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Coset enumeration is the principal method for solving the word problem in finitely presented 
groups. The technique has a long history and was one of the first applications of electronic 
computers to pure mathematics. Present applications are limited by the space available to store 
the coset table in computer memory. Enumerating double cosets offers a substantial saving of 
spaee in suitable cases. An algorithm is described with some notes on implementation. 

i .  Introduction 

In order to work with a finitely presented group, it is normally necessary to devise a means 
of determining if a given word in the generators is equal to the identity element of the 
group, or equivalently to determine whether two words generate the same element. Such a 
means is called a solution for the word problem of the group. It is widely known that the 
word problem for finitely presented groups is unsolvable in general (see, for example, 
chapter 13 of Rotman, 1984). However, in a great many cases of practical interest (such as 
groups of finite order) it can be solved, and a major technique for doing so is coset 
enumeration. This technique has a long history, dating back to the 1930s, and was one of 
the first areas of pure mathematics to make use of electronic computers when they became 
available. An account of the basic techniques appears in Leech (1984) and the history is 
described in Leech (1963). The principal limitation on modern computer implementations 
of (single) coset enumeration is the space required to store the coset table. An enticing 
approach to circumventing this problem is to enumerate double, rather than single, cosets. 
This paper describes an algorithm for double coset enumeration and includes some notes 
on computer implementation. 

The basis of the algorithm was described by Corlway in 1984. A more detailed 
description, correcting some errors and omissions was provided by Parker (1987), and 
some further errors and omissions are corrected here and it is implemented. The algorithm 
has been used to check a presentation for 22.2E6(2), whose largest subgroup has index 
3 968 055, that could not be handled by existing (Single Coset Enumeration) programs. 

The basic situation is as follows: we have a finitely presented group G with two 
subgroups, H- -which  is considered to be large, typically a maximal subgroup, and 
K--which  is considered to be a small well-understood subgroup. We enumerate the 
double cosets H g K _  G and establish the action of G upon them. The algorithm as 
described imposes very severe restrictions on the choice of subgroup K; in section 6 a 
number of possible methods for relaxing these restrictions are discussed. 

Essentially, the process is equivalent to the enumeration of single cosets Hg, using 
knowledge of K to handle all the cosets in a K-orbit at once for most purposes, thereby 
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saving space and time. In particular, the permutation action of G on the single cosets Hg 
can readily be obtained from the output of the Double Coset Enumerator. 

A reasonable example to illustrate the process is the sporadic group Fi2,. This is 
presented as a Coxeter group (see ATLAS, p. 232) Y442 as shown below, with some 
additional relations. 

We take 

ei di  cl bi a b 2 c 2 d 2 e 2 

i b3 
r 

H = Y,32 = (a,  bt, ci, di,  b2, c2, d2, e2, b3, c3) ~ Fi23 x 2. 

G has 306 936 single cosets Hg which have, in fact, been enumerated as such. We can take 

K = (b 1, ci, di, el> ~ $5, 

whereupon the single cosets are gathered into 6332 double cosets HgK. We can see at once 
that  almost all the generators of G, apart from those contained in K, commute with K, 
which, as we shall see later, is the basic requirement for the algorithm to be useful. 

This and other examples throughout the paper are drawn from the conjecture of 
Conway, Norton, Soicher and others concerning a possible presentation for the Monster 
group. The conjecture, and various related results which have been proved, are described 
in Conway et al. (1985b) and Conway & Pritchard (1986). 

We shall start by describing the particular model for single coset enumeration which we 
use and establishing some notation. Once single coset enumeration is seen in the right light 
it is easy to see how understanding of K can be used to extend this to double coset 
enumeration in a fairly natural way. 

Note:  The notation of the ATLAS is used without comment throughout. 

2. Single Coset Enumeration 

2.1. INTRODUCTION 

This section describes the particular technique of single coset enumeration which we will 
later extend to double cosets. For a survey of various techniques see Cannon et al. (1973). 

We shall consider a finitely presented group G = (X[ R), where X is an inverse-closed 
generating set and the relator xx  -1 has been adjoined to R for each x eX. We also have a 
set W of words in X, which generate the subgroup H. 

2.2. THE SINGLE COSET TABLE 

Following the Todd-Coxeter  algorithm we maintain a set S of "single cosets" and a 
table which can be considered as a function f :  S • X-~ S u {0}. We read f(s, x ) =  s ' #  0 as 
meaning that sx = s' in the "action" of G on the set of cosets S andf(s,  x) = 0 as meaning 
that sx is still unknown. 

We have a Consistency Condition on our table that 

f(s, x) --= s' # O~*f(s', x -1) -- s, 

so that inverses have the behaviour we expect. We start with an empty table (S = {s} and 
f(s, x) --- 0 g x eX) and progressively modify it, retaining the consistency condition, until it 
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represents the permutat ion action of X on the cosets Hg. In terms of the table this means 
thatf(s, x) # 0 V s, x, that the words in R fix all s ~ S and that the words in W fix some coset 
s~ which we identify with H. We also have to ensure that cosets which are distinct in G 
remain distinct in S. 

It  is also convenient to have some way of recording in the table when a coset s has been 
proved to be the same (in G) as an earlier coset s' so that references to s can be diverted to 
s'. We say that coset s has been deleted. The undele ted  image  of s is s', if s' has not been 
deleted or the undeleted image of s' if it has. Since s' is always earlier in the table than s this 
chain must terminate. From time to time we pack  the table by replacing all references to 
deleted cosets with references to their undeleted images, and then reclaiming the space that 
was occupied with deleted cosets. 

2.3. PUStlING RELATORS 

We follow the H L T  version of the Todd-Coxete r  algorithm (see Leech, 1984) using 
various refinements. In this process the basic operation is pushing a re lator-coset  pair  (r, s). 
The effect of this is to ensure, by modifications to the table, that if r = x l x 2 . . ,  xn then 
s (~ = s, s (1) = s(~ s (2) = s (1)x2 , . . . ,  s (") = s<n-1)x, are all defined and s (") = s. We then say r 
is satisfied at s. Additionally the Todd-Coxeter  algorithm ensures that if r '  was satisfied at 
s' before we pushed (r, s) then it will be afterwards. When we have pushed each relator  r s R 
from each coset s e S  and each word w e W  from sl then we will have finished. 

To push (r, s), where r = xl x2 . . .  x,, we calculate s~~ s, s " ) =  st~-l)x~ until either: 

(a) we have found s t"), in which case s and s ("l must be the same coset. We record this as 
the T y p e  A coincidence s = s("); or 

(b) s o -  t)xj = 0 for some j < n. We then calculate s '(") = s, s '(~- 11 = s,(Ox? 1 until either 

(i) we find s '~-1l when we record the type A coincidence s ~  = s'tJ-t); or  
(ii) s'(~ -I = 0. If l = j  we have shown that sU-1)x: must  be equal to s '(I). We record 

this as the T y p e  B coincidence sU-X)xj = s '(z). Otherwise, we define new cosets to 
be st J),.. . ,  s (~-~) and record Type B coincidences s (J- 1)xj = sU),..., s (z- t~xt = s '(~). 

What  this has achieved is to store on the Type A and B coincidence stacks, the extra 
information which must  be added to the coset table to ensure that r will be satisfied at  s. A 
Type A coincidence is what is traditionally meant by a coincidence, while a Type  B 
coincidence is roughly the same as what was previously called a deduction Ein Leech 
(1984) for instance]. We now have to apply this information to the coset table, taking care 
to preserve the consistency condition and all results "r' is satisfied at s'". 

T y p e  

(1) 
(2) 
(3) 

(4) 

2.4. PROCESSING COINCIDENCES 

A C o i n c i d e n c e - - s  = s' 

If s or s' has been deleted replace them by their undeleted images. 
If now s = s' Stop, otherwise without loss of generality s < s'. 
Empty  s', by generating, for each non-zero entry f(s' ,  x)  = s", the Type  B coincidence 
s'x = s" and then setting f (s ' ,  x) = f(s",  x - l )  = O. 

Note. A little t ime could be saved by recording s x  = s" instead of s ' x  = s", however,  it 
is convenient in double coset enumeration to have a self-contained routine to empty 
a row onto the Type B coincidence stack. 

Delete the coset s' and record that its undeleted image is s. 



418 S.A. Linton 

T y p e  B co inc idence- - sx  = s' 

(1) Replace s and s' by their undeleted images. 
(2) If f(s, x )=  0 (when by the Consistency Condition we also have f(s', x -1) = 0), set 

f(s, x) = s' and f(s', x -  i) = s and stop. 
(3) Iff(s, x) = s' then stop. 
(4) Let s" =f(s, x) generate the Type A coincidence s' = s". 

We have thus seen how Type A and B coincidences can each induce the other, so that a 
single push can induce a large number of coincidences, and substantially reduce the size 
of S. 

2.5. IMPROVEMENTS ON THIS ALGORITHM 

The "raw" algorithm described above can be dramatically improved in time and space 
performance by a number of refinements, all of which apply equally to Double Coset 
Enumeration. 

L o o k a h e a d - - i n  many cases, the "raw" algorithm defines a large number of cosets which 
are not used in discovering the "critical" coincidence which causes the table to collapse to 
its final form. This problem can be addressed by the programme periodically entering 
Lookahead  Mode.  In this mode relators are pushed as normal (Define Mode),  except that if 
new cosets would have had to be defined, the push is abandoned, generating no 
coincidence. There are a number of strategies for deciding when to enter and leave 
lookahead mode. 

W e i g h t s - - T h i s  is a novel technique due to Parker for deciding the order in which coset- 
relator pairs are pushed, Each relator r is assigned a weight wr and each coset has a weight 
uv Coset-relator pairs are pushed in order of increasing us+w, ,  with the new cosets s' 
defined during the push having u s, = u~ + w,. With carefully chosen weights wr this can give 
a spectacular improvement in performance. 

The problem of choosing weights wr for a presentation, is a tricky one. The time and 
space required by the algorithm can depend critically on choice of weights. In  one 
example, changing a single weight from 30 to 32 produced a factor of three improvement 
in performance. It seems reasonable that, in general, longer relations should have higher 
weights, as they take more resources to push, and are likely to define more cosets; however, 
beyond that correct weighting strategy is far from obvious. 

A technique which seems quite effective, where it can be applied, is to experiment with 
smaller groups, related to the group in question, in an effort to find "correct" weights 
there. In the Fischer groups, for example, 22.Fi22 = <Ya32 J S = 1>, 2 x Fi2a = <Ys32 J S = 1> 
and 3Fi24= <Ys52 IS = 1> [see ATLAS, p. 232, Conway et al. (1985) and Conway & 
Pritchard (1986) for details of this notation]. Appropriate weights for S = 1, and for 
various redundant relators that were used could be found in 22.Fi22, refined in 2 x Fi23 
and used to get reasonable performance on 3Fi24. 

It has been proposed by Soicher (private communication) that the weights wr, and 
possibly also us, should be adaptive, so that if a relator produced a large number of 
coincidences its weight would decrease, and if it caused a large number of cosets to be 
defined its weight should be increased. This has yet to be implemented. 

Ear l y -C los ing - -Th i s  term was coined by Conway, following the observation that in 
hand-enumerations, the final double coset table was often reached long before the 
theoretical completion of the enumeration. 
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We call a coset table closed if it has no zeroes in it (so that it represents a permutation 
action of the free group on X). A closed table will remain closed after future pushes, and 
can only get smaller. If a lower bound on the number of cosets is known, the enumeration 
can often be shown to be complete at this point. Alternatively, permutations can be 
extracted and the relations in R tested using fast permutation-multiplying programs. 

Random Strategies--This  is another suggestion due to Conway, which has still to be 
implemented. He suggested that, rather than using weights, or the more conventional 
approaches to deciding what order to push relators and cosets, they should be pushed in a 
(suitably biased) random order, until Early-Closing occurs. This strategy is, in fact, 
particularly appealing for double coset enumeration, since it would avoid a considerable 
amount of overhead (see section 3.5.). 

3. Double Coset Enumeration 

3.1. INTRODUCTION 

We now consider how our understanding of K can be exploited to save space and time. 
The group G is now considered to be generated by K u X and X n K is taken to be empty. 
For each x e X  we set L,~= K c ~ K  x-`. We then have that L x ~  L~_~ with an isomorphism 
given by 

0~: Lx-~  L~_~l ~--, l x 

We will assume a detailed understanding of the internal structure of K, and of the 
maps 0~. We call L~ the gain group of  x, since the space saving in the description of the 
action of x on S is roughly proportional to [L~[. For any s e S  and any l~Lx, we have 
sx = s' ~ .s lx  = s'l ~. We thus need only store the action of x on a set of (H, Lx) double coset 
representatives. Equivalently, we store the action of x on a set of L~-orbit representatives 
in the action on S. 

In our example we have 

X = {a, b2, c2, d2, e2, b3, c3} and L,  = (cl,  dl, e l )  ~- S,, Lb~ = Lc2 . . . . .  Lea = K. 

Each 0~ is the identity. This is typical for a Coxeter presentation; these are very "good" 
presentations for double coset enumeration, since it is usually possible to find a subgroup 
K, such that most of K commutes with most of X. 

3.2. THE DOUBLE COSET TABLE 

For each (H, K) double coset D _  G, we pick a representative single coset d (d will 
always be the representative for D, d' for D', etc.). We call the set of double cosets @. Our 
single cosets s are of the form dk, but these names are not in general unique. Our double 
coset table has, for each x e X, a set of columns corresponding to a (particular) set of coset 
representatives for L~, the rows of the table correspond to ~ and the entries are in 
(~ • K) u {0}. If the entry in the D row of the kx  column (where k is one of the coset 
representatives for Lx) is (D', k ' )~0 ,  then we read this as indicating that dkx = d'k', 
otherwise that dkx is unknown. 

In our example we thus have 1 + 1 + 1 + 1 + 1 + 1 + 5 = 11 columns which, coincidentally, 
is the same as the number needed in single coset enumeration (there are eleven generators 
of which four are in K). However, there are about 6000 double cosets, compared to at least 
300 000 single cosets, giving a roughtly 50-fold saving in space. 
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There is a space saving even when L~ = {1} V x eX, because no space is needed to store 
the action of K on S. For  example, in the case of a 2,3-group, G = (x ,  y lx  2 = y3 = 1 . . . .  ) ,  
we can take K = ( y )  and have columns for x, yx  and y2x, instead of x, y and y2, while still 
reducing the number  of rows by a factor of almost three. 

In addition we store for each row D the muddle group M d < K  given by 
Me = {k e K : d k  = d}. The number of single cosets in D is given by IK : Mal. There are two 
consistency conditions on the double coset table. 

(1) For  every entry dkx  = d'k', when we work out d'k'x -1 we get dk. 
(2) For  every entry dkx  = d'k' (Mkd C3 Lx) x < Mze. 

The first is the same condition we had on a single coset table, the second is required to 
ensure that the action of X on the single cosets is well-defined (see section 3.3 below). 

We retain the concept of a coset (now a double coset D) being deleted; however, we need 
to record which single coset d'k' is the same as the representative single coset d of D. The 
undeleted image of a single coset dk is then d'(k'k) if D' has not been deleted or d"(k"k'k) if 
D' has been deleted and the undeleted image of d' is d"k". 

3.3. PUSr~NG RELATORS 

The basic operation in pushing an (r, s)-pair (now an (r, dk)-pair) is that of calculating 
sx, s ~ S ,  x ~ X  (now dkx, D ~ ,  k e K ,  xeX). To do this we find the Lx-coset representative 
for k, say k' and look in the (x, k') column in the D row. This will tell us that dk'x = d"k", 
say; but now k = k ' l ,  l e L x ,  so we can write d k x = d k ' l x  = d k ' x l X = d " k " l  =, and we can 
compute k"l ~ inside K. 

When M a > (1}, a single coset dk ~ D will have IMal distinct "names" - - {dmk:  m~Md}, 
and we must ensure that computing dmkx yields the same single coset as computing dkx 
(though possibly with a different name). 

Without  loss of generality assume that there is an entry dkx  = d'k' in the double coset 
table. We need to ensure that calculating dmkx yields the same single coset d'k' for all 
m e Me. We divide cases according to whether mk e kLx or not. 

In the first case, we compute 

dmkx = dkmkx = dkxrn kx = d'k'm kx, 

since rnk~kL~,  we have rnk~Mka c~ L x and so, by consistency condition 2, mk~r  and 
k'mgXr ' and d'k'm ~ is the same single coset as d'k'. 

In the second case, we might be looking up the same single coset image sx using 
different entries in the double coset table for different names. We avoid this by renaming 
single cosets so that they are in the earliest possible L~-coset (in the ordering of the 
columns of the table). 

We define f=(k) to be the position (in this order) of the coset kL~. We then define a 
function 

x : X •  {M:M <I (}  x K - ~ K ,  

where ~(x, M, k) is the element m of M which minimises fx(mk). Since left and right regular 
actions commute, fx(mkl) =f~(mk) V I e Lx so x(x, M, k) depends on fx(k) and not on k. In 
fact ~c (x, M, k) depends only on the column of the double coset table corresponding to k 
and x and on M. This provides a convenient way of storing and accessing the table in 
implementation. 

What  this does is to provide a way of finding a canonical (Me, L=)-double coset 
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representative of k. We can then look up dkx in the column corresponding to this, and be 
sure to get the same result whichever name we choose for our single coset dk. This process 
is roughly equivalent to Conway's use of fl-entries (Conway, 1984) to denote that an entry 
had been replaced by another, but takes advantage of the full information about the 
muddle group Md. The process of calculating dkx is then as follows: 

(1) find fx(k); 
(2) lookup x(x, Ma, k) using fx(k), getting k' say. Then k' ~ M~ so dkx  = dk'kx; 
(3) find f~:(k'k)= i, say; 
(4) lookup dkox in the double coset table, where ko is the ith Lx-cOset representative. 

This is d"k", say; 
(5) set l=  kolk 'k ,  l will be in Lx. So dkx = dkolx = dkoxl':; 
(6) then dkx  = d"(k"IX). 

3.4. PROCESSING COINCIDENCES 

The above enables us to push relators just as for single coset enumeration, obtaining 
either Type A coincidences--dk= d' or Type B co inc idences - -dkx  =d 'k ' .  Type C 
coincidences also exist. We process these as follows. 

Type 

(1) 

A - - d k  = d' 

Replace dk and d' by their undeleted images. 

Note. This process will yield images 2~ and 2'~'. We then replace d with 2, k with 
~ , - 1  and d' with 2'. 

(2) If D = D' generate the Type C coincidence ( k )  fixes d. The general form of a Type C 
coincidence is M fixes d, where M < K and D e~ .  

(3) Otherwise wlog D' > D (inverting k if necessary). 
(4) Empty row D' (as for single cosets, generating Type B coincidences). 
(5) Generate the Type C coincidence M~; 1 fixes d. 
(6) Mark D' as a deleted double coset, with d' replaced by dk. 

Type 

(1) 
(2) 

(3) 

B - - d k x  = d' k' 

Replace dk and d'k' by their undeleted images. 
If consistency condition (2) is satisfied for the entries corresponding to d k x  and 
d'k 'x  -I then we can proceed, otherwise we generate the Type C coincidences 
required--((M~ c~ L~) xk'-' fixes d' and/or (Me e c~ L r~) x-'k-' fixes d), (re)generate the 
Type B coincidence d k x  = d'k' and stop. There is a risk of looping here, which must 
be avoided. This can be simply done by handling all pending Type C coincidences 
before any pending Type Bs. 
We work out which entries in the double coset table we would use to calculate d k x  
and d'k'x-~ and divide cases. 

(i) Empty entries in distinct places can be filled at once. 
(ii) If at least one entry is non-empty, say d k x  = d"k" already, then stack Type A 

coincidence d' k' k " -  ~ = d". 
(iii) If the entries are empty and in the same place, i.e. D = D', x = x -t, k and k' 

are in the same (M,l, L~) double coset, then we can fill in the entry, and we have 
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additional information. We set k o to be the (Md, L~) double coset representative 
for k and  k' and suppose k - rnkol and k' = m'kol'.  Then 

dkolx = dkol' and dkol 'x  = dkol, 

SO 

dkox  = dkol'(l~) -1 = dkol(l'~) -z 

and 
dkol'(lX)-~(l'X)l-tk~-~ = d. 

We accordingly generate a Type C C o i n c i d e n c e - - ( k o l ' ( l ~ ) - l ( U ) l - ~ k K l )  fixes d. 

T y p e  C ~ M  fixes d. 

(1) I f  d has undeleted image d'k',  we replace d by d' and M by M k'-'. 
(2) I f  M < Ma then stop. 
(3) Empty  row D onto the Type B stack. 
(4) Set the new value of  Md to (M, Md). 

Apart from the risk of looping, the pending coincidences may be cleared in any order. 
CBA and CAB have been tried, producing similar performance. 

3.5. FURTrmR REFINEMENTS 

The algorithm presented so far is essentially the corrected version of the algorithm 
proposed by Conway (1984). This saves space when compared with the equivalent single 
coset enumeration, but takes roughly the same amount of time, since each relator is still 
pushed from each single coset. When every letter of the word in K u X ,  which makes up a 
relator, commutes with all or part of K, then some of the pushes are redundant and time 
can be saved. 

For  each relator r we compute a group Nr < K as follows. 
If r = w l w 2 . . .  Wz, where w ~ K u X  then we set Nc~ and for i =  1 . . . .  , l  

if w~ ~ K then N (~ : N (i- l)w~ 
if wt eX then N (0 = (N (~-1) c~ Lw~) w'. 

We then set N, --- N (0 and set No = N, and N, = N~'21 (which we know will be defined 
and contained in K). 

We can see from the construction that for all ne  Nr, n w'' ' '  w~ ~ N k  and whenever Wk+ ~ ~ X 

we have N~ ___ Lwu§ 
The point of all this is that  when we push r from a single coset s and from sn for n ~ Nr, 

we have s n w l . . ,  wk --- sw~ � 9  Wk nw' ' 'wk,  SO that we look up s n w , . , ,  w~+ ~ in the same entry 
of the double coset table as sw~ . . .  Wk+~. 

So, if r is satisfied at s, it will be satisfied at sn automatically. In general, we have to push 
each relator r e R, in each double coset D e ~ ,  from dk, where k ranges through a set of 
(Mn, N,)-double coset representatives. 

This substantially speeds up the algorithm, for presentations where N , ~  {1} for a 
reasonable number of r, but adds considerable complexity to it. In one example, with 
K = S,~, this technique avoided 5 632 854 redundant pushes, leaving only 1 140493 that 
actually had to be done. As remarked in section 2.4, this calculation is not needed if 
Conway's random strategy is followed. 
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4. Implementation Considerations 

4.1. WORKING IN K 

Throughout the description of the Double Coset Enumeration algorithm, we have 
assumed the ability to work freely with elements and subgroups of K. The implementation 
of the algorithm by the author used look-up tables, for speed and simplicity of 
programming. We number the elements of K, with 1 being numbered 1, and we number 
the subgroups of K (not conjugacy classes, the complete lattice of subgroups) with {1} 
being numbered 1 and K having the largest number. We store the following look-up 
tables. 

The multiplication table of K. 
For each k e K the cyclic subgroup (k). 
For each Mr, M 2 < K the subgroup M1 nM~. 
For each M1, M s _< K the subgroup (M1, M2). 
For each k e K the element k-~. 
For each k e K and M < K the subgroup M k. 
A list of coset representatives for each M N K. 
A list of elements of each M < K. 

The space required by these tables is the main restriction on the groups K which can be 
used. For the symmetric group S 5 (120 elements, 156 subgroups), about �89 of storage 
space is needed. Tables have been prepared by computer for $4, A5 and Ss, and by hand 
for the smaller groups 22, 3, D8 and $3. 

As well as these tables describing the structure of K as an abstract group we need to 
describe the action of each x E X on K as far as it can be seen, and to describe the structure 
of the double coset table, which depends on this. We number the columns of the double 
coset table (each column corresponds to an x ~ X and one of the coset representatives of L x 
in K) and the elements of X. We use the following tables. 

For each x ~ X the subgroup L~. 
For each k e K and x ~ X the column of the double coset table in which to look up dkx, 

assuming that Ma = {1}. 
The table for x--as remarked this has values depending on a column of the double coset 

table and a subgroup of K. 
Tables giving the elements of X and K corresponding to a given column of the double 

coset table. 
For each x ~ X and k ~ L x the element k x. 
For each xeX and M _< Lx the subgroup M ~. 
For each x~X the generator x -t .  

As remarked above, these tables make the algorithm relatively simple to implement, and 
fast to operate, but limit the size of K. 

The technique of weights is implemented by keeping a record of the first (lowest 
numbered) row Dw with each weight w and of the last (highest numbered) row D, from 
which each relator r has been pushed. There is a current weight wo and each relator r is 
pushed in turn from the rows D s N such that D, < D < Dwo_w,+ t. Any new cosets defined 
are placed at the end of the table. When this has been done for each r, wc is incremented 
and Dw0 is set equal to the number of the first unused row, so that new cosets defined will 



424 S .A.  Linton 

have weight wo. This technique will cope unchanged if relator weights, w r are allowed to 
vary during an enumeration, but will not allow easily for changes in coset weights, wo. 

4.2. OPTIMISATION TECHNIQUES 

Amongst  the most  complex and time-consuming aspects of the algorithm are the two 
double coset reductions: to find the correct column, when looking up dkx,  and to work out 
which single cosets from a double coset to push. Both of these processes are quite simple, 
except when two or mbre of Ma, Lx and N r are proper subgroups of K. These conditions 
are quite rare, as in a typical run Lx -- K for all but  a few x, Md = 1 for most double cosets 
D, during most of the enumeration and Nr ~ {{ 1 }, K} for most relators. A significant saving 
in t ime can be made by checking these conditions, and using simplified code where 
possible. 

In  a typical run, 334 964 double coset-relator pairs were handled, of which only 63 433 
had bo th  Nr and Md proper subgroups of K; in all the other cases the simplified code could 
be used. 

Another  useful observation is that  the coincidence stacks are accessed in a very 
predictable manner  (Last In, First Out) so that they can be efficiently overlayed onto 
(slower) secondary storage, which frees more main store for the coset table. 

5. Results 

Results are given for the following presentations [for the notat ion used see ATLAS, 
p. 232, or Conway et al. (1985b), Conway & Pritchard (1986) and Soicher (1987)3. 

22.2E6(2) -- (Qgz2 [ v ----" 1,f~ -- ( A A  al bl Cl dl)S>, 

2 x C o l - - s e e  ATLAS, p. 183 and Soicher (1987), 

Fi2,  = (Y~421S = 1,fl =f i2 , (ab i  C ld le l f iab2c2d2e2ab~e3)  17 = 1), 

Fi23 = (Y~32 IS = 1,ft =A2,f21 = 1>, 
26 . Lz(7) = <x, y lx 2 = y3 = (xy)7 = [x, y-1 s = 1>. 

Single Double Time 
Group H K Columns cosets cosets taken 

22 . 2E6(2 ) 23 . 220 . U6(2 ) S 5 ][5 3 968 055 39 681 20 min 
2 x Cos 3. Suz:2 $5 9 3 091 200 34 213 6 min 
Fi2, 2 x Fi23 S~ 12 306 936 6 332 12 min 
Fi2a 2Fi22 S 4 11 31 671 2417 90 s 
26 . L2(7 ) 1 3 3 10 572 3 584 16 s 

(CPU times are measured on one processor of an IBM 3084Q.) 

A highly optimised single coset enumeration program [due to Soicher (private 
communication)]  took 8 s to enumerate the 10 572 cosets in the same presentation of 
26. L2(7) and 167 s to enumerate the 31 671 cosets in the presentation of Fi2a. 

It  ean be seen that  there is considerable variation in speed, average muddle-group size 
and other  measures. As for single coset enumeration, performance varies wildly between 
groups of similar size or even between presentations of the same group. 
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6. Possible Future Improvements 

A number of techniques have been proposed to reduce the space used by the look-up 
tables: by using a representation of elements of K as permutations or matrices, by using 
the techniques of the SOGOS system (Laue et al., 1984) to work with elements and 
subgroups of a suitable soluble group, or by using the more general package, such as 
Cayley (Cannon, 1984), to work with a variety of groups. In evaluating such a proposal we 
consider the essential operations which must be performed quickly while the enumerator is 
running: 

(a) Operations required in the calculation of dkx: 

1. finding the (Md, L~)-double coset representative k 0 for k e K and an element l E L~ 
such that k = mkol; 

2. multiplying two elements of K; 
3. conjugating an element of L~ by x; 
4. inverting an element of K. 

(b) Operations required to see that a coincidence is trivial (most are). The operations 
listed above plus: 

1. checking whether a given element k ~ K is in a subgroup M < K; 
2. conjugating a subgroup M < K by an element k ~ K. (In the case where a coset 

has been deleted.) 

(e) Operations required in processing coincidences. AU the above plus: 

1. finding the cyclic subgroup generated by an element of K; 
2. inverting an element of X; 
3. intersecting a subgroup M < K with a gain group Lx; 
4. conjugating a subgroup M < Lx by x ~ X; 
5. checking to see if one subgroup contains another; 
6. finding the subgroup generated by two subgroups. 

(d) Operations required for every double coset pushed. All the above plus: 

1. obtain a list of (M~, Nr)-double coset representatives (not needed by the random 
version of the algorithm). 

(e) Other operations used: 

1. to check for early closing a method of calculating the number of entries on the D 
row which are in use (rather than being masked out by x) given Md; 

2. once early closing has been found, it is useful to know the index of each Mn in K, 
so that the number of single cosets can be calculated. 

Each proposed representation of K should enable these operations to be performed, but 
in no case is the approach entirely simple. 

Smaller gains may be obtainable by implementing adaptive weights, or by Conway's 
random strategy. Another possible area for improvement, which has not been investigated 
in detail, is the order of coincidence processing. Both the order in which the stacks should 
be cleared and the question of whether Last In First Out stacks are the best approach at 
all remain open questions. 
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7. Conclusion 

T h e  present p r o g r a m  represents a substantial improvement  over existing (single) coset  
enumera t ion  techniques for a ra ther  restricted set of suitable presentations. Gains o f  as  
m u c h  as 100-fold in space requirements and 10-fold in time requirements are available. 
There  are  a n u m b e r  of possibilities for further substantial  improvements ,  mainly in the  
representat ion o f  the subgroup K, which could  lead to much larger gains. 
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