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Denoting the nonnegative integers by N and the signed integers by Z, we let S 
be a subset of Zm for m = I, 2,... and f  be a mapping from S into N. We call f  a 
storing function on S if it is injective into N, and a packing function on S if it is 
bijective onto N. Motivation for these concepts includes extendible storage 
schemes for multidimensional arrays, pairing functions from recursive function 
theory, and, historically earliest, diagonal enumeration of Cartesian products. 
Indeed, Cantor’s 1878 denumerability proof for the product N* exhibits the 
equivalent packing functions fcanlo, (x, y) = {either x or y} + (x + y)(x + y  + I)/2 
on the domain Ne, and a 1923 Fueter-Polya result, in our terminology, shows 
f  Cantor the only quadratic packing function on Ne. This paper extends the preceding 
result. For any real-valued function f  on S we define a density S + f  = lim,,, 
(l/n)#{S n f-I([-n, +n])}, and for any packing function f on S we observe the 
fact S c f  = 1. Using properties of this density, and invoking Davenport’s 
lemma from geometric number theory, we find all polynomial storing functions 
with unit density on N, and exclude any polynomials with these properties on Z, 
then find all quadratic storing functions with unit density on Na, and exclude any 
quadratics with these properties on Z x N, Z*. The admissible quadratics on N2 
are all nonnegative translates of fcentor . An immediate sequel to this paper ex- 
cludes some higher-degree polynomials on subsets of Za. 

1. INTRODUCTION AND SYNOPSIS 

Cauchy [5, pp, 140-1581. in his “Cours d’analyse,” presents a diagonal 
enumeration of arrays {aij : i, j = 1,2,...) to interpret a double series as a 
single summation. Specifically, he visits successive diagonals {aii : i + j = n} 
for n = 1, 2,... and proceeds left-to-right down each line. Cantor [2,3], 
in his cardinality researches, uses this same pattern in a more fundamental 
way to prove the denumerability of the positive rational numbers. Indeed 
he applies this enumeration scheme to the lattice {(i, j): i, j = 1,2,...} and 

* A summary of this work [15] was presented at the SIAM 1976 National Meeting on 
16-18 June 1976, Chicago, Ill. 
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extends his result, by induction, to all finite Cartesian products of 
denumerable sets. Also Cantor associates the polynomial 

f(i, j) = i + (i + j - l)(i + j - 2)/2 (1.1) 

with the indicated pattern, since it gives the resulting integer location of the 
pair (i, j). Moreover Chowla 161 exhibits an m-variable generalization of the 
polynomial (1.1) which effects a direct polynomial enumeration of the 
m-dimensional positive lattice. 

Some expositors of set theory have preferred other schemes for two- 
dimensional enumeration, but then have found no polynomial formula for 
the induced sequential locations. Indeed Fueter and Pblya [12] concatenate 
two individual notes as a joint paper which proves (1.1) and the corresponding 
f(.i, i) the only quadratic polynomials associated with any such pattern; 
while P6lya and SzegS [20, Vol. 2, Problem 2431 show the inadmissibility 
of any nonquadratic polynomial which has highest-degree homogeneous 
part vanishing nowhere on the first quadrant. Our paper, together with its 
sequel (Lew and Rosenberg [16]), introduces an “almost complete” 
enumeration of denumerable sets yielding nontrivial extensions of these 
uniqueness results. We discuss a larger collection of domains, and exclude 
a larger family of polynomials. 

Here we prefer the origin at zero, and thus define the set N = (0, 1,2,...}, 
but we meet negative integers in this work, hence also recall the set 
Z = (0, ill, &2,...}. The symbol R, as usual, denotes the set of real numbers. 
We now consider a mapping fi N” -+ N or, more generally, suppose an 
arbitrary subset S of Z” and then consider a mapping) 5’ -+ N. We call f 
a storing function on S if it is an injective map into N, and a packing function 
on S if it is a bijective map onto N. (Descriptive convenience at certain points 
motivates broader definitions in our formal development.) Two such maps 
will be called equivalent, in the context of this discussion, if they differ only 
by a permutation of their arguments. A natural problem, on appropriate 
domains S, is then to find all polynomial packing functions up to equivalence. 
Section 2, for illustrative purposes, contains a thorough treatment in one 
dimension (m = l), and the remainder of this paper offers a partial analysis 
in two dimensions (m = 2), while an immediate sequel (Lew and Rosenberg 
[16]), via more intensive methods, obtains stronger theorems for the two- 
dimensional case. Further, unpublished work includes some m-dimensional 
results. 

Storing functions in two variables play an important role in recursive 
function theory (Davis [8, p. 431; Minsky [18, p. 182]), and some works in 
this field describe such maps as pairing functions (Rogers [21, p. 641). That 
theory requires only one such function, in principle, but many authors 
provide several examples, with different ranges. These functions extend 
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various definitions from one positive integer variable to corresponding pairs, 
and thus generalize important concepts, by induction, to m such variables. 
Thus Hammer, in unpublished correspondence (Barlaz [I]), independently 
questions the uniqueness of (1.1) in this context, and analogously, in a still- 
unsolved problem (Hammer [13]), seeks also any polynomial bijections from 
Z2 onto 2. However, the principal motivation for our terms, and “this investi- 
gation, is the flexible computer storage of multidimensional arrays, and, 
specifically, planar arrays. First Rosenberg [22-251 and then Stockmeyer 
[27] have studied extendible schemes for such storage, which allocate array 
positions uniquely to numbered memory cells, and permit array expansion 
positively along any axis, but entail no storage reshuffling whatever at any 
time. The common alternative of array storage by rows (respectively, 
columns) demands such reshuffling on adjunction of further columns (res- 
pectively, rows). 

If we restrict our attention to a large array in one plane quadrant, then 
we may label an arbitrary point by coordinates (x, y), both in N, and we may 
designate its storage location by f(x, y), also in N. An extendible scheme 
for such allocations requires f to be a storing function; and full utilization 
of memory cells requires f to be a packing function. Rapid computation of 
storage locations requires f to have a simple formula; hence the program for 
this investigation assumesfto be a polynomial. An integer shift of the poly- 
nomial (1.1) provides two equivalent possibilities as packing functions: 

fcantor(x, Y> = {either x or Y> + (x + Y)(X + Y + 1P. (1.2) 

Our results for the domain N2 support the implicit conjecture of the Fueter- 
Polya [12] paper: 

No other polynomials represent packing functions. (1.3) 

Our results for the domains Z x N, Z2 suggest the impossibility of any 
polynomial packing functions. Even our partial proof of these conjectures, 
given the existence of more efficient extendible schemes (Rosenberg [25]), 
strongly recommends the use of more diverse formulas in devising storage 
algorithms for two-dimensional arrays. The much larger class of all poly- 
nomial storing functions prompts no comparably neat conjecture about its 
form. Indeed (x + y)” + x on N2 represents such a function for any m 3 2; 
while the mth Chowla [6] polynomial, by a shift of origin, becomes a packing 
function f& ,..., x~) of degree m on N”, hence yields a storing function 
f(x, y, 0 ,..., 0) of degree m by restriction. 

A synopsis of our results demands the mention of one further concept. 
Given any subset SC Zm and any map f: Zm + R, we introduce the levei 
sets f-l([-n, +n]) and the density . 

S f f = I&J (I/n) #(S nf-l([-n, +n])}. (1.4) 
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Since we cannot always assume the existence of this limit, we write, more 
generally, S + f for the lim inf and S-f for the lim sup. Fueter’s half of 
the Fueter-glya [12] paper supposes a quadratic injection f(x, y) into 
{1,2,...}, generalizes the Riemann zeta function to a Dirichlet series 

Us) = 1 {f(x, L’P: k u> E N2>, (1.5) 

and considers the associated residue at s = 1. However, Fueter’s residue, 
for any injective map f, equals N2 + f by Ikehara’s theorem (Widder [28, 
pp. 233-2361); and the hypothetical alternative 

by+ t C (e-tf(s.y): (x, y) E N2}, (1.6) 

for any negatively bounded functionf, is also N2 + f by Karamata’s theorem 
(Widder [28, p. 1921). P6lya’s half of the same paper supposes a polynomial 
mappingf(x, y) of degree d, isolates its homogeneous part fa(x, y) of highest 
degree, and considers the associated area of the region {(x, y): 0 < x, 
0 < y, fa(x, y) < l}. However, P6lya’s area, for any quadratic injection f, 
equals N2 f f by our Proposition 4.3, and the density (1.4), for an arbitrary 
function f, is the more serviceable concept in noncoincident situations. 
Indeed, specialization of our S + f yields the standard asymptotic density 
of number theory (Niven and Z&erman [19, p. 2401). Moreover S f f = 1 
for packing functions on S, and S-f < 1 for storing functions on S. 
Thus S + f # 1 implies that f is not a packing function. Hence we broaden 
our investigation from its previous goal to seek all polynomial storing func- 
tions with unit density. 

Section 2 extends these densities to arbitrary domains and derives some 
basic properties of these constructs; it defines storing and packing functions 
in the same generality and proves model results in one dimension. Propo- 
sition 2.3, in particular, establishes zero density for all nonlinear polynomials 
which represent storing functions on N or Z. Theorem 2.4, for domain N, 
considers polynomial storing functions with unit density, and obtains the 
form f(x) = x + c with nonnegative integral c. Our definitions preclude 
linear storing functions on 2, but Theorem 2.5 describes the storing functions 
of least degree. Section 3 introduces some concepts of plane affine geometry 
which facilitate the study of two-dimensional problems; it proves structural 
lemmas for later use which delimit storing functions on arbitrary sectors. 
Indeed, Proposition 3.4 avoids some case analysis of Fueter, and Corollary 3.5 
excludes all linear polynomials in two variables. 

Section 4 treats quadratic storing functions on N2. Lemma 4.2 calculates 
Polya’s area for these f, and Proposition 4.3 relates this area to N2 t$ 
Quadratic polynomials of nonparabolic type have transcendental density 
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by Corollary 4.4, whence quadratic storing functions with unit density have 
form 

f(x, Y> = fCant&, v> + 4~ + Y> + b, with a, b E N, (1.7) 

by Theorem 4.5. Thus the only quadratic packing functions on N2 are the 
Cantor polynomials, as before. Finally, Section 5 presents other two-dimen- 
sional results. Theorem 5.1, again for domain N2, obtains the quadratic 
storing functions with density i. The domain Z2, by Theorem 5.3, admits 
no polynomial storing functions below fourth degree. The domain 2 x N, 
by Corollary 5.4, admits no quadratic storing functions with unit density. 

Hence this paper characterizes all polynomial packing functions of one 
variable, but essentially describes only quadratic packing functions of 
two variables. To complete an analysis in two dimensions requires some 
counterpart of Proposition 2.3. Our immediate sequel (Lew and Rosenberg 
[16]) to the present work contains a partial result of this kind: a nonquadratic 
polynomial f(x, v) on N2, 2 x N, or Z2 cannot be a storing function with 
unit density either when f is sectorially increasing or when deg(f) < 4. 
Either requirement for this nonexistence assertion is a nontrivial extension of 
the Pblya-SzegB [20, Vol. 2, Problem 2431 result. Thus the conjecture (1.3) 
becomes more plausible, but a stronger two-dimensional statement is not 
available, though the one-dimensional analog is quite elementary. The 
lattice-point enumerations in the present work apply a fundamental lemma 
of Davenport [7], but the density calculations in our sequel invoke many 
other results of geometric number theory, wherefore the introductory remarks 
in this sequel review some relevant literature in that field. Our estimates in 
these papers involve the 0 and o notation of Bachmann and Landau (Landau 
[14, pp. 59-65, 8831; Erdelyi [I 1, Chap. I]). 

2. GENERAL THEORY IN ONE DIMENSION 

Here we consider real-valued functions with arbitrary domains and define 
our various densities in this context, then introduce storing and packing 
functions in the same generality and obtain certain basic properties for 
future use. Also we treat polynomial storing functions in a single real variable 
and prove model results for the domains N and 2, to develop the simplest 
case of our analysis and illustrate our goals for higher dimensions. If S is 
an arbitrary set then #(S) denotes the cardinality of S; if f is an arbitrary 
function then f ( S denotes its restriction to S. Let X be an arbitrary set of 
points, and X,, be a countable subset of X. If S is an arbitrary subset of X 
then 
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in the stated notation. Moreover # 1 X,, is a positive measure and all subsets 
S are measurable sets. Iff, in particular, is a real-valued (hence measurable) 
function on X, thenf 1 S, by composition, induces a measure (# 1 X0) 0 ( f 1 S)-l 
on R; that is, any Bore1 subset B C R has measure 

K# I X0) 0 (f I WI@) = #K n S n f-WI. (2.2) 

The conceptual framework of measure theory motivates seeking an 
“average density” for this set function. We suppress X0 in our notation 
because we fix X0 in each application, and we define upper and lower densities 
by 

S Tf = E (l/n) #(X0 n S n f-I([-n, +-n])}, 

S 2 j = s (l/n) #(X0 n S n f-I([-n, +n])). 
(2.3) 

Clearly these limits are well defined in [0, +co]; indeed 

O<S+f<S?f<+co. - (2.4) 

If also the two limits are equal then the set S will be called f-amenable, and 
the common limiting value will be written S +J The motivation for this 
language is the theory of semigroup means (Day [9]). Thus SZf = 0 
implies S +f = 0, and S + f = +co implies S +f = +a. For the 
identity mapping id on simplereal subsets S we may see that S i (c 0 id) = 
c-l(S + id) with any positive c; for certain functions f with integer values 
we shall find that S + f is a standard asymptotic density from number theory 
(Niven and Zuckerr& [19, p. 2401). Thus we shall describe S + fas a density, 
but represent it as a quotient, because we must eventually treat both S and f 
as variables, hence cannot conveniently write either as a subscript. 

The following two lemmas further validate this notation, and have many 
later uses. 

LEMMA 2.1. Let f: X + R and S1 , S, C X. Then for arbitrary S, , S, 

(S, u S,) ?f < (S, ?f) + (S, Ff), (2.5) 

andfor any disjoint such subsets 

(Sl u S,) If > (S, tf) + (S, 2.0 (2.6) 

while for f-amenable disjoint subsets 

6% u S,) if= (Sl G-f) + (S, -5-f). (2.7) 

641/10/z-5 
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Proof. Standard limit theorems yield the two inequalities. 0 

LEMMA 2.2. Let f ( (X,, n S) be an injective map into -k + N for some 
nonnegative integer k (where r + N = (r, r + 1, r + 2,...) for any real 
number r). 

(1) Then S + f is the asymptotic density of (1 + N) nf(&, n S), and - 

for any such f; hence S zf = 1 impliess Sf = 1. 

(2) If also N Cf(X, n S) then indeed S if = 1. 

Proof. (1) The initial hypothesis yields the two inequalities 

#{x E X,, n S: f(x) < 0) < k + 1, 

#{x E X0 n S: 0 <f(x) -c n> < n. 
(2.9) 

To find, respectively, S + for the asymptotic density, we take the sum or the 
second cardinality, thendivide by n and evaluate the lim inf (Niven and 
Zuckerman [19, p. 2401). 

(2) The set 1 + N has unit asymptotic density. i-J 

The setting of these initial remarks permits the definition of other basic 
concepts. Let X be an arbitrary set of points, and again X0 a countable 
subset of X. Let S be an arbitrary subset of S, so that X0 n S is always 
countable, and let f be a real-vaIued function on X. Then f will be called 
a storing function (on S) if f ) (X,, n S) is an injective map into N, and f 
will be called a packing function (on S) iff 1 (X0 n S) is a bijective map onto N. 
Clearly if f is a storing function on S then also f is a storing function on any 
included set. Moreover if f is a storing function on S then ST f < 1, by 
Lemma 2.2.1, while if f is a packing function on S then S + f = 1, by 
Lemma 2.2.2. Therefore if S f f # 1 for some function J then f cannot be 
a packing function on S. Thus we shall seek systematically all storing 
functions with unit density in order to find conveniently all packing functions 
within some interesting family. 

Polynomial storing and packing functions on certain grids are the principal 
subject of this paper and its sequel. Later we take X = R2 and specify 
X0 = Z2, so that a storing function on any plane set is a storing function 
on the contained lattice points; but we can obtain suitably complete results 
in one dimension, which will foreshadow our less exhaustive conclusions in 
other cases. Hence we let X = R, X, = 2 for the remainder of this section, 
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and we letf be a polynomial function on X = R. Certain arguments involve 
the finite-difference operators 

&f(x) = df(x) = f(x + 1) - m, 
LP”f(x) = fmf(x) for n = 1, 2,... . 

(2.10) 

We characterize the polynomial packing functions on N, and describe the 
simplest storing functions on 2. Our first, simple proposition is noteworthy 
because its multidimensional counterparts are still incomplete. 

PROPOSITION 2.3. If deg(f) > 2, where f is a polynomial storing function 
on S = N or Z, then S f f = 0, whence f is not a packing function on either 
N or Z. 

Proof. Degree 2 or more implies increasingly large gaps between 
successive values. 0 

THEOREM 2.4. (1) The most general polynomial storing function with unit 
density on N has the form f(x) = x + c with arbitrary c in N. (2) The only 
polynomial packing function on N is the identity map on N. 

Proof. Proposition 2.3 excludes nonlinear polynomials. The rest is 
obvious. 0 

A linear polynomial cannot be a storing function on Z, since it assumes 
negative values for some arguments; a nonlinear polynomial cannot be a 
packing function on Z, since it has zero density by Proposition 2.3. Hence 
there are no polynomial packing functions on Z, although there are infinitely 
many storing functions with zero density. However, any polynomial storing 
function on Z must have even degree, by its nonnegativity, whence the final 
result of this section will classify the storing functions of minimal degree. 
Specifically, for a, b in Z we let 

g(a, b; x) = (a/2) x(x - 1) + bx, (2.11) 

and for polynomials of this kind we let 

G = { g(a, b; *): 3 < a; 0 < 6 -C a/2}. (2.12) 

THEOREM 2.5. (1) If f(x) = g(&(x - x,,)) + cO , where g E G, x0 E Z, 
c,, E N, then f is a quadratic storing function on Z, and conversely. (2) Zf 
f(x) = g(&x), where g E G, then also min f (Z) = f (0) = 0, and conversely. 
(3) rff (x) = g(x), where g E G, then furthermore g(-1) > g(l) > g(0) = 0, 
and conversely. 
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Proof: If g is any polynomial (2.11) in G, then g 1 R assumes its minimum 
at x = + - (b/u). Thus g 1 R has its minimum in (0, i)->, by (2.12), and g / 2 
assumes its minimum at 0, by 

g(--l)=a-bbg(l)=b>g(O)=O. (2.13) 

However g / 2 takes integer values, and so g(Z) C N. If g 1 Z takes equal 
values at any distinct integers p, q, then g 1 R would assume its minimum at 
the midpoint (p + q)/2. But ( p + q)/2 cannot be a point of (0, +), whence 
g must be a storing function on Z, and g(-x), g(x + x0), g(x) + c,, are also 
storing functions on Z. Hence our three direct assertions are proved, and 
only their converses need be established. However, if the quadratic poly- 
nomial f defines an injective map from Z into N, then f 1 Z assumes its 
minimum c0 at a unique x,, in Z, and if 

f(x + x,-J - c,, = g(x) = (a/2) x(x - 1) + bx + c (2.14) 

for some constants a, b, c, then g has the properties of the originalJ: More- 
over c = g(0) = 0, and b = dg(0) is an integer, and a = d2f(0) is a positive 
integer. Finally, if g(0) < g( 1) < g(- 1) then we obtain (2.13) on substitution, 
and g(x> E G; while if g(0) < g(- 1) < g(l) then we replace x by -x, 
and g(-x) E G. 0 

3. AUXILIARY RESULTS IN Two DIMENSIONS 

We review several affine concepts for the plane R2, then discuss poly- 
nomial storing functions of two variables, and obtain some preliminary facts 
in this setting. This paper characterizes only quadratic polynomials, but 
these results anticipate also future applications. Specifically, we introduce 
rays emanating from the origin, and we consider sectors lying between such 
rays. Integer unimodular matrices, as affine mappings, transform these 
geometric entities in obvious ways, and preserve the set Z2 of plane lattice 
points. We restrict polynomials to single rays and observe their properties 
‘on these simpler domains. A polynomial storing function on a nontrivial 
sector, immediately via our analysis, cannot be a linear function on any 
included rational ray or, therefore, on R2. 

To adapt preceding definitions and study two-dimensional problems, 
weputx= R2, X,, = Z2 and supposefi X -+ R. If U denotes any real 2 x 2 
matrix (F t) then U defines a mapping 

(x, iv) -+ (x, v) U = (PX + v, 9x + v), (3.1) 

which carries R2 into R2, hence takes any subset S into 

su = {(x, y) u: (x, y) E S). (3.2) 
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We let Uf be the resultant f 0 U, that is, 

Wfl(X~ Y> = f(cG Y> w. (3.3) 

If U, in particular, is an invertible matrix, then 

%fG Y) ‘U-l> = f(x, Y> on R2. (3.4) 

Any real pair (a, b) with a2 + b2 # 0 generates a ray ~(a, b) via 

~(a, b) = {(ta, rb): t > 01, (3.5) 

and any point in this set provides another generator for the same ray. Such 
a ray will be called, respectively, rational or algebraic if the coordinates of 
some generator are rational or algebraic. Indeed a rational ray, by this 
definition, contains a point with integer coordinates. If a ray is, respectively, 
not rational or not algebraic then it will be called irrational or transcendental. 
Clearly a ray, in more intuitive language, is a half line from the origin, and 
our subdivision of all rays is a classification by their slopes. Any two rays 
w1 and o2 in R2 determine the closed sector S(o, , w2) between them: this 
consists of the origin together with all rays which lie counterclockwise 
between w1 and w2 . Hence S(w, w) = o u ((0,O)) but otherwise S(o, , wJ # 
sbJ2 9 q). If w1 and w2 are rational rays then S(w, , wz) will be called a 
rational sector; also the plane R2, by convention, will be considered a rational 
sector. 

The next two lemmas about integer unimodular matrices explore their 
relationship with our other concepts. 

LEMMA 3.1. If U = (F i) such that ps - gr = det(U) = +l, then 

U-l = det(U)-l (-z -‘) 
P 

0.6) 

and U induces a bijection from R2 onto R2. If U is un integer tmimoduiur matrix, 
so that also p, q, r, s are integers, then U-’ is an integer unimodulur matrix 
and U produces a bijection from Z2 onto Z2. If U is a proper integer unimodulur 
matrix, so that aIso det( U) = 1, then the mapping 

(4 4 - (x, Y> = tu, 4 u = U(P, 4) + u(r, s) (3.7) 

sends the first quadrant onto the sector S(w(p, q), o(r, s)) and sends N2 onto 
the lattice points of this sector; while the mapping (x, y) ---f (u, v) = (x, y) U-l 
sends this sector onto the first quadrant, and the sector lattice-points onto all 
lattice points of this quadrant. 
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Remark. These results are obtained easily by direct calculation, and are 
collected here for convenient reference. 

hMMA 3.2. If S is an f-amenable subset of R2 and U is an integer uni- 
modular matrix, then 

S+f=SU-I+- uf: (3-Q 

If S is an arbitrary subset and + becomes either T or 2, then the corresponding 
relation is also true. 

Proof. The set X,, n S nf-l([-n, +n]) in definition (2.3) has the same 
cardinality, by Lemma 3.1, as the set 

x0 n su-1 n [UfJ-l([-n, +n]) = {X0 n S nf-l([-n, +A)> U-‘. Cl (3.9) 

Let f(x, y) be a real polynomial in the real variables x, y; that is, let 

with real coefficients aii , and assume aij = 0 except for a Ikite set of pairs 
(i,j). Also let d(f) be the total degree off, and specifically put d(f) = --a~ 
for identically zero f: Let fk be the homogeneous part off with degree k, 
so that 

d(f) 

f(x, Y) = c AAx> Y) (3.1 I) 
k=O 

in this notation. If w  is any ray in R2, and (a, b) is any generator of w, then 

f@, tb) = C t !&(a, b) 
k=O 

(3.12) 

is a polynomial in t. If (c, d) is any other generator of w, then (c, d) = (wa, wb) 
for some positive w; thus fk(a, b) has the same sign for all generators (a, b), 
and fk(w) > 0 (or = 0, or < 0) is a meaningful statement for any such 
ray. Moreover (3.12) has the same degree d(w, f) for all generators (a, b), 
and 

for arbitrary rays, while d&f) = d(f) precisely when fa(f,(w) # 0. In 
addition, if U is any real invertible 2 x 2 matrix, then, by (3.4), 

d&U-l, Uf) = d&f). (3.14) 
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We now use these concepts to prove some auxiliary results which further 
our attempts to describe polynomial packing functions. Our arguments 
involve the partial difference operators 

&fb,Y) = fb + 1, Y> -f(GY), 4/f(x, Y> = fh Y + 1) - f(% Y>* 
(3.15) 

Proposition 3.4 is our main conclusion; Corollary 3.5 is its first application. 

LEMMA 3.3. Let f (x, y) be a real polynomial of form (3.10), and let f 
take integer values on some set G(p, q) = {(x, y) E Z2: p < x < p + d(f); 
q < y < q + d(f)} with p, q integers. (1) Then the coeficients aij are all 
rational numbers. (2) The zero set for any form fk with some nonvanishing 
coeficients is afinite union of algebraic rays together with the origin. 

Proof (1) The differences {dzifl,if (p, q): i, j < d(f)> take integer values 
by our assumptions, and are integer linear combinations of the aij which 
form a triangular system for these coefficients. (2) Any nonzero fk , by part 
(I), is a polynomial with rational coefficients. 0 

PROPOSITION 3.4. Let S(w,, WJ be a plane sector with nonvoid interior, 
and let f (x, y) be a polynomial storing function on this sector. (I) Then the 
coefficients off (x, y) are rational numbers not all equal to zero. (2) Moreover 
fdtf)(x, y) >, 0 at allpoints (x, y) in this sector; and d(w, f) 2 2, fd(,,n(w) > 0 
on ail rational rays o in this sector. 

Proof. (1) Any such sector includes a grid G(p, q), and any storing 
function takes some nonzero values. Hence f&(x, y) has some nonvanishing 
coefficients. (2) Any rational ray o in the sector has a generator (p, q) with 
p, q relatively prime integers; and the values f (mp, mq), by hypothesis, are 
distinct nonnegative integers for m = 0, 1,2,.... Thus d(w, f) >, 1 by (3.12) 
and f&n(w) > 0 by definition. Those rational rays in the sector which 
contain no zeros of fdt&x, y) must form a dense subset, by Lemma 3.3.2. 
Moreover on such rational rays, by our previous result, 

fadx, Y) = f&.n(x~ Y) > 09 (3.16) 

whence for any sector point, by continuity, f&(x, y) > 0. These remarks 
prove the first and third inequalities; a preliminary normalization simplifies 
the remaining arguments. 

We can find integers (rO , s,,) for which ps, - qr, = 1, then choose integers 
(r, s) of form (r,, + mp, s, + mq) so that S(w(p, q), o(r, s)) has an arbitrarily 
narrow aperture while still ps - qr = 1. Interchanging x and y does not 
affect the desired result; whence we can assume w  # o2 and we can require 
4, $1 C S(f4 , w2). Moreover U = (,” D, by (3.14), yields an admissible 
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transformation of the result, and the corresponding U-l, by Lemma 3.1, 
maps S(w(p, q), w(r, s)) onto the first quadrant. Hence we may specialize 
S(% 3 w2) to the first quadrant, and also take w  as the positive x axis. Now 
the desired inequality asserts deg[f(x, 0)] > 2 while the preceding paragraph 
implies deg[f(x, O)] 3 1. Hence we may assume f(x, 0) = a + bx with 
nonzero b, and we need only obtain a contradiction in this special case. 

Clearlyf(x, JJ) has form (3.10) with rational aij , and 0 = a,, = a,,, = -** 
by our assumption. However, a = a,, = f(0, 0) E N and b = a,, = 
O,f(O, 0) E 2; moreover f(N, 0) > 0, whence b > 0. If we let k be the least 
common denominator of the nonzero aij , and we define 

x0(x, t) = x + kt . c 1 aijxi(bkt)j-I, 
.&II j=l 

(3.17) 

then we have x0(x, t) an integer for any x, t in N, and we note 

f(x, bkt) = a + bx + bkt . 2 2 aijxi(bkt)j-l 
i&l j=l 

= a + bxdx, t> =f(x&, t), 0). (3.18) 

But fl N2 is an injective mapping, whence {(x, y) E N2:f(x, y) < a} is a 
finite set ((xi , JQ: i = l,..., n}. Thus if the integer bkt > yO = max( y1 ,..., y,) 

then f(x, bkt) > a, whence if the integer t > y,,/bk then x&x, t) > 0. 
Hence (3.18) with any nonnegative integer x contradicts the injectiveness of 
fl N2. 0 

COROLLARY 3.5. Let f (x, y) be a polynomial storing function on a plane 
set S, where S includes a closed sector with nonvoid interior. Then d(f) 3 2, 
so that f cannot be linear. 

ProoJ By hypothesis, S includes a rational ray w, and by (3.13), 
d(f) > d&f) 3 2. Cl 

4. QUADRATIC FUNCTIONS ON THE FIRST QUADRANT 

Fueter and P6lya [12] have established that the Cantor polynomials of 
(1.3) are the only quadratic packing functions on Na. This section further 
shows that positive translations of (1.3) are the only such quadratic storing 
functions with unit density. We write an arbitrary quadratic polynomial in 
the computationally more tractable form 

f (x, v) = (W2) x(x - 1) + bnw + @m/2) Y( Y - 1) + &ox + bo, Y + boo 

(4.1) 
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and determine systematically the most general bij under our broader assump- 
tions, using a well-known estimate from geometric number theory to replace 
rigorously our lattice-point enumeration by Polya’s area. This area, or 
equivalently N2 f f, is a transcendental number unless f, as in the earlier 
argument, has parabolic type; and the injectiveness off yields the detailed 
form of the bii . We have just noted a result, in Corollary 3.5, which eliminates 
polynomials of first degree, but have proved so far no analog of 
Proposition 2.3, which might exclude polynomials of higher degree. Our 
immediate sequel (Lew and Rosenberg [16]) obtains a partial such conclusion. 
The following lemma avoids several Fueter-P6lya cases. 

LEMMA 4.1. (1) Zf in (4.1) all b+, are integers then f maps Z2 into Z; if 
in addition 

b,, > 0, b,, > 0, b,, > -@zobozY2, (4.2) 

then f has a lower bound on N2. (2) Conversely if f is a storing function on N2, 
then the bii are integers satisfying (4.2). 

Proof. (1) Clearly (4.1) with integers bij takes integer values on Z2, 
and (4.2), except at the origin, implies 

0 < 2f,(x,g) = [xb;j, - .&:I2 + 2xy . [b,, + @,,b,,)1’21 (4.3) 

on the first quadrant. Thus f(x, y) > 0 for any (x, y) in the first quadrant 
with sufficiently large x2 + y2. (2) Conversely for 0 < i + j < 2 we see that 
bij = d.id,jf(O, 0) E Z, and by Proposition 3.4.2 we note that b,, = 
2f,(l, 0) > 0, b,, = 2f,(O, 1) > 0. If w(p, q) is any ray strictly within the 
first quadrant, and f2(x, y) = 0 on this ray, then f2(x, y) = const . (py - qx)2 
by Proposition 3.4.2, and q/p is an irrational number as well. However the 
bij are rational, so that this is impossible. Hence (4.3) holds for all nontrivial 
(x, y) in the first quadrant, although the first bracket vanishes for some 
(x0, yu) in this quadrant. Substituting the latter values and canceling the 
positive quantity 2x,y, we obtain b,, + (b2,,bo2)1~2 > 0. 0 

Any quadratic storing function (4.1) on N2 has a well-defined shape number 

y = blI(b20b02)-1’2 > -1 (4.4) 

by Lemma 4.1. By standard results from analytic geometry, the level curves 
f(x, y) = c are ellipses, parabolas, or hyperbolas according as \ y 1 is, 
respectively, < 1, = 1, or > 1. These three cases will require slightly different 
arguments. 

LEMMA 4.2. Let the quadratic polynomial (4.1) satisfy relations (4.2), and 
let the region 

Do(f,n)={(x,y):Odx,Oey,fi(x,y)~n) (4.5) 
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have area A,,(f, n). Then A,,(f, n)/n = P(& , y), where p(-, *) is independent 
of n. If y = 1, in particular, then 

(4.6) 

IfIyI<l,sothaty=cosolwithO<ol<rr,then 

p(& ) y) = b$d ctn a = (baobop2 a csc CL (4.7) 

If y > 1, SO that y = cash j3 with 0 < 18 < + 00, then 

p(bn , y) = b,;lfl ctnh j3 = (b,&,2)-1’2 #I csch j?. (4.8) 

Proof. If y = 1 then D,,( f, n) is the right triangle ((x, y): 0 < x, 0 < y, 
xbg + J&:% < @@la} and (4.6) is an immediate consequence. If y # 1 
and r, 0 denote polar coordinates then 

&cf, n)/n = jowi2 d0/2h(cos 19, sin 0). 

If t = (&,2/b20)1/2 * tan 8 and Q(t) = 1 + 2yt + t2 then 

(4.10) 

We might evaluate the last integral by elementary methods, but instead 
use a device from complex variable theory (Carrier et al. [4, pp. 79-801). 
We recall that log t is a multivalued function for complex t, and assert that 

(WY) PUJ~~ y Y) = -&W Ic 1% t dtlQ(t> (4.11) 

for a suitable contour C. For small enough positive E and large enough 
positive A, this C runs just above the real axis from E to A, circles once about 
the origin at radius X in the counterclockwise direction, runs just below the 
real axis from X to E, circles once about the origin at radius E in the clockwise 
direction. However if y # +I then Q(t) has distinct roots tl and t2 ; indeed 
if y = cos cy. then the roots are -exp(&Iic& while if y = cash /I then the 
roots are -exp(f/?). We take a branch of log t which has a cut along the 
positive real axis, and we evaluate (4.11) by residues to obtain 

(M4 P@l, 9 Y) = 41% t1 - 1% t2m - t2). (4.12) 

The appropriate values of the logarithms yield (4.7) and (4.8) in these two 
cases. c] 
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PROPOSITION 4.3. If f is a quadratic polynomial (4.1) with the properties 
(4.2), hence iff is a quadratic storing function on Na, then N2 f f = p(b,, , y) 
for the dejined p(., *). 

Proo$ First, if y = 1 then we can introduce u = xbif + ybhp, so that 
f(x, y) = (u2/2) + (linear terms) + b, ; and if x, y >, 0 then we can find 
real numbers b+ , n, , so that 

(u + bJ2 < 2f(x, y) + &, < (u + b+Y'. (4.13) 

Thus we derive the inclusion T+ C {first quadrant) n f-IQ--n, +n]) C T- , 
where we define the triangles 

Ti = ((x, y): 0 < x, 0 < y, u < -b* + (2n + 2no)1’2}. (4.14) 

The corresponding subsets of lattice points form an ordered triple in the 
same way. However the area of T* approximates the contained number of 
lattice points, and a bound for the error is 1 + j P,(T*)I + 1 P,(T*)I by 
Davenport’s lemma 171. Here P*(e) denotes the projection onto the x axis, 
and I P&.)1 denotes the Iength of this projection. Hence the cardinality 
#{N2 n f-l([--n, +n])} of (2.3) has upper and lower bounds which are 
both (n/bl,) + ~I(nl/~) for large n. 

For y # 1 the symbol A( f, n) will denote the area of {first quadrant) n 
f-l([--n, +n]) and the coefficients big will determine real numbers x0 , 
y. , c with 

2fk Y) = ho@ - ~0)~ + 24,(x - xo)( Y - ~0) + bo,( Y - ~0)~ + 2~. (4.15) 

If I y I < 1, indeed, thenf(x, y) = n is an ellipse with major axis O(n1/3, and 

#W nf-V-n, +A)> = AU, 4 + O(n1’2) as n + +oo (4.16) 

by Davenport’s lemma [7]. Thus displacement of the origin yields 

4.L 4 = Aoff, n - cl + (I x0 I + I yo I) o(n”2) = A&f, n) + O(nl’2) (4.17) 

for large n. If y > 1 instead, thenf(x, y) = n is a hyperbola, while 

(Y - yoY(x - xo) = (Wboz) . [--I k (1 - Y-Yl (4.18) 

are its asymptotes, and their slopes are both strictly negative. By (4.15) 
and simple algebra, the intercepts of this hyperbola with x = x0 and y = y. 
are both O(&*). By (4.18) and simple geometry, the projections of {first 
quadrant} nf-l([-n, +n]) on the x and y axes are both O(n1/2 + ( x0 I i- 
I y, I). Thus (4.16) and (4.17) are valid as before. q 
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COROLLARY 4.4. (1) If y = 0 then NZ f f = ~-/2(b&~~)~‘~. (2) If y # 1 
then N2 + f is a transcendental number. (3) If 0 < y < 1 then (bozboz)-1/2 < 
N2 -+ f < b;,l < 1. If 1 < y < +co then b,;l < N2 f f < (bzoboz)-1/2 < 1. 

ProoJ: To obtain (1) we use (4.7). To obtain (3) we note 

f~.-l sin 01 < 1 < 01-l tan 01 for 0 < a! < 7~12, 

/3-l tanh /3 < 1 < p-l sinh p for O<fl<+co. 
(4.19) 

To prove (2) we let u = N2 tf, and for I y I < 1 we define ,6 = ior. If u 
is algebraic then 0 # /3 = (b20b02a)1/2(y2 - 1)lj2 is algebraic, and in any 
case, cash /3 = y = bll(b20b02)-1/2 is algebraic. Thus exp@), exp(-/I), and 
unity are linearly dependent over the algebraic numbers, which is impossible 
by a theorem of Lindemann ([17]; Siegel [26, p. 231). 0 

THEOREM 4.5. (1) The most general quadratic storing function with unit 
density on N2 is 

f(x, y) = 4(x + y)(x + y + 1) + {either x or y> + 4x + y) + b (4.20) 

with a, b in N. (2) The most general quadratic packing function on N2 is 
(4.20) with a = b = 0. 

ProoJ The polynomials f of (4.20) map the diagonals {(x, y) E N2: 
x + y = n} for each n into sequences of consecutive integers. The gap 
between 0 and f(0, 0) is b integers; the gap between any two neighboring 
sequences is a integers. Hence f is one-to-one for all admissible a, b, and 
onto N for a = b = 0. Moreover in mapping the (n + I)(n + 2)/2 pairs 
with x + y < n, we skip only b + na elements of N, and we have N2 + f = 1 
for all suchJ: Thus the proof of both assertions requires only the converse 
half of (1). 

Conversely if N2 + f = 1 by hypothesis then y = 1 by Corollary 4.4.2, 
so that by: = (b20b02)-1/2 = 1 by Proposition 4.3, and b,, = b,, = b,, by 
Lemma 4.1.2. We now have 

j-(x, Y> = i(x + Y>(X + Y + 1) + 4x + Y> + b + cx (4.21) 

for some integers a, b, c. We also find b = f(0, 0) > 0 by hypothesis, and 
we may assume c > 0 by xy symmetry. However, if c = 0 then f is constant 
on diagonals, while if c > 2 then 

f(m, (c - 1) m - a - 1) = f(0, cm - a) (4.22) 

whence if m is large enough then f is not one-to-one. Thus c = 1. Moreover 
ifa COthen 

f(n + a, -a) = f(0, n + 1). (4.23) 

whence if n > -a then f is not one-to-one. Thus a 3 0. 0 



INTEGER LATTICE-POINTS, I 209 

5. FURTHER RESULTS ON PLANE SECTORS 

To display further the range of our concepts, we apply them to some other 
natural questions. We find no quadratic storing functions with unit density 
on Z x N, and exclude all polynomial storing functions below fourth 
degree on Z2. The main results of our sequel (Lew and Rosenberg [16]), 
extending our analogy with Proposition 2.3, eliminate many higher-degree 
polynomials on these domains. However if f(x, y) satisfies (4.1) and if 
y = 1, then 

N2 t f = (b2,b,,)-1’2 = b;‘, (5.1) 

whence (N2 t f)-’ is a positive integer. Thus, having just determined all 
quadratic storing functions on N2 with unit density, we first describe here 
all such functions on N2 with density 4. All such polynomials with density 
1 or 4 are strictly increasing functions on this domain, whereas such poly- 
nomials with density g may be strictly increasing functions only outside 
a bounded subset. Our characterization, as before, requires no prior speci- 
fication of y. 

THEOREM 5.1. The most general quadratic storing function f on N2, with 
N2 + f = 4, has one of the following two forms, up to xy symmetry: 

f(x,y> = 4(x + 2yXx + 2~ + 1 + 24 + by + c with a, c E N, (5.2) 

where either b = 2, or b = 1, or b = - 1, or a is positive and b = -2; 

f(x, Y) = (x + Y)(X + y + a) + bx + c with a, c E N, (5.3) 

where either b = 1, or b = 2, or a is even and b = 4. 

Proof. If f satisfies (4.1) and N2 if = 4, then y = 1 by Corollary 4.4.2 
and 

b, bll , bo2) = either (1,2,4), or (2,2,2), or (4,2, 1) (5.4) 

by (5.1). We ignore the last case by xy symmetry, examine the other two 
alternatives with all bij integers, and derive the expressions (5.2), (5.3) with 
undetermined integer coefficients. However, if f has form (5.2) then 
c = f(0, 0) = f(- 1 - 2a, 0); whence if f is a storing function then 
a, c 3 0 # b. Moreover if 1 b ( >/ 3 and u = a + 1, 0 = (a + I)(1 b 1 - l), 
then 0 -C u < v/2 and 

f(v + 1, 0) = f(v - 2u, 4 for b > 0, 

f(v, 0) =f(v + 1 - 2% 4 for b < 0. 
(5.5) 
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Hence f cannot be a storing function unless 1 b 1 < 2. Alternatively if f 
has form (5.3) then c = f(0, 0) = f(0, --a), whence a, c > 0 # b as before 
and b > 0 by xy symmetry. However, if b > 3 and u = a + 1, 
v = (a + l)(b - 1)/2, then 0 < u < Y and f(u, D - U) = f(0, u + I), so 
that f 1 N2 cannot be an injective map unless II and b are even. Further, if 
b > 4 and u = 2(u + 2), u = (a + 2)(b - 1)/2, then 0 < u < D and 
f(u, u - U) = f(0, u + 2), so that f 1 N2 cannot be an injective map unless 
a is even, b = 4. Hence a storing function of form (5.3) must have b < 2 
except in this last case. 

Conversely if f has either specific form then f 1 N2 is integer-valued and 
N2 + f = 4. Moreover f(0, 0) = c > 0 and both partial differences are 
always positive, whence f(N2) C N. Thus f need only be shown injective. 
However, if f satisfies (5.2) then f(v - 2y, y) = 3(u2 + D + 2av) + by + c, 
which is monotone, for fixed II, as y varies in [0, v/2]. Moreover if 0 < b < 2 
then 

2f(u+1,0)-2f(O,v/2)=2+2a+(2-b)u>O, (5.6) 

while if -2 6 b < 0 then 

2f(O,u/2)-2f(u-11,0)=2a+(2+b)u>0. (5.7) 

Thus f, on successive diagonals {(x, y): x + 2y = m}, takes disjoint sets of 
integer values except when a = 0 and b = -2, in which case (5.7) becomes 
an equality. Alternatively if f satisfies (5.3) then f(x, u - X) = v2 + ~ZI + 
bx + c, which is increasing, for fixed a, as x increases in [0, v]. Moreover if 
0 < b < 2 then 

f(0, u + 1) - f(v, 0) = 1 + a + (2 - b) u > 0; (5.8) 

whence f, on successive diagonals {(x, y): x + y = m}, takes disjoint sets 
of integer values. Further, if a is even and b = 4 then 

f(x, u - x) = u2 + c = u + c(mod 2); (5.9) 

wherefore successive diagonals must have disjoint values; and 

f(O,u+2)-jf(u,O)=4+2u>O, (5.10) 

so that UN diagonals must exhibit disjoint values. I-J 

Let S be an arbitrary subset of R2 which is a closed system under com- 
ponentwise addition, and let f be a real-valued function on S. Then f is 
strictly increasing on S if 

f(x,r> <f(x+a,v+b) whenever (a, b), (x, y) E S (5.11) 

with u2 + b2 # 0; while f is eventually increasing on S if it satisfies (5.11) 
for all (x, y) outside a bounded subset of S. The positivity of all partial 
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differences shows the polynomials of Theorems 4.5 and 5.1 to be strictly 
increasing functions on Na. However, a polynomial storing function on NB 
need not be a strictly increasing function, by the next result. 

COROLLARY 5.2. (1) If f is a quadratic storing function on N2, and y = 1, 
N2 t f > $, then f is a strictly increasing function on N2. (2) However, N2 f f 
can here take no smaller value, since 

f(x, Y> = Hx + Y)(3X + 3Y - 5) + 3Y + 1 (5.12) 

is also a storing function on N2, and y = 1, N2 f f = +, while f is eventually 
increasing but not strictly increasing: 

Proof (1) All such polynomials are those of Theorems 4.5 and 5.1, 
since N2 f f is 1 or L$ by (5.1). (2) Clearly NZ f f = 4, and b,, , b,, , b,, > 0; 
whence OJ, d f > 0 for sufficiently large x + y, and f is eventually increasing 
on N2. Moreover j(x, y) is a monotone function on each diagonal 
{(x, Y): x + y = m>, and 

f(4 m - 1) < f(m + LO) < f@, 4 -c fh 1) (5.13) 

by direct calculation. Thus values off on successive diagonals will overlap, 
but no values off on N2 can coincide. Substitution and (5.13) now yield 
0 = j(l, 0) = min j(N2), which shows f not strictly increasing but never- 
theless a storing function. 0 

The integer unimodular images of the tist quadrant are all rational proper 
subsectors of half planes, and the related matrix transformations of the 
polynomials (4.20) give the corresponding quadratic storing functions with 
unit density. However, this work now examines larger sectors, and the sequel 
(Lew and Rosenberg [16]) considerably strengthens our remarks, but the 
conclusions do not fully parallel Section 2. Indeed Proposition 2.3 implies 
the nonexistence of polynomial packing functions on 2, whereas the next 
theorem states partial results for polynomial storing functions on Z2. The 
associated maps into memory cells would detine extendible storage schemes 
for rectangular arrays which can add new elements on all four sides. 

THEOREM 5.3. (1) There exist no odd-degree polynomial storing functions 
on Z2. (2) There exist no quadratic storing functions on Z2 (hence no such 
packing functions as well). (3) There exists a quartic storing function on Z2. 

Proof. (1) If f has leading terms of odd degree, then f assumes negative 
values for some integer arguments. (2) Ifj(Z2) is a subset of Z, where 

2 2-i 

f(X, Y) = C C ai8Yj 
&lJ j&J 

(5.14) 
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for some real coefficients ui, , then all 2~~ are integers by Lemma 4.1.2. 
We exhibit two distinct points of Z2 which yield the same value ofJ: Indeed 
if a,, = aol = 0 then f(x, y) = f(-x, -y) for all integers x, y; while if a,, 
and a,, are not both zero then 

f@4i,~, --2w) = f(--2%3,f, %Jt) (5.15) 

for all integers t. (3) Clearly f(x, y) = g(h(x), h(y)) is a quartic storing 
function on Z2, where g is any polynomial of Theorem 4.5, and h is any 
polynomial of Theorem 2.5. [7 

If we require surjective mappings rather than injective ones, then we 
generate an open problem from Theorem 5.3. A famous result of Fermat 
and Legendre (Dickson [lo, Vol. II, Preface]) states that any nonnegative 
integer is the sum of three triangular numbers, hence implies that 

f(X,Y,Z> = [x(x - 1) + Y(Y - 1) + z(z - 91/2 (5.16) 

maps Z3 onto N. However, no polynomial can map Z onto N, since a linear 
polynomial must take negative values at some integer points, while a non- 
linear polynomial must have zero density by Proposition 2.3. These facts 
motivate the question, for the intermediate case, whether a polynomial can 
map Z2 precisely onto N. A related problem of Hammer [13], presently also 
without solution, seeks a polynomial bijection from Z2 onto Z instead. 

Proposition 4.3 for the first quadrant also yields a corollary for the upper 
half plane which delimits storage schemes of hybrid type. Again X = RZ 
and X,, = Z2. If g and h are the polynomials of Theorem 5.3.3, thenf(x, y) = 
g(h(x), y) is a cubic storing function on Z x N. Again the stronger results 
of our sequel exclude further storing functions with unit density. 

COROLLARY 5.4. Let f be a quadratic polynomial of form (4.1) which is 
a storing function on Z x N. (1) Then all bij are integers and / y ( < 1, whence 

(Z x N) + f = r/(bzobo2 - b:,)1’2. (5.17) 

(2) Thus no quadratic f can have unit density; so no such f can be a packing 
function. 

ProoJ: (1) Iff&, y) = f (-&x, y) for the given f, then both f* have form 
(4.1) with the same b,, , b,, , but these f+ attach opposite signs to b,, . 
However, both f* are storing functions on hia, whence all bij are integers by 
Lemma 4.1.2, and b,, , b,, > 0 from either case. If y* denote the corre- 
sponding values for f*, then y+ = y > -1, y- = -y > -1 by 
Lemma 4.1.2. If y+ = cos 01+ with 0 < Al+ < 7r then y- = cos a- with 
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a- =7--a+. However, f 1 ({0} x N) has zero density by Proposition 2.3, 
wherefore 

(2 x N) -+ f = (W sf+) + (IV2 t f-> = (a+ + CL)/(~~&~~Y/~ sin aj; 

(5.18) 

by Lemma 2.1. Substitution now yields (5.17). (2) The resulting density 
is a transcendental number (Lindemann [17]). 0 
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