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Iteration of the Number-Theoretic Function

f(2n) = n, f@n + 1) = 3n + 2
C. J. EVEReTT

Los Alamos Scientific Laboratory, Los Alamos, New Mexico 89745

It is a long-standing conjecture that, under iteration of the number-theoretic
function,

f@n) = n, f@n + 1) = 3n + 2,

every integer m has an iterate f*(m) = 1. Since virtually nothing is known
about the question, save that it seems to be true for m up to the millions, it
may be of interest to know that almost every m has an iterate f¥(m) < m, a
result proved in the present report.

I. INTRODUCTION

Under iteration of the function

m|2; m even,

T = 1Gm + 12 modd, M
every integer m > O gives rise to an infinite sequence of integers
m—>[my, my, my,..], )
where m,, = f"(m). Thus for m = 7, one finds that
7—17,11, 17,26, 13, 20, 10, 5,8,4,2,1,2, 1, 2,...]

with f13(7) = 1. It has been conjectured that every m > 1 has an iterate
f¥(m) = 1. It is shown here that, at any rate, almost every integer m has an
iterate f*(m) << m.

11, THE PARITY SEQUENCE

The sequence (2) may be used to assign to every integer m > 0 a “parity
sequence’’

m"‘*{xmxl,xz "'-}, (3)
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where x,, = 0 if m,, = f*(m) is even, and x, = 1 if it is odd. For example, one
sees from above that

7-11,1,1,0,1,0,0,1,0,0,0,1,0,1,0,...}.

It is trivial that m — {0, 0,0,...} iff m = 0. Similarly m—{1,0, 1,0,..}iff m = 1,
and hence the parity sequence for any m terminates in {¥; , %5y ,...} = {1, 0,
1,0,...} iff m;, = f¥(m) = 1. Thus the above conjecture asserts that every parity
sequence not the zero sequence terminates in 1, 0, 1, 0,.... If so, the list of parity
sequences for m = 1, 2,... in (3) would be rather remarkable, in view of the
following property, which it does indeed have; namely, the 2~ parity sequences
for the integers m <C 2V have subsequences {x; ..., Xy_,} ranging over the full
set of 2N 0, 1 vectors. Thus for N = 2, one sees that

0> [0,0,...] — {0, 0,...
1—11,2,..]>{1,0,...
22 1,.]> {0, 1,...
3—>[3,5,.] {1, ...

Moreover, all integers m = a -+ 2NQ, Q0 =0, 1, 2,... have identical parity se-
quences through component x,_, . This is the substance of Theorem 1.

TuEOREM 1.  An arbitrary diadic sequence {x, ..., Xn_,} arises via (3} from a
unique integer m << 2N. Specifically, the x,, determine m and my to be of the forms

m = ay_; + 280y ; 0 <ay, <2V

— $ ¢ . X b5l (4)
mN—bN_1+BQN7 0<bN—1<3’X:Zx"'
0

Hence the correspondence (3) is one to one.

Proof by induction on N =1, 2,... . For N = 1, x, = 0 implies m = 20, ,
m; = Q,, whereas x, = | implies m = 1 + 20Q,, m; = 2 + 3Q; . Assuming
Eq. (4) for any N > 1, we must consider two cases, depending on the parity of
the current by, .

Casel. by_, even.

(@) xy = OimpliesQn = 20wy, m = any + 2V10n, , my = by +
3% 208, Myyy = (bnva/2) + 3 Oy -

(b) xxy = 1 implies Qy =1 + 20N, , m = ay_y + 2V 4 2¥71Qy,,,
my = (by_y + 3%) + 3% - 2084, My = (3)(30ny + 3+ 1)+ 350y,
where ($)(3bn_, + 3+ 1) < (PBGY — 1) + 34 4 1] =34 — 1 < 304,
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CaseII. by ; odd.

(a) xy = O implies Oy = 1 4+ 20n,, , m = apn_, -+ 2N  2NHQy ., ,
my = (by-y + 3%) + 3% - 2051, muyy = (3)bnog + 3%) + 30wy, , where
(3w + 3F) < (B2 - 3%) = 3%

(b) xy = limpliesQny = 20wy, m = ay_y + 2V0p,y , my = by +
3% 20n10 5 My = (H)Bbyoy + 1) + 3¥0n,y , where (3)(3br, + 1) <
($)(3%+ -+ 1) < 341, Hence Eq. (4) is true at stage N + 1 in all cases.

CoroLLARY. The correspondence
m—> [my yeey My_y] — {Xg yeers Xn_1}

induces a one to one mapping of all positive integers m < 2N on the set of all 2N diadic
vectors {Xy ..., Xn_1}-

III. A Density THEOREM

Let A(M) denote the number of positive integers m < M having some iterate
J*(m) < m. Our object is to show that the density A(M)/M approaches 1 as
M — co.

Consider first the case M = 27, for which we have the correspondence of the
corollary

m— [my ..., my_4] — {%g ;... Xn_1}-

Roughly, the idea is that most diadic sequences have nearly the same number of
0’s and 1’s if NV is large. Moreover, #,, = 0 implies m,,_,/m, = %, while x, =1
implies m,, ,/m, = (30 + 2)/2Q + 1) < 5/3 if m,, > 1. Hence most integers
m < 2V should have my ~ (})¥2(3)N/ my << my . In fact, it follows from a well-
known inequality of probability (Ref. 1) that the set Hy of all diadic sequences
{%y ..., ¥n_,} such that

X1, o
where X = Z:,V_l %, , € =L — (3), L = log 2/log (10/3) satisfies the relation
# Hy/2VN =1 — 1/4 €N. (6)
Since condition (5) implies the inequality

‘ X/N <L, ™

it is clear that the set Dy of diadic sequences satisfying Eq. (7) contains the set
H,, , and hence

# Dy = # Hy. ®)
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Now except for the integer m = 1, the integers m <{ 2V whose parity sequences
{%g yo.rr ®y_y} satisfy (7) are of two kinds, those for which some m,, = f*(m) =
1(<<m),n << N — 1, and the rest, for which no such m,, = 1. But for the latter,
the equivalence of (7) with

(1/2)N-X(5/3)F < 1
shows that

my = mo(mymg) -+ (myfmy_y) < (2)VH(S[3) my < my = m.
It follows that A(2Y) = # Dy — 1 = # Hy — 1, and hence by (6),

lim A(2N)/2N = 1. ©)

N>

It remains to consider the case 2V << M < 2¥+1, If we set 4y = A(2V), and
define

i == 20 QN — 2%) — Ay — Al = Ay + (¥ — ) > 2%, (10)
then for M = 2N - 1,..., ny, it is obvious that
AM)M = Alny . (11)
On the other hand, for M = ny + k, & =1, 2,..., 2¥"1 — 1 — 5y, one has
AM)M = (An + B)f(ny + k) = Anjny, (12)
since ny > 2V > Ay . Now by Eqgs. (9) and (10)

NN AN 21— Ana2Y

-1,

and hence by (9), (11) and (12),

1\1/}_1}30 AMYM = 1.
In this way we are led to Theorem 2.

Tueorem 2. For the function f defined in Eq. (1), “‘almost every” integer m has
some iterate my, = f¥(m) < m, in the sense that the density A(M)/M of such integers
approaches unity.
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