of this analysis technology.
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