
INFORMATION AND COMPUTATION 74, 226240 (1987)

One-Way Functions and Circuit Complexity*

R. B. BOPPANA

Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

AND

J. C. LAGARIAS

AT&T Bell Laboratories, Murray Hill, New Jersey 07974

A finite function f is a mapping of (0, 1)” into (0, I]” v { # }. where “#” is a
symbol to be thought of as “undefined.” A family of finite functions is said to be
one-way (in a circuit complexity sense) if it can be computed with polynomial-size
circuits, but every family of inverses of these functions cannot. In this paper we
show that, provided functions that are not one-to-one are allowed, one-way
functions exist if and only if the satisliability problem SAT does not have
polynomial-size circuits. A family of functionsf,(x) can be checked if some family of
polynomial-size circuits with inputs x and y can determine if f,(x) = y. A family of
functionsL(x) can be eoaluated if some family of polynomial-size circuits with input
x can computef,(x). Can all families of total functions that can be checked also be
evaluated? We show that this is true if and only if the nonuniform versions of the
complexity classes P and UP n co-UP are equal. A family of functions f, is one-wa)

for constan/ depth circuits iff, can be computed with unbounded fanin circuits of
polynomial size and constant depth, but every family of inverses f,-’ cannot. We
give two provably one-way functions (in fact permutations) for constant-depth
circuits. The second example has the stronger property that no bit of its inverse can
be computed in polynomial size and constant depth. rG 1987 Academic press, hc.

1. INTR~OUCTI~N

A one-way function is a function that is easy to compute, whose inverse
is hard to compute. Such functions are important for cryptography.
Without one-way functions, it is impossible to design secure public-key
cryptosystems. One-way functions are also crucial for generating pseudo-
random numbers. Blum and Micali (1984), Yao (1982), and Levin (1987)

* A preliminary version of this paper appeared in “Proceedings, ACM Structure in Com-
plexity Theory Conference, Berkeley,” Lecture Notes in Computer Science Vol. 223, Springer-
Verlag, Berlin, 1986, pp. 51-65. The lirst author was supported in part by an NSF Graduate
Fellowship and by an NSF Mathematical Sciences Postdoctoral Fellowship.

226
0890-5401/87 $3.00
Copyright ru 1987 by Academkc Press, Inc.
All rights of reproductmn in any form reserved.

ONE-WAY FUNCTIONS 227

each show that the existence of certain types of one-way functions implies
the existence of pseudo-random number generators.

Several distinct definitions of one-way functions have been proposed (see
Brassard (1983), Selman (1984), and Levin (1987)). These definitions are
all based on Turing machine complexity, i.e., they are uniform concepts.
Despite the importance of one-way functions, the existence of such
functions has never been proved. Levin (1987) constructs a universal
function that is one-way in his terminology if some one-way function exists.
There are particular functions, such as the inverse of discrete logarithm
(Odlyzko (1984)), that appear to be one-way.

In this paper we study a nonuniform notion of one-wayness based on cir-
cuit complexity. A Boolean circuit is a directed acyclic graph with input
nodes { .Y, , x2, x,} and output nodes {y,, y,, y,}, together with
AND gates, OR gates, and NOT gates. The size of a circuit is the number
of gates in the circuit. In the natural way, each circuit computes a
finite function. We consider finite functions f mapping {0, 1 }” into
{O, 1 j”u (# }, w h e re “ # ” is a symbol to be thought of as “undefined.” An
inuerse off is a function that, on input y, will output some x satisfying
f(s) = y if such an x exists, and outputs # otherwise. We say that f is one-
ro-one if X, #x2 implies that either f(x,) #f(x,) or f(~,) =f(x,) = #. A
functionfhas a unique inverse function if and only if it is one-to-one in this
sense. We say that f is onto if every y in { 0, 1 }” has some x in { 0, 1 }” such
that f(x) =y. Note that with these definitions, a one-to-one and onto
function does not have to be a permutation. We say that f is total if f does
not take the value #.

We say that a family of functions f, is one-way if the functions f, can be
computed with polynomial-size circuits, but every family of inverses off,
cannot. In Section 2 of this paper we show that, provided functions that are
not one-to-one are allowed, one-way functions exist if and only if the
satistiability problem SAT does not have polynomial-size circuits. Previous
results by Grollman and Selman (1984) imply complementary results. They
show that a family of one-way one-to-one functions exists if and only if the
nonuniform versions of the complexity classes P and UP are not equal, and
that a family of one-way one-to-one and onto functions exists if and only if
the non-uniform versions of P and UP n co-UP are not equal. Karp and
Lipton (1982, Theorem 6.1) show that if SAT has polynomial-size circuits,
then the polynomial-time hierarchy collapses at the second level, i.e., the
hierarchy Uz 1 Cp equals C$. This may be taken as evidence that one-way
functions exist, provided functions that are not one-to-one are allowed.

In Section 3, we study similar questions about the relative complexity of
checking a function versus evaluating a function, first studied by Valiant
(1976). A function f can be checked if some polynomial-size circuit with
inputs x and y can determine if f(x) =y. A function can be evaluated if

228 BOPPANA AND LAGARIAS

some polynomial-size circuit with input x can compute f(x). Can all
families of total functions that can be checked also be evaluated? We show
that this is true if and only if the nonuniform versions of the complexity
classes P and UP n co-UP are equal, solving an open problem of Valiant
(1976). We show there is a parallel between the results on checking versus
evaluating (Theorems 3.1-3.3) and the results on one-way functions
(Theorems 2.1-2.3). We also ask: can all families of total relations that can
be checked also be evaluated? We show that this is true if and only if
polynomial-size many-one reducibility is equivalent to beta reducibility-
see Section 3 for definitions of these concepts.

In Section 4, we discuss one-way functions for the constant depth circuit
model. A family of functions {f, } is one-way for constant depth circuits if
{f,} can be computed in polynomial size and constant depth, but every
inverse of (h} cannot. We provide two examples of provably one-way
functions (in fact permutations) for constant depth circuits. The second
example has the stronger property that no bit of the inverse can be
computed in polynomial size. These examples, whose inverses are trivially
computable using general circuits of polynomial size, may be taken as an
indication of the restrictiveness of the bounded depth circuit model rather
than as evidence that one-way functions exist. Ajtai and Wigderson (1987)
have constructed a pseudo-random bit generator for constant depth
circuits, thus showing that probabilistic constant depth circuits can be
simulated in deterministic subexponential time.

Finally we remark that the existence of one-to-one one-way functions in
the nonuniform case does not seem to imply the existence of one-to-one
one-way functions in the uniform case, or vice versa.

2. ONE-WAY FUNCTIONS FOR GENERAL CIRCUITS

In this section we will show that, provided functions that are not one-to-
one are allowed, one-way functions exist if and only if the satisliability
problem SAT does not have polynomial-size circuits. First we need some
definitions.

Given a function f mapping a set A into a set Bu { # }, define the
domain off to be the set of x in A such that f(x) # #. Let the range off be
the set of y in B such that some x in A satisfiesf(x) = y. Given a function g
mapping B to A u { # }, we say that g is an inverse off if f (g(y)) = y for all
y in the range off, and g(y) = # otherwise.

A circuit C is a directed acyclic graph with nodes of live different types:

(i) input nodes having indegree 0 and outdegree 1, with a label
from the set {x1, x2, x,};

ONE-WAY FUNCTIONS 229

(ii) output nodes having indegree 1 and outdegree 0, with a label
from the set {y,, y,, y,};

(iii) AND g t h a es aving indegree 2 and arbitrary outdegree, with a
label “/j”;

(iv) OR gates having indegree 2 and arbitrary outdegree, with a
label “V”;

(v) NOT gates having indegree 1 and arbitrary outdegree, with a
label “1”.

In the natural way, a circuit C computes a function C from (0, 1 }” to
(0, 1 }“. The size of a circuit is the number of nodes in the circuit. Note
that size(C) is at least the number of inputs plus the number of outputs of
the circuit C.

A family of functions is a sequence f,, f2, such that the function fi
maps (0, 1 }“I into (0, 1 }“‘I. The family { fi> is computable in polynomial size
if there is a sequence of circuits C,, C,, such that the circuit Ci has n,
inputs and 1 + mi outputs, has size polynomial in n,, and satisfies
C,(x) = (l,L.(x)) for all x in the domain of f,, and C,(x) = (0, Omt)
otherwise. The family (pi} is one-way if nj and mi are within polynomial
factors of each other, the family {f,} is computable in polynomial size, and
no inverse of (f,} is computable in polynomial size.

The main result of this section is the following theorem.

THEOREM 2.1. The ,following are equivalent:

(1) There exists a one-way fami1.v of functions.

(2) The satisfiability problem SAT does not have polynomial size
circuits.

We need to make precise the statement “SAT has polynomial-size cir-
cuits.” Let BF denote the set of Boolean formulas. Let p be any reasonable
one-to-one encoding from BF into { 0, 1) *, i.e., such that p and its unique
inverse p ~ ’ are computable by polynomial-time Turing machines, and p
preserves lengths of formulas to within a constant factor (where a variable
x, is considered to have length Llog, i_l + 1). We define functions SAT,,,
from (0, 1)” to (0, 1, # } as follows:

(i) SAT,,,(y)= 1 if p-‘(y) is a formula of n variables that has a
satisfying assignment;

(ii) SAT,,,(y)=0 if p-‘(y) is a formula of n variables that has no
satisfying assignments;

(iii) SAT,,,(y) = # otherwise.

230 BOPPANA AND LAGARIAS

By “SAT has polynomial-size circuits,” we mean that {SAT,,.) has
circuits of size bounded by a polynomial in m and n.

Proof of Theorem 2.1. (1) implies (2) Suppose that SAT has
polynomial-size circuits. Let CIRCUIT-SAT be the language that consists
of Boolean circuits having a satisfying assignment. By a nonuniform ver-
sion of Cook’s theorem (Cook, 1971), the language CIRCUIT-SAT would
also have polynomial-size circuits. In fact, in polynomial size we could find
the lexically first satisfying assignment of a circuit (simply make n
successive calls to CIRCUIT-SAT). Let (fi} be a family of functions
computable in polynomial size using circuits {C;}. We show how to
compute the lexically first inverse of {fi} in polynomial size. Note that y is
in the domain of an inverse of fi iffy is in the range of fi, in other words iff
some x satisfies C,(X) = (1, y). But we can test this in polynomial size by
calling CIRCUIT-SAT. In fact, by the remarks above, we can actually find
such an x in polynomial size. Therefore, the lexically first inverse of {fi> is
computable in polynomial size.

(2) implies (1) Suppose that SAT does not have polynomial-size circuits.
Consider the function PROJ,,, from {O,l)“x{O,1}” to {O,l}“u(#)
defined as follows: if p-‘(v) is a formula of n variables that outputs 1 on
input x, then set PROJ,,,(y, x) =y; otherwise, set PROJ,,,(y, x) = #.
Clearly PROJ,,, is computable in polynomial size. On the other hand, the
range of PROJ,,, is precisely the set of y such that SAT,,,(v) = 1. Thus
even the domain of each inverse of PROJ,., requires more than
polynomial size to compute, so PROJ,., is a one-way function. 1

The proof method of Theorem 2.1 can be used to establish a stronger
result, applying to finite functions having arbitrary circuit size, which we
now describe. For a function f from (0, 1 }” to (0, 1)” u { # }, define the
circuit complexity of f by C(f) = min{size(C): C computes f }, and the
circuit complexity of inverting such a function by C-‘(f) = min{ C(g):g is
an inverse off }. Now define the measure of one-wryness M(f) of a finite
function by M(f)=log(C’(f))/log(C(f)).

The point of this measure is that M(f) 2 k if and only if
C-‘(f) 3 C(f)“. Thus M(f) is unbounded if and only if a superpolynomial
increase in the number of gates is needed in computing each inverse
function off, for a suitable family of functions {f,}, with no restriction on
the number of gates needed for the fi. We have the following result.

THEOREM 2.1 a. The following are equivalent:

(1) The measure of one-wayness M(f) is unbounded.
(2) The satisfiability problem SAT does not have polynomial-size

circuits.

ONE-WAY FUNCTIONS 231

Proof. (1) implies (2) Suppose that SAT,,, has circuits of size p(m, n)
bounded by a polynomial in both m and n; we show that M(j) is bounded
by a constant. Let f be a function from { 0, 1 }” to (0, 1)“’ u { # }, and let g
be the lexically first inverse off. Define predicates Qi by

Qi(MJI 3 ...) wj, y) = 3x;+, . . . Jx,[f(w,, . ..) w;, xi+ ,, x,) =y],

where wi, w, E (0, 1 } and y E (0, 1)“. We will show that the predicates
Qi can be used to construct small circuits for g. Consider the following
algorithm for computing g(y):

if QO(y) then
for i +- 1 to n do
if Qi(wl, wip 1, 0, y) then wit 0 else wit 1
endfor
g(Y) + (w, 2 ...2 w,)

else g(y) + #

It is easy to check that the above algorithm computes the lexically first
inverse off: Set s = C(f). Provided that the predicates Qi have circuits of
size polynomial in s, the above algorithm can be converted into a circuit
computing g of size polynomial in s; hence M(f) would be bounded by a
constant. We now construct small circuits for the predicates Qi.

The predicate Qi can be easily computed with a nondeterministic circuit
of size s + O(m) = O(s) having n-i< n nondeterministic variables. By
adding dummy variables corresponding to the gates of this nondeter-
ministic circuit and using Boolean conditions to force a correct simulation
of the circuit, we can construct a nondeterministic Boolean formula com-
puting Qi of size O(s) and length O(slogs), having O(s) nondeterministic
variables. Using a SAT,,,,. circuit, where m’ = O(s log s) and n’ = O(s), we
can compute Q; with a deterministic circuit of size p(O(s log s), O(s)). But
this size is polynomial in s, so we are done.

(2) impfies (1) Same as for Theorem 2.1. 1

These results are complemented by previous work on the existence of
one-way one-to-one functions. To state these results, we need some
definitions. We call a function f mapping (0, 1 }” to { 0, 1 } a Boolean
function. Define PSIZE (“nonuniform P,” sometimes denoted by P/poly)
to be the set of families of Boolean functions that are computable in
polynomial size. Define NPSIZE (“nonuniform NP”) to be the set of
families {fi} of Boolean functions for which there is a sequence of circuits
{ Ci} such that Ci has ni +pi inputs (for some pi polynomial in ni) and 1
output, has size polynomial in ni, and, for all x in (0, 1 }“I, we have
L.(x) = 1 iff some y in (0, l}“’ satisfies Ci(x, y) = 1. Define UPSIZE

232 BOPPANAANDLAGARIAS

(“nonuniform UP”) to be the set of families {f;} of Boolean functions for
which there is a sequence of circuits {Ci} that satisfies the conditions for
NPSIZE and furthermore for all x in (0, 1 }” there is at most one y such
that Ci(x, y) = 1. Let co-A denote the set of families of Boolean functions
whose negations are in the class A.

The following theorem is the nonuniform version of a result by Grollman
and Selman (1984), and can be proved by adapting their argument to the
nonuniform case.

THEOREM 2.2. The following are equivalent:

(1) There exists a one-way family of one-to-one functions.
(2) PSIZE # UPSIZE.

The next theorem is also the nonuniform version of a result by Grollman
and Selman, which again is proved following their argument.

THEOREM 2.3. The following are equivalent.

(1) There exists a one-way family of one-to-one and onto functions.
(2) PSIZE # UPSIZE n co-UPSIZE.

Recall that, with our conventions on the meaning of one-to-one and
onto, a one-to-one onto function does not have to be a permutation. It is
an open problem to give a necessary and sufficient condition for the
existence of a one-way family of permutations in terms of separation of
complexity classes.

3. CHECKING VERSUS EVALUATING

In this section we will consider questions concerning the relative
complexity of checking versus evaluating. They were first raised by Valiant
(1976). To formulate the questions we require a few definitions.

Given two sets A and B, a relation R between A and B is just a subset of
the Cartesian product A x B. The domain of R is the set of x in A such that
some y in B satisfies (x, y) E R. The range of R is the set of y in B such that
some x in A satisfies (x, y) E R.

A family of relations is a sequence of relations {Ri) such that Ri is a
relation between { 0, 1 }“I and { 0, 1 }“‘, where mi and n, are within
polynomial factors of each other. This family can be checked if there is a
sequence of circuits { Ci} such that the circuit Ci has n, + mi inputs and 1
output, has size polynomial in ni, and for all x in { 0, 1 > “l and y in { 0, 1 } m1,
the pair (x, y) is in Ri if and only if Ci(x, y) = 1, i.e., the circuit Ci tests
membership in Ri. The family of relations (Rj} can be evaluated if there is

ONE-WAY FUNCTIONS 233

a sequence of circuits {Ci} such that the circuit Cj has ni inputs and mi
outputs, has size polynomial in ni, and for all x in the domain of Ri the
ordered pair (x, C,(x)) is in Ri.

Valiant (1976) asked questions of the form: can all relations (in a par-
ticular class) that can be checked also be evaluated? There is a relationship
between one-way functions and checking versus evaluating questions.
Define the inverse of a relation R between A and B to be a new relation
R-’ between B and A, defined by (y,x) E R-’ iff (x, y) E R. Note that R
can be checked iff R - ’ can be checked. If f is a one-way function, then f ~ ’
is a relation that can be checked but not evaluated. In fact, it is easy to see
that f is a one-way function if and only if f can be checked and evaluated
but f-l cannot be evaluated.

There are three complexity results for the checking versus evaluating
problem parallel to the three complexity results (Theorems 2.1-2.3) for
one-way functions given in Section 2. The first of these results is the non-
uniform version of a result of Valiant (1976), which can be proved by his
methods.

THEOREM 3.1. The following are equivalent:
(1) Every family of relations that can be checked can also be

evaluated.
(2) The satisfiability problem SAT has polynomial-size circuits.

A relation R is a function if for all x in A at most one y in B satisfies
(x, y) E R. The next theorem is also the nonuniform version of a result by
Valiant, which his methods also establish.

THEOREM 3.2. The following are equivalent:

(1) Every family of functions that can be checked can also be
evaluated.

(2) PSIZE = UPSIZE.

A relation R between A and B is total if its domain is all of A, i.e., for all
x in A at least one y in B satisfies (x, y) E R. Valiant left open the question:
can all total functions that can be checked also be evaluated? We give a
necessary and sufficient condition for this to be true in the nonuniform case
(the proof can be adapted to establish the uniform case as well).

THEOREM 3.3. The following are equivalent:
(1) Every family of total functions that can be checked can also be

evaluated.
(2) PSIZE = UPSIZE n co-UPSIZE.

Proof (1) implies (2) Suppose every total function that can be checked

234 BOPPANA AND LAGARIAS

can also be evaluated. Let {A.} b e a family of functions in UPSIZE n co-
UPSIZE, where fi maps { 0, 1 }” into { 0, 1). Let { Ci} be UPSIZE circuits
for (fi} (with pi nondeterministic bits) and { Ci} be UPSIZE circuits for
{ ifi) (with qi nondeterministic bits). Define the function gi from (0, 1 >“I
to (0, l> x (0, l}p8x (0, l}“’ by: iffi(x) = 0, then g,(x) = (0, Op: z), where z
is the unique solution to C:(x, z) = 1; otherwise g,(x) = (1, y, Oql), where y is
the unique value satisfying Ci(x, y) = 1.

Observe that gi(x) = (b, y, z) iff either (b = 0 A y = op’ A Ci(x, z) = 1) or
(b = 1 A z = Oyl A Ci(x, y) = 1). This shows that the family { gi} can be
checked. The g’s are total functions so, by our assumption, the family (gij
can be evaluated. But the first bit of g, equals fi, so we can compute the
family {fi} in polynomial size. Thus our assumption implies that
PSIZE = UPSIZE n co-UPSIZE.

(2) implies (1) Suppose that PSIZE = UPSIZE n co-UPSIZE. Let (S, }
be a family of total functions, wherefi maps (0, 1)“I into (0, 1 1”: that are
checked by the polynomial-size circuits { Ci}. Let yi be the jth bit of fi.
Note that yj= 1 iff some z satisfies Ci(x, z) = 1 and zi= 1, and that yj= 0 iff
some x satisfies Ci(x, z) = 1 and zi = 0. Since fi is single-valued, there exists
at most one z in either case. The first case shows that each bit of fi is in
UPSIZE, whereas the second case shows that each bit of fi is in co-
UPSIZE. But we assumed that PSIZE= UPSIZEnco-UPSIZE, so each
bit off, can be computed in polynomial size. Thus the family {J.} can be
evaluated. 1

Let {R,) be a family of relations such that Ri is a relation between
(0, 1 }“I and (0, 1 }“I, where ni and mi are within polynomial factors of each
other. The family (Ri} can be nondeterministically checked if there is a
sequence of circuits { Ci} such that the circuit Ci has ni + m, +pi inputs (for
some pi polynomial in n,) and 1 output, has size polynomial in ni, and for
all x in (0, 1 }“I and y in (0, 1 }“I, the pair (x, y) is in Ri iff some z satisfies
Cj(x, y, z)= l.

Long (1981) studied the uniform version of the statement “all total
relations that can be nondeterministically checked can be evaluated.” Long
showed that this statement is true if and only if gamma reducibility (see
Adleman and Manders (1977)) is equivalent to polynomial-time many-one
reducibility. We define the nonuniform versions of these reducibilities
below.

A family of languages is a sequence (Ai) such that Ai is a subset of
(0, l}“‘. Let (Ai} and (Bi) be two families of languages such that
A,G (0, l}“’ and Bit (0, l}“‘, where ni and mi are within polynomial fac-
tors of each other. We say that (Ai) is polynomial-size many-one reducible
to (Bi) (written as (Ai) <P, {Bj)) if there is a family of functions {fi} such
that

ONE-WAY FUNCTIONS 235

(i) fi maps (0, l}“’ into (0, l}“!,
(ii) {fi} is computable in size polynomial in ni, and

(iii) for all i and all x in (0, 1)“: we have x E Aj iff fi(X) E Bi.

We say that {Ai} is gamma reducible to {Bi} (written as {A,} Gr {Bi}) if
there is a family of relations {Ri} such that

(i) R, is a relation between (0, l}“~ and (0, l>“,
(ii) {Ri} can be nondeterministically checked,

(iii) Ri is total, and
(iv) for all iand all pairs (x,y)~R,, we havex~AjiffyEBi.

The following theorem is the nonuniform version of a result of Long
(1981) and can be proved by adapting the proof of Theorem 3.5 below.

THEOREM 3.4. The following two statements are equivalent.

(1) All families of total relations that can be nondeterministically
checked can also be evaluated.

(2) Polynomial-size many-one reducibility is equivalent to gamma
reducibility.

Valiant asked the following question: can all total relations that can be
checked also be evaluated? Valiant showed that a sufficient condition for
this to be true is that SAT have polynomial-size circuits, and a necessary
condition is that PSIZE = NPSIZE n co-NPSIZE. We give below a
necessary and sufficient condition.

We say that {Ai} is beta reducible to {B,} (written as {Ai} <B {Bi}) if
there is a family of relations {R,} such that

(i) Ri is a relation between (0, l}“~ and (0, l}“‘,
(ii) {Ri} can be checked,

(iii) Ri is total, and
(iv) for all i and all pairs (x, y) E Ri, we have XE Ai iffy E B;.

Beta reducibility differs from gamma reducibility only in that the witness
relations {Ri} are required to be checked instead of just nondeter-
ministically checked.

THEOREM 3.5. The following two statements are equivalent.

(1) All families of total relations that can be checked can also be
evaluated.

(2) Polynomial-size many-one reducibility is equivalent to beta
reducibility.

643!74.‘3-5

236 BOPPANA AND LAGARIAS

Proof: (1) implies (2) Suppose that (1) is true. Let {Ai) and {Bi} be
two families of languages. We will show that {Ai} <“, { Bi} iff
{Ai} Gp {Bi}. Th e reduction {Ai} <“, {Bi} always implies the reduction
{Ai) ds {Bi), so we just need to show the reverse implication. Suppose
that {Ai} <s (Bi}; let {Ri} be the family of witnessing relations promised
by the definition of beta reducibility. Since {&} is total and can be
checked, the assumption that (1) is true implies that (I$) can be evaluated,
i.e., there is a sequence of polynomial-size circuits { Ci} satisfying
(x, C,(x)) E Ri for all i and x. The definition of beta reducibility implies that
for all i and x, we have XEA~ iff C,(x) E Bi, which in turn implies that {Ai}
is polynomial-size many-one reducible to { Bi}. This completes the first half
of the theorem.

(2) implies (1) Suppose that (2) is true. Let {Ri) be a family of total
relations that can be checked. We will show that {Ri} can be evaluated.

We reduce to the case that Ri is one-to-one, i.e., for all i and y there is at
most one x such that (x, y) E Ri. If R, is not one-to-one, then set R: equal
to {(x, (x, y)): (x, v) E Ri}. The relation R: is one-to-one, and it is obvious
that if Ri. can be evaluated, then Ri can be evaluated as well. Thus we
assume in what follows, without loss of generality, that R, is one-to-one.

Given a set Ais (0, l}“‘, let B(R,, Ai) denote the set ofy in (0, l}“’ such
that some x in Ai satisfies (x, y) E R,. Since R, is one-to-one, it is easy to see
that every family {Ai) is beta reducible to (B(R,, Ai)}, with {Ri} witness-
ing the reduction. Hence by hypothesis the family {Aj} is polynomial-size
many-one reducible to (B(Ri, A i)).

Let gi be the unique function from { 0, 1 }“I to { 0, 1 1”’ u { # } such that
(gi(y), y) E Ri for y in the range of Ri, and g,(y) = # otherwise. For a sub-
set Ai of (0, l}“, we see that yEB(Ri, Ai) iff gi(y)EAi for ally in (0, 1)“‘.
Note that {g,} need not be computable in polynomial size. We will need
the following result.

CLAIM 3.6. Let Ri be a one-to-one, total relation. Then there is an
Ai c (0, 1 }“I such that for all circuits C, the condition

implies that

Vx[x E A;o C(x) E B(R,, Ai)] (*)

I{XE (0, l>? (x, C(x))#R,}I < lO.size(C).log,(size(C)+ 1). (**)

Proof. The proof is by a probabilistic argument. Choose Ai uniformly
at random from { 0, 1 >“I. We will show that Ai satisfies the claim with
positive probability. The probability that there is a circuit C of size s that
satisties (*) but not (**) is bounded above by (the number of circuits of
size s) times (the probability that a particular circuit satisfies (*) but not

ONE-WAYFUNCTIONS 237

i;;!k)y number of circuits of size s is bounded above by s3’ (see Savage

Let C be a circuit of size s that does not satisfy (**). By definition of
B(R,, Ai), the condition (*) can be rewritten as

Define an undirected graph G with vertex set V= (0, 1)” u { #), having
edges between vertices x and gJC(x)) for all x in (0, 1 }“I. The circuit C
satisfies (*) iff every two vertices connected by an edge in G are either both
in A i or both not in Ai (where # is considered to not be in Ai). The
probability that C satisfies (*) is thus exactly 2n-‘vl, where a is the number
of connected components of G. It is easy to see that a < IV1 -b/2, where b
is the number of edges in G that are not self-loops. If (x, C(x)) $ Ri, then x
has an edge that is not a self-loop associated with it. Since C does not
satisfy (**), we must have b > lOslog,(s + 1). Thus the probability that C
satisfies (*) is at most 2-ss’0g2cs+‘)= (s+ l))5’.

The probability that there is a circuit of size s that satisfies (*) but not
(**) is thus at most s3”.(.s+ l))5s<(s+ l))2’. The sum of (s+ 1))2’ over
all s > 1 is still less than 1. Hence there exists an Ai that satisfies the
claim. 1

For our family of relations {R,), let { Ai} be the family of languages
promised by the above claim. We know that {Ai) <“, {B(Ri, Ai)}, so some
sequence of circuits { Ci> of size polynomial in ni witnesses the reduction.
Set pi equal to the size of Ci. By the above claim, the circuit Ci also satisfies
(e), i.e., we have

The circuit Cj evaluates Ri almost everywhere-it fails on less than
lop, log,(p, + 1) inputs. But by constructing a lookup table for these
inputs, we can construct a circuit Di of size O(p, log pi) that evaluates R,
exactly. This completes the proof of the theorem. 1

4. ONE-WAY PERMUTATIONS FOR CONSTANT-DEPTH CIRCUITS

In this section we will give two examples of provably one-way functions
for constant-depth circuits. Throughout this section, a circuit will have
alternating levels of AND gates and OR gates of unbounded fanin and
fanout. The inputs are Boolean variables and their negations. The depth of
a circuit is the number of alternating levels in it.

238 BOPPANAANDLAGARIAS

A family of permutations is a sequence {fi} such that fn is a permutation
of (0, 1 }“. The family {L.} is one-way for constant-depth circuits if it can be
computed in polynomial size and constant depth, but its inverse {f ;‘}
cannot.

Let B, be the mapping from (0, 1 }” to (0, 1, 2” - 1 } obtained by
interpreting binary strings as natural numbers, i.e., set B,(x*, .x2, x,)
equal to C;=, ~~2”~~. Let 0,: (0, l}” + (0, I}” be defined by a,(x) =
B; ‘(3B,(x) mod 2”).

THEOREM 4.1. The sequence {a,> is a one-way family of permutations
for constant-depth circuits.

Proof The function on is a permutation because gcd(3,2”) = 1. We first
show that {a,> has polynomial-size constant-depth circuits. Chandra et al.
(1984) showed that adding two n-bit numbers can be done in constant
depth and polynomial size. Since c,(x) = B; ‘(B,(x) + B,(x) +
B,(x) mod 2”), we need only two additions to compute a,(x). Thus {a,}
can be computed in polynomial size and constant depth.

We next show that {c;‘} requires more than polynomial size to com-
pute in constant depth. Let n,: (0, 1 }” + (0, 1 } be defined by setting
qJx1 I -x2 9 x,) equal to 1 if the number of x:s that are 1 is divisible by 3,
and equal to 0 otherwise. We show that {rc,} can be reduced in constant
depth to {e;‘}. Since the methods of Ajtai (1983) and Furst et al. (1984)
(see also Yao, 1985 and Hastad, 1987) show that {rr,} cannot be computed
in constant depth and polynomial size, this will complete the proof.

Observe that B,(a; ‘(y)) < L2”/3 J if and only if B,(y) is divisible by 3.
But B,(y) is divisible by 3 if and only if y, - y2 + . . . + (- 1)*y, is divisible
by 3, where y = (yi, y2, y,). Thus rc,(xi, x2, x,) = 1 if and only if
B,(o,‘(xl, 0, x2,0, x3, 0, x,)) < L2”/3 J. Comparison of two n-bit num-
bers can be computed in polynomial size and constant depth (see Chandra
et al., 1984); thus we have a constant depth reduction from {rrn} to
w>. I

A family of permutations {f, } is bit-wise one-way for constant-depth
circuits if it can be computed in constant depth and polynomial size, but no
bit of its inverse {f; ’ > can.

Let z,: (0, l}“-+ (0, l}” map the string (x1,x2,x.) to the string
(Yl, Y2, ...9 YA where yi=xi@xi+i for l<i<n-1, and yn=
x1 @x~,,,~, Ox,, and with 0 denoting addition modulo 2.

THEOREM 4.2. The sequence {TV} is a bit-wise one-way family of per-
mutations for constant depth circuits.

Proof The function z,, is a permutation. In fact, it is straightforward

ONE-WAY FUNCTIONS 239

to check that its inverse is given by z;’ (y,, y,, y,) = (x1, x2, x,),
where xi=(y,@ ... @y,-,)@(y,,,,,@ ... @y,) for 1 <i<Ln/2J, and
xi=(y10 .” OYCn/2j-I)O(YiO . . . 0 yn) for Ln/2 J 6 id n. The function
z, can be computed with linear-size depth 2 circuits, since each bit of T,
depends on at most three variables. On the other hand, note that each bit
of ~;l is the modulo-2 sum of at least Ln/2 J of the yi. Thus the parity
function is constant-depth reducible to each bit of ~;l. Since the parity
function cannot be computed in polynomial size and constant depth (Ajtai,
1983 and Furst et al., 1984), we are done. 1

Two additional examples of one-way permutations for constant-depth
circuits have since been discovered. Barrington (1985) has constructed a
family of permutations that can be computed with constant-depth
polynomial-size circuits, whose inverse is complete for LOGSPACE under
first-order reductions (see Immerman, 1983, for the definition of first-order
reductions). Even stronger, Hastad (1986) has constructed a family of
permutations each of whose output bits depends on at most three input
bits (like the permutation z,, above), but whose inverse is complete for P
under first-order reductions.

RECEIVED November 1985; ACCEPTED February 17. 1987

REFERENCES

ADLEMAN, L., AND MANDERS, K. (1977), Reducibility, randomness, and intractibility, in
“Proceedings, 9th Annual ACM Symposium on Theory of Computing, Boulder,”
pp. 151-163.

AJTAI, M. (1983), xi-formulae on finite structures, Ann. Pure Appl. Logic 24, 148.
AJTAI, M., AND WIGDERSON, A. (1987), Deterministic simulation of probabilistic constant

depth circuits, in “Randomness and Computation” (S. Micali, Ed.), Advances in Computer
Research Vol. 5, JAI Press, Greenwich; preliminary version, in “Proceedings, 26th Annual
IEEE Symposium on Foundations of Computer Science, Portland, 1985,” pp. 11-19.

BARRINGTON. D. (1985), personal communication.
BLUM, M., AND MICALI, S. (1984), How to generate cryptographically strong sequences of

pseudo random bits, SIAM J. Comput. 13, 8X&864.
BRASSARD, G. (1983), Relativized cryptography, IEEE Trans. Inform. Theory 29, 877-894.
CHANDRA, A. K., STOCKMEYER, L., AND VISHKIN, U. (1984), Constant depth reducibility.

SIAM J. Comput. 13, 423439.
COOK, S. A. (1971), The complexity of theorem proving procedures, in “Proceedings, 3rd

Annual ACM Symposium on Theory of Computing, Shaker Heights,” pp. 151-158.
FURST, M., SAXE, J. B., AND SIPSER, M. (1984), Parity, circuits, and the polynomial time

hierarchy, Math. Systems Theory 17, 13-28.
GROLLMAN, J., AND SELMAN, A. L. (1984), Complexity measures for public-key cryptosystems,

in “Proceedings, 25th Annual IEEE Symposium on Foundations of Computer Science,
Singer Island,” pp. 495-503.

HASTAD, J. (1986), One-way permutations in NC?, submitted to Inform. Process. Lett.
HASTAD, J. (1987), Improved lower bounds for small depth circuits, in “Randomness and

240 BOPPANA AND LAGARIAS

Computation” (S. Micah, Ed.), Advances in Computer Research Vol. 5, JAI Press,
Greenwich; preliminary version, in “Proceedings, 18th Annual ACM Symposium on
Theory of Computing, Berkeley, 1986,” pp. 6-20.

IMMERMAN, N. (1983), Languages which capture complexity classes, in “Proceedings, 15th
Annual ACM Symposium on Theory of Computing, Boston,” pp. 347-354.

KARP, R. M., AND LIPTON, R. J. (1982), Turing machines that take advice, Enseign. Math. 28,
191-209; preliminary version, in Some connections between non-uniform and uniform
complexity classes, “Proceedings, 12th Annual ACM Symposium on Theory of Computing,
Los Angeles, 1980,” pp. 302-309.

LEVIN, L. A. (1987), One-way functions and pseudorandom generators, Combinatorics, in
press; preliminary version, in “Proceedings, 17th Annual ACM Symposium on Theory of
Computing, Providence, 1985,” pp. 363-365.

LONG, T. J. (1981), On y-reducibility versus polynomial time many-one reducibility, Theoret.
Cornput. Sci. 14, 91-101.

ODLYZKO, A. (1985), Discrete logarithms in finite fields and their cryptographic significance,
in “Advances in Cryptology-Proceedings of Eurocrypt 84” (T. Beth, N. Cot, and I.
Ingemarsson, Eds.), Lecture Notes in Computer Science Vol. 209, pp. 224-314, Springer-
Verlag, Berlin.

SAVAGE, J. E. (1976). “The Complexity of Computing,” Wiley, New York.
SELMAN, A. L. (1984), Remarks about natural self-reducible sets in NP and complexity

measures for public key cryptosystems, preprint.
VALIANT, L. (1976) Relative complexity of checking and evaluating, Inform. Process. Lett. 5,

20-23.
YAO, A. C. (1982) Theory and applications of trapdoor functions, in “Proceedings, 23rd

Annual IEEE Symposium on Foundations of Computer Science, Chicago,” pp. 8&91.
YAO, A. C. (1985), Separating the polynomial-time hierarchy by oracles, in “Proceedings,

26th Annual IEEE Symposium on Foundations of Computer Science, Portland,” pp. l-10.

