Discrete Applied Mathematics 45 (1993) 29-49 29
North-Holland

Decision problems and regular chain
code picture languages

Jiirgen Dassow
Faculty of Computer Science, Magdeburg University of Technology, Magdeburg, Germany

Friedhelm Hinz

Department of Mathematics and Computer Science, University of Trier, Trier, Germany

Received 6 July 1990
Revised 17 July 1991

Abstract

Dassow, J. and F. Hinz, Decision problems and regular chain code picture languages, Discrete Applied
Mathematics 45 (1993) 29-49,

By interpretation of the letters u, d, r, /, 1, | as “move up, (down, right, left)” with the pen, “lift"” and
“sink” the pen of a plotter we can associate a picture with a word. The set of pictures associated with
the words in a regular (context-free) string language is called a regular (context-free) picture language
or chain code picture language.

In this paper we discuss the decidability status of the following problems for regular and context-free
picture languages:

— Is some picture a subpicture of all pictures of the language?

— Does the language contain a picture with a given property?

- Have all pictures of the language a given property?

1. Introduction

In the last three decades many different approaches have been introduced in order
to solve problems in picture processing. One of the approaches uses chain codes
which give a connection between pictures and strings describing pictures. In [8]
Freeman gave a survey on this work which can be used in various fields as, e.g.,
picture generation and pattern recognition. Whereas Freeman used eight basic direc-
tions we restrict to four directions but our results will hold in the Freeman case, too.

Correspondence to: Professor J. Dassow, Fakultit fiir Informatik, Technische Universitit Magdeburg, PSF
4120, 0-3010 Magdeburg, Germany.

0166-218X/93/$06.00 © 1993 — Elsevier Science Publishers B.V. All rights reserved

30 J. Dassow, F. Hinz

We interpret the letters u,d,r,/,1,| as movements of a plotter in the directions
up, down, right, left and lift the pen and sink the pen. Thus with a word we associate
a picture, and a set of pictures, called chain code picture language in [18], corre-
sponds to a language of words.

One of the well-investigated decision problems in the theory of (chain code) pic-
ture languages is the subpicture problem to decide whether or not a given picture
is a subpicture of some picture in a given language. This problem is shown to be
decidable for context-free picture languages in [18] and to be NP-complete for
regular picture languages in [13]. In this paper we study a modification of this prob-
lem which we call the universal subpicture problem: Decide whether or not a given
picture is a subpicture of all pictures in a given language. We shall prove its undecida-
bility for almost all pictures and regular languages. In [3, 6] the following decision
problems are studied for some geometrical or graph-theoretical properties P.

Q1: Decide whether or not the picture language contains a picture with P.

Q2: Decide whether or not all pictures in the picture language have property P.
The undecidability of Q1 for linear chain code picture languages is shown in 5, 6].

In this paper we shall prove that in most cases undecidability will already hold
for regular picture languages. In order to do this we use the same scheme: we simu-
late a linearly bounded automaton by a regular grammar in such a way that the pic-
tures corresponding to a computation have some property if they do not have
certain subpictures. This is a reduction of Q1 to some special universal subpicture
problem.

With respect to Q2 we extend the list of decidable cases.

In [1, 2] these questions are studied for a concept of simplicity of pictures which
slightly differs from our concept.

The paper is organized as follows. In Section 2 we present the necessary notions
on picture languages. In Section 3 we give a general scheme which can be used in
order to prove the undecidability of the universal subpicture problem and problems
of the existence of pictures with a given property in a regular picture language. In
Section 4 we apply this scheme to problems of connectedness for generalized picture
languages. In Section 5 we use the result to prove that there is a fixed linear language
L such that ““Rc L?” is undecidable for regular languages R as a contribution to
classical formal language theory. In Section 6 we discuss some cases where the above
questions Q1 and Q2 are decidable. Section 7 contains some concluding remarks.

2. Definitions

Throughout the paper we assume that the reader is familiar with the basic concepts
of formal language theory as regular and context-free grammars and languages and
their properties (see, e.g., [14]). Only in one proof in Section 6, in addition, we need
some knowledge on matrix grammars (see [7]). We give here only the definitions and
notations for picture languages.

Decision problems 31

Let (m,n) be a point of the grid Z? over the set Z of integers, and let be =
{u,d,r,1}. Then we set

u((m,n)) = (mn+1), d((m,n)) = (m,n—-1),
r({m,n)) = (m+1,n), l((m,n))=(m—1,n).

For ze7?, we denote by {z, 5(z)) the (undirected) unit line connecting z and b(z).
By a picture we mean a finite set of such unit lines in the grid. By this set-theoretic
point of view a subpicture (superpicture) of the picture p is understood as a subset
(superset) of p.

Now we associate with any word over ny={u,d,r, |, 1, l} a triple (p, z,s), where
the first component is a picture, the second component is a point, and the third com-
ponent gives the state pen-up or pen-down in the following inductive way:

(i) ¢(2)=(8,(0,0),1),
(i) if tiw)y=(p,z,5), then

(22 b)), if b=1,
i (p’z’T)’ if sz;
t(wb) = (5, b, D, ifs=1and bemn,

(pULz bz, b(2),1), if s=| and ben.

If t(w)=(p, z,s), then p is the picture of w, which we denote by pic(w), and z is its
endpoint. By definition, the drawing of p starts in (0, 0).

In the sequel we are not interested in the exact position of the picture in the grid,
i.e., we shall identify pictures which can be transformed to each other by shifts, and
in notation we shall not distinguish between a picture and its equivalence class with
respect to shifts. There are different possibilities to traverse a picture. Hence, for
every nonempty picture, there is more than one description. Especially, given a
traversal by some word a second traversal of the same picture can be given by in-
verting the direction and order of lines. Formally, we define the operator inv induc-
tively by

inv(d) = A, inv(u) =d, inv(d) = u, inv(ry=1, inv(l) =r,
inv(wa) = inv(a)inv(w).

Obviously, pic(w) = pic(inv(w)).
Let G be a grammar such that the generated language L(G) is contained in nf‘.
Then we set

Pic(G) = { pic(w): we L(G)}.

A picture language B is called regular (context-free, etc.) if B=Pic(G) for some
regular (context-free, etc.) grammar G satisfying L(G) C n*. If L(G) C n{, then we
call the associated (regular, etc.) picture language generalized. All languages and
picture languages considered in this paper will be represented by a grammar.
For a picture language B, we denote by SUPER(B) the set of all pictures p such

32 J. Dassow, F. Hinz

that p is a superpicture of some g € B. For a regular picture language B, SUPER(B)
is also regular. p is called a universal subpicture of Bif p is a subpicture of all g € B.

Sometimes we shall consider the pictures as (undirected) graphs, where the set of
nodes is given by the set of points of Z2 belonging to the picture, and the edges cor-
respond to the unit lines of the picture. For graph-theoretical concepts we refer to
i31.

Note that all graphs generated by some grammar are bipartite, and therefore the
maximal degree of the nodes in the graph gives the minimal number of colours
which are necessary for an edge-colouring.

In this paper among other things we shall consider the following properties of pic-
tures or graphs. p is called a simple curve if each node of p has at most degree 2,
and it is called a simple closed curve iff all nodes of p have degree 2. p is called con-
vex if there is a picture g such that p U g is a closed simple curve and the intersection
of the inner part of pU g with any straight line which is parallel to one of the axes
is a finite straight line.

3. A scheme for undecidability proofs for regular picture languages

In this section we present a method to obtain undecidability results for regular
picture languages. This method is similar to the technique used in {17] to show the
undecidability of the equivalence problem for regular languages. The basic idea is
to simulate a run of a linearly bounded automaton by a regular grammar. This will
be done in three steps. First we present a normal form for linearly bounded auto-
mata. Then we introduce usual Turing tapes and Turing tapes with defects such that
the existence of a run without defects corresponds to the nonemptiness of the
accepted language. Finally we present a regular grammar such that every word
generated by the grammar corresponds to a run of the linearly bounded automaton
on a probably defect Turing tape.

The picture drawn by a word has a certain property if no defects of the Turing
tape occur in the corresponding run, and it fails to have this property if a serious
defect occurs in the corresponding run of the linearly bounded automaton. As soon
as this correspondence is established we have reduced the question, whether or not

b 0 1 b
q — 2z ~— X =-— q

b 1 0 b]
§ - W +«— VvV ¢ 8
Eb 1 1 b
X — X — Z ~— Yy

b 0 1 bj
t

Fig. 1. ¢ is a final state.

Decision problems 33

a regular grammar generates no description of a picture with a certain property, to
the undecidable question whether or not all runs use defect tapes.

We now present the normal form of a linearly bounded automaton which can be
assumed without loss of generality. In the beginning the machine scans the left end-
marker. Then from left to right it starts to scan (and to rewrite) the complete input
until it finds the endmarker. Then it performs one stationary step and starts to scan
the take from right to left until it finds the left endmarker. Again, it performs a
stationary step and scans up to the right endmarker. The machine finishes in a final
state or repeats the process arbitrarily often. The control is transformed to a final
state only when the right endmarker is the input, and the machine halts only in a
final state.

A run of such a machine can be written into a rectangle each line of which corre-
sponds to one scan, i.e., the horizontal width is determined by the length of the
input word and the vertical length is determined by the number of scans in the run.
The first line contains the input word. We note the letter which is actually read
above the finite control and the letter that is actually written below the finite con-
trol. The arrows indicate the direction in which the input head moves. A representa-
tive example is given in Fig. 1.

For our purpose it is technically useful to have a Turing tape with no more than
two symbols. By this we avoid the terminators and expect a tape that is arbitrarily
filled with letters from {0, 1}. Of course, we cannot recognize an arbitrary context-
sensitive language L on such a tape since we would be unable to identify the end
of the input word. Instead of L we accept the language 0114(L)011 where the en-
coding A is given by

h(0) =110, h(1) =101.

It is not difficult to transform a linearly bounded automaton for L into a linearly
bounded automaton for 011A(L)011 (where 011 is used as a ‘‘software end-
marker’’). This is shown in Fig. 2.

We find it convenient to use a transition function

J:0x{0,1} 2R LRLLR}x{0,1}xQ

where R means move to the right, L means move to the left, and both RL and LR

0 1 1 1 1 0 1 0 1 0 1 1
g - @ @l— 2z - Zd—- A~ ¢ - - o ¢ - w— @
0 1 1 1 0 1 1 1 0 0 1 IJ
e sl s + vl we w « e v v — sle— s~ s
0 1 1 1 0 1 1 0 1 0 1 1
gx - 2= - oz = s> B> 2 - - = oy — ¥ — ¥
0 1 1 1 1 0 1 0 1 0 1 l(j
t

Fig. 2. In the upper index we store up to two letters that have just been read and in the lower index we
store up to two letters that have just been written.

34 J. Dassow, F. Hinz

—p
write l I
read ‘ I
—

a

|0 1
[e—
write | dru 7T
—
read r urd
write | dlu]
read | | uld

b

right—to—left | rddl
left—to—right | lddr
C

Fig. 3.

mean keep stationary. We use four symbols instead of the usual three symbols as
we want to indicate whether a stationary step is after moving right and before
moving left (RL) or after moving left and before moving right (LR).

A Turing tape with defect is a tape that may nondeterministically change the con-
tents of cells in the absence of the read-write-head from 0 to 1 or from 1 to 0. We
say that a serious defect occurs if both a 1 is changed to a 0 and a 0 is changed to
a 1. If only Os are changed to 1s this defect is considered to be nonserious, because
the automaton can detect such a defect as it finds a block 111 where it expects to
read a marker 011 or #(0)=110 or A(1)=101, and it refuses to enter a final state.

To be able to represent a run with defect in our rectangle scheme it is necessary
to distinguish between reading a letter and drawing a letter. We use the functions
of Fig. 3(a). The pictures of Fig. 3(a) are drawn from left to right if the machine

Fig. 4.

Decision problems 35

scans the tape from left to right, and they are drawn in the other direction otherwise.
Thus we need four functions represented in Fig. 3(b). To change the direction and
to start a new scan we need two constants as represented in Fig. 3(c), namely the
constant right-to-left in order to change from the (2/ —1)st scan to the 2ith scan and
the constant /eft-to-right in order to change from the 2ith scan to the (2/ + 1)st scan.
In this representation the run of Fig. 1 looks like Fig. 4.

A regular grammar to describe such a run of a linearly bounded automaton M =
(0, {0, 1}, g4, 5, F) in normal form is G =(Q, 7, gy, P) where P contains the following
rules

qg- A, for geF,

q — read (a) write(b) ¢, if (R,b,q")€d(g,a),
q — read (a) write(b)right-to-left q', if (RL,b,q’) € 6(q,a),
q - read(a) write(b) ¢', if (R,b,q')€6(q,),
q — read(a) write(b)right-to-left ¢', if (RL,b,q’) € (g, a).

The above table does not only define a grammar G, but it also induces in an obvious
way a bijective relation between a derivation in G and a run of M (on a possible
defect tape). By the construction of G reading a cell of the tape in the ith scan is
performed two unit lines below writing in the same cell in the (i —1)st scan (if that
cell is visited in the (j—1)st scan). Thus if no defect occurs, the picture drawn by
G contains only the pictures py, and p,, of Fig. 5 as subpictures, but if a serious
defect occurs it also contains the pictures p,; and p;, as subpictures.

As an accepting computation of the linearly bounded automaton corresponds to
a run without defect and as the emptiness problem is undecidable for languages
accepted by linearly bounded automata, we obtain the following theorem.

Theorem 3.1. It is undecidable whether or not a regular picture language contains
the above picture py, as a universal subpicture.

Before we consider universal subpictures different from p,; we apply Theorem
3.1 to obtain the undecidability of question Q1 for some graph-theoretical prop-
erties.

HH

Poo Poy P P
Fig. 5.

36 J. Dassow, F. Hinz

>—t—s
Poo Pox Pho 20
Fig. 6.

Theorem 3.2. It is undecidable whether or not a regular picture language contains

(i) a simple curve,
(il) a closed simple curve,

(iii) an Eulerian graph,
(iv) an Eulerian cycle,
(V) a tree,

(vi) a regular graph,

(vil) @ Hamiltonian graph,

(viii) @ Hamiltonian cycle,

(ix) a graph edge-colourable by three colours,
(X) a 2-connected graph.

0 1
*—t—s
write i I
read
| o 1
write | d?rdlu? r?
read r? u2r3d?
right—to—left | rid*l2
left—to—right | I2d*r?
a
Poo” ra” P10” ru”
b

Decision problems 37

Proof. Let p be a picture generated by the grammar G as above and corresponding
to a run without defect. Then p is a simple curve (Eulerian, a tree) if and only if
p does not contain the subpicture p,,. Now (i), (iii) and (v) follow from Theorem
3.1.

Obviously, if p is a simple curve, then it can be closed in the grid. This closed
simple curve forms an Euclerian cycle which is contained in SUPER (Pic(G)). Fur-
thermore, p,, is a universal subpicture of Pic(G) if and only if it also is a universal
subpicture of SUPER(Pic(G)). This implies (ii) and (iv).

As mentioned in [S] a graph consisting of at least two edges is regular if and only
if it 1s a closed simple curve. Thus (vi) follows.

In order to prove (vii)-(x) we modify G. First we replace every letter b € n by the
word bb. Thus we enlarge every picture by the factor two. Now the characteristic
subpictures are those of Fig. 6. It is easy to see that a graph containing pg; and
having a start node of degree 1 cannot be Hamiltonian. On the other hand, a picture
corresponding to a run without defect is still a simple curve. Therefore (vii) holds.
(viii) follows as above since we can proceed from a curve to a cycle.

Note that, for every letter @ € n, we have

write(a) = inv(write(a)) and read(a) = inv(read(a)).

In all the following modifications we preserve this property, thus we only need to
define write and read explicitly.

So far all pictures generated can be edge-coloured by at most three colours. Figure
7 presents a modification such that a picture can be edge-coloured by three colours
if and only if it corresponds to a run without defect if and only if py,’’ is not a sub-
picture (see Fig. 7(b)). This implies (ix).

While up to now we used connected characteristic subpictures in case of a serious
defect and disconnected characteristic subpictures in case of a run without defect
we now do the opposite (see Fig. 8). Clearly, a run with a serious defect results in
a picture that contains subpicture p,,’’’, and it is not 2-connected. However, a pic-
ture corresponding to a run without defect is not 2-connected since there are prob-
lems in the first row when we use letters from the input and there may arise problems
in the last row when the machine prints letters that it will never read in a later scan.

The problem of the last row can easily be avoided by requiring that the linearly
bounded automaton prints only 0 in the last scan of an arbitrary run which can be
required without loss of generality. Furthermore, the suffix right-to-left has to be
cancelled at every end of every word generated by the regular grammar.

Lo o
b ¢
? 9 [i{

n; __ »nro__ »s 1]
Doo =P =PpPn por”

Fig. 8.

38 J. Dassow, F. Hinz

In order to solve the problem occurring in the first row we introduce a copy A4’
for every variable A4 used in the grammar so far. These primed versions will be used
in the first row. Thus, if S is the start symbol, now S’ is the start symbol. For every
rule of the form

A - read (a)write(b)B or A —read(a)write(b)right-to-left B
we add the rule
A’ > rrwrite(b)B’ or A — read (a) write(b)right-to-left B,

respectively. By these modifications there is no one-to-one correspondence between
a run of the machine and a derivation of the grammar; several runs correspond to
one derivation, and several derivations may also describe the same picture since
Db’ =D '=p1’’". The crucial issue is that we are still sure that a subpicture
Do’’’ of p occurs if and only if there is a serious defect in every run that corre-
sponds to some description of p. Every picture described by the grammar that does
not contain py,’’’ is 2-connected. Thus we obtain (x). [

Finally in this section let us return to the universal subpicture problem. Note that
on the way we have proved that for pg; and py,’’ it is undecidable whether or not
the picture is a universal subpicture of a regular language. The same holds for all
pictures shown in Fig. 9 since they are subpictures of p,,’’ and do not appear in
any picture drawn by a grammar used in the proof of Theorem 3.2(ix) and accor-
ding to a run without defect.

It is not difficult to prove an undecidability result for any other picture that is
large enough by a suitable modification of the grammar. For pictures of at most
one unit line, i.e., pic(1), pic(r), and pic(u), the question is easily proved to be
decidable. For the picture pic(uu), the undecidability can be proved using the fol-
lowing constructors:

0 1

_—

write dur r
read r udr

right-to-left drdl
left-to-right ldidrr

0 1

write rr durdurdu
read (Wd*ruPd® wld*r)*uld?

right-to-left d*
left-to-right d*

Decision problems 39

el ae
SRR o o

Fig. 9. Subpictures of py,”’ that are sufficient to detect a defect.

The characteristic subpictures for this construction are

4 4 4
fasd sy o Py

and therefore pic(uu) is a subpicture of p(()‘}). It can easily be seen that pic(uu) is not

contained in a picture corresponding to a run without defect in this grammar.
As an open question we leave the universal subpicture problem concerning the
picture pic(ru).

4. Undecidable problems for generalized picture languages

All undecidability results for regular picture languages trivially also hold for
generalized picture languages. Yet there are some properties of pictures that are of
interest only for generalized picture languages. It is shown in [6] that it is undecidable
whether or not a linear generalized picture language

(1) contains no connected picture and

(2) contains no disconnected picture.

We apply the method presented in Section 3 to extend these results to the class of
regular generalized picture languages.

Theorem 4.1. It is undecidable whether or not a generalized regular picture lan-
guage contains only

(i) disconnected pictures,

(ii) connected pictures.

40 J. Dassow, F. Hinz

Proof. (i) We construct a regular grammar G, by

0 1

write dulrl d?u?trl
read udlrl Trl

right-to-left dd
left-to-right 1dd|

The characteristic subpictures are

g . :

(5) 5
Poo Pgl) PE?)) pgsl)

Clearly, all columns of a picture described by G, form connected pictures (every
column for itself), if the description of this picture corresponds to a run without
defect. In order to connect the columns with each other we need the following modi-
fication: Provide a new variable 4, and rules A, — rd,, Ay— A4y, Ay— A, and for
every rule of the form A — A, we insert a rule A — 4,. This construction allows to
connect the columns in the last row. Thus, if every column is connected itself, the
grammar generates a connected picture. But if a column is not connected itself,
the modification will not allow to hide this defect, since there are no parallel hori-
zontal lines besides that in the last row.

(ii) To prove this theorem we can basically use the same construction as in the
proof of Theorem 3.1, especially the same write and read function. Yet if we finish
the ith line, we do not connect it with the (i+ 1)st line but with the (/+2)nd line
using right-to-left =ru*d®u*11| for even i and left-to-right = lu*d®u?1 r| for odd i.
So far, for a picture corresponding to a run without defect there are two com-
ponents, one of them consisting of the odd lines and the other one consisting of the
even lines.

The discussion of a run with defect is a bit more complicated. Clearly, as soon
as the first defect occurs an odd line and an even line will be connected. Therefore,
if all odd lines are connected by subwords left-to-right and all even lines are con-
nected by subwords right-to-left the whole picture forms one component. This
works very well as long as the run keeps the form of a rectangle. But as a defect
may cheat the machine concerning the correct position of an endmarker, a run with
a defect need not obey the rectangle form. We now analyze the connection of two

Decision problems 41

defect
l—":jv4 :
s' s e e

! $=S
a b ¢

Fig. 10.

successive odd lines in the presence of such a defect. The connection of two succes-
sive even lines can be studied in the same way.

Let s be the horizontal component of the start point of the (2i—1)st line and e
the horizontal component of its endpoint. Similarly, we define s’ and ¢’ for the
(2i+1)st line. Note that s’<e since the 2jth line scans from right to left. We dis-
tinguish three cases concerning e’.

Case 1: e’ze (Fig. 10(a)). For s'<e<e’ the subword right-to-left of line 2i—1
draws a connection.

Case 2: s<e’'<e(Fig. 10(b)). The subword right-to-left of row 2i +1 draws a con-
nection.

Case 3: e’<s (Fig. 10(c)). The subword right-to-left of line 2i + 1 draws a connec-
tion to line 2/, but a direct connection to row 2/ —1 does not exist. Since s<s’ row
2i has overread the marker. Therefore there has to appear a serious defect which
connects line 27/ and line 2/ —1.

5. An application to classical formal language theory

In this section we state the undecidability of a problem in “‘classical’’ formal lan-
guage theory but in the proof we shall use picture languages, and thus we demon-
strate the usefulness of picture languages for ‘‘classical’’ string languages.

Theorem 5.1. There is a fixed linear language L such that it is undecidable for
regular grammars G whether or not L(G)C L.

Proof. We consider the languages

Ly = {uw,rddlw,u: w, € {r,dru,urd}*, wye {I, dlu, uld }*, #.(w;) = #,(w,)}
and
Ly = {uwyrddlw u: wye {I,dlu, uld }*, wi € {r,dru,urd }*, #.(w;) = #,(w,)}.

In both cases we use the basic ideas on which the construction in the proof of
Theorem 3.1 is based. Moreover, by the right-fo-left part in L; and the left-to-right

42 J. Dassow, F. Hinz

part in L, pictures corresponding to words in L; and L, have the same start- and
endpoint. Thus the language

L=n*L,UL,)n*

contains no description of a tree. Furthermore, L is linear. Now let G be a regular
grammar which simulates the work of a linearly bounded automaton as in the proof
of Theorem 3.1. Then we obtain L(G)=R c L if and only if Pic(G) contains no
trees. Thus the decidability of ““R C L?”’ would imply the decidability of the exis-
tence of a tree in Pic(G) in contradiction to Theorem 3.1, O

Note that L can also be accepted by a one-counter machine. Some applications
of Theorem 5.1 are given in [12].

6. Some decidable problems

In this section we consider properties of pictures such that the existence of some
picture with this property in the language or the appearance of this property in all
pictures of the language are decidable.

Let L, be the set of all words describing pictures for which start- and endpoints
coincide. Note that the associated set of Parikh vectors

Y(Ly) = {c(1,1,0,0)+ (0,0, 1, 1): ¢, c’e Ny}

is semilinear. Furthermore, every word w with ¥(w)e ¥(Ly) is an element of L,.
This is, Lg is characterized by ¥(Lg).

To prove the following theorem we need the following facts on semilinear sets
(see [9]):

- Semilinear sets are closed under intersection.

- Membership and the emptiness problem are decidable for semilinear sets.

Theorem 6.1. For context-free picture languages B, it is decidable whether or not
all pictures of B are trees.

Proof. Let G be a context-free grammar with Pic(G)= B. First assume B contains
a picture p which is not a tree. Let p = pic(w) for some we L(G). Then w contains
a subword w’ such that the first and the last letter of w’ are not inverse to each other
and pic(w’) is a closed curve (take a minimal description of a closed curve in p).
Thus w’ is contained in

L = SUB(L(G)\ (rn*I U In*rU un*d U dn*u U {1})

(SUB(K) denotes the set of all subwords of the language K) and Y(L)N¥(L,) is
not empty.
On the other hand, if ¥(L)N ¥(L,) is nonempty then B contains a nontree since

Decision problems 43

the words v with ¥ (v)e ¥(L,) describe closed curves, i.e., L(G) contains v'vv”
which describes a nontree.

Since G is context-free, L is also context-free. Thus ¥(L) is semilinear, and there-
fore the emptiness of (L) N ¥ (K,) is decidable. Hence the existence of a nontree
is decidable. [J

We now present a lemma which will be used in the proof of the following theorem.

Lemma 6.2. For any regular language L the language fac(L) defined by
Jac(L) = {w: w"e L for some n>0}

is regular.

Proof. Let A=(Q, 2,3, g F) be a deterministic finite automaton with L(4)=L.
For q,q’€ Q, we set

L(q: ql) = {W: 5((], W) = q,}

A word of the form w” is in L if and only if there is a sequence of states
404y, ---»q, With g, € F such that, for O0=si<n-1, we L(g;,q;,,)- With any such
sequence we associate the intersection

L(qo,)N L{g, @) N - N L(G,_1,),

which is a regular language. The union of all these intersections is fac(L). Although
there are infinitely many sequences, there are only finitely many possibilities for the
intersection language, since intersection is commutative and idempotent. This is,
Jfac(L) can be considered as a finite union of regular languages, which finishes the
proof. [l

Moreover, we need the following facts on matrix languages (see [7]).

Fact 6.3. (i) The emptiness problem is decidable for matrix languages.
(i1) The family of matrix languages is closed under intersection with regular lan-
guages and union.

Furthermore, we have to recall the notion of retreats as redundant retreats and
their properties.

A retreat is a word of the form winv(w). For example, the word w = rudr contains
a retreat. It is easy to see that there is no retreat-free description of pic(w). In con-
trast, for every simple curve, there exists a retreat-free description. (If the simple
curve is not closed, such a description starts at one of the nodes of degree 1 and
ends at the other.) However, a word of the form w=xyinv(y) yz contains the sub-
word yinv(y)y, which describes a subpiciure of pic(w) which is traversed three

44 J. Dassow, F. Hinz

times. Therefore this subword can be replaced by y, i.e., pic(w)=pic(xyz). Such
subwords are called redundant retreats.

The language r — red(w) of all words that can be formed by successive deletions
of redundant retreats from w is formally given by the conditions:

- wer—red(w),

- if xyinv(y)yz e r —red(w), then xyzer—red(w).
A word is called redundant-retreat-free if no further deletions are possible, i.e., if
it does not contain a subword of the form yinv(y) y. Of course, every retreat-free
word is redundant-retreat-free, however, rudr is redundant-retreat-free and not
retreat-free.

We extend the operators r—red and inv to languages by

inv(L) = {inv(w): welL}, r—red(L) = U r—red(w).
wel

Obviously, we have the following

Fact 6.4. For every language L, pic(L) = pic(inv(L))= pic(r —red(L)).

From the well-known closure properties of the family of regular languages and
[10, Theorem 3.2] (see [4] for a related result) we obtain

Fact 6.5. For every regular language L, inv(L) and r—red(L) also are regular.

Let us now study simple curves. We already mentioned that, for every simple
curve, there exists a retreat-free description. Yet there are descriptions that are
redundant-retreat-free according to our definition and not retreat-free. In general,
we decompose a description w of a simple curve into maximal retreat-free subwords
W=y Yy... ¥y FOr 1=j<m, let z; be the suffix of y; with

|Zﬂ =mj"{|yj|, |)’j+1‘}’
and for 1<j=<m, let x; be the prefix of z; with
|le =min{lyj—1" | i}

It is easy to see that z;x; ., is a retreat, i.e., z; =inv(x;,,) for 1<j<m. Now assume
that x; =y, =z, for some 1< j<m, then the subword z;_; y;x;., of wis a redundant
retreat. This implies the following

Fact 6.6. For redundant-retreat-free words w with the above factorization there
exists an ne {0,1,...,m} such that
lyll < Iy2l << lynl and Iyn+1| = Iyn+2| == |ym]

Moreover, n can be choosen as the maximal index j with x; #y;, if such a j exists,
and n=1 otherwise. Furthermore, we have | y,| = |y;| for every je {1,2,...,m} and

pic(y,) =pic(w).

Decision problems 45

Additionally to the above definition let w'=inv(y,)inv(y,_1)...inv(y;) and w"=
inv(y,)inv(y, 1) -..inv(y,,1)- Then it is easy to see that r—red(w'ww") contains
a retreat-free description of pic(w). Combining this with Facts 6.4 and 6.5 we get

Fact 6.7. Let B be a picture language, and let L be a regular string language such
that B=SUPER(Pic(L)). Then the regular language r — red(n* Ln*) describes B and
contains a retreat-free description of every simple curve in B.

Theorem 6.8. For regular picture languages B the following problems are decidable:
(i) Does B contain a rectangle?
(ii) Are all pictures of B rectangles?
(iii) Does B contain a convex curve?

Proof. (i) Let G be a regular grammar with B= Pic(G). If we decide that a straight
line or the empty picture is a rectangle, we may check in the first step whether L(G)
contains a word in {#,d}*U {r,1}*. Obviously, the answer is positive if and only if
B contains a rectangle of height 0 or width 0. If the answer is negative, we have to
search for a rectangle with height = 1 and width = 1.

By Fact 6.5, there is a finite automaton A such that

L(A) = r—red(L(G)).

By Fact 6.4, L(A) is a description of B.

We shall construct a matrix grammar H such that

(a) every we L(H) describes a rectangle and

(b) every minimal we L(A) that describes a rectangle is contained in L{H),
where minimal means that, for every w’e L(A4) with pic(w’') = pic(w), |w|=<|w’|.
Then B contains a rectangle if and only if L(H)NL(A) is nonempty, which is
decidable by Fact 6.3.

For every such minimal word w € L(A) we shall give a characterization by a finite
sequence ch(w). Since there will be only a finite set of such sequences c#, we only
need to give a matrix grammar H,, that generates every minimal we L(A4) with
ch(w)=ch. Then we are done by L(H)=J,, L(H4)-

As a standard description of a rectangle we choose the clockwise description
wy i =u"r'd"l’, and we also use the counter-clockwise description inv(wy).

Let A have k states. Note that every minimal word w in L(A) is redundant-retreat-
free (Fact 6.4). If w describes a simple curve, we can write w as a concatenation of
retreat-free subwords as in Fact 6.6. It is easy to see that, by the minimality of w,
every node in pic(w) is traversed at most k times in the prefix y,»,... ¥, and at
most k times in the suffix y,,(¥,,2... y» of w. Especially, m=<2k and every y;
traverses its startpoint no more than k times.

Furthermore, if w describes a rectangle, then every y; is a subword of w,’f’ }” or of
inv(w,)**!. Thus in order to characterize y; we give its first letter fi(y)), its last
letter /la(y;), a flag f1, of value c/ or co denoting clockwise or counter-clockwise for

46 J. Dassow, F. Hinz

w,’{ or inv(w,,)¥*1, respectively, and the number min(j) which gives the minimal

number # such that y; is a subword of wi ' or inv(w, ;)¥*!, respectively. Note that

there are only finitely many possible characterizations, since min(j)<k+1. Then
the whole word w can be characterized by
ch(w) = (fi(y,), min(1), fi(y;), min(2), ..., fi(y,), min(n), fl,,
la(y,), min(n+1),la(y, 1), ..., min(m), la(y,,)).

From this sequence all characterizations of the words y; can be constructed, since
la(y;)=inv(fi(y;;+1)) and fl;#f1;,,. Since m=<2k there is only a finite set of pos-
sible sequences ch(w).

For exampie, the sequence

ch=(u2,u3,col,1,d)
represents all words of the form
w=ufrid" i r'diuilid" vyt rsd’,

where the relations p<h, g<h, s<i, t<h have to hold to ensure that w describes
a rectangle, and the relations 1< p, 1<g, 1<s, 1<t have to hold to ensure ch(w) =
ch. For the above (representative) example of ¢4 we construct the matrix grammar
H,,=(,n,M,S) where

V={S,RL,D,UU,D,Uy,R,R,L,U', D, Uj,Di, Uy, D3}.

and M is the following set of matrices:
- initial matrix:

my={(S— U RDLURU,(LDRU)"R,D)),
- horizontal matrices:

hy = (R ->rR"),

hy = (L —IL),
h3 = (Rz-’ lRér),
hy = (R~ Ry),

hs=(R"->R L'>L,R"-R L->L R —-RL—->L,R >R R,~R;),
- vertical matrices:

v = (U~ U)),

Uy = (Ul - uUll)’

vy =(D—dD"),

vy =(U-ulU,

05 = (UZ—"dUZ,u),

Decision problems 47

bg = (UZ_—) U2/)7
v; = (D, ~>dDy),
vg = (D, - D)),
vy =(U,-»U,D'>D,U - U, U;» U,,D'>D,U'-> U,D' - D,D;~D,),
- final matrix:
my=U-u,R>r,D>dL->L,U-uR->r,Uy—ud, L—-1,D-d,
RonU-ulL->l[D->dR->r,U-uR,—Ir,D —d).

It is straightforward to show that all words generated by H_., describe rectangles
and that all redundant-retreat-free descriptions w of rectangles with ch(w)=ch are
in fact generated by H_,. Such a construction can be done for every ch, which
finishes the proof of (i).

(ii) By pumping techniques (see, e.g., [16]) it is easy to see that a regular picture
language which contains only rectangles has to be finite, except, of course, rec-
tangles of height 0 or width 0. Therefore, for a regular grammar G with Pic(G)=B
we have the following algorithm:

(1) Construct the regular grammar G’ with L(G')=L(G)\ ({u, d}*VU {r,[}*).
(The words in {u,d}*U {r,/}* describe degenerated rectangles.)

(2) Decide whether or not Pic(G’) is finite (see [18]).

(3) If the answer is ‘“‘no’’, then G generates a nonrectangle, else check whether
or not all pictures are rectangles.

(iii) For a given regular grammar G, we have to check whether or not Pic(G)=B
contains a simple convex curve.

We first construct a regular language L that contains a minimal description of
a simple closed convex curve if and only if B contains a simple convex curve. By
definition of convexity, B contains a simple convex curve if and only if SUPER(B)
contains a simple closed convex curve. By Fact 6.3, the regular language L' =
r—red(n*L(G)n*) describes SUPER(B) and contains a retreat-free description of
every simple convex curve in SUPER(B). The language L’'7* contains a retreat-free
description of a simple closed convex curve that starts and ends in the same node
if and only if L’ contains a retreat-free description of a simple convex curve. Note
that every such description of a simple closed convex curve p has to be of the form
w' where w is a minimal description of p and i >0. Hence we set L = fac(L'n*), and
then L contains a minimal description of w of every simple closed convex curve in
Pic(L'wn*). By Lemma 6.2, L is a regular set.

In [2] it is shown that it is decidable whether or not a regular language L contains
a word g which describes a simple closed convex curve and contains no subword
describing a closed curve. Obviously, B contains a convex curve if and only if L con-
tains such a word ¢. This completes the proof. []

48 J. Dassow, F. Hinz
7. Conclusion

We have shown that the universal subpicture problem is undecidable for almost
all pictures and regular grammars. As an application we proved the undecidability
of the question whether or not a regular picture language contains a picture with
a given property for some geometrical and graph-theoretical properties.

From the literature it is known that the problems of ¢‘classical’’ formal language
theory are also almost undecidable for regular picture languages. Therefore stripe
and 3-way languages are introduced in [15,19] in order to obtain better properties.
A picture language B is called a stripe language if there are constants &, d, and d,
such that, for all pictures p e B and all nodes (m, n) of p,

km+d sn<km+d,.

It is called a 3-way language if B = Pic(G) for some grammar which generates only
words over {r,d,u}. By [11,19] there are string representation theorems for the pic-
tures of a regular picture language which is a stripe or 3-way language. These techni-
gues can be used as in [5,11,19] to obtain that all the problems mentioned above,
which are undecidable for regular picture languages, are decidable for regular stripe
languages and regular 3-way languages. On the other hand, the proofs in [5] are
given by linear stripe languages (sometimes slight modifications are necessary), and
thus all above problems are undecidable for linear stripe languages.

Moreover, undecidability of a problem for picture languages implies the un-
decidability of this problem for generalized picture languages. But we do not know
what is the situation with respect to generalized regular picture languages and the
problems:

(1) existence of a rectangle,

(2) existence of a convex curve,

(3) are all pictures rectangles,

(4) are all pictures trees.

These problems are shown to be decidable for regular picture languages ((4) even
for context-free picture languages), and we note that (2) is undecidable for linear
stripe languages.

Acknowledgement

We are grateful to K. Slowinski who pointed out an error in an earlier version
of this paper.

Decision problems 49
References

[1] D. Beauquier, An undecidable problem about rational sets and contour words of polyominoes, In-
form. Process. Lett. 37 (1991) 257-263.

[2] D. Beauquier, M. Latteux and K. Slowinski, A decidability result about convex polyominoes, Tech.
Rep. IT 214, University Lille, Lille (1991).

[31 C. Berge, Theory of Graphs and Applications (Wiley, New York, 1962).

[4] J.C. Birget, Basic techniques for two-way finite automata, in: Proceedings LIPT Spring School For-
mal Properties of Finite Automata and Applications, Lecture Notes in Computer Science 386
(Springer, Berlin, 1989) 56-64.

[5]1 J. Dassow, Graph-theoretical properties and chain code picture languages, J. Inform. Process.
Cybernet. 25 (1989) 423-433.

[6] J. Dassow, On the connectedness of pictures in chain code picture languages, Theoret. Comput.
Sci. 81 (1991) 289-294.

[7]1 J. Dassow and Gh. Paun, Regulated Rewriting in Formal Language Theory (Springer, Berlin,
1989).

[8] H. Freeman, Computer processing of line-drawing images, Comput. Surveys 6 (1974) 57-97.

[9] S. Ginsburg, The Mathematical Theory of Context-Free Languages (McGraw-Hill, New York,
1966).

[10] F. Hinz, Classes of picture languages that cannot be distinguished in the chain code concept and
the deletion of redundant retreats, in: Proceedings STACS’89, Lecture Notes in Computer Science
349 (Springer, Berlin, 1989) 132-143.

[11] F. Hinz, The equivalence problem for three-way picture languages, Manuscript.

[12] F. Hinz and J. Dassow, An undecidability result for regular languages and its application to
regulated rewriting, Bull. EATCS 38 (1989) 168-174.

[13] F. Hinz and E. Welzl, Regular chain code picture languages with invisible lines, Report 252, IIG,
Technische Graz, Graz (1988).

[14] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation
(Addison-Wesley, Reading, MA, 1979).

[15] C. Kim, Complexity and decidability for restricted classes of picture languages, Theoret. Comput.
Sci. 73 (1990) 295-311.

[16] C. Kim, Picture iteration and picture ambiguity, J. Comput. System Sci. 40 (1990) 289-306.

[17] C. Kim and I.H. Sudborough, The membership and equivalence problem for picture languages,
Theoret. Comput. Sci. 52 (1987) 177-192.

[18] H.W. Maurer, G. Rozenberg and E. Welzl, Using string languages to describe picture languages,
Inform. and Control 54 (1982) 155-185.

[19] I.H. Sudborough and E. Welzl, Complexity and decidability of chain code picture languages,
Theoret. Comput. Sci. 36 (1985) 175-202.

