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ABSTRACT 

A polynomial-time continuation algorithm is presented for a class of linear 
complementarity problems with positive semidefinite matrices. The linear extrapola- 
tion technique is combined with the Newton iteration in the predictor-corrector 

procedure of the algorithm to numerically follow the solution curve of the homotopy 
equations arising from the perturbed Karush-Kuhn-Tucker condition. The conver- 

gence rate of the method is proved to be 1 - 4/(7&j after each cycle consisting of 
one extrapolation between two Newton steps. 

1. INTRODUCTION 

Let M be an n X n matrix, and 4 E R”. The problem of finding an 
(x, y) E R2” satisfying 

y=Mx+q, (x3 y) 2 0, 2y = 0 (1) 

is called the linear complementarity problem (abbreviated LCP). The LCP 
has many applications in linear and convex quadratic programs and bimatrix 
games [ 151. 

A traditional method for the LCP is the pivoting algorithm [15]. Although 
it has been widely used over decades, the theoretical exponential-time 
complexity of the algorithm in the worst case still stimulates researchers 
to find more efficient polynomial-time methods. With the appearance of 
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Karmarkar’s fundamental work on a projective algorithm for linear program- 
ming [S], path-following interior-point methods have attracted tremendous 
attention in the field of mathematical programming. For some repre- 
sentative work, see [6, 7, 11, 13, 14, 16-191 and the references therein. 
Recently, several new algorithms belonging to the category of the interior- 
point method have been proposed for solving LCPs (see e.g. [2, 3, 10, ll]), 
and a good survey and unified approach is given in [9]. These methods have 
the pohnomially bounded computational complexity, in contrast to the tradi- 
tional pivoting method. Kojima et al. [lo] first give a polynomial-time 
algorithm for a class of LCPs with positive semidefinite matrices, based on 
the theoretical formulation given by Megiddo [I2]. In their method one-step 
Newton iteration is used for each updated equation successiveIy. So this 
method may also be called a predictor-corrector algorithm with only zero- 
order prediction. This observation leads to the development of the first 
general predictor-corrector algorithm given in [2] with a one-step Euler’s 
method as “prediction” and a one-step Newton’s method as “correction.” 
With the increase in the algebraic precision order in the prediction step, the 
convergence is faster even though we take account of more computational 
work per iteration. 

In this paper we use the secant approach to the prediction instead of 
the tangent approach in [2], to avoid the Euler iteration. For simplicity of 
presentation, we use only the linear extrapolation technique between two 
Newton iterations. That is, within each cycle, after one Newton iteration step 
is performed, we linearly extrapolate the previous iterate and the current one 
to “predict” the next one, and then one Newton iteration from this predicted 
one is performed to get the next iterate. In each such cycle, we need to solve 
two systems of linear equations coming from the Newton iteration, but the 
decrease of rry, which measures how nearly x and y are complementary, is 
at the approximate rate of 1 - 4/(76), ’ b tt a e er complexity result than the 
ones given in [lo] and [2]. 

The next section is the description of the predictor-corrector algorithm 
using the extrapolation technique. We prove the polynomial convergence of 
the algorithm in Section 3. Some conclusions and final remarks are given in 
the last section. 

2. THE ALGORITHM 

We are given the LCP (1) with the following assumptions: 

(i> n > 3. (The problem with n < 2 is trivial.) 
(ii) M is positive semidefinite with no zero rows. 
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’ Throughout this paper, 11 x(1 = (Cy= 1 xi ) ‘1’ denotes the usual Euclidean 
spectral norm for x E A”, and (1 Al/ stands for the corresponding matrix norm 
of A E R”‘“. That is, II All = supIll AlI: llxll < 1) is the square root of the 
maximal eigenvalue of ArA. For u E R’“, u > 0 means uj > 0 for i = 
1,. . ) m. 

Let 

s,,,={(x,y)>o:y=Mx+q]. 

We assume that Sint is not empty in what follows. It is well known that the 
system of following homotopy equations 

XYe-pe = 0, (2) 

y-Mx-q=O (3) 

has a unique solution (x( pu>, y( p)) for each p > 0 when the matrix M is 
positive semidefinite (see, e.g., [2] for a proof). Here e is the n-dimensional 
vector of entries 1, and for a vector x E R”, X is the corresponding diagonal 
matrix with the diagonal entries xi. Our purpose is to numerically follow this 

path (XC /..L), y( ~1) f rom a starting interior feasible point. For this purpose we 
define 

Note that a point (x, y) E Sint satisfies (2) if and only if XYe - 
(xry/n>e = 0. Moreover, since (xry/n)e is the orthogonal projection of the 
vector XYe onto the straight line {Ae : A E R}, 

= nG;llxYe - hell. 

Suppose an initial strictly feasible point (x1, y ‘) E 
a precision E > 0, the algorithm is the following: 

Step 0: Let 6 = 2/(7&), k := 1. 
Step 1: Let /.L’ = (1 - 6)(xk)ryk/n. Solve the 

using one-step Newton iteration, starting from ( rk, 

S(k) is known. Given 

equations (2) and (3) 
yk), with /.L = /.L’, to 
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get (x’, y’) = (rk - Ax, yk - Ay). Here (Ax, Ay) satisfies 
equations: 

YkAx+XkAy =XkYke - p’e, 

Ay = MAX. 

JIU DING 

the following 

Step2: Let x’=x’-(l-6)Ax, y=y’-(l-6)Ay, and b= 
(1 - 8)~‘. Use one-step Newton iteration to solve (2) and (3) with p = k 
and the starting point (x’, 4) to get (2, ij) = (x’ - Ax’, y - A y). Here 
(A i, A ij> satisfies the following equations: 

Y’A,-+ X~ij = XYe - fie, 

Aij = MAx’. 

Step3: Letxk+‘=XI,yk+‘=Fj,k:=k-tl. 
Step 4: If (zk)ryk < E, then stop. Otherwise, go to Step 1. 

REMARK 1. The initial point (xi, y’) E S(k) can be obtained by means 
of the construction of an “artificial LCP” as in [lo]. 

REMARK 2. In Step 2, the point (2, 4) is obtained from the extrapolation 
through the two points (rk, yk) and (x’, y’). 

In the next section, we shall prove that after one cycle of iteration, 

approximately. Thus our method will generate a sequence of points {( x k, y ’ )} 
with values of (x: k)Ty k decreasing at least linearly with the global conver- 
gence ratio about 1 - 4/(7&) along the sequence. This convergence rate is 
better than the one proposed in [lo] and is an improvement on the one given 
in [2] which uses the one-step Euler’s method as predictor and the one-step 
Newton’s method as corrector. 

3. CONVERGENCE ANALYSIS 

In this section, we will give the analysis of the previous algorithm. To this 
purpose, we need to explore the implementation of the algorithm after each 
cycle of iteration. 
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For any /J > 0 and (x, y> E Sini, let (X, y> = (x - Ax, y - Ay) be 

obtained from solving (2) and (3) by one-step Newton iteration starting at 

(x, y). Then (Ax, A y) satisfies 

YAx + XAy = XYe - pe, (4) 

Ay = MAX. (5) 

The following lemma will be used frequently. 

LEMMA 3.1. Let u = (XY-“2(XYe - pe>. Then: 

(i) J = MZ + 4. 

(ii) fie = pe + AXAy. 

(iii) IIAX A yll < llul12/2. 
(iv) (AxlTAy < IM2/2. 
(v) i!Yj/n > p. 

Proof. From (S), it is easy to see that y = Mx + 4 implies 7j = MZ + 4, 

which gives (i). 
Since (A x, A y ) satisfies (4) and (S), we have 

Be = (X - AX)(Y - AY)e 

= XYe - (YAx + XAy) + AXAy 

=XYe-(XYe-pe)+AXAy 

= pe + AXAy. 

Thus (ii) is true. 
Let D = (xY-1)‘/2. Multiplying the equation (4) by the matrix (XY-1/2 

from the left, we have 

D-‘Ax + DAy = (XY)““(XYe - pe). 

Since M is positive semidefinite, 

(D-‘Ax)*DAy = AxTAy = AxT MAX > 0. 
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By a fundamental lemma introduced in [lo], (lD-lAxlI IlDAyll < IIuII”/~. 
Hence, 

IlAXAyll = IID-’ AXDAyll ,< ID-l AXII IlDAyll 

llul12 
< IID-’ Axll IlDAyll =G 2. 

This proves (iii). 
(iv) follows from 

Ilull 
(A~)~A~ = (r’ A.x)~ DAY G IIDmlAxll IlDAyll G 2 

Lastly, noting that M is positive semidefinite, from (ii) we have 

X“Y = eTEe = np + (Ax)' Ay 

This completes the proof. n 

NOW suppose (x, y) E s(e) f or some 0 E (0,l). Let p = x?‘y/n and 
p’ = (1 - 6)~ with 6 E (0, 1). Then we solve (2) and (3) with /J in (2) 
replaced by p’, using one-step Newton iteration starting at ( x, y). That is, we 
define 

x’ = x - Ax, y’ = y - Ay, 

where (A x, A y ) is the unique solution of the equations (4) and (5) with /-L in 

(4) replaced by p’. 
Let U’ = (XY)‘/“(XYe - p’e). We then have 

llU’l12 < (I( XY-1’2 JIpLYYe - pfel12 

=Il(x2’)-“2112{II XYe - pel12 + I\( j-6 - p’)el12} 

G (1 - e)-1p-1(e2p2 + nS2p2j 

= (1 - e)-‘(e2 + n6’) p = [(l- e)(l - s>]p’(ez + n6”)p’. 
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The first equality above is from the fact that pe is the orthogonal projection 
of the vector XYe on the straight line expanded by e, and the last inequality 
follows from the definition of the spectral norm of a matrix and the condition 
that (x, y) E S(0). From Lemma 3.1, 

llu’l12 
IIX’Y’e - p’ell = IlAXAyll G 2 < 

(0” + ntP)p’ 
2(1 - O)(l - 8) ’ 

(6) 

and 

llu’l12 (82 + nfP)p’ 
(HAY G y- G 2(1- O)(l- 8) 

Put 

(7) 

e2 + ns2 

” = 2(1 - e>(i - 6) . 

Then IIX’Y’e - p’e(l < 0’p’. Now we prove the following proposition. 

PROPOSITION 3.1. zfe + 8’ G 1, then (x’, y’) E s(e’). 

Proof. By (i) of Lemma 3.1, y’ = A4x’ + q. Now we show that 
(x ‘, y ‘> > 0. By the given condition, 8’ < 1. It follows that IIX’Y’e - 
p’ell < p’. Thus xi yi > 0 for i = 1,2, . . , n. Suppose xi < 0 and yi < 0 
for some i; then xi < Axi and yi < Ayi. Since (x, y) E S(e), [xi y, - ~1 < 
op. Hence, 

(1 - e)p < xiyi < Axi Ayi G IlAxAyll G 2c1 _ ej P. 

This means 

e2 + n6” 

’ - ’ < 2(1 - e) 
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Therefore 
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t12 + nS2 
e+e’>e+ 

2(1 - 0) > l. 

This is a contradiction. 
To finish the proof, note that 

II LdTy 
X'Y'e - -e II XTj 

< IIX'Y'e - p’ell < e’p’ =g e’- 
n n 

by(v) of Lemma 3.1. Hence (x’, y’) E S(0’). 

Now we assume for the moment that (3~ ‘, y ‘> > 0. Define 

n 

x’ = x’ - (1 - 8) Ax, ij = y’ - (1 - 8) Ay. 

Here we assume that 8 and 6 are chosen such that (x’, 4) > 0. 
Let L; = (1 - 6)~’ = (1 - 8)‘~. Then we solve (2) and (3) with p in (2) 

replaced by fi, using one-step Newton’s iteration starting at (x’, 6). That is, 
we define 

where (AX, A 6) satisfies (4) and (5) with X, Y, and CL in (4) replaced by 2, 
Y’, and ji, respectively. 

Let 6 = (e)-1/2(k?e - Ge). Then IJAXA$ JJ < J(CI12/2 and (AZ>T 

Aij < M12/2 by L emma 3.1. Now we estimate IJCJI. Since 

kfe = [X’ - (1 - 8) AX][Y’ - (1 - 6) AY]e 

= X’Y’e - (1 - S)[Y’A.x + X’ Ay] + (1 - 6)2 AXAy, 
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taking consideration of (ii) of Lemma 3.1, we get 
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_6e - fie = X’Y’e - fie - (1 - 6)(Y’A.x + X’ Ay) + (1 - 8)” AXAy 

= X’Y’e - fie - (1 - 6)[(Y - AY) Ax + (X - AX) Ay] 

+(l - a2) AXAy 

= X’Y’e - jie - (1 - S)[YAx + XAy - (AYAx + AXAy)] 

+(l - 8)” AXAy 

= X’Y’e - ibe - (1 - S)[XYe - p’e] 

+[2(1 - 6) + (1 - 6)2] AXAy 

= (X’Y’e - p’e) - (1 - 6)[ XYe - pe] 

+[2(1 - S) + (1 - c3)“] AXAy 

= [1+ 2(1 - S) + (1 - q”] AXA y - (1 - S)( XYe - pe). 

(8) 

Hence, 

IlZfe - @ell < [I + 2(1 - S) + (1 - S)“]llAXAyII 

+(1 - S)llxYe - pell 

= (2 - 6)211AXAyll + (1 - S)llXYe - peii 

(2 - S)“(O” + nS2) 

G 2(1 _ O)(l- 6) p’ + (l - s)ep 

2-S 2e2+nns2 [( ) e _ =- 
1-s 2(1-e) + 1-s p. 1 
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Let 
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e -i = 

2 - S 

1 - s i 

2 0” + nS” 0 

2(1 - e> + 1-s’ 

We thus have 

It follows immediately that 

if in addition e’ < 1. This together with (9) implies 

Therefore. 

Iliill” 
IlAkAijll < 2 < 

iPi; 

2(1 - 6) ’ 

and 

IlUll - 
(AZ)‘A$ < 2 < ,,l%-) 

Now, from (ii) of Lemma 3.1; 

Il_%e - i;ell = IlAxA$ll < 
e2 _ 

2(1 - 6) p. 

Denote e^ = i2/2(1 - 6). Then 

(9) 

(10) 
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Let fi = X^r$/n. Then from (v) of Lemm22.1, fi > fi. Moreover, since be is 
the orthogonal projection of the vector XYe onto the line through e, we get 

On the other hand, from (ii) of Lemma 3.1, we obtain 

eTAiAij 

n 

= ~ + GW’AG _ <p+ 
i2 _ 

n 2n(l - 6) ’ ,. 
( i 

n 

= (1- 8) 1-t ; ZJ’ = (1- a)2 1+ ; 
( 1 

Z_L. (12) 

In summary, we have the following assertion. 

PROPOSITION 3.2. With the same notation as above, if 8 and S are 

chosen such that (x’, y ‘) > 0, (2, 9) > 0, and e’ < 1, then 

(i) II<I,Y’e - p’ell < $‘p’, 
(ii> IlXYe - bell < 6/i, ,.,. 

(iii) IIXYe - bell < 6fi, n 
(iv) fi < (1 - S)‘(l + e/n>~.k.. 

PROPOSITION 3.3. Suppose f3 + 19’ < 1. Zf e’ < 1, then (x’, ij) E S(6). 

In addition, if 6 < 2 - 6, then (x^, ij) E S(6). 

Proof. Since y=Mx+qand y’=Mx’+q,from 

X = x’ - (1 - 6) Ax, 4 = y’ - (1 - 6) Ay, 

we have 

MX=Mx’ - (1 - 6)MAx = Mx’ - (1 - 8) Ay 

=y’-q-(l-S)Ay=y-q. 
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That is, tj = Mx' + q. Thus, $ = MI? + q by (i) of Lemma 3.1. Now we 
prove (x’, G) > 0. Suppose not; there would be an index i such that Zi = 
x~-(1-6)Axi<Oand~i-(1-6)Ayi<0.Thenfrom(6), 

(1 - e’),_~’ < x;y; < (1 - 6)2 Axi Ayi 

< (1 - 6)211AXAyll < (1 - 6)‘WP’. 

Hence 

1 < 8’ + (1- 6)%’ = [1+ (1- q2 8’ 

= [l + (1 - el 2(1 818;;f: 6) 

= [l + (1 - s>“](l - 8) 2(1 Blgs;;y 6)2 

(2 - s)“(e” + n82) 

< 2(1- 0)(1- q2 
< e’, 

which is a contradiction to the assumption. From (S), 

Hence, 

Ptj 
-=jYC+(2-6) 

2(A~)T MAX 

n n 

This proves (x’, $1 E S(G). 
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If in addition e’ Q 2 - &, then from (iii) of Proposition 3.2 we have 
Gjii > 0 for each i, since e^ = 6’/[2(1 - 611 < 1. Suppose Zi < 0 and 
gi < 0 for some i. Then 

(1 - e’)/Yi < f,i& < Agi AGj < IlAzA$ll Q 
6” _ 

2(1 - 6) p. 

It follows that 

S” - 46 + 2 < 0. 

Thus 6 > 2 - fi, a contradiction. This completes the proof. n 

By Proposition 3.2 and Proposition 3.3, if we choose the two parameters 6 
and 8 such that 0 + 8’ Q 1, e’ Q 2 - &, and 0 < 0, then (2, Lj) E S(0), 
and 

“TA T 

XY(l-S)2lf~ 2, 
n ( i n n 

The best choice of 6 and 8 satisfies the following optimization problem: 

In particular, we obtain the following result needed for our algorithm in the 
previous section. 

THEOREM 3.1. Choose 6 = 2/(76) and 6=&. Then 8+8’<1, 

6 G 2 - a, and 6 G 0. Thus (2, $) E S(e) and 

4 

i - 

97 1 A 

p”< l-76+--- 588n 21nG 
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Proof. For 6 = 2/(7&j and 8 = &, considering R 2 3, we get 

e2 + nS2 

'+ "= '+ 2(1- e)(i - 8) 

(i)” + 23 
ZE- 

1: + 2(1 - &)(l - 2/(7&)) 

1 625 

' ii + 12936(1 - 2/(7ti)) 

< 0.2 < 1, 

2-6 

-( 1 
2e2+ n6’ e 

‘= i - 6 2(1- e) + 1-S 

1 2(&)2+G 1 

= ‘+ l- 2/(76) 2(1- &) + l- 2;;7&i) 

1 2 625 1 

1 - 2/(7fi) + 12936 12(1 - 2/(7@) 

and 

< 0.33312 < 2 - &i-, 

e^= 
6” 0.333122 1 

2(1- e') < 2(1 - 0.33312) < iii = " 

Hence from Proposition 3.3, (2, tj) E S(6) C S(e). Now (iv) of Proposition 
3.2 gives 

ji<(1-6)21+-p< l- 
( ij ( &i’(l+i$ 

= '-7&i i L+ik)(l+ik)~ 

4 

=l-7\/;E.+KiYp i - 

97 1 1 

21& 
+- 

147n2 I*' 1 
n 
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In [lo], the complexity bound of the 0(n3.5L) algorithm for the LCP is 
1 - l/W-) ft n a er one Newton iteration. Thus after two iterations, with the 
same notation in their algorithm, 

The predictor-corrector algorithm proposed in [2] has the complexity bound 
1 - 2/(5&> ft a er one cycle of one Euler iteration and one Newton itera- 
tion. Therefore our algorithm has a better complexity. 

4. CONCLUSIONS 

In this paper, a polynomial-time predictor-corrector algorithm is pre- 
sented for a class of LCPs with positive semidefinite matrices, based on a 
simple linear extrapolation technique combined with Newton’s iteration. The 
corresponding complexity bound is shown to be much better than the one 
given in [lo] and is better than the one in [2] using Euler’s method as 
prediction. Also, now we don’t need to solve systems of linear equations 
related to Euler’s iteration. Instead we always solve systems of linear equa- 
tions of the same type related to Newton’s iteration, which makes the 
algorithm easier to implement. 

For the LCPs, the linear-extrapolation approach for the prediction step 
has some advantage over the higher-order ones in that we can always keep 
the iterates feasible, that is, y k = Mx k + q for all k. We exp ect that if the 
linear extrapolation is used before each Newton iteration instead of every two 
Newton iterations as given here, the complexity bound will be better. On the 
other hand, we may apply the quadratic polynomial extrapolation technique 
to the algorithm to speed up the convergence, since the system of nonlinear 
equations (2) and (3) is actually a quadratic polynomial one. 
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