
J. Symbolic Computation (1991) 12, 415-426

Double Coset Enumeration

STEPHEN A. L INTON

Department of Pure Mathematics and Mathematical Statistics,
16 Mill Lane, Cambridge CB2 1SB, UK

(Received 9 May 1988)

Coset enumeration is the principal method for solving the word problem in finitely presented
groups. The technique has a long history and was one of the first applications of electronic
computers to pure mathematics. Present applications are limited by the space available to store
the coset table in computer memory. Enumerating double cosets offers a substantial saving of
spaee in suitable cases. An algorithm is described with some notes on implementation.

i . Introduction

In order to work with a finitely presented group, it is normally necessary to devise a means
of determining if a given word in the generators is equal to the identity element of the
group, or equivalently to determine whether two words generate the same element. Such a
means is called a solution for the word problem of the group. It is widely known that the
word problem for finitely presented groups is unsolvable in general (see, for example,
chapter 13 of Rotman, 1984). However, in a great many cases of practical interest (such as
groups of finite order) it can be solved, and a major technique for doing so is coset
enumeration. This technique has a long history, dating back to the 1930s, and was one of
the first areas of pure mathematics to make use of electronic computers when they became
available. An account of the basic techniques appears in Leech (1984) and the history is
described in Leech (1963). The principal limitation on modern computer implementations
of (single) coset enumeration is the space required to store the coset table. An enticing
approach to circumventing this problem is to enumerate double, rather than single, cosets.
This paper describes an algorithm for double coset enumeration and includes some notes
on computer implementation.

The basis of the algorithm was described by Corlway in 1984. A more detailed
description, correcting some errors and omissions was provided by Parker (1987), and
some further errors and omissions are corrected here and it is implemented. The algorithm
has been used to check a presentation for 22.2E6(2), whose largest subgroup has index
3 968 055, that could not be handled by existing (Single Coset Enumeration) programs.

The basic situation is as follows: we have a finitely presented group G with two
subgroups, H- -which is considered to be large, typically a maximal subgroup, and
K--which is considered to be a small well-understood subgroup. We enumerate the
double cosets H g K _ G and establish the action of G upon them. The algorithm as
described imposes very severe restrictions on the choice of subgroup K; in section 6 a
number of possible methods for relaxing these restrictions are discussed.

Essentially, the process is equivalent to the enumeration of single cosets Hg, using
knowledge of K to handle all the cosets in a K-orbit at once for most purposes, thereby

0747-7171/91/100415+ 12 $03.00/0 �9 1991 Academic Press Limited

416 S .A. Linton

saving space and time. In particular, the permutation action of G on the single cosets Hg
can readily be obtained from the output of the Double Coset Enumerator.

A reasonable example to illustrate the process is the sporadic group Fi2,. This is
presented as a Coxeter group (see ATLAS, p. 232) Y442 as shown below, with some
additional relations.

We take

ei di cl bi a b 2 c 2 d 2 e 2

i b3
r

H = Y,32 = (a, bt, ci, di, b2, c2, d2, e2, b3, c3) ~ Fi23 x 2.

G has 306 936 single cosets Hg which have, in fact, been enumerated as such. We can take

K = (b 1, ci, di, el> ~ $5,

whereupon the single cosets are gathered into 6332 double cosets HgK. We can see at once
that almost all the generators of G, apart from those contained in K, commute with K,
which, as we shall see later, is the basic requirement for the algorithm to be useful.

This and other examples throughout the paper are drawn from the conjecture of
Conway, Norton, Soicher and others concerning a possible presentation for the Monster
group. The conjecture, and various related results which have been proved, are described
in Conway et al. (1985b) and Conway & Pritchard (1986).

We shall start by describing the particular model for single coset enumeration which we
use and establishing some notation. Once single coset enumeration is seen in the right light
it is easy to see how understanding of K can be used to extend this to double coset
enumeration in a fairly natural way.

Note: The notation of the ATLAS is used without comment throughout.

2. Single Coset Enumeration

2.1. INTRODUCTION

This section describes the particular technique of single coset enumeration which we will
later extend to double cosets. For a survey of various techniques see Cannon et al. (1973).

We shall consider a finitely presented group G = (X[R), where X is an inverse-closed
generating set and the relator xx -1 has been adjoined to R for each x eX. We also have a
set W of words in X, which generate the subgroup H.

2.2. THE SINGLE COSET TABLE

Following the Todd-Coxeter algorithm we maintain a set S of "single cosets" and a
table which can be considered as a function f : S • X-~ S u {0}. We read f(s, x) = s ' # 0 as
meaning that sx = s' in the "action" of G on the set of cosets S andf(s, x) = 0 as meaning
that sx is still unknown.

We have a Consistency Condition on our table that

f(s, x) --= s' # O~*f(s', x -1) -- s,

so that inverses have the behaviour we expect. We start with an empty table (S = {s} and
f(s, x) --- 0 g x eX) and progressively modify it, retaining the consistency condition, until it

Double Coset Enumeration 417

represents the permutat ion action of X on the cosets Hg. In terms of the table this means
thatf(s, x) # 0 V s, x, that the words in R fix all s ~ S and that the words in W fix some coset
s~ which we identify with H. We also have to ensure that cosets which are distinct in G
remain distinct in S.

It is also convenient to have some way of recording in the table when a coset s has been
proved to be the same (in G) as an earlier coset s' so that references to s can be diverted to
s'. We say that coset s has been deleted. The undele ted image of s is s', if s' has not been
deleted or the undeleted image of s' if it has. Since s' is always earlier in the table than s this
chain must terminate. From time to time we pack the table by replacing all references to
deleted cosets with references to their undeleted images, and then reclaiming the space that
was occupied with deleted cosets.

2.3. PUStlING RELATORS

We follow the H L T version of the Todd-Coxete r algorithm (see Leech, 1984) using
various refinements. In this process the basic operation is pushing a re lator-coset pair (r, s).
The effect of this is to ensure, by modifications to the table, that if r = x l x 2 . . , xn then
s (~ = s, s (1) = s(~ s (2) = s (1)x2 , . . . , s (") = s<n-1)x, are all defined and s (") = s. We then say r
is satisfied at s. Additionally the Todd-Coxeter algorithm ensures that if r ' was satisfied at
s' before we pushed (r, s) then it will be afterwards. When we have pushed each relator r s R
from each coset s e S and each word w e W from sl then we will have finished.

To push (r, s), where r = xl x2 . . . x,, we calculate s~~ s, s ") = st~-l)x~ until either:

(a) we have found s t"), in which case s and s ("l must be the same coset. We record this as
the T y p e A coincidence s = s("); or

(b) s o - t)xj = 0 for some j < n. We then calculate s '(") = s, s '(~- 11 = s,(Ox? 1 until either

(i) we find s '~-1l when we record the type A coincidence s ~ = s'tJ-t); or
(ii) s'(~ -I = 0. If l = j we have shown that sU-1)x: must be equal to s '(I). We record

this as the T y p e B coincidence sU-X)xj = s '(z). Otherwise, we define new cosets to
be st J),.. . , s (~-~) and record Type B coincidences s (J- 1)xj = sU),..., s (z- t~xt = s '(~).

What this has achieved is to store on the Type A and B coincidence stacks, the extra
information which must be added to the coset table to ensure that r will be satisfied at s. A
Type A coincidence is what is traditionally meant by a coincidence, while a Type B
coincidence is roughly the same as what was previously called a deduction Ein Leech
(1984) for instance]. We now have to apply this information to the coset table, taking care
to preserve the consistency condition and all results "r' is satisfied at s'".

T y p e

(1)
(2)
(3)

(4)

2.4. PROCESSING COINCIDENCES

A C o i n c i d e n c e - - s = s'

If s or s' has been deleted replace them by their undeleted images.
If now s = s' Stop, otherwise without loss of generality s < s'.
Empty s', by generating, for each non-zero entry f(s' , x) = s", the Type B coincidence
s'x = s" and then setting f (s ' , x) = f(s", x - l) = O.

Note. A little t ime could be saved by recording s x = s" instead of s ' x = s", however, it
is convenient in double coset enumeration to have a self-contained routine to empty
a row onto the Type B coincidence stack.

Delete the coset s' and record that its undeleted image is s.

418 S.A. Linton

T y p e B co inc idence- - sx = s'

(1) Replace s and s' by their undeleted images.
(2) If f(s, x)= 0 (when by the Consistency Condition we also have f(s', x -1) = 0), set

f(s, x) = s' and f(s', x - i) = s and stop.
(3) Iff(s, x) = s' then stop.
(4) Let s" =f(s, x) generate the Type A coincidence s' = s".

We have thus seen how Type A and B coincidences can each induce the other, so that a
single push can induce a large number of coincidences, and substantially reduce the size
of S.

2.5. IMPROVEMENTS ON THIS ALGORITHM

The "raw" algorithm described above can be dramatically improved in time and space
performance by a number of refinements, all of which apply equally to Double Coset
Enumeration.

L o o k a h e a d - - i n many cases, the "raw" algorithm defines a large number of cosets which
are not used in discovering the "critical" coincidence which causes the table to collapse to
its final form. This problem can be addressed by the programme periodically entering
Lookahead Mode. In this mode relators are pushed as normal (Define Mode), except that if
new cosets would have had to be defined, the push is abandoned, generating no
coincidence. There are a number of strategies for deciding when to enter and leave
lookahead mode.

W e i g h t s - - T h i s is a novel technique due to Parker for deciding the order in which coset-
relator pairs are pushed, Each relator r is assigned a weight wr and each coset has a weight
uv Coset-relator pairs are pushed in order of increasing us+w, , with the new cosets s'
defined during the push having u s, = u~ + w,. With carefully chosen weights wr this can give
a spectacular improvement in performance.

The problem of choosing weights wr for a presentation, is a tricky one. The time and
space required by the algorithm can depend critically on choice of weights. In one
example, changing a single weight from 30 to 32 produced a factor of three improvement
in performance. It seems reasonable that, in general, longer relations should have higher
weights, as they take more resources to push, and are likely to define more cosets; however,
beyond that correct weighting strategy is far from obvious.

A technique which seems quite effective, where it can be applied, is to experiment with
smaller groups, related to the group in question, in an effort to find "correct" weights
there. In the Fischer groups, for example, 22.Fi22 = <Ya32 J S = 1>, 2 x Fi2a = <Ys32 J S = 1>
and 3Fi24= <Ys52 IS = 1> [see ATLAS, p. 232, Conway et al. (1985) and Conway &
Pritchard (1986) for details of this notation]. Appropriate weights for S = 1, and for
various redundant relators that were used could be found in 22.Fi22, refined in 2 x Fi23
and used to get reasonable performance on 3Fi24.

It has been proposed by Soicher (private communication) that the weights wr, and
possibly also us, should be adaptive, so that if a relator produced a large number of
coincidences its weight would decrease, and if it caused a large number of cosets to be
defined its weight should be increased. This has yet to be implemented.

Ear l y -C los ing - -Th i s term was coined by Conway, following the observation that in
hand-enumerations, the final double coset table was often reached long before the
theoretical completion of the enumeration.

Double Coset Enumeration 419

We call a coset table closed if it has no zeroes in it (so that it represents a permutation
action of the free group on X). A closed table will remain closed after future pushes, and
can only get smaller. If a lower bound on the number of cosets is known, the enumeration
can often be shown to be complete at this point. Alternatively, permutations can be
extracted and the relations in R tested using fast permutation-multiplying programs.

Random Strategies--This is another suggestion due to Conway, which has still to be
implemented. He suggested that, rather than using weights, or the more conventional
approaches to deciding what order to push relators and cosets, they should be pushed in a
(suitably biased) random order, until Early-Closing occurs. This strategy is, in fact,
particularly appealing for double coset enumeration, since it would avoid a considerable
amount of overhead (see section 3.5.).

3. Double Coset Enumeration

3.1. INTRODUCTION

We now consider how our understanding of K can be exploited to save space and time.
The group G is now considered to be generated by K u X and X n K is taken to be empty.
For each x e X we set L,~= K c ~ K x-`. We then have that L x ~ L~_~ with an isomorphism
given by

0~: Lx-~ L~_~l ~--, l x

We will assume a detailed understanding of the internal structure of K, and of the
maps 0~. We call L~ the gain group of x, since the space saving in the description of the
action of x on S is roughly proportional to [L~[. For any s e S and any l~Lx, we have
sx = s' ~ .s lx = s'l ~. We thus need only store the action of x on a set of (H, Lx) double coset
representatives. Equivalently, we store the action of x on a set of L~-orbit representatives
in the action on S.

In our example we have

X = {a, b2, c2, d2, e2, b3, c3} and L, = (cl, dl, e l) ~- S,, Lb~ = Lc2 Lea = K.

Each 0~ is the identity. This is typical for a Coxeter presentation; these are very "good"
presentations for double coset enumeration, since it is usually possible to find a subgroup
K, such that most of K commutes with most of X.

3.2. THE DOUBLE COSET TABLE

For each (H, K) double coset D _ G, we pick a representative single coset d (d will
always be the representative for D, d' for D', etc.). We call the set of double cosets @. Our
single cosets s are of the form dk, but these names are not in general unique. Our double
coset table has, for each x e X, a set of columns corresponding to a (particular) set of coset
representatives for L~, the rows of the table correspond to ~ and the entries are in
(~ • K) u {0}. If the entry in the D row of the kx column (where k is one of the coset
representatives for Lx) is (D', k ')~0 , then we read this as indicating that dkx = d'k',
otherwise that dkx is unknown.

In our example we thus have 1 + 1 + 1 + 1 + 1 + 1 + 5 = 11 columns which, coincidentally,
is the same as the number needed in single coset enumeration (there are eleven generators
of which four are in K). However, there are about 6000 double cosets, compared to at least
300 000 single cosets, giving a roughtly 50-fold saving in space.

420 S.A. Linton

There is a space saving even when L~ = {1} V x eX, because no space is needed to store
the action of K on S. For example, in the case of a 2,3-group, G = (x , y lx 2 = y3 = 1) ,
we can take K = (y) and have columns for x, yx and y2x, instead of x, y and y2, while still
reducing the number of rows by a factor of almost three.

In addition we store for each row D the muddle group M d < K given by
Me = {k e K : d k = d}. The number of single cosets in D is given by IK : Mal. There are two
consistency conditions on the double coset table.

(1) For every entry dkx = d'k', when we work out d'k'x -1 we get dk.
(2) For every entry dkx = d'k' (Mkd C3 Lx) x < Mze.

The first is the same condition we had on a single coset table, the second is required to
ensure that the action of X on the single cosets is well-defined (see section 3.3 below).

We retain the concept of a coset (now a double coset D) being deleted; however, we need
to record which single coset d'k' is the same as the representative single coset d of D. The
undeleted image of a single coset dk is then d'(k'k) if D' has not been deleted or d"(k"k'k) if
D' has been deleted and the undeleted image of d' is d"k".

3.3. PUSr~NG RELATORS

The basic operation in pushing an (r, s)-pair (now an (r, dk)-pair) is that of calculating
sx, s ~ S , x ~ X (now dkx, D ~ , k e K , xeX). To do this we find the Lx-coset representative
for k, say k' and look in the (x, k') column in the D row. This will tell us that dk'x = d"k",
say; but now k = k ' l , l e L x , so we can write d k x = d k ' l x = d k ' x l X = d " k " l =, and we can
compute k"l ~ inside K.

When M a > (1}, a single coset dk ~ D will have IMal distinct "names" - - {dmk: m~Md},
and we must ensure that computing dmkx yields the same single coset as computing dkx
(though possibly with a different name).

Without loss of generality assume that there is an entry dkx = d'k' in the double coset
table. We need to ensure that calculating dmkx yields the same single coset d'k' for all
m e Me. We divide cases according to whether mk e kLx or not.

In the first case, we compute

dmkx = dkmkx = dkxrn kx = d'k'm kx,

since rnk~kL~, we have rnk~Mka c~ L x and so, by consistency condition 2, mk~r and
k'mgXr ' and d'k'm ~ is the same single coset as d'k'.

In the second case, we might be looking up the same single coset image sx using
different entries in the double coset table for different names. We avoid this by renaming
single cosets so that they are in the earliest possible L~-coset (in the ordering of the
columns of the table).

We define f=(k) to be the position (in this order) of the coset kL~. We then define a
function

x : X • {M:M <I (} x K - ~ K ,

where ~(x, M, k) is the element m of M which minimises fx(mk). Since left and right regular
actions commute, fx(mkl) =f~(mk) V I e Lx so x(x, M, k) depends on fx(k) and not on k. In
fact ~c (x, M, k) depends only on the column of the double coset table corresponding to k
and x and on M. This provides a convenient way of storing and accessing the table in
implementation.

What this does is to provide a way of finding a canonical (Me, L=)-double coset

Double Coset Enumeration 421

representative of k. We can then look up dkx in the column corresponding to this, and be
sure to get the same result whichever name we choose for our single coset dk. This process
is roughly equivalent to Conway's use of fl-entries (Conway, 1984) to denote that an entry
had been replaced by another, but takes advantage of the full information about the
muddle group Md. The process of calculating dkx is then as follows:

(1) find fx(k);
(2) lookup x(x, Ma, k) using fx(k), getting k' say. Then k' ~ M~ so dkx = dk'kx;
(3) find f~:(k'k)= i, say;
(4) lookup dkox in the double coset table, where ko is the ith Lx-cOset representative.

This is d"k", say;
(5) set l= kolk 'k , l will be in Lx. So dkx = dkolx = dkoxl':;
(6) then dkx = d"(k"IX).

3.4. PROCESSING COINCIDENCES

The above enables us to push relators just as for single coset enumeration, obtaining
either Type A coincidences--dk= d' or Type B co inc idences - -dkx =d 'k ' . Type C
coincidences also exist. We process these as follows.

Type

(1)

A - - d k = d'

Replace dk and d' by their undeleted images.

Note. This process will yield images 2~ and 2'~'. We then replace d with 2, k with
~ , - 1 and d' with 2'.

(2) If D = D' generate the Type C coincidence (k) fixes d. The general form of a Type C
coincidence is M fixes d, where M < K and D e~ .

(3) Otherwise wlog D' > D (inverting k if necessary).
(4) Empty row D' (as for single cosets, generating Type B coincidences).
(5) Generate the Type C coincidence M~; 1 fixes d.
(6) Mark D' as a deleted double coset, with d' replaced by dk.

Type

(1)
(2)

(3)

B - - d k x = d' k'

Replace dk and d'k' by their undeleted images.
If consistency condition (2) is satisfied for the entries corresponding to d k x and
d'k 'x -I then we can proceed, otherwise we generate the Type C coincidences
required--((M~ c~ L~) xk'-' fixes d' and/or (Me e c~ L r~) x-'k-' fixes d), (re)generate the
Type B coincidence d k x = d'k' and stop. There is a risk of looping here, which must
be avoided. This can be simply done by handling all pending Type C coincidences
before any pending Type Bs.
We work out which entries in the double coset table we would use to calculate d k x
and d'k'x-~ and divide cases.

(i) Empty entries in distinct places can be filled at once.
(ii) If at least one entry is non-empty, say d k x = d"k" already, then stack Type A

coincidence d' k' k " - ~ = d".
(iii) If the entries are empty and in the same place, i.e. D = D', x = x -t, k and k'

are in the same (M,l, L~) double coset, then we can fill in the entry, and we have

422 S.A. Linton

additional information. We set k o to be the (Md, L~) double coset representative
for k and k' and suppose k - rnkol and k' = m'kol'. Then

dkolx = dkol' and dkol 'x = dkol,

SO

dkox = dkol'(l~) -1 = dkol(l'~) -z

and
dkol'(lX)-~(l'X)l-tk~-~ = d.

We accordingly generate a Type C C o i n c i d e n c e - - (k o l ' (l ~) - l (U) l - ~ k K l) fixes d.

T y p e C ~ M fixes d.

(1) I f d has undeleted image d'k', we replace d by d' and M by M k'-'.
(2) I f M < Ma then stop.
(3) Empty row D onto the Type B stack.
(4) Set the new value of Md to (M, Md).

Apart from the risk of looping, the pending coincidences may be cleared in any order.
CBA and CAB have been tried, producing similar performance.

3.5. FURTrmR REFINEMENTS

The algorithm presented so far is essentially the corrected version of the algorithm
proposed by Conway (1984). This saves space when compared with the equivalent single
coset enumeration, but takes roughly the same amount of time, since each relator is still
pushed from each single coset. When every letter of the word in K u X , which makes up a
relator, commutes with all or part of K, then some of the pushes are redundant and time
can be saved.

For each relator r we compute a group Nr < K as follows.
If r = w l w 2 . . . Wz, where w ~ K u X then we set Nc~ and for i = 1 , l

if w~ ~ K then N (~ : N (i- l)w~
if wt eX then N (0 = (N (~-1) c~ Lw~) w'.

We then set N, --- N (0 and set No = N, and N, = N~'21 (which we know will be defined
and contained in K).

We can see from the construction that for all ne Nr, n w'' ' ' w~ ~ N k and whenever Wk+ ~ ~ X

we have N~ ___ Lwu§
The point of all this is that when we push r from a single coset s and from sn for n ~ Nr,

we have s n w l . . , wk --- sw~ � 9 Wk nw' ' 'wk, SO that we look up s n w , . , , w~+ ~ in the same entry
of the double coset table as sw~ . . . Wk+~.

So, if r is satisfied at s, it will be satisfied at sn automatically. In general, we have to push
each relator r e R, in each double coset D e ~ , from dk, where k ranges through a set of
(Mn, N,)-double coset representatives.

This substantially speeds up the algorithm, for presentations where N , ~ {1} for a
reasonable number of r, but adds considerable complexity to it. In one example, with
K = S,~, this technique avoided 5 632 854 redundant pushes, leaving only 1 140493 that
actually had to be done. As remarked in section 2.4, this calculation is not needed if
Conway's random strategy is followed.

Double Coset Enumeration 423

4. Implementation Considerations

4.1. WORKING IN K

Throughout the description of the Double Coset Enumeration algorithm, we have
assumed the ability to work freely with elements and subgroups of K. The implementation
of the algorithm by the author used look-up tables, for speed and simplicity of
programming. We number the elements of K, with 1 being numbered 1, and we number
the subgroups of K (not conjugacy classes, the complete lattice of subgroups) with {1}
being numbered 1 and K having the largest number. We store the following look-up
tables.

The multiplication table of K.
For each k e K the cyclic subgroup (k).
For each Mr, M 2 < K the subgroup M1 nM~.
For each M1, M s _< K the subgroup (M1, M2).
For each k e K the element k-~.
For each k e K and M < K the subgroup M k.
A list of coset representatives for each M N K.
A list of elements of each M < K.

The space required by these tables is the main restriction on the groups K which can be
used. For the symmetric group S 5 (120 elements, 156 subgroups), about �89 of storage
space is needed. Tables have been prepared by computer for $4, A5 and Ss, and by hand
for the smaller groups 22, 3, D8 and $3.

As well as these tables describing the structure of K as an abstract group we need to
describe the action of each x E X on K as far as it can be seen, and to describe the structure
of the double coset table, which depends on this. We number the columns of the double
coset table (each column corresponds to an x ~ X and one of the coset representatives of L x
in K) and the elements of X. We use the following tables.

For each x ~ X the subgroup L~.
For each k e K and x ~ X the column of the double coset table in which to look up dkx,

assuming that Ma = {1}.
The table for x--as remarked this has values depending on a column of the double coset

table and a subgroup of K.
Tables giving the elements of X and K corresponding to a given column of the double

coset table.
For each x ~ X and k ~ L x the element k x.
For each xeX and M _< Lx the subgroup M ~.
For each x~X the generator x -t .

As remarked above, these tables make the algorithm relatively simple to implement, and
fast to operate, but limit the size of K.

The technique of weights is implemented by keeping a record of the first (lowest
numbered) row Dw with each weight w and of the last (highest numbered) row D, from
which each relator r has been pushed. There is a current weight wo and each relator r is
pushed in turn from the rows D s N such that D, < D < Dwo_w,+ t. Any new cosets defined
are placed at the end of the table. When this has been done for each r, wc is incremented
and Dw0 is set equal to the number of the first unused row, so that new cosets defined will

424 S .A. Linton

have weight wo. This technique will cope unchanged if relator weights, w r are allowed to
vary during an enumeration, but will not allow easily for changes in coset weights, wo.

4.2. OPTIMISATION TECHNIQUES

Amongst the most complex and time-consuming aspects of the algorithm are the two
double coset reductions: to find the correct column, when looking up dkx, and to work out
which single cosets from a double coset to push. Both of these processes are quite simple,
except when two or mbre of Ma, Lx and N r are proper subgroups of K. These conditions
are quite rare, as in a typical run Lx -- K for all but a few x, Md = 1 for most double cosets
D, during most of the enumeration and Nr ~ {{ 1 }, K} for most relators. A significant saving
in t ime can be made by checking these conditions, and using simplified code where
possible.

In a typical run, 334 964 double coset-relator pairs were handled, of which only 63 433
had bo th Nr and Md proper subgroups of K; in all the other cases the simplified code could
be used.

Another useful observation is that the coincidence stacks are accessed in a very
predictable manner (Last In, First Out) so that they can be efficiently overlayed onto
(slower) secondary storage, which frees more main store for the coset table.

5. Results

Results are given for the following presentations [for the notat ion used see ATLAS,
p. 232, or Conway et al. (1985b), Conway & Pritchard (1986) and Soicher (1987)3.

22.2E6(2) -- (Qgz2 [v ----" 1,f~ -- (A A al bl Cl dl)S>,

2 x C o l - - s e e ATLAS, p. 183 and Soicher (1987),

Fi2, = (Y~421S = 1,fl =f i2 , (ab i C ld le l f iab2c2d2e2ab~e3) 17 = 1),

Fi23 = (Y~32 IS = 1,ft =A2,f21 = 1>,
26 . Lz(7) = <x, y lx 2 = y3 = (xy)7 = [x, y-1 s = 1>.

Single Double Time
Group H K Columns cosets cosets taken

22 . 2E6(2) 23 . 220 . U6(2) S 5][5 3 968 055 39 681 20 min
2 x Cos 3. Suz:2 $5 9 3 091 200 34 213 6 min
Fi2, 2 x Fi23 S~ 12 306 936 6 332 12 min
Fi2a 2Fi22 S 4 11 31 671 2417 90 s
26 . L2(7) 1 3 3 10 572 3 584 16 s

(CPU times are measured on one processor of an IBM 3084Q.)

A highly optimised single coset enumeration program [due to Soicher (private
communication)] took 8 s to enumerate the 10 572 cosets in the same presentation of
26. L2(7) and 167 s to enumerate the 31 671 cosets in the presentation of Fi2a.

It ean be seen that there is considerable variation in speed, average muddle-group size
and other measures. As for single coset enumeration, performance varies wildly between
groups of similar size or even between presentations of the same group.

Double Coset Enumeration 425

6. Possible Future Improvements

A number of techniques have been proposed to reduce the space used by the look-up
tables: by using a representation of elements of K as permutations or matrices, by using
the techniques of the SOGOS system (Laue et al., 1984) to work with elements and
subgroups of a suitable soluble group, or by using the more general package, such as
Cayley (Cannon, 1984), to work with a variety of groups. In evaluating such a proposal we
consider the essential operations which must be performed quickly while the enumerator is
running:

(a) Operations required in the calculation of dkx:

1. finding the (Md, L~)-double coset representative k 0 for k e K and an element l E L~
such that k = mkol;

2. multiplying two elements of K;
3. conjugating an element of L~ by x;
4. inverting an element of K.

(b) Operations required to see that a coincidence is trivial (most are). The operations
listed above plus:

1. checking whether a given element k ~ K is in a subgroup M < K;
2. conjugating a subgroup M < K by an element k ~ K. (In the case where a coset

has been deleted.)

(e) Operations required in processing coincidences. AU the above plus:

1. finding the cyclic subgroup generated by an element of K;
2. inverting an element of X;
3. intersecting a subgroup M < K with a gain group Lx;
4. conjugating a subgroup M < Lx by x ~ X;
5. checking to see if one subgroup contains another;
6. finding the subgroup generated by two subgroups.

(d) Operations required for every double coset pushed. All the above plus:

1. obtain a list of (M~, Nr)-double coset representatives (not needed by the random
version of the algorithm).

(e) Other operations used:

1. to check for early closing a method of calculating the number of entries on the D
row which are in use (rather than being masked out by x) given Md;

2. once early closing has been found, it is useful to know the index of each Mn in K,
so that the number of single cosets can be calculated.

Each proposed representation of K should enable these operations to be performed, but
in no case is the approach entirely simple.

Smaller gains may be obtainable by implementing adaptive weights, or by Conway's
random strategy. Another possible area for improvement, which has not been investigated
in detail, is the order of coincidence processing. Both the order in which the stacks should
be cleared and the question of whether Last In First Out stacks are the best approach at
all remain open questions.

426 S.A. Linton

7. Conclusion

T h e present p r o g r a m represents a substantial improvement over existing (single) coset
enumera t ion techniques for a ra ther restricted set of suitable presentations. Gains o f as
m u c h as 100-fold in space requirements and 10-fold in time requirements are available.
There are a n u m b e r of possibilities for further substantial improvements , mainly in the
representat ion o f the subgroup K, which could lead to much larger gains.

References

Cannon, J. J. (1984). An introduction to the group theory language Cayley. In: Computational Group Theory
(M. Atkinson, ed.), pp. 145-183. London: Academic Press.

Cannon, J. J., Dimino, L. A., Havas, G., Watson, J. M. (1973). Implementation and analysis of the Todd-
Coxeter algorithm. Math. Comp. 27, 463-490.

Conway, J. H. (1984). An algorithm for double coset enumeration? In: Computational Group Theory
(M. Atkinson, ed.), pp. 33-37. London: Academic Press.

Conway, J. H., Pritchard, A. D. (1986). Hyperbolic reflections for the Bimonster and 3Fi2o preprint. 3. Algebra,
to be published.

Conway, J. H., Curtis~ R. T., Norton, S. P., Parker, R. A., Wilson, R. A. (1985a). An ATLAS of Finite Groups.
Oxford: Oxford University Press.

Conway, .1. H., Norton, S. P., Soicher, L. H. (1985b). The Bimonster, the group Ys55, and the projective plane of
order 3. Proc. "Computers in Algebra", Chicago.

Lane, R., Neubiiser, J., Schoenwaelder, U. (1984). Algorithms for finite soluble groups and the SOGOS system.
In: Computational Group Theory (M. Atkinson, ed.), pp. 105-135. London: Academic Press.

Leech, J. (1963). Coset enumeration on digital computers. Proe. Camb. Phil. Soc. 59, 257-267.
Leech, 3. (1984). Coset enumeration. In: Computational Group Theory (M. Atkinson, ed.), pp. 3-18. London:

Academic Press.
Rotman, J. J. (1984). An Introduction to the Theory of Groups. Reading, MA: Allyn & Bacon.
Soicher, L. H. (1987). Presentations for Conway's group Co,. Proc. Camb. Phil. Soc. 102, 1-3.

