Iteration of the Number-Theoretic Function $f(2 n)=n, f(2 n+1)=3 n+2$

C. J. Everett

Los Alamos Scientific Laboratory, Los Alamos, New Mexico 89745

It is a long-standing conjecture that, under iteration of the number-theoretic function,

$$
f(2 n)=n, f(2 n+1)=3 n+2
$$

every integer m has an iterate $f^{k}(m)=1$. Since virtually nothing is known about the question, save that it seems to be true for m up to the millions, it may be of interest to know that almost every m has an iterate $f^{k}(m)<m$, a result proved in the present report.

I. Introduction

Under iteration of the function

$$
f(m)= \begin{cases}m / 2 ; & m \text { even } \tag{1}\\ (3 m+1) / 2 ; & m \text { odd }\end{cases}
$$

every integer $m \geqslant 0$ gives rise to an infinite sequence of integers

$$
\begin{equation*}
m \rightarrow\left[m_{0}, m_{1}, m_{2}, \ldots\right] \tag{2}
\end{equation*}
$$

where $m_{n}=f^{n}(m)$. Thus for $m=7$, one finds that

$$
7 \rightarrow[7,11,17,26,13,20,10,5,8,4,2,1,2,1,2, \ldots]
$$

with $f^{11}(7)=1$. It has been conjectured that every $m \geqslant 1$ has an iterate $f^{k}(m)=1$. It is shown here that, at any rate, almost every integer m has an iterate $f^{k}(m)<m$.

II. The Parity Sequence

The sequence (2) may be used to assign to every integer $m \geqslant 0$ a "parity sequence"

$$
\begin{equation*}
m \rightarrow\left\{x_{0}, x_{1}, x_{2}, \ldots\right\} \tag{3}
\end{equation*}
$$

where $x_{n}=0$ if $m_{n}=f^{n}(m)$ is even, and $x_{n}=1$ if it is odd. For example, one sees from above that

$$
7 \rightarrow\{1,1,1,0,1,0,0,1,0,0,0,1,0,1,0, \ldots\}
$$

It is trivial that $m \rightarrow\{0,0,0, \ldots\}$ iff $m=0$. Similarly $m \rightarrow\{1,0,1,0, \ldots\}$ iff $m=1$, and hence the parity sequence for any m terminatcs in $\left\{x_{k}, x_{k+1}, \ldots\right\}=\{1,0$, $1,0, \ldots\}$ iff $m_{k}=f^{k}(m)=1$. Thus the above conjecture asserts that every parity sequence not the zero sequence terminates in $1,0,1,0, \ldots$. If so, the list of parity sequences for $m=1,2, \ldots$ in (3) would be rather remarkable, in view of the following property, which it does indeed have; namely, the 2^{N} parity sequences for the integers $m<2^{N}$ have subsequences $\left\{x_{0}, \ldots, x_{N-1}\right\}$ ranging over the full set of $2^{N} 0,1$ vectors. Thus for $N=2$, one sees that

$$
\begin{aligned}
& 0 \rightarrow[0,0, \ldots] \rightarrow\{0,0, \ldots\} \\
& 1 \rightarrow[1,2, \ldots] \rightarrow\{1,0, \ldots\} \\
& 2 \rightarrow[2,1, \ldots] \rightarrow\{0,1, \ldots\} \\
& 3 \rightarrow[3,5, \ldots] \rightarrow\{1,1, \ldots\} \text {. }
\end{aligned}
$$

Moreover, all integers $m=a+2^{N} Q, Q=0,1,2, \ldots$ have identical parity sequences through component x_{N-1}. This is the substance of Theorem 1 .

Theorem 1. An arbitrary diadic sequence $\left\{x_{0}, \ldots, x_{N-1}\right\}$ arises via (3) from a unique integer $m<2^{N}$. Specifically, the x_{n} determine m and m_{N} to be of the forms

$$
\begin{align*}
m=a_{N-1}+2^{N} Q_{N} ; & 0 \leqslant a_{N-1}<2^{N} \\
m_{N}=b_{N-1}+3^{X} Q_{N} ; & 0 \leqslant b_{N-1}<3^{X}, X=\sum_{0}^{N-1} x_{n} \tag{4}
\end{align*}
$$

Hence the correspondence (3) is one to one.
Proof by induction on $N=1,2, \ldots$. For $N=1, x_{0}=0$ implies $m=2 Q_{1}$, $m_{1}=Q_{1}$, whereas $x_{0}=1$ implies $m=1+2 Q_{1}, m_{1}=2+3 Q_{1}$. Assuming Eq. (4) for any $N \geqslant 1$, we must consider two cases, depending on the parity of the current b_{N-1}.

Case I. b_{N-1} even.
(a) $x_{N}=0$ implies $Q_{N}=2 Q_{N+1}, m=a_{N-1}+2^{N+1} Q_{N+1}, m_{N}=b_{N-1}+$ $3^{X} \cdot 2 Q_{N+1}, m_{N+1}=\left(b_{N-1} / 2\right)+3^{x} Q_{N+1}$.
(b) $x_{N}=1$ implies $Q_{N}=1+2 Q_{N+1}, m-a_{N-1}+2^{N}+2^{N+1} Q_{N+1}$, $m_{N}=\left(b_{N-1}+3^{X}\right)+3^{X} \cdot 2 Q_{N+1}, m_{N+1}=\left(\frac{1}{2}\right)\left(3 b_{N-1}+3^{X+1}+1\right)+3^{X+1} Q_{N+1}$ where $\left(\frac{1}{2}\right)\left(3 b_{N-1}+3^{X+1}+1\right) \leqslant\left(\frac{1}{2}\right)\left[3\left(3^{X}-1\right)+3^{X+1}+1\right]=3^{X+1}-1<3^{X+1}$.

Case II. b_{N-1} odd.
(a) $x_{N}=0$ implies $Q_{N}=1+2 Q_{N+1}, m=a_{N-1}+2^{N}+2^{N+1} Q_{N+1}$, $m_{N}=\left(b_{N-1}+3^{X}\right)+3^{X} \cdot 2 Q_{N+1}, m_{N+1}=\left(\frac{1}{2}\right)\left(b_{N-1}+3^{X}\right)+3^{X} Q_{N+1}$, where $\left(\frac{1}{2}\right)\left(b_{N-1}+3^{x}\right)<\left(\frac{1}{2}\right)\left(2 \cdot 3^{X}\right)=3^{x}$.
(b) $x_{N}=1$ implies $Q_{N}=2 Q_{N+1}, m=a_{N-1}+2^{N+1} Q_{N+1}, m_{N}=b_{N-1}+$ $3^{X} \cdot 2 Q_{N+1}, m_{N+1}=\left(\frac{1}{2}\right)\left(3 b_{N-1}+1\right)+3^{X+1} Q_{N+1}$, where $\left(\frac{1}{2}\right)\left(3 b_{N-1}+1\right)<$ $\left(\frac{1}{2}\right)\left(3^{X+1}+1\right)<3^{X+1}$. Hence Eq. (4) is true at stage $N+1$ in all cases.

Corollary. The correspondence

$$
m \rightarrow\left[m_{0}, \ldots, m_{N-1}\right] \rightarrow\left\{x_{0}, \ldots, x_{N-1}\right\}
$$

induces a one to one mapping of all positive integers $m \leqslant 2^{N}$ on the set of all 2^{N} diadic vectors $\left\{x_{0}, \ldots, x_{N-1}\right\}$.

III. A Density Theorem

Let $A(M)$ denote the number of positive integers $m \leqslant M$ having some iterate $f^{k}(m)<m$. Our object is to show that the density $A(M) / M$ approaches 1 as $M \rightarrow \infty$.

Consider first the case $M=2^{N}$, for which we have the correspondence of the corollary

$$
m \rightarrow\left[m_{0}, \ldots, m_{N-1}\right] \rightarrow\left\{x_{0}, \ldots, x_{N-1}\right\} .
$$

Roughly, the idea is that most diadic sequences have nearly the same number of 0 's and l's if N is large. Moreover, $x_{n}=0$ implies $m_{n+1} / m_{n}=\frac{1}{2}$, while $x_{n}=1$ implies $m_{n+1} / m_{n}=(3 Q+2) /(2 Q+1) \leqslant 5 / 3$ if $m_{n}>1$. Hence most integers $m \leqslant 2^{N}$ should have $m_{N} \simeq\left(\frac{1}{2}\right)^{N / 2}\left(\frac{5}{3}\right)^{N / 2} m_{0}<m_{0}$. In fact, it follows from a wellknown inequality of probability (Ref. 1) that the set H_{N} of all diadic sequences $\left\{x_{0}, \ldots, x_{N-1}\right\}$ such that

$$
\begin{equation*}
\frac{1}{2}-\epsilon<\frac{X}{N}<\frac{1}{2}+\epsilon \tag{5}
\end{equation*}
$$

where $X \equiv \sum_{0}^{N-1} x_{n}, \epsilon \equiv L-\left(\frac{1}{2}\right), L \equiv \log 2 / \log (10 / 3)$ satisfies the relation

$$
\begin{equation*}
\# H_{N} / 2^{N} \geqslant 1-1 / 4 \epsilon^{2} N \tag{6}
\end{equation*}
$$

Since condition (5) implies the inequality

$$
\begin{equation*}
X / N<L \tag{7}
\end{equation*}
$$

it is clear that the set D_{N} of diadic sequences satisfying Eq. (7) contains the set H_{N}, and hence

$$
\begin{equation*}
\# D_{N} \geqslant \# H_{N} \tag{8}
\end{equation*}
$$

Now except for the integer $m=1$, the integers $m \leqslant 2^{N}$ whose parity sequences $\left\{x_{0}, \ldots, x_{N-1}\right\}$ satisfy (7) are of two kinds, those for which some $m_{n} \equiv f^{n}(m)=$ $1(<m), n \leqslant N-1$, and the rest, for which no such $m_{n}=1$. But for the latter, the equivalence of (7) with

$$
(1 / 2)^{N-X}(5 / 3)^{X}<1
$$

shows that

$$
m_{N}=m_{0}\left(m_{1} / m_{0}\right) \cdots\left(m_{N} / m_{N-1}\right) \leqslant(1 / 2)^{N-X}(5 / 3)^{X} m_{0}<m_{0}=m
$$

It follows that $A\left(2^{N}\right) \geqslant \# D_{N}-1 \geqslant \# H_{N}-1$, and hence by (6),

$$
\begin{equation*}
\lim _{N \rightarrow \infty} A\left(2^{N}\right) / 2^{N}=1 \tag{9}
\end{equation*}
$$

It remains to consider the case $2^{N}<M<2^{N+1}$. If we set $A_{N}=A\left(2^{N}\right)$, and define
$n_{N}=2^{N}+\left\{\left(2^{N+1}-2^{N}\right)-\left(A_{N+1}-A_{N}\right)\right\}=A_{N}+\left(2^{N+1}-A_{N+1}\right) \geqslant 2^{N}$,
then for $M=2^{N}+1, \ldots, n_{N}$, it is obvious that

$$
\begin{equation*}
A(M) / M \geqslant A_{N} / n_{N} \tag{11}
\end{equation*}
$$

On the other hand, for $M=n_{N}+k, k=1,2, \ldots, 2^{N+1}-1-n_{N}$, one has

$$
\begin{equation*}
A(M) / M \geqslant\left(A_{N}+k\right) /\left(n_{N}+k\right) \geqslant A_{N} / n_{N} \tag{12}
\end{equation*}
$$

since $n_{N} \geqslant 2^{N} \geqslant A_{N}$. Now by Eqs. (9) and (10)

$$
A_{N} / n_{N}=\frac{A_{N} / 2^{N}}{A_{N} / 2^{N}+2\left(1-A_{N+1} / 2^{N+1}\right)} \rightarrow 1
$$

and hence by (9), (11) and (12),

$$
\lim _{M \rightarrow \infty} A(M) / M=1
$$

In this way we are led to Theorem 2.
Theorem 2. For the function f defined in Eq. (1), "almost every" integer m has some iterate $m_{k}=f^{k}(m)<m$, in the sense that the density $A(M) / M$ of such integers approaches unity.

References

1. J. V. Uspensky, "Introduction to Mathematical Probability," McGraw-Hill, New York (1937), p. 209.
