
Theoretical Computer Science 369 (2006) 456–462
www.elsevier.com/locate/tcs

Note

A network flow approach to the Minimum Common Integer
Partition Problem

Wenbo Zhaoa,b,∗,1, Peng Zhanga,b,1, Tao Jiangc,2,3

aInstitute of Software, Chinese Academy of Sciences, P.O. Box 8718, Beijing 100080, China
bGraduate University of Chinese Academy of Sciences, Beijing, China

cDepartment of Computer Science and Engineering, University of California at Riverside, USA

Received 22 May 2006; received in revised form 4 September 2006; accepted 5 September 2006

Communicated by Ding-Zhu Du

Abstract

In the k-Minimum Common Integer Partition Problem, abbreviated as k-MCIP, we are given k multisets X1, . . . , Xk of positive
integers, the goal is to find an integer multiset T of the minimum size such that for every i, we can partition each of the integers
in Xi so that the disjoint (multiset) union of their partitions equals T. This problem has applications in computational molecular
biology, in particular, ortholog assignment and DNA hybridization fingerprint assembly. The problem is known to be NP-hard
for any k�2. In this article, we improve the approximation ratio for k-MCIP by viewing this problem as a flow decomposition
problem in some flow network. We show an efficient 0.5625k-approximation algorithm, improving upon the previously best known
0.6139k-approximation algorithm for this problem.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Minimum Common Integer Partition; Approximation algorithm; Network flow

1. Introduction

Recently, Chen et al. [4] introduced a new combinatorial optimization problem, called the k-Minimum Common
Integer Partition Problem, abbreviated as k-MCIP, which was inspired by their recent work on ortholog assignment
and DNA fingerprint assembly [2,3,6,9]. Formally, the problem is as follows. Consider two multisets X = {x1, . . . , xm}
and T of positive integers. If there is a partition of T into multisets Ti such that for each i the sum of integers in Ti equals
xi , then T is called an integer partition of X. We say that T is a common integer partition of multisets X1, . . . , Xk if it
is an integer partition of each Xi and the integers in each Xi have the same sum. The k-MCIP(X1, . . . , Xk) is to find a
common integer partition T of the minimum cardinality.

∗ Corresponding author. Institute of Software, Chinese Academy of Sciences, P.O. Box 8718, Beijing 100080, China. Tel.: +86 010 82625471.
E-mail addresses: zwenbo@gcl.iscas.ac.cn (W. Zhao), zhp@gcl.iscas.ac.cn (P. Zhang), jiang@cs.ucr.edu (T. Jiang).

1 Supported by NSFC Grants no. 60325206 and no. 60310213.
2 Supported by NSF Grant CCR-0309902, NIH Grant LM008991-01, NSFC Grant 60528001, and a fellowship from the Center for Advanced

Study, Tsinghua University.
3 Currently visiting at Tsinghua University, Beijing, China.

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.09.001

http://www.elsevier.com/locate/tcs
mailto:zwenbo@gcl.iscas.ac.cn
mailto:zhp@gcl.iscas.ac.cn
mailto:jiang@cs.ucr.edu

W. Zhao et al. / Theoretical Computer Science 369 (2006) 456–462 457

As an example, for a triple of multisets X1 = {1, 5, 10}, X2 = {3, 3, 10}, and X3 = {2, 2, 12}, it is easy to verify
that the integer partition T = {1, 1, 2, 2, 10} is a minimum common integer partition of the Xi . In [4], it is shown
that k-MCIP is NP-hard since it generalizes the well-known set partition problem [5], and in fact APX-hard [8] for
every k�2. Hence, the k-MCIP problem has no polynomial-time approximation algorithm (PTAS) unless P = NP.
The authors in [4] also presented a 5

4 -approximation algorithm for 2-MCIP by using a heuristic for the Maximum Set
Packing Problem, and a 3k(k − 1)/(3k − 2)-approximation algorithm for the general k-MCIP problem, where k�3.
Note that 3k(k − 1)/(3k − 2) � k− 1

3 . More recently, Woodruff in [10] proved a better approximation ratio for k-MCIP
by looking at what he called redundancy of X1, . . . , Xk , which is a quantity capturing the frequency of integers across
different Xi’s, and he obtained a 0.6139k-approximation ratio.

Given an instance S of k-MCIP, we notice that the k-MCIP problem can be formalized as a flow decomposition
problem in an acyclic k-layer network N = {s, t, V , A, c} corresponding to S. The object is to find a minimum number
of directed simple paths from s to t, each of which can carry a positive integral flow from s to t such that the total
amount of flow carried by these paths is equal to the value of a max-flow in this network. Such a set of paths is referred
to as good. Notice that the well-known Flow Decomposition Theorem indicates that we can always find a good set of
paths by the Flow Decomposition Algorithm in [1]. In the general case, the size of the good set of paths returned by the
Flow Decomposition Algorithm in [1] can be bounded by the number of arcs in the network. Thus, in order to achieve
an improved approximation ratio, we have to reduce the number of arcs without breaking the fundamental requirement
of this network, i.e., the resultant network after arc reduction can still induce a common integer partition for S. More
details about the connection between k-MCIP and the flow network will be described in the next section.

In this paper, we present a randomized approximation algorithm based on the connection mentioned above and show
that it achieves an approximation ratio of 0.5625k. This improves on the previous results in [4,10]. Furthermore we
will show that this randomized algorithm can be derandomized. Particularly, for the special case where each multiset
Xi intersects at most q − 1 other multisets, we improve the analysis of our algorithm to get a ratio of (k + q)/2.

Our terminology and notations for randomized algorithm are standard which can be found in [7]. The basic notations
about network flow follow those in [1].

2. Preliminaries

Given an instance S of the k-MCIP consisting of k multisets of integers S = {X1, . . . , Xk}, where X1 = {x11, . . . ,

x1|X1|}, . . ., Xk = {xk1, . . . , xk|Xk |}, a k-layer network N = (s, t, V , A, c) can be constructed as follows. There are
k + 1 nodes in the k-layer network, i.e., s = v1, v2, . . . , vk, t = vk+1. For i = 1, . . . , k and j = 1, . . . , |Xi |, there are
|Xi | arcs, namely aij , from node vi to node vi+1, each with capacity c(aij) = xij , respectively. In the following, we
say that an arc is in layer i if the arc emanates from vi and terminates at vi+1.

In the above network N, let P denote the set of paths from s to t. Consider the Max-Flow Problem in network N and
its LP relaxation as follows:

max
∑

P∈P
f (P) s.t.

∑
P :a∈P

f (P)�c(a), a ∈ A, f (P)�0, P ∈ P, (1)

where the variable f (P) is the amount of flow sent on P. Denote the value of an optimal solution of LP above by f ∗
and we say that a subset P ′ ⊆ P is good if f (P) is integral for every P ∈ P ′ and

∑
P :a∈P f (P) = c(a) for each arc a.

Note that the second condition implies that
∑

P∈P ′ f (P) = f ∗. Define opt(S) to be the size of a minimum common
partition of S. When S is clear from the context, we will often just write opt. The key observation is that

min
P ′ is good

|P ′| = opt(S). (2)

Thus, the k-MCIP is equivalent to finding a good set P ′ with the minimum size.
As an example, for a triple of multisets X1 = {1, 5, 10}, X2 = {3, 3, 10}, and X3 = {2, 2, 12}, the integer partition

T = {1, 1, 2, 2, 10} is a minimum common integer partition of the Xi . In the network N induced by these three
multisets, there is a good set P ′ consisting of five simple directed paths from s to t and the multiset {f (P)|P ∈ P ′}
corresponding to P ′ is the same as T. See Figs. 1(a) and (b).

458 W. Zhao et al. / Theoretical Computer Science 369 (2006) 456–462

Fig. 1. (a) A 3-layer network induced by X1 = {1, 5, 10}, X2 = {3, 3, 10}, and X3 = {2, 2, 12}. (b) A flow decomposition. (c) Two arcs (the dashed
lines) with capacity 10 merge into one arc (the bold line).

3. The randomized algorithm

Since the k-layer network N = (s, t, V , A, c) induced by X1, . . . , Xk is directed and acyclic, by the well-known
Flow Decomposition Theorem, the Flow Decomposition Algorithm in [1] can always return a good P ′ w.r.t. N with at
most m − l + 1 arcs, where m = |A| and l is the length of the shortest path from s to t.

For a node vi ∈ V, 2� i�k, if there are two arcs a, a′ ∈ A where arc a is from vi−1 to vi and arc a′ is from vi to
vi+1 with the same capacity, i.e., c(a) = c(a′), we can concatenate arcs a and a′ into a single arc with capacity c(a),
i.e., delete arcs a, a′ and add a new arc with capacity c(a) from vi−1 to vi+1. See Fig. 1(c). We denote this operation
by Merge(a, a′).

Let N1 = (s1, t1, V1, A1, c1) be the network induced by applying some Merge operations on N. It is easy to verify
that any set {f (P)|P ∈ P ′

1} corresponding to a good path set P1 for network N1 is also a feasible solution for the
instance of the original k-MCIP and |A1| < |A|. Hence, the operation Merge can help us remove “redundant" arcs.
This suggests the following greedy algorithm.

Algorithm CIP (X1, . . . , Xk)

(1) Choose a permutation � uniformly at random.
(2) Construct the k-layer Network N = (s, t, V , A, c) according to (X�(1), . . . , X�(k)).
(3) For each node vi , 2� i�k, merge all pairs of arcs (a, a′) with the same capacity, where a terminates at vi and a′

emanates from vi . Denote the resulting network by N1 = (s, t, V , A1, c1).
(4) Use the Flow Decomposition Algorithm to get a good set of paths P ′

1 and the corresponding multiset T =
{f (P)|P ∈ P ′

1}.
(5) Output T.
In the next section we will develop a key lemma for lower-bounding the expectation of the number of pairs merged in
step 3, and we use it to analyze the performance of the algorithm CIP.

4. Analysis of the algorithm CIP

Consider an instance S of k-MCIP consisting of k multisets of integers S = {X1, . . . , Xk} and the k-layer net-
work N = (s, t, V , A, c) induced by the instance S. Recall that the capacity of arc aij ∈ A, 1� i�k, 1�j � |Xi |,
is c(aij) = xij . To analyze the algorithm, we need some notations which are adapted from those in [10].

Let E ⊆ A be a subset of arcs in N. We say that E is lonely if c(ai1j1) = c(ai2j2), ai1j1 , ai2j2 ∈ E and for any pair
ai1j1 , ai2j2 ∈ E, i1 �= i2, i.e., no two arcs belong to the same layer in E. In this case we use the notation c(E) to denote

W. Zhao et al. / Theoretical Computer Science 369 (2006) 456–462 459

the common capacity of arcs aij , aij ∈ E. For two disjoint lonely sets E1, E2 such that c(E1) = c(E2), we say that
E1 covers E2 if for any arc aij2 ∈ E2 there must be an arc aij1 ∈ E1 in the same layer as that of aij2 . Moreover, we
call a collection C of lonely sets consistent if there are no two distinct sets E1, E2 ∈ C that intersect. We define the
weighted-size of a consistent collection C of lonely sets Ej to be

∑|C|
j=1 |Ej |.

Definition 1. The r-redundancy of network denoted as N corresponding to S, denoted by Red(r, N), is the maximum,
over all consistent C consisting of at most r lonely sets, of the weighted-size of C.

In fact, for any fixed r, we can find a consistent collection Cr of lonely sets E1, . . . , Er such that Red(r, N) =∑r
j=1 |Ej |. We now describe an iterative procedure to find the consistent collection Cr . To accomplish this, at first, we

pick a set E1 ⊆ A such that E1 is lonely and |E1| is the maximum. In fact, E1 can be found by a greedy fashion (i.e.,
for any xi1j1 ∈ Xi1 , 1� i1 �k, let E1 = {xi1j1} initially and add other xij into E1 as many as possible while keeping E1
lonely). Then pick another lonely set E2 ⊆ A−E1 such that |E2| (or |E1|+|E2|) is maximized (E2 can also be found by
the same greedy fashion). Obviously, the collection of E1 and E2 is consistent. Repeating the above process we will have
a consistent collection C of lonely sets E1, E2, . . . , Er . Let Cr = {E1, . . . , Er}. We can prove the following lemma.

Lemma 2. Red(r, N) = ∑r
j=1 |Ej |.

Proof. Suppose C′
r is a consistent collection of lonely sets E′

1, . . . , E
′
r such that Red(r, N) = ∑r

j=1 |E′
j |. Let

E′
j1

, . . . , E′
jl

be the sets such that c(E′
j1

) = · · · = c(E′
jl
) = x and there is no other set E′

j ∈ C′
r such that c(E′

j) = x.
W.l.o.g., we may assume |E′

1|� · · · � |E′
r |.

By using the same greedy algorithm as described above for constructing Cr , we can divide the set of arcs in A with
the same capacity x into l∗ disjoint lonely sets, say, E′′

1, . . . , E
′′
l∗ . Also, we may assume that |E′′

1|� · · · � |E′′
l∗ | and

E′′
i cover E′′

j for 1� i < j � l∗. By the definition of Red(r, N) we have l∗ � l (otherwise we could make
∑r

j=1 |E′
j |

larger). We prove that
∑l

i=1 |E′
ji
| = ∑l

i=1 |E′′
ji
|. First, observe that if for some 1� l1 < l2 � l, |E′

jl1
|� |E′

jl2
| but E′

jl1

does not cover E′
jl2

, then there must be an arc belonging to E′
jl2

in some layer but E′
jl1

has no arc in the same layer, and

thus we can remove all such arcs from E′
jl2

and add them to E′
jl1

without changing
∑r

j=1 |E′
j |. Hence, we can assume

that E′
jl1

cover E′
jl2

for all 1� l1 < l2 � l� l∗. It is easy to verify that the largest sum of the sizes of l such sets is just∑l
i=1 |E′′

ji
|. Therefore, the claim holds, which gives rise to the conclusion of the lemma. �

Recall Eq. (2) and that m = ∑k
i=1 |Xk|. For our purpose, we need a lower bound on opt in terms of the redundancy

of S, as was done by Woodruff in [10]. For the sake of completeness, we include a proof of the lower bound here, which
is slightly different from that in [10].

Lemma 3. opt �(2m − Red(opt, N))/k.

Proof. Given the network N = (s, t, V , A, c) defined for the instance S, let P ′ be a good set consisting of paths from
s to t such that |P ′| = opt(S). Define sets of arcs A(1), A

(1)
P , and A(2) as follows:

A(1) = {a ∈ A : only one path P ∈ P ′ passing through arc a};
A

(1)
P = {a ∈ A(1) : a ∈ P } for each P ∈ P ′;

A(2) = A − A(1).

Since, for each arc in A(2), there are at least two paths in P ′ passing through it and the length of each path P ∈ P ′ is k. It is
clear that k ·|P ′|� |A(1)|+2·|A(2)| = 2m−|A(1)| (See Fig. 1(b)). Moreover, let C′ be the collection of sets A

(1)
P , P ∈ P ′.

It is easy to verify that A
(1)
P is lonely for each P ∈ P ′ and C′ is a consistent collection containing at most opt many sets.

By the definition of Red(opt, N), |A(1)| = ∑
P∈P ′ |A(1)

P |�Red(opt, N). Thus, 2m− Red(opt, N)�k · |P ′| = k · opt ,
and rearranging the terms gives rise to the lemma. �

We immediately have the following corollary.

460 W. Zhao et al. / Theoretical Computer Science 369 (2006) 456–462

Corollary 4. If for all j �= j ′, Xj and Xj ′ are disjoint, then the algorithm CIP achieves (k + 1)/2-approximation.
Moreover, if for each Xi , there are at most q − 1 sets Xj , j �= i, that intersect with Xi , then algorithm CIP achieves
(k + q)/2-approximation.

Proof. We will use the same definitions and notations as in the proof of Lemma 3. If for each Xi , at most q − 1
Xj , j �= i, intersect with Xi , then for any path P ∈ P ′, there are at most q arcs in path P that are only passed
through by P. Hence, we have |A(1)|�q · opt . Recall that k · opt � |A(1)| + 2 · |A(2)| = 2m − |A(1)|. It follows that
k · opt �2m − q · opt . Rearranging terms proves the corollary. �

We now turn to the performance of the algorithm CIP and prove our main result, Theorem 5, given below. In the
following, we will use notation o() and �() to denote functions of k that are independent of m. For instance, o(1) stands
for a function that tends to 0 as k goes to infinity.

Theorem 5. The expectation of the output of CIP(X1, . . . , Xk) is a 0.5625k(1 + o(1))-approximation.

Proof. Denote the number of pairs (a, a′) merged in the ith iteration of step 3 by M(X�(i−1), X�(i)). By symmetry,
it is clear that the expectation of the number of pairs merged in each iteration of step 3 is the same. Thus, we have
E[M(X�(i−1), X�(i))] = E[M(X�(j−1), X�(j))], 2� i, j �k. By the linearity of expectation, the total number of pairs
merged in step 3 is (k − 1)E[M(X�(1), X�(2))].

In order to lower bound E[M(X�(1), X�(2))], consider the largest (in terms of weighted-size) consistent collec-
tion of opt lonely sets E1, . . . , Eopt . Suppose that the sizes of these sets are f1, . . . , fopt , respectively. Let f̄ =
�∑opt

j=1 fj/opt	. Observe that f̄ is a positive integer. Now from Lemma 3 we know that

opt �(2m − Red(opt, N))/k.

But Red(opt, N)) = ∑opt

j=1 fj �(f̄ + 1)opt , and by rearranging the terms, we have

opt � 2m

k + f̄ + 1
.

Let t = f̄ /k. Clearly, t �1. We may assume that t = �(1), since otherwise t = o(1) and the above bound would
already imply an asymptotic approximation ratio of 0.5k. We may bound E[M(X�(1), X�(2))] as follows [10].

E[M(X�(1), X�(2))]�∑
j

(
fj

2

)
(

k
2

) = ∑
j

fj (fj − 1)

k(k − 1)
. (3)

It is easy to verify that the above expression is minimized when all of the numbers fj are equal to their average∑opt

j=1 fj/opt [10] (note, in this minimization process we are relaxing the integrality constraints on the numbers fj ,

which can only make the above expression smaller than its realistic values). Thus we have

E[M(X�(1), X�(2))] �
opt∑
j=1

f̄ (f̄ − 1)

k(k − 1)

�
opt∑
j=1

(f̄ − 1)2

(k − 1)2

=
opt∑
j=1

(tk − 1)2

(k − 1)2

= t2 opt(1 − o(1)). (4)

Recall that T is the output of CIP(X1, . . . , Xk) and m = ∑k
i=1 |Xi |. Since the expected number of arcs remaining in

N1, i.e., |A1| is at most m−(k−1)E[M(X�(1), X�(2))] at the end of step 3 and the size of good set of paths P ′ in step 4 is

W. Zhao et al. / Theoretical Computer Science 369 (2006) 456–462 461

less than |A1| by the Flow Decomposition Theorem [1], it follows that E[|T |]�E[|A1|]�m− (k −1)t2opt(1−o(1)).
Now, recall that

k + f̄ + 1

2
� m

opt
.

We thus have
E[|T |]
opt

� m

opt
− (k − 1)t2(1 − o(1))

� k + f̄ + 1

2
− (k − 1)t2(1 − o(1))

� k

2
+ (

t

2
− t2)k + 1 + (k − 1)o(1)t2

� k

2
+ max

t
(
t

2
− t2)k + 1 + (k − 1)o(1).

Since t �1,

max
0� t �1

(
t

2
− t2

)
k = 1

16
k = 0.0625k.

Thus, we have an asymptotic randomized 0.5625k-approximation algorithm for k-MCIP. Theorem 5 follows. �

5. Derandomizing via the method of conditional expectation

The randomized algorithm CIP can be derandomized via the standard method of conditional expectation. For a
permutation � chosen uniformly at random, we denote the number of total pairs of arcs merged in step 3 by M�. It is
clear that M� = ∑k

i=2 M(X�(i−1), X�(i)) and

E[M�] =
k∑

i=1
E[M�|�(1) = i] · Pr[�(1) = i], (5)

where Pr[�(1) = i] = 1
k

by symmetry again. Denote by Mij the number of pairs of arcs that can be merged when Xi

and Xj are put at adjacent layers of the network N in any permutation �. For convenience, let Mij = Mji and Mii = 0
for 1� i, j �k. We thus have

E[M�|�(1) = i] = E[M(X�(1), X�(2))|�(1) = i] +
k∑

j=3
E[M(X�(j−1), X�(j))|�(1) = i]

=
∑

q �=i Miq(
k−1

1

) + (k − 2)

∑
p,q �=i;p>q Mpq(

k−1
2

) . (6)

Hence, we can fix Xi at the first position of permutation � such that i maximizes expression (6). Notice that Mij

can be easily computed in polynomial time. Repeating the above process we can obtain a permutation �∗ such that
M�∗ �E[M�]. Hence, the next theorem follows.

Theorem 6. There is a deterministic polynomial-time approximation algorithm for k-MCIP that achieves an asymptotic
approximation ratio of 0.5625k.

6. Concluding remarks

In this paper, we proved a better approximation ratio for k-MCIP by viewing the problem as a flow decomposition
problem in some flow network. We notice that our construction of the algorithm is simpler than that in [10] although the
framework of our analysis is similar to that in [10]. It remains as an interesting question to approximate the minimum
size of any set of good paths in a general flow network, not necessarily layered or acyclic.

462 W. Zhao et al. / Theoretical Computer Science 369 (2006) 456–462

Acknowledgment

We would like to thank David P. Woodruff for his comments on an earlier draft of this paper.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithm, and Applications, China Machine Press, 2005.
[2] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong , S. Lonardi, T. Jiang, Computing the assignment of orthologous genes via genome rearrangement,

in: Proc. Third Asia Pacific Bioinformatics Conf., 2005, pp. 363–378.
[3] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, T. Jiang, Assignment of orthologous genes via genome rearrangement, IEEE/ACM

Trans. Comput. Biol. Bioinform. 2–4 (2005) 302–315.
[4] X. Chen, L. Liu, Z. Liu, T. Jiang, On the minimum common integer partition problem. CIAC2006, LNCS, Vol. 3998, Springer, Berlin, 2006,

pp. 236–247.
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, second ed. The MIT Press, Cambridge, MA, 2001, p. 1017.
[6] Z. Fu, X. Chen, V. Vacic, P. Nan, Y. Zhong, T. Jiang, A parsimony approach to genome-wide ortholog assignment, in: Proc. 10th Annu. Internat.

Conf. on Research in Computational Molecular Biology, Venice, Italy, April 2006, pp. 578–594.
[7] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, 1995.
[8] C.H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. System Sci. 43 (1991) 425–440.
[9] L. Valinsky, A. Schupham, G.D. Vedova, Z. Liu, A. Figueroa, K. Jampachaisri, B. Yin, E. Bent, R. Mancini-Jones, J. Press, T. Jiang, J. Borneman,

Oligonucleotide fingerprinting of ribosomal RNA genes, in: Molecular Microbial Ecology Manual, second ed., Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2004, pp. 569–585.

[10] D.P. Woodruff, Better approximation for the minimum common integer partition problem, Manuscript, also available at 〈http://web.mit.
edu/dpwood/www/〉, 2006.

http://web.mit.edu/dpwood/www/
http://web.mit.edu/dpwood/www/

