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A finite function f is a mapping of (0, 1)” into (0, I]” v { # }. where “#” is a 
symbol to be thought of as “undefined.” A family of finite functions is said to be 
one-way (in a circuit complexity sense) if it can be computed with polynomial-size 
circuits, but every family of inverses of these functions cannot. In this paper we 
show that, provided functions that are not one-to-one are allowed, one-way 
functions exist if and only if the satisliability problem SAT does not have 
polynomial-size circuits. A family of functionsf,(x) can be checked if some family of 
polynomial-size circuits with inputs x and y can determine if f,(x) = y. A family of 
functionsL(x) can be eoaluated if some family of polynomial-size circuits with input 
x can computef,(x). Can all families of total functions that can be checked also be 
evaluated? We show that this is true if and only if the nonuniform versions of the 
complexity classes P and UP n co-UP are equal. A family of functions f, is one-wa) 

for constan/ depth circuits iff, can be computed with unbounded fanin circuits of 
polynomial size and constant depth, but every family of inverses f,-’ cannot. We 
give two provably one-way functions (in fact permutations) for constant-depth 
circuits. The second example has the stronger property that no bit of its inverse can 
be computed in polynomial size and constant depth. rG 1987 Academic press, hc. 

1. INTR~OUCTI~N 

A one-way function is a function that is easy to compute, whose inverse 
is hard to compute. Such functions are important for cryptography. 
Without one-way functions, it is impossible to design secure public-key 
cryptosystems. One-way functions are also crucial for generating pseudo- 
random numbers. Blum and Micali (1984), Yao (1982), and Levin (1987) 
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each show that the existence of certain types of one-way functions implies 
the existence of pseudo-random number generators. 

Several distinct definitions of one-way functions have been proposed (see 
Brassard (1983), Selman (1984), and Levin (1987)). These definitions are 
all based on Turing machine complexity, i.e., they are uniform concepts. 
Despite the importance of one-way functions, the existence of such 
functions has never been proved. Levin (1987) constructs a universal 
function that is one-way in his terminology if some one-way function exists. 
There are particular functions, such as the inverse of discrete logarithm 
(Odlyzko (1984)), that appear to be one-way. 

In this paper we study a nonuniform notion of one-wayness based on cir- 
cuit complexity. A Boolean circuit is a directed acyclic graph with input 
nodes { .Y, , x2, . . . . x,} and output nodes {y,, y,, . . . . y,}, together with 
AND gates, OR gates, and NOT gates. The size of a circuit is the number 
of gates in the circuit. In the natural way, each circuit computes a 
finite function. We consider finite functions f mapping {0, 1 }” into 
{O, 1 j”u (# }, w h e re “ # ” is a symbol to be thought of as “undefined.” An 
inuerse off is a function that, on input y, will output some x satisfying 
f(s) = y if such an x exists, and outputs # otherwise. We say that f is one- 
ro-one if X, #x2 implies that either f(x,) #f(x,) or f(~,) =f(x,) = #. A 
functionfhas a unique inverse function if and only if it is one-to-one in this 
sense. We say that f is onto if every y in { 0, 1 }” has some x in { 0, 1 }” such 
that f(x) =y. Note that with these definitions, a one-to-one and onto 
function does not have to be a permutation. We say that f is total if f does 
not take the value #. 

We say that a family of functions f, is one-way if the functions f, can be 
computed with polynomial-size circuits, but every family of inverses off, 
cannot. In Section 2 of this paper we show that, provided functions that are 
not one-to-one are allowed, one-way functions exist if and only if the 
satistiability problem SAT does not have polynomial-size circuits. Previous 
results by Grollman and Selman (1984) imply complementary results. They 
show that a family of one-way one-to-one functions exists if and only if the 
nonuniform versions of the complexity classes P and UP are not equal, and 
that a family of one-way one-to-one and onto functions exists if and only if 
the non-uniform versions of P and UP n co-UP are not equal. Karp and 
Lipton (1982, Theorem 6.1) show that if SAT has polynomial-size circuits, 
then the polynomial-time hierarchy collapses at the second level, i.e., the 
hierarchy Uz 1 Cp equals C$. This may be taken as evidence that one-way 
functions exist, provided functions that are not one-to-one are allowed. 

In Section 3, we study similar questions about the relative complexity of 
checking a function versus evaluating a function, first studied by Valiant 
(1976). A function f can be checked if some polynomial-size circuit with 
inputs x and y can determine if f(x) =y. A function can be evaluated if 
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some polynomial-size circuit with input x can compute f(x). Can all 
families of total functions that can be checked also be evaluated? We show 
that this is true if and only if the nonuniform versions of the complexity 
classes P and UP n co-UP are equal, solving an open problem of Valiant 
(1976). We show there is a parallel between the results on checking versus 
evaluating (Theorems 3.1-3.3) and the results on one-way functions 
(Theorems 2.1-2.3). We also ask: can all families of total relations that can 
be checked also be evaluated? We show that this is true if and only if 
polynomial-size many-one reducibility is equivalent to beta reducibility- 
see Section 3 for definitions of these concepts. 

In Section 4, we discuss one-way functions for the constant depth circuit 
model. A family of functions {f, } is one-way for constant depth circuits if 
{f,} can be computed in polynomial size and constant depth, but every 
inverse of (h} cannot. We provide two examples of provably one-way 
functions (in fact permutations) for constant depth circuits. The second 
example has the stronger property that no bit of the inverse can be 
computed in polynomial size. These examples, whose inverses are trivially 
computable using general circuits of polynomial size, may be taken as an 
indication of the restrictiveness of the bounded depth circuit model rather 
than as evidence that one-way functions exist. Ajtai and Wigderson (1987) 
have constructed a pseudo-random bit generator for constant depth 
circuits, thus showing that probabilistic constant depth circuits can be 
simulated in deterministic subexponential time. 

Finally we remark that the existence of one-to-one one-way functions in 
the nonuniform case does not seem to imply the existence of one-to-one 
one-way functions in the uniform case, or vice versa. 

2. ONE-WAY FUNCTIONS FOR GENERAL CIRCUITS 

In this section we will show that, provided functions that are not one-to- 
one are allowed, one-way functions exist if and only if the satisliability 
problem SAT does not have polynomial-size circuits. First we need some 
definitions. 

Given a function f mapping a set A into a set Bu { # }, define the 
domain off to be the set of x in A such that f(x) # #. Let the range off be 
the set of y in B such that some x in A satisfiesf(x) = y. Given a function g 
mapping B to A u { # }, we say that g is an inverse off if f (g( y)) = y for all 
y in the range off, and g(y) = # otherwise. 

A circuit C is a directed acyclic graph with nodes of live different types: 

(i) input nodes having indegree 0 and outdegree 1, with a label 
from the set {x1, x2, . . . . x,}; 
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(ii) output nodes having indegree 1 and outdegree 0, with a label 
from the set {y,, y,, . . . . y,}; 

(iii) AND g t h a es aving indegree 2 and arbitrary outdegree, with a 
label “/j”; 

(iv) OR gates having indegree 2 and arbitrary outdegree, with a 
label “V”; 

(v) NOT gates having indegree 1 and arbitrary outdegree, with a 
label “1”. 

In the natural way, a circuit C computes a function C from (0, 1 }” to 
(0, 1 }“. The size of a circuit is the number of nodes in the circuit. Note 
that size(C) is at least the number of inputs plus the number of outputs of 
the circuit C. 

A family of functions is a sequence f,, f2, . . . . such that the function fi 
maps (0, 1 }“I into (0, 1 }“‘I. The family { fi> is computable in polynomial size 
if there is a sequence of circuits C,, C,, . . . . such that the circuit Ci has n, 
inputs and 1 + mi outputs, has size polynomial in n,, and satisfies 
C,(x) = (l,L.(x)) for all x in the domain of f,, and C,(x) = (0, Omt) 
otherwise. The family (pi} is one-way if nj and mi are within polynomial 
factors of each other, the family {f,} is computable in polynomial size, and 
no inverse of (f,} is computable in polynomial size. 

The main result of this section is the following theorem. 

THEOREM 2.1. The ,following are equivalent: 

(1) There exists a one-way fami1.v of functions. 

(2) The satisfiability problem SAT does not have polynomial size 
circuits. 

We need to make precise the statement “SAT has polynomial-size cir- 
cuits.” Let BF denote the set of Boolean formulas. Let p be any reasonable 
one-to-one encoding from BF into { 0, 1) *, i.e., such that p and its unique 
inverse p ~ ’ are computable by polynomial-time Turing machines, and p 
preserves lengths of formulas to within a constant factor (where a variable 
x, is considered to have length Llog, i_l + 1). We define functions SAT,,, 
from (0, 1)” to (0, 1, # } as follows: 

(i) SAT,,,(y)= 1 if p-‘(y) is a formula of n variables that has a 
satisfying assignment; 

(ii) SAT,,,(y)=0 if p-‘(y) is a formula of n variables that has no 
satisfying assignments; 

(iii) SAT,,,(y) = # otherwise. 
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By “SAT has polynomial-size circuits,” we mean that {SAT,,.) has 
circuits of size bounded by a polynomial in m and n. 

Proof of Theorem 2.1. (1) implies (2) Suppose that SAT has 
polynomial-size circuits. Let CIRCUIT-SAT be the language that consists 
of Boolean circuits having a satisfying assignment. By a nonuniform ver- 
sion of Cook’s theorem (Cook, 1971), the language CIRCUIT-SAT would 
also have polynomial-size circuits. In fact, in polynomial size we could find 
the lexically first satisfying assignment of a circuit (simply make n 
successive calls to CIRCUIT-SAT). Let (fi} be a family of functions 
computable in polynomial size using circuits {C;}. We show how to 
compute the lexically first inverse of {fi} in polynomial size. Note that y is 
in the domain of an inverse of fi iffy is in the range of fi, in other words iff 
some x satisfies C,(X) = (1, y). But we can test this in polynomial size by 
calling CIRCUIT-SAT. In fact, by the remarks above, we can actually find 
such an x in polynomial size. Therefore, the lexically first inverse of {fi> is 
computable in polynomial size. 

(2) implies (1) Suppose that SAT does not have polynomial-size circuits. 
Consider the function PROJ,,, from {O,l)“x{O,1}” to {O,l}“u(#) 
defined as follows: if p-‘(v) is a formula of n variables that outputs 1 on 
input x, then set PROJ,,,(y, x) =y; otherwise, set PROJ,,,(y, x) = #. 
Clearly PROJ,,, is computable in polynomial size. On the other hand, the 
range of PROJ,,, is precisely the set of y such that SAT,,,(v) = 1. Thus 
even the domain of each inverse of PROJ,., requires more than 
polynomial size to compute, so PROJ,., is a one-way function. 1 

The proof method of Theorem 2.1 can be used to establish a stronger 
result, applying to finite functions having arbitrary circuit size, which we 
now describe. For a function f from (0, 1 }” to (0, 1)” u { # }, define the 
circuit complexity of f by C(f) = min{size(C): C computes f }, and the 
circuit complexity of inverting such a function by C-‘(f) = min{ C(g):g is 
an inverse off }. Now define the measure of one-wryness M(f) of a finite 
function by M(f)=log(C’(f))/log(C(f)). 

The point of this measure is that M(f) 2 k if and only if 
C-‘(f) 3 C(f )“. Thus M(f) is unbounded if and only if a superpolynomial 
increase in the number of gates is needed in computing each inverse 
function off, for a suitable family of functions {f,}, with no restriction on 
the number of gates needed for the fi. We have the following result. 

THEOREM 2.1 a. The following are equivalent: 

(1) The measure of one-wayness M(f) is unbounded. 
(2) The satisfiability problem SAT does not have polynomial-size 

circuits. 
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Proof. (1) implies (2) Suppose that SAT,,, has circuits of size p(m, n) 
bounded by a polynomial in both m and n; we show that M(j) is bounded 
by a constant. Let f be a function from { 0, 1 }” to (0, 1)“’ u { # }, and let g 
be the lexically first inverse off. Define predicates Qi by 

Qi(MJI 3 ...) wj, y) = 3x;+, . . . Jx,[f(w,, . ..) w;, xi+ ,, . . . . x,) =y], 

where wi, . . . . w, E (0, 1 } and y E (0, 1)“. We will show that the predicates 
Qi can be used to construct small circuits for g. Consider the following 
algorithm for computing g(y): 

if QO(y) then 
for i +- 1 to n do 
if Qi(wl, . . . . wip 1, 0, y) then wit 0 else wit 1 
endfor 
g(Y) + (w, 2 ...2 w,) 

else g(y) + # 

It is easy to check that the above algorithm computes the lexically first 
inverse off: Set s = C(f). Provided that the predicates Qi have circuits of 
size polynomial in s, the above algorithm can be converted into a circuit 
computing g of size polynomial in s; hence M(f) would be bounded by a 
constant. We now construct small circuits for the predicates Qi. 

The predicate Qi can be easily computed with a nondeterministic circuit 
of size s + O(m) = O(s) having n-i< n nondeterministic variables. By 
adding dummy variables corresponding to the gates of this nondeter- 
ministic circuit and using Boolean conditions to force a correct simulation 
of the circuit, we can construct a nondeterministic Boolean formula com- 
puting Qi of size O(s) and length O(slogs), having O(s) nondeterministic 
variables. Using a SAT,,,,. circuit, where m’ = O(s log s) and n’ = O(s), we 
can compute Q; with a deterministic circuit of size p(O(s log s), O(s)). But 
this size is polynomial in s, so we are done. 

(2) impfies ( 1) Same as for Theorem 2.1. 1 

These results are complemented by previous work on the existence of 
one-way one-to-one functions. To state these results, we need some 
definitions. We call a function f mapping (0, 1 }” to { 0, 1 } a Boolean 
function. Define PSIZE (“nonuniform P,” sometimes denoted by P/poly) 
to be the set of families of Boolean functions that are computable in 
polynomial size. Define NPSIZE (“nonuniform NP”) to be the set of 
families {fi} of Boolean functions for which there is a sequence of circuits 
{ Ci} such that Ci has ni +pi inputs (for some pi polynomial in ni) and 1 
output, has size polynomial in ni, and, for all x in (0, 1 }“I, we have 
L.(x) = 1 iff some y in (0, l}“’ satisfies Ci(x, y) = 1. Define UPSIZE 
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(“nonuniform UP”) to be the set of families {f;} of Boolean functions for 
which there is a sequence of circuits {Ci} that satisfies the conditions for 
NPSIZE and furthermore for all x in (0, 1 }” there is at most one y such 
that Ci(x, y) = 1. Let co-A denote the set of families of Boolean functions 
whose negations are in the class A. 

The following theorem is the nonuniform version of a result by Grollman 
and Selman (1984), and can be proved by adapting their argument to the 
nonuniform case. 

THEOREM 2.2. The following are equivalent: 

(1) There exists a one-way family of one-to-one functions. 
(2) PSIZE # UPSIZE. 

The next theorem is also the nonuniform version of a result by Grollman 
and Selman, which again is proved following their argument. 

THEOREM 2.3. The following are equivalent. 

(1) There exists a one-way family of one-to-one and onto functions. 
(2) PSIZE # UPSIZE n co-UPSIZE. 

Recall that, with our conventions on the meaning of one-to-one and 
onto, a one-to-one onto function does not have to be a permutation. It is 
an open problem to give a necessary and sufficient condition for the 
existence of a one-way family of permutations in terms of separation of 
complexity classes. 

3. CHECKING VERSUS EVALUATING 

In this section we will consider questions concerning the relative 
complexity of checking versus evaluating. They were first raised by Valiant 
(1976). To formulate the questions we require a few definitions. 

Given two sets A and B, a relation R between A and B is just a subset of 
the Cartesian product A x B. The domain of R is the set of x in A such that 
some y in B satisfies (x, y) E R. The range of R is the set of y in B such that 
some x in A satisfies (x, y) E R. 

A family of relations is a sequence of relations {Ri) such that Ri is a 
relation between { 0, 1 }“I and { 0, 1 }“‘, where mi and n, are within 
polynomial factors of each other. This family can be checked if there is a 
sequence of circuits { Ci} such that the circuit Ci has n, + mi inputs and 1 
output, has size polynomial in ni, and for all x in { 0, 1 > “l and y in { 0, 1 } m1, 
the pair (x, y) is in Ri if and only if Ci(x, y) = 1, i.e., the circuit Ci tests 
membership in Ri. The family of relations (Rj} can be evaluated if there is 
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a sequence of circuits {Ci} such that the circuit Cj has ni inputs and mi 
outputs, has size polynomial in ni, and for all x in the domain of Ri the 
ordered pair (x, C,(x)) is in Ri. 

Valiant (1976) asked questions of the form: can all relations (in a par- 
ticular class) that can be checked also be evaluated? There is a relationship 
between one-way functions and checking versus evaluating questions. 
Define the inverse of a relation R between A and B to be a new relation 
R-’ between B and A, defined by (y,x) E R-’ iff (x, y) E R. Note that R 
can be checked iff R - ’ can be checked. If f is a one-way function, then f ~ ’ 
is a relation that can be checked but not evaluated. In fact, it is easy to see 
that f is a one-way function if and only if f can be checked and evaluated 
but f-l cannot be evaluated. 

There are three complexity results for the checking versus evaluating 
problem parallel to the three complexity results (Theorems 2.1-2.3) for 
one-way functions given in Section 2. The first of these results is the non- 
uniform version of a result of Valiant (1976), which can be proved by his 
methods. 

THEOREM 3.1. The following are equivalent: 
(1) Every family of relations that can be checked can also be 

evaluated. 
(2) The satisfiability problem SAT has polynomial-size circuits. 

A relation R is a function if for all x in A at most one y in B satisfies 
(x, y) E R. The next theorem is also the nonuniform version of a result by 
Valiant, which his methods also establish. 

THEOREM 3.2. The following are equivalent: 

(1) Every family of functions that can be checked can also be 
evaluated. 

(2) PSIZE = UPSIZE. 

A relation R between A and B is total if its domain is all of A, i.e., for all 
x in A at least one y in B satisfies (x, y) E R. Valiant left open the question: 
can all total functions that can be checked also be evaluated? We give a 
necessary and sufficient condition for this to be true in the nonuniform case 
(the proof can be adapted to establish the uniform case as well). 

THEOREM 3.3. The following are equivalent: 
(1) Every family of total functions that can be checked can also be 

evaluated. 
(2) PSIZE = UPSIZE n co-UPSIZE. 

Proof ( 1) implies (2) Suppose every total function that can be checked 



234 BOPPANA AND LAGARIAS 

can also be evaluated. Let {A.} b e a family of functions in UPSIZE n co- 
UPSIZE, where fi maps { 0, 1 }” into { 0, 1). Let { Ci} be UPSIZE circuits 
for (fi} (with pi nondeterministic bits) and { Ci} be UPSIZE circuits for 
{ ifi) (with qi nondeterministic bits). Define the function gi from (0, 1 >“I 
to (0, l> x (0, l}p8x (0, l}“’ by: iffi(x) = 0, then g,(x) = (0, Op: z), where z 
is the unique solution to C:(x, z) = 1; otherwise g,(x) = (1, y, Oql), where y is 
the unique value satisfying Ci(x, y ) = 1. 

Observe that gi(x) = (b, y, z) iff either (b = 0 A y = op’ A Ci(x, z) = 1) or 
(b = 1 A z = Oyl A Ci(x, y) = 1). This shows that the family { gi} can be 
checked. The g’s are total functions so, by our assumption, the family (gij 
can be evaluated. But the first bit of g, equals fi, so we can compute the 
family {fi} in polynomial size. Thus our assumption implies that 
PSIZE = UPSIZE n co-UPSIZE. 

(2) implies (1) Suppose that PSIZE = UPSIZE n co-UPSIZE. Let (S, } 
be a family of total functions, wherefi maps (0, 1 )“I into (0, 1 1”: that are 
checked by the polynomial-size circuits { Ci}. Let yi be the jth bit of fi. 
Note that yj= 1 iff some z satisfies Ci(x, z) = 1 and zi= 1, and that yj= 0 iff 
some x satisfies Ci(x, z) = 1 and zi = 0. Since fi is single-valued, there exists 
at most one z in either case. The first case shows that each bit of fi is in 
UPSIZE, whereas the second case shows that each bit of fi is in co- 
UPSIZE. But we assumed that PSIZE= UPSIZEnco-UPSIZE, so each 
bit off, can be computed in polynomial size. Thus the family {J.} can be 
evaluated. 1 

Let {R,) be a family of relations such that Ri is a relation between 
(0, 1 }“I and (0, 1 }“I, where ni and mi are within polynomial factors of each 
other. The family (Ri} can be nondeterministically checked if there is a 
sequence of circuits { Ci} such that the circuit Ci has ni + m, +pi inputs (for 
some pi polynomial in n,) and 1 output, has size polynomial in ni, and for 
all x in (0, 1 }“I and y in (0, 1 }“I, the pair (x, y) is in Ri iff some z satisfies 
Cj(x, y, z)= l. 

Long (1981) studied the uniform version of the statement “all total 
relations that can be nondeterministically checked can be evaluated.” Long 
showed that this statement is true if and only if gamma reducibility (see 
Adleman and Manders (1977)) is equivalent to polynomial-time many-one 
reducibility. We define the nonuniform versions of these reducibilities 
below. 

A family of languages is a sequence (Ai) such that Ai is a subset of 
(0, l}“‘. Let (Ai} and (Bi) be two families of languages such that 
A,G (0, l}“’ and Bit (0, l}“‘, where ni and mi are within polynomial fac- 
tors of each other. We say that (Ai) is polynomial-size many-one reducible 
to (Bi) (written as (Ai) <P, {Bj)) if there is a family of functions {fi} such 
that 



ONE-WAY FUNCTIONS 235 

(i) fi maps (0, l}“’ into (0, l}“!, 
(ii) {fi} is computable in size polynomial in ni, and 

(iii) for all i and all x in (0, 1)“: we have x E Aj iff fi(X) E Bi. 

We say that {Ai} is gamma reducible to {Bi} (written as {A,} Gr {Bi}) if 
there is a family of relations {Ri} such that 

(i) R, is a relation between (0, l}“~ and (0, l>“, 
(ii) {Ri} can be nondeterministically checked, 

(iii) Ri is total, and 
(iv) for all iand all pairs (x,y)~R,, we havex~AjiffyEBi. 

The following theorem is the nonuniform version of a result of Long 
(1981) and can be proved by adapting the proof of Theorem 3.5 below. 

THEOREM 3.4. The following two statements are equivalent. 

(1) All families of total relations that can be nondeterministically 
checked can also be evaluated. 

(2) Polynomial-size many-one reducibility is equivalent to gamma 
reducibility. 

Valiant asked the following question: can all total relations that can be 
checked also be evaluated? Valiant showed that a sufficient condition for 
this to be true is that SAT have polynomial-size circuits, and a necessary 
condition is that PSIZE = NPSIZE n co-NPSIZE. We give below a 
necessary and sufficient condition. 

We say that {Ai} is beta reducible to {B,} (written as {Ai} <B {Bi}) if 
there is a family of relations {R,} such that 

(i) Ri is a relation between (0, l}“~ and (0, l}“‘, 
(ii) {Ri} can be checked, 

(iii) Ri is total, and 
(iv) for all i and all pairs (x, y) E Ri, we have XE Ai iffy E B;. 

Beta reducibility differs from gamma reducibility only in that the witness 
relations {Ri} are required to be checked instead of just nondeter- 
ministically checked. 

THEOREM 3.5. The following two statements are equivalent. 

(1) All families of total relations that can be checked can also be 
evaluated. 

(2) Polynomial-size many-one reducibility is equivalent to beta 
reducibility. 

643!74.‘3-5 
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Proof: (1) implies (2) Suppose that (1) is true. Let {Ai) and {Bi} be 
two families of languages. We will show that {Ai} <“, { Bi} iff 
{Ai} Gp {Bi}. Th e reduction {Ai} <“, {Bi} always implies the reduction 
{Ai) ds {Bi), so we just need to show the reverse implication. Suppose 
that {Ai} <s (Bi}; let {Ri} be the family of witnessing relations promised 
by the definition of beta reducibility. Since {&} is total and can be 
checked, the assumption that (1) is true implies that (I$) can be evaluated, 
i.e., there is a sequence of polynomial-size circuits { Ci} satisfying 
(x, C,(x)) E Ri for all i and x. The definition of beta reducibility implies that 
for all i and x, we have XEA~ iff C,(x) E Bi, which in turn implies that {Ai} 
is polynomial-size many-one reducible to { Bi}. This completes the first half 
of the theorem. 

(2) implies (1) Suppose that (2) is true. Let {Ri) be a family of total 
relations that can be checked. We will show that {Ri} can be evaluated. 

We reduce to the case that Ri is one-to-one, i.e., for all i and y there is at 
most one x such that (x, y) E Ri. If R, is not one-to-one, then set R: equal 
to {(x, (x, y)): (x, v) E Ri}. The relation R: is one-to-one, and it is obvious 
that if Ri. can be evaluated, then Ri can be evaluated as well. Thus we 
assume in what follows, without loss of generality, that R, is one-to-one. 

Given a set Ais (0, l}“‘, let B(R,, Ai) denote the set ofy in (0, l}“’ such 
that some x in Ai satisfies (x, y) E R,. Since R, is one-to-one, it is easy to see 
that every family {Ai) is beta reducible to (B(R,, Ai)}, with {Ri} witness- 
ing the reduction. Hence by hypothesis the family {Aj} is polynomial-size 
many-one reducible to (B( Ri, A i) ). 

Let gi be the unique function from { 0, 1 }“I to { 0, 1 1”’ u { # } such that 
( gi( y), y) E Ri for y in the range of Ri, and g,(y) = # otherwise. For a sub- 
set Ai of (0, l}“, we see that yEB(Ri, Ai) iff gi(y)EAi for ally in (0, 1)“‘. 
Note that {g,} need not be computable in polynomial size. We will need 
the following result. 

CLAIM 3.6. Let Ri be a one-to-one, total relation. Then there is an 
Ai c (0, 1 }“I such that for all circuits C, the condition 

implies that 

Vx[x E A;o C(x) E B(R,, Ai)] (*) 

I{XE (0, l>? (x, C(x))#R,}I < lO.size(C).log,(size(C)+ 1). (**) 

Proof. The proof is by a probabilistic argument. Choose Ai uniformly 
at random from { 0, 1 >“I. We will show that Ai satisfies the claim with 
positive probability. The probability that there is a circuit C of size s that 
satisties (*) but not (**) is bounded above by (the number of circuits of 
size s) times (the probability that a particular circuit satisfies (*) but not 
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i;;!k)y number of circuits of size s is bounded above by s3’ (see Savage 

Let C be a circuit of size s that does not satisfy (**). By definition of 
B(R,, Ai), the condition (*) can be rewritten as 

Define an undirected graph G with vertex set V= (0, 1)” u { # ), having 
edges between vertices x and gJC(x)) for all x in (0, 1 }“I. The circuit C 
satisfies (*) iff every two vertices connected by an edge in G are either both 
in A i or both not in Ai (where # is considered to not be in Ai). The 
probability that C satisfies (*) is thus exactly 2n-‘vl, where a is the number 
of connected components of G. It is easy to see that a < IV1 -b/2, where b 
is the number of edges in G that are not self-loops. If (x, C(x)) $ Ri, then x 
has an edge that is not a self-loop associated with it. Since C does not 
satisfy (**), we must have b > lOslog,(s + 1). Thus the probability that C 
satisfies (*) is at most 2-ss’0g2cs+‘)= (s+ l))5’. 

The probability that there is a circuit of size s that satisfies (*) but not 
(**) is thus at most s3”.(.s+ l))5s<(s+ l))2’. The sum of (s+ 1))2’ over 
all s > 1 is still less than 1. Hence there exists an Ai that satisfies the 
claim. 1 

For our family of relations {R,), let { Ai} be the family of languages 
promised by the above claim. We know that {Ai) <“, {B(Ri, Ai)}, so some 
sequence of circuits { Ci> of size polynomial in ni witnesses the reduction. 
Set pi equal to the size of Ci. By the above claim, the circuit Ci also satisfies 
(e), i.e., we have 

The circuit Cj evaluates Ri almost everywhere-it fails on less than 
lop, log,(p, + 1) inputs. But by constructing a lookup table for these 
inputs, we can construct a circuit Di of size O(p, log pi) that evaluates R, 
exactly. This completes the proof of the theorem. 1 

4. ONE-WAY PERMUTATIONS FOR CONSTANT-DEPTH CIRCUITS 

In this section we will give two examples of provably one-way functions 
for constant-depth circuits. Throughout this section, a circuit will have 
alternating levels of AND gates and OR gates of unbounded fanin and 
fanout. The inputs are Boolean variables and their negations. The depth of 
a circuit is the number of alternating levels in it. 
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A family of permutations is a sequence {fi} such that fn is a permutation 
of (0, 1 }“. The family {L.} is one-way for constant-depth circuits if it can be 
computed in polynomial size and constant depth, but its inverse {f ;‘} 
cannot. 

Let B, be the mapping from (0, 1 }” to (0, 1, . . . . 2” - 1 } obtained by 
interpreting binary strings as natural numbers, i.e., set B,(x*, .x2, . . . . x,) 
equal to C;=, ~~2”~~. Let 0,: (0, l}” + (0, I}” be defined by a,(x) = 
B; ‘(3B,(x) mod 2”). 

THEOREM 4.1. The sequence {a,> is a one-way family of permutations 
for constant-depth circuits. 

Proof The function on is a permutation because gcd(3,2”) = 1. We first 
show that {a,> has polynomial-size constant-depth circuits. Chandra et al. 
(1984) showed that adding two n-bit numbers can be done in constant 
depth and polynomial size. Since c,(x) = B; ‘(B,(x) + B,(x) + 
B,(x) mod 2”), we need only two additions to compute a,(x). Thus {a,} 
can be computed in polynomial size and constant depth. 

We next show that {c;‘} requires more than polynomial size to com- 
pute in constant depth. Let n,: (0, 1 }” + (0, 1 } be defined by setting 
qJx1 I -x2 9 . . . . x,) equal to 1 if the number of x:s that are 1 is divisible by 3, 
and equal to 0 otherwise. We show that {rc,} can be reduced in constant 
depth to {e;‘}. Since the methods of Ajtai (1983) and Furst et al. (1984) 
(see also Yao, 1985 and Hastad, 1987) show that {rr,} cannot be computed 
in constant depth and polynomial size, this will complete the proof. 

Observe that B,(a; ‘( y)) < L2”/3 J if and only if B,(y) is divisible by 3. 
But B,(y) is divisible by 3 if and only if y, - y2 + . . . + ( - 1 )*y, is divisible 
by 3, where y = (yi, y2, . . . . y,). Thus rc,(xi, x2, . . . . x,) = 1 if and only if 
B,(o,‘(xl, 0, x2,0, x3, . . . . 0, x,)) < L2”/3 J. Comparison of two n-bit num- 
bers can be computed in polynomial size and constant depth (see Chandra 
et al., 1984); thus we have a constant depth reduction from {rrn} to 
w>. I 

A family of permutations {f, } is bit-wise one-way for constant-depth 
circuits if it can be computed in constant depth and polynomial size, but no 
bit of its inverse {f; ’ > can. 

Let z,: (0, l}“-+ (0, l}” map the string (x1,x2, . . ..x.) to the string 
(Yl, Y2, ...9 YA where yi=xi@xi+i for l<i<n-1, and yn= 
x1 @x~,,,~, Ox,, and with 0 denoting addition modulo 2. 

THEOREM 4.2. The sequence {TV} is a bit-wise one-way family of per- 
mutations for constant depth circuits. 

Proof The function z,, is a permutation. In fact, it is straightforward 
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to check that its inverse is given by z;’ (y,, y,, . . . . y,) = (x1, x2, . . . . x,), 
where xi=(y,@ ... @y,-,)@(y,,,,,@ ... @y,) for 1 <i<Ln/2J, and 
xi=(y10 .” OYCn/2j-I)O(YiO . . . 0 yn) for Ln/2 J 6 id n. The function 
z, can be computed with linear-size depth 2 circuits, since each bit of T, 
depends on at most three variables. On the other hand, note that each bit 
of ~;l is the modulo-2 sum of at least Ln/2 J of the yi. Thus the parity 
function is constant-depth reducible to each bit of ~;l. Since the parity 
function cannot be computed in polynomial size and constant depth (Ajtai, 
1983 and Furst et al., 1984), we are done. 1 

Two additional examples of one-way permutations for constant-depth 
circuits have since been discovered. Barrington (1985) has constructed a 
family of permutations that can be computed with constant-depth 
polynomial-size circuits, whose inverse is complete for LOGSPACE under 
first-order reductions (see Immerman, 1983, for the definition of first-order 
reductions). Even stronger, Hastad (1986) has constructed a family of 
permutations each of whose output bits depends on at most three input 
bits (like the permutation z,, above), but whose inverse is complete for P 
under first-order reductions. 

RECEIVED November 1985; ACCEPTED February 17. 1987 
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