
Theoretical Computer Science 254 (2001) 187–223
www.elsevier.com/locate/tcs

Automata-driven e$cient subterm uni&cation�

R. Ramesha ; 1, I.V. Ramakrishnanb ;∗;2, R.C. Sekarb

aBox 660199, MS 8645, Texas Instruments Inc., Dallas, TX 75266, USA
bDepartment of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11794, USA

Received December 1996; revised January 1999
Communicated by O.H. Ibarra

Abstract

Syntactic uni&cation has widespread use in computing. There are several operations used in
deductive computing such as critical pair generation, paramodulation and narrowing that require
unifying a term s with every subterm of another term p. This subterm uni&cation problem can
be solved naively by repeatedly unifying s with each subterm of p in isolation. The drawback of
doing uni&cation in isolation is that commonality among subterms of p is ignored. We present an
algorithm for e$cient subterm uni&cation by exploiting this commonality. The central idea used
in our algorithm is to reduce the common part computation in uni&cation into a string-matching
problem and solve it e$ciently using a string-matching automaton. The automaton succinctly
captures the commonality between subterms of p. The string-matching approach, in conjunction
with two new techniques called bidirectional-reduce and marking enables e$cient uni&cation of
s with every subterm of p. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Syntactic uni&cation; Subterm uni&cation algorithm; String-matching automata

1. Introduction

Syntactic uni&cation is a ubiquitous operation in computing. Many deductive comput-
ing applications require unifying a term s with subterms of another term p. For instance,
in Knuth–Bendix completion procedure, given a set of rewrite rules l1 → r1; l2 → r2; : : : ;
ln → rn, critical pairs are generated by unifying each li (16i6n) with subterms of ev-

� A preliminary version of this paper appeared in the Proceedings of the 1994 FST & TCS.
∗ Corresponding author.
E-mail addresses: rramesh@dadd.ti.com (R. Ramesh), ram@cs.sunysb.edu (I.V. Ramakrishnan),

sekar@cs.sunysb.edu (R.C. Sekar).
1 Research completed while at the Department of Computer Science, University of Texas at Dallas and

supported by NSF grant CCR-9110055.
2 Research supported by NSF grants CCR 9102159, 9404921, 9510072, 9705998, 9711386 and INT

9600598.

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(99)00131 -0

188 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

Fig. 1. Uni&cation of p with subterms of s.

ery lj (16i6n). The technique of paramodulation used in resolution-based theorem
provers for handling equality and the narrowing operation used in combining logic and
functional programming, also require unifying s with subterms of p.

This problem, henceforth referred to as subterm uni8cation, can be done naively by
repeatedly unifying s with every subterm of p. Each of these uni&cations is independent
of any previous operations, i.e., they are done in isolation. However note that: (1) s
is a common term in all these uni&cations and (2) many (or all) of these uni&cations
involve overlapping subterms of p. The drawback of doing uni&cation in isolation is
that we do not exploit these commonolities and hence repeat computations that are
common. We illustrate through Fig. 1 the opportunities for optimization. To unify s
with p at its root we must compare labels of nodes 1,2,6 and 7 with that of 8,9,11 and
12, respectively. To unify s with subterm of p rooted at node 2 we have to compare
the labels of nodes 2,3,5 and 6 with that of 8,9,11 and 12 respectively. Note that the
nodes 2 and 6 are common to the two uni&cations. Doing uni&cations in isolation will
result in inspecting these two nodes twice. Observe that from the &rst uni&cation we
know that nodes 1, 2 and 8 have the same labels. Therefore, we need not compare
labels of nodes 2 and 8 in the second uni&cation. Similarly we can avoid comparing
labels of nodes 6 and 12. Moreover, based on the examination of node labels at 5,6,
and 7 when attempting uni&cation at nodes 1 and 2, we can conclude that uni&cation
at nodes 5, 6 and 7 is bound to fail. Early detection of such non-uni&able subterms
can lead to further savings in time.

There has been considerable research in factoring out common computations for
pattern matching 3 (e.g. [3, 4, 9]). In [10] we gave an algorithm for factoring out com-

3 In pattern matching p is always ground and s is typically linear.

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 189

mon computations that arise in indexing of Prolog clauses. 4 However, the design of a
similar e$cient algorithm for the subterm uni&cation problem has remained open and
forms the topic of this paper.

1.1. Summary of results

The main contribution of this paper is an e$cient subterm uni&cation algorithm
to unify s with subterms of p that exploits commonality among subterms. Our algo-
rithm, following Martelli and Montanari’s approach [6], does uni&cation by solving
term equations. The basic operations in this algorithm are computing the common
part of terms and substitutions for variables, as described in Section 2. We transform
the common part computation into a highly structured string-matching problem. This
structure enables us to construct an automaton (by preprocessing s and p) to e$-
ciently solve the string-matching problem. The automaton succinctly represents com-
monality between subterms of p and enables e$cient uni&cation of s with each of
these subterms without examining any symbol in s or p more than once. Using it we
compute common part in time proportional to number of variables in the terms (see
Section 3). To e$ciently compute substitutions for variables, we introduce the
bidirectional-reduce operation which reduces the number of intermediate substitutions
(see Sections 3 and 4). If sharing among terms in substitutions is not handled then
it can result in excessive reexamination of the same variable occurrence. We use a
marking technique, in Section 5, that introduces virtual variables to facilitate sharing
without aJecting the string-matching automaton. We integrate these techniques to ef-
&ciently perform subterm uni&cation in Section 6. Our subterm uni&cation algorithm
generalizes (i) our tree pattern matching algorithm in [9] by allowing variables in p
and (ii) our Prolog indexing algorithm in [10] by allowing both s and p to be nonlinear
and doing uni&cations at all the nonroot positions of p.

Our algorithm &rst preprocesses s and p into a string-matching automaton prior to
subterm uni&cation. The following is a summary of our complexity results.
• Constructing the string-matching automaton requires only O(|s | + |p |) time. Note

that in applications using subterm uni&cation, p and s are created and destroyed at
run time. Therefore it is crucial to have small preprocessing costs.

• Let t be any subterm in p and k denote the number of occurrences of variables in s
and t. Let kd denote the number of distinct variables in s and t. Table 1 is a summary
of the worst-case running time for unifying any subterm t with s. (In the table,
denotes the inverse of Ackermann’s function and multiplicity is the maximum over
the number of occurrences of any variable.) In contrast the linear time algorithms
in [7, 8] will always require O(|s | + | t |) time to unify s with t. We also show that
the asymptotic running time (including the cost of preprocessing) of our subterm
uni&cation is always better than doing independent uni&cations (see Section 6).

4 The indexing algorithm assumes that both p and s are linear and matches are performed only at the
root.

190 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

Table 1
Table of asymtotic complexities

Observe from Table 1 that the worst-case performance of our algorithm occurs only in
the case when both terms are nonlinear and each one has a variable with more than two
occurrences. But note that for any subterm t of p, the number of occurrences of any
variable in it decreases as t’s distance from the root of p increases. This implies that
even in the worst-case scenario the performance of our algorithm will only improve as
we unify s with subterms of p that are farther and farther away from the root.

2. Preliminaries

A term is either a variable or an expression of the form f(t1; t2; : : : ; tn) where f is
a function symbol of arity n¿0 and t1; t2; : : : ; tn in turn are also terms. The notion of
a position in a term is used to refer to subterms in a term as follows. A position is
either the empty string � that reaches the root of the term or � : i (� is a position in
the term and i is an integer) which reaches the ith argument of the root of the subterm
reached by �. We use t=� to refer to the subterm of t reached by �. The development
of our algorithm is based on Martelli and Montanari’s algorithm in [6]. We sketch its
high-level description below.

Their algorithm views uni&cation as the problem of solving term equations of the
form s= t where s and t are the terms to be uni&ed. It operates by repeatedly trans-
forming the initial equation s= t into an equivalent set of equations until either it
detects that there is no uni&er or when the resulting equations are in solved form. An
equation x= q (x is a variable) is an elementary equation and q is referred to as a
substitution for x. A set of elementary equations {x1 = t1; x2 = t2; : : : ; xn = tn} is said to
be in solved form iJ xi does not appear in terms ti; ti+1; : : : ; tn. Such a set is also said
to be in canonical form. An equation queue Ex is associated with every variable x. Ex

is the list of right-hand sides (rhs) of elementary equations whose left-hand sides (lhs)
are x. The solution queue S has elementary equations in canonical form.

Each transformation step augments S by adding one more equation to it. This is
done by identifying a variable x that does not occur in any term in any of the equation
queues (this is the occur-check) and selecting its equation queue Ex for processing. Note

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 191

that each term r in Ex represents the equation x= r. Ex is processed by decomposing
the terms in it into a common part c and frontier F . Conceptually, we can view
the common part of a collection of terms as follows. First superpose the terms at
their roots. Next mark all those nodes that fall on variables. If the terms obtained by
deleting the subtrees rooted at all the marked nodes are identical then they constitute
the common part. Otherwise common part does not exist and uni&cation fails. The
deleted subterms constitute the frontier; e.g., if Ex contains the terms f(x1), f(g(x2))
and f(g(h(x3))) then the common part will be f(x1) and the frontier will contain
the equations x1 = g(x2) and x1 = g(h(x3)). After computing the common part c and
frontier F , S is augmented with x= c and equations in F are processed as follows. For
each elementary equations of the form y= z in the frontier we merge equation queues
Ey and Ez. The rhs of remaining equations are distributed to the equation queues of
the variables appearing in the lhs.

Recall that prior to each transformation, we must select an equation queue for pro-
cessing and that we select Ex if x does not occur in any term in any of the unprocessed
equation queues. To e$ciently perform this selection we keep a count of the number
of occurrences of variables among the terms in the unprocessed equation queues. In the
beginning the counters of all variables are initialized by counting their occurrences in
s and t. After each successful transformation step the counters are updated prior to se-
lecting the next equation queue. An equation queue Ex is selected when the occurrence
counter of x becomes zero.

The uni&cation process can be described using four procedures – CommonPart (to
compute the common part and frontier), MergeQ (to merge equation queues), AddToQ
(that distributes the rhs terms) and UpdateCounters (to maintain the counters). Pro-
cedure Unif in Fig. 2 is an outline of how these procedures are integrated to perform
uni&cation of s and t. Observe from line 16 that two equation queues Ey and Ez are
merged if the equation y= z is in the frontier. This operation is performed by proce-
dure MergeQ to ensure that in subsequent steps x and y will be treated as the same
variable. In general, we may compute several such equations and hence will merge
several pairs of equation queues. To implement MergeQ operation, we choose a leader
among the variables whose equation queues are to be merged. The new equation queue,
obtained by merging equation queues of variables in the group, is the equation queue
of the leader. Speci&cally, the new substitutions computed for variables in this group
will be added to the leader’s equation queue. Similarly, counters of all variables in this
group will be added together and becomes the counter of the leader. This means that
AddToQ(q; Ey) must add the term q to the equation queue of y’s leader. Similarly if
the counter of y is to be updated then UpdateCounters will update the counter of y’s
leader.

Let Tcp; Tupdate and Tmerge denote the time taken by procedures CommonPart,
MergeQ and UpdateCounters over all iterations of the while loop between lines 6–27
(in Fig. 2). If Tunif is the time taken to unify s and t then:

Theorem 1. Tunif is O(Tcp + Tupdate + Tmerge)

192 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

Procedure Unif (s; t)
begin
1. {EqnTodo contains the unprocessed equation queues.}
2. {8rstQ is a dummy equation queue containing s and t.}
3. {S is the solution queue and initially it is empty.}
4. EqnTodo := {8rstQ}
5. Initialize counters of the variables to the number of their occurences in s and t
6. while EqnTodo is not empty do
7. if there is a variable whose counter is 0 then
8. Select a variable whose counter is 0. Let it be x.
9. Let Ex = {t1; t2; : : : ; t1}
10. if CommonPart(t1; t2; : : : ; t1) exists then
11. Let c and F be the commonpart and frontier respectively
12. add x= c to S.
13. for each equation e in F do
14. Let y be the variable on the lhs of e
15. if rhs of e is a variable, say z then
16. MergeQ(y; z)
17. else
18. Let q be the term on the rhs of e
19. AddToQ(q; Ey)
20. endif
21. end
22. else return (failure)
23. endif
24. UpdateCounters()
25. else return (failure)
26. endif
27. endwhile
end.

Fig. 2. Uni&cation algorithm.

Proof. It is quite straightforward to implement AddToQ so that it takes time propor-
tional to the number of substitutions computed. Therefore the running time of AddToQ
over all invocations is never more than Tcp. Hence the result.

3. Computing common part e�ciently

Observe that common part computation involves only comparing node labels and
distributing the substitutions of variables into appropriate equation queues. The latter

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 193

begin
1. fail := false
2. Frontier :=∅
3. repeat
4. if S(ps) and T (pt) are both function symbols then

{match phase}
5. if S(ps) �= T (pt) then
6. fail := true
7. else
8. ps :=ps + 1
9. pt :=pt + 1
10. endif
11. elseif one of them is a variable, say S(ps)

{skip phase}
12. Let x= S(ps) and q be the subterm rooted at T (pt)
13. Frontier :=Frontier ∪ {x= q}
14. ps :=ps + 1
15. advance pr to node immediately following the subtree rooted at T (pt)
16. end if
17. until (fail=false)or(S and T are completely scanned)
end.

Fig. 3. Simple algorithm for computing common part.

operation (i.e. AddToQ) is quite simple to implement and only takes time proportional
to number of substitutions computed. In [6], pairs of node labels are compared position
by position and hence common part computation takes time proportional to the sum
of the sizes of the terms. The key idea in our approach is to compare node labels in
a sequence of positions in O(1) time. This enables us to compute the common part
also in time proportional to the number of substitutions. We do this by reducing the
common part computation into a string-matching problem as described below.

3.1. Computing common part of a pair of terms

Through a simple algorithm in Fig. 3, we illustrate how to reduce common part
computation of s and t into a string matching problem. s and t are traversed in preorder
and stored in arrays S and T respectively. Two pointers, ps and pt , are used to scan S
and T respectively. Upon termination if fail is true then there is no common part and
hence uni&cation fails; otherwise the common part is the term obtained by deleting the
terms in the frontier. The following theorem from [10] establishes the correctness of
the simple algorithm.

Theorem 2. S =T i> s= t.

194 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

3.1.1. Improving running time
Observe that our simple algorithm cycles between two phases — match and skip.

In each step the phase is &rst determined and then the computation appropriate to that
phase is performed. Transition between phases occurs as follows. If the algorithm is
in match phase and the node labels currently being compared are both function sym-
bols then it continues to remain in the same match phase. On the other hand, a new
match phase is entered if it is currently in a skip phase and the nodes being compared
are again labeled with function symbols. Finally, it enters a new skip phase whenever
one of the nodes being compared is labeled with a variable. The computations per-
formed in the two phases are as follows. If the pair of function symbols compared
in a match phase are identical then ps and pt are both incremented by one. A mis-
match on the other hand, indicates absence of common part (and hence the failure
of uni&cation). For the skip phase, suppose (without loss of generality) ps points to
a node labeled with a variable, say x, and pt points to some node, say v. Then ps

is advanced by one whereas pt skips the entire subtree rooted at v and advances to
the node immediately following the last node in the subtree rooted at v. Suppose q
denotes the subterm rooted at v then the elementary equation x= q is added to the
frontier.

Observe the total number of comparisons made in the simple algorithm is linear
in the size of the input terms. However, the number of distinct phases the algorithm
goes through is proportional to the number of substitutions (i.e., the rhs of elementary
equations) computed. Also note that each skip phase can be accomplished in O(1) time
by storing preorder in an array and keeping a pointer from each node to the position
of the last node (in preorder) in the subtree rooted at this node. Therefore if we can
accomplish each match phase also in O(1) time then the running time of our algorithm
is proportional to the number of substitutions computed by it. We now examine issues
related to improving the running time of our algorithm.

3.1.2. String-matching operations
Observe that during uni&cation common parts of input terms as well as their subterms

are computed. We refer to the input terms as the primary terms and the subterms of
primary terms will be referred to as secondary terms. We now identify the string
matching questions that arise while computing the common part of two primary terms
s and p. Each term is transformed into a set of strings by doing a preorder traversal
and removing the variables. Thus f(a; h(x; b)) is transformed into fah and b. Each
such string from a primary (secondary) term is referred to as primary (secondary)
string.

Fig 4 depicts the four kinds of string-matching phases that occur in uni&cation of s
and p. Fig 4(a) shows the &rst match phase (i.e., phase starting at the root), whereas
Fig 4(b) shows the last match phase (i.e., phase ending at the last leaf). All other
match phases must occur between two skip phases, and are called intermediate match
phases. There are two cases to consider for an intermediate match phase, depending

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 195

Fig. 4. String matching operations in the match phase.

upon whether the skip phases preceding and following the match phase were (i) both
initiated by variables in the same term (Fig 4(c)) or (ii) initiated by variables from
diJerent terms (Fig 4(d)). The four scenarios lead to the following string-matching
questions.
1. Does occur at position l in string ' (Figs. 4(a)–4(c))
2. Does a given pre&x of occur at position l in ' (Fig. 4(d))
Note that both and ' are primary strings and so the above two questions are special
cases of the following generic question: Given a speci&c position l,

Q1 Does a given pre&x of a primary string occur in another primary string at l?

We now identify the string matching questions that arise while computing the com-
mon part of two secondary terms, say t1 and t2. There are three cases.
Case 1: Both t1 and t2 have variables. We can again show that a match phase can

occur only in the four scenarios shown in Fig. 4. The only diJerence now is that and
' in Fig. 4(a) denote su$xes of primary strings whereas in Fig. 4(b) they are pre&xes
of primary strings. Similarly in Fig. 4(d), can be a pre&x of a primary string and '
can be a su$x of a primary string. The string matching questions here are:
Q1 (as before) (Figs. 4(b)–4(d))
Q2 Does a given su$x of a primary string occur in another primary string at l?

(Fig. 4(a))
Case 2: One of the secondary terms, say t1, is ground. In this case a match phase

can occur only in the three scenarios shown in Fig. 4(a)–4(c) (without xi and xi+1).
(The scenario shown in Fig. 4(d) cannot arise as one of the terms is ground). Herein
again in Fig. 4(a) is a su$x of a primary string whereas it is a pre&x of a primary
string in Fig. 4(b). Note that in all three scenarios ' is a substring of a primary string
(representing the preorder of the ground term t1). It can be easily veri&ed that the
generic string matching questions raised here are identical to those in case 1 above.
Case 3: Both t1 and t2 are ground. In this case, computing the common part reduces

to verifying whether t1 and t2 are identical.

196 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

In summary, based on the above discussion, the string matching question that arise in
any match phase are: Given a speci&c position l,

Q1 Does a given pre&x of a primary string occur in another primary string at l?
Q2 Does a given su$x of a primary string occur in another primary string at l?
Q3 Are preorders of two ground terms equal?

If we can answer any instance of these three questions in O(1) time then each match
phase can also be done in O(1) time. Q3 can be answered by verifying that the two
ground terms are identical. Such a veri&cation can be done in O(1) time by assigning
an integer signature (varying from 1 to n) to the nodes in the term such that two nodes
get the same signature if and only if the subterms rooted at them are identical. Such an
encoding can be easily computed by a preprocessing step in time proportional to the
size of the term (see [2] for one such method). Upon assigning these signatures we can
check whether two ground terms are identical by comparing the signatures assigned to
their roots. This comparison takes only a O(1) time and hence Q3 can be answered in
O(1) time. We now show how to answer Q1 and Q2 in O(1) time by preprocessing
the primary terms s and p into a string matching automaton. Note that the O(1) time
taken to answer these questions does not include the preprocessing costs.

3.1.3. Preprocessing primary terms
Central to our technique is a &nite-state automaton that is constructed from the pri-

mary strings. We use the Aho and Corasick (see [1] for details) algorithm to construct
such an automaton. Following [1] we refer to the strings recognized by the automaton
as the keywords of the automaton.

The automaton consists of nodes called states and two types of links — goto and
failure. The goto links are labeled with symbols from the alphabet of the keywords.
These links together with the states form a “tree-like” structure known as the goto tree
whose root is the start state (See Fig. 5 for illustration). Following [1] we say state
(represents string � if the path in the goto tree from the start state (the root node)
to state (spells out �. The construction using Aho and Corasick algorithm ensures
that every keyword is represented by a state in the automaton. This implies that every
pre&x of a keyword is also represented by some state in the automaton. In fact, there is
a one to one correspondence between the states of the automaton and unique pre&xes
of keywords.

The automaton scans the input text for recognizing occurrences of keywords. While
scanning it makes either a goto or a failure transition. Suppose the automaton is in
state u after scanning the &rst j symbols of the input text a1a2 : : : ajaj+1 : : : an. If there
is a goto link labeled aj+1 from u to w then the automaton makes a goto transition to
w. Now,

Lemma 1 (Aho–Corasick). The string represented by w is the longest su?x of
a1a2 : : : aj+1 that is also a pre8x of some keyword.

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 197

Fig. 5. Automaton for rule strings ffa; f and ga. (a) Automaton; (b) fail tree.

For example, upon reading sff from the string sffg : : :, the automaton in Fig. 5
is in state 2 which represents ff. Observe that ff is the longest su$x of sff that
is also the pre&x of the keyword ffa.

On the other hand, if there is no such link labeled aj+1 from u then it makes a
failure transition. If this transition takes the automaton to a state v then:

Lemma 2 (Aho-Corasick). The string represented by v is longest proper su?x
(among those represented by the states of the automaton) of the string represented
by u.

For the input string sffg : : : above, on reading the symbol g in state 2 the automaton
makes a transition to state 1. The string f represented by state 1 is the longest proper
su$x of ff, the string represented by state 2.

We refer to v as the failstate of u. Suppose aj+1 is such that the automaton is
still unable to make goto transitions from v with aj+1 then it again makes a failure
transition and continues to do so until it reaches a state from which it can make a goto
transition with aj+1. Since the start state has goto links for all symbols in the alphabet
the automaton is able to make (eventually) a goto transition on every symbol of the
input.

The main problem with this automaton is that (as is) it is only able to tell whether
an entire keyword string occurred in the input text. However, recall that we need to
know whether a pre&x or a su$x of a primary string occurs in another primary string.

We &rst extend the automaton to handle Q1. For clarity of notation we will implicitly
assume the presence of position l in every instance of Q1. The primary strings of the
terms to be uni&ed form the keywords of this automaton. Therefore each pre&x of a
primary string is represented by state in the automaton.

Suppose we want to know whether a given pre&x of a primary string occurs in
another primary string ' (see Fig. 6). Observe that (is a pre&x of '. Therefore there
is a state s(in the automaton that represents (. Note is also a pre&x of a primary

198 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

Fig. 6. Answering an instance of Q1.

string and hence there is a state s that represents . Now occurs at l iJ is a su$x
of (. In other words:

Theorem 3. is a su?x of (i> s is reachable from s(through zero or more failure
transitions only.

The proof of this result is a straightforward consequence of Lemma 2. To handle
Q2, observe that it is a symmetric dual of Q1, i.e., suppose we reverse all the primary
strings then a su$x of a primary string is pre&x of its reverse. Thus, we can handle
Q2 using an automaton built with the reverses of primary strings.

Now we describe how to answer both these questions in O(1) time. Observe that
each state has a unique fail state. So by deleting all the goto transitions and reversing
the directions on failure transitions we obtain the fail tree of the automaton. (Fig.
5(b) is the fail tree for the automaton in Fig. 5(a).) To each node in this fail tree
we assign its preorder number (pn) and the number of descendants (nd) in its subtree.
For to occur in ' at l, s must be an ancestor of s(in the fail tree (i.e., verify
pn(s)6pn(s()6pn(s) + nd(s)). Since this can be veri&ed in O(1) time we can
therefore answer Q1 in O(1) time. Similarly, Q2 can also be answered in O(1) time
using the fail tree of the automaton based on the reverses of primary strings.

3.1.4. Algorithmic details
Based on the discussions in the previous section we now present the details of pro-

cedure CommonPart that computes common part based on string-matching automaton.
The two primary terms are preprocessed to construct the two Aho–Corasick automata
(one for the primary strings and another for their reverses) and their fail trees. We
use the following data structure to represent the preorders of primary terms and their
subterms. We use two arrays P and S to store the preorders of the two primary terms
p and s. Given the array P (or S), the preorder of any subterm t of p (or s) can be
speci&ed by giving the two endpoints of the preorder of t in P (or S). Therefore we
represent preorder of any term t by the triple 〈(X; i; j)〉 where X is the preorder of a
primary term and i and j mark the two endpoints of preorder of t in X .

A record in arrays P and S has six &elds: label; subtree; varposn; code; state and
revstate. The label &elds are used to store the labels of nodes that appear in pre-
order. The varposn &eld in P[i] is set to the preorder number of the nearest variable

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 199

node that appears after i in preorder. The subtree &eld of P[i] is set to j if P[j] con-
tains information about the last node (in preorder) in the subtree rooted at the node
speci&ed in P[i]. The code &eld is set to the code obtained by precessing the terms
using the congruence closure method [2]. This &eld is used only for comparing ground
subterms. The state &eld speci&es the state of the automaton (built with the primary
strings) reached on reading P[i]:label while scanning P. Similarly, revstate speci&es
the corresponding state reached on scanning the reverse of P with the automaton built
with reverses of the primary strings. The structure of array S is identical to P. In addi-
tion to these arrays CommonPart uses local variables p1; p2; l1; l2 and lastvar. p1 and
p2 point to positions in the preorders of the two input terms upto which CommonPart
has proceeded without failure. l1 and l2 are the lengths of remaining portions of two
primary strings (in the input terms) from p1 and p2 respectively. lastvar is set to q
(q is either 1 or 2) if the immediately preceding substitution was made to a variable
in the qth input term. pn and nd are functions that return the preorder number and the
number of descendants of a state (or revstate) in appropriate fail tree.

The common part of two terms t1 and t2 is computed by invoking CommonPart
(t1; t2). In the description below we use function pre(t) to retrieve the triple denoting
the preorder of t.

Procedure CommonPart(t1; t2)
begin
1. fail := false;
2. Let 〈T1; s1; e1) =pre(t1);
3. Let 〈T2; s2; e2) =pre(t2);
4. p1 := s1; p2 = s2; {initialize the pointers}
5. Let Frontier = nil {and Frontier to empty list}
6. {Check whether both are ground terms}
7. if (T1[p1]:varposn¿ e1) and(T2[p2]:varposn¿ e2)then
8. return (T1[p1]:code �=T2[p2]:code);
9. endif ;
10. l1 := min(T1[p1]:varposn; e1) − p1 + 1; {length of the &rst string in &rst term}
11. l2 := min(T2[p2]:varposn; e2) − p2 + 1; {length of the &rst string in second term}
12. {First phase is always a match phase. So, perform string match.}
13. pn1 :=pn(T1[p1]:revstate);
14. pn2 :=pn(T2[p2]:revstate);
15. nd1 := nd(T1[p1]:revstate);
16. nd2 := nd(T2[p2]:revstate);
17. if l1 ¡ l2 then
18. {String in the &rst term is shorter}
19. fail :=¬(pn16pn26pn1 + nd1);
20. p1 :=p1 + l1;
21. p2 :=p2 + l1;

200 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

22. else
23. {String in the second term is shorter or equal}
24. fail :=¬(pn26pn16pn2 + nd2);
25. p1 :=p1 + l2;
26. p2 :=p2 + l2;
27. endif
28. while¬fail and p1 ¡ e1 and p2 ¡ e2 do
29. {Perform substitutions as long as one of the term has a variable}
30. while T1[p1]:label or T2[p2]:label is a variable do
31. if T1[p1]:label is a variable then
32. {Compute substitution for variable at T1[p1]}
33. lastvar := 1;
34. Frontier := append(“T1[p1]:label= 〈T2; p2; T2[p2]:subtree〉”; Frontier)
35. p1 :=p1 + 1;
36. p2 :=T2[p2]:subtree + 1;
37. else
38. {Compute substitution for variable at T2[p2]}
39. lastvar := 2;
40. Frontier := append(“T2[p2]:label= 〈T1; p1; T1[p1]:subtree〉”; Frontier)
41. p1 :=T1[p1]:subtree + 1;
42. p2 :=p2 + 1;
43. endif
44. endwhile
45. {If we have not reached the end of the terms’ preorders then we
46. have to perform a string match as both p1 and p2 point to functor nodes}
47. if p2 ¡ e2 and p1 ¡ e1 then
48. l1 := min(T1[p1]:varposn; e1) − p1 + 1;

{length of current string in &rst term }
49. l2 := min(T2[p2]:varposn; e2) − p2; +1

{length of current string in second term }
50. ifl1 ¡ l2 then
51. { String in the &rst term is shorter }
52. pn1 :=pn(T1[p1 + l1 − 1]:state);
53. pn2 :=pn(T2[p2 + l1 − 1]:state);
54. nd1 := nd(T1[p1 + l1 − 1]:state);
55. nd2 := nd(T2[p2 + l1 − 1]:state);
56. p1 :=p1 + l1;
57. p2 :=p2 + l1;
58. else
59. {String in the second term is shorter}
60. pn1 :=pn(T1[p1 + l2 − 1]:state);
61. pn2 :=pn(T2[p2 + l2 − 1]:state);
62. nd1 := nd(T1[p1 + l2 − 1]:state);

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 201

63. nd2 := nd(T2[p2 + l2 − 1]:state);
64. p1 :=p1 + l2;
65. p2 :=p2 + l2;
66. endif
67. if lastvar = 1 then
68. fail :=¬(pn16pn26pn1 + nd1);
69. else
70. fail :=¬(pn26pn16pn2 + nd2);
71. endif
72. endif
73. endwhile
74. if ¬fail then return(Frontier)
end

Suppose m is the total number of substitutions computed in CommonPart. Then,

Theorem 4. CommonPart takes O(m) time.

Proof. Since lines 1–27 take only O(1) time the complexity of CommonPart is given
by the time taken to execute the outer while loop (lines 28–73). Lines 45–73 in the
outer while loop take only O(1) time. Furthermore, for each iteration of the outer
loop, the inner loop is executed at least once. Therefore, the time taken to execute
the inner while loop over all iterations of the outer while loop will dominate the time
complexity. Since each iteration of inner while loop takes O(1) time and computes one
substitution, the total time taken by CommonPart is O(m):

Let k be the total number of occurrences of variables in terms s and t. As an
immediate consequence of the above theorem:

Corollary 1. CommonPart(s; t) requires at most O(k) time.

In an equation queue Ex there can be several terms. Procedure CommonPart com-
putes the common part of a pair of terms. It can be extended to compute the common
part of several terms together. For example, suppose Ex consists of f(x1); f(f(x2));
f(f(f(x3))). Observe that a set of elementary equations equivalent to Ex can be gen-
erated by &rst computing the common part of f(x1) and f(f(x2)) followed by the
common part of f(f(x2)) and f(f(f(x3))) and combining the frontiers together. We
now formalize the bidirectional-reduce (BR) operation described above as follows. Let
t1; t2; : : : ; tn be the terms in Ex. To reduce them to an equivalent set of elementary
equations we invoke procedure common part n − 1 times. In the ith application we
compute the common part of ti and ti+1.

Note that it is also possible to reduce Ex by computing common part of t1 with
every ti (26i6n), a pair at a time. In this case t1 is used several times. In contrast,

202 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

the BR operation uses a term at most twice. We show later on that this property of
the BR operation yields good performance in important cases of subterm uni&cation.

4. Analysis of automata-driven uni$cation

We now analyze the complexity of our uni&ction algorithm based on string-matching
automaton. The analysis is split into two cases based on the structure of s and t,
namely, (1) only one is linear and (2) both are nonlinear. For the case where both are
linear we will show that is a special case of (1). Our analysis exploits the fact that in
most applications requiring subterm uni&cation such as critical pairs, paramodulation
and narrowing, s and p do not share any variables. Even otherwise it is possible to
encode them into two other terms that do not share variables with an increase only by
a constant factor in the size of s and p and the number of variables in them. In the
remainder of this section we use t to denote any subterm of p and k to denote the
total number of variable occurrences in both s and t together.

4.1. Linear–nonlinear uni8cation

Without loss of generality let s be linear and t be nonlinear. Let Ex1 ; Ex2 ; : : : ; Exn be the
collection of nonempty equation queues obtained by invoking procedure CommonPart
on s and t (Note xi is a variable whose equation queue is Exi .) Without loss of
generality, let x1; x2; : : : ; xm be the variables in t and xm+1; : : : ; xn be those in s.

Note Exi denotes a set of simultaneous equations of the form xi = t1; xi = t2; : : : ; xi = tl
where tj is a term in Exi . Let Sol(Exi) denote the canonical set of equations equivalent
to Exi . We now show that solution to s= t can be obtained by computing each Sol(Exi)
independently and appending them together.

Observe that xm+1; xm+2; : : : ; xn are the variables from the linear term s. Recall that
s and t do not have any variables in common. This means each Exi (m¡i6n) contain
only one term and that term is a subterm of t. Furthermore xi (m¡i6n) cannot occur
in any substitution. Therefore, the collection of equations in Exm+1 ; Exm+2 ; : : : ; Exn are
already in canonical form. Let / be this collection. Observe that Sol(Exi) (1¡i6m)
denotes the solution obtained by solving equations in Exi in isolation. It can be easily
shown that:

Lemma 3.
⋃ j

i=1 Sol(Exi) (j6m) is in canonical form.

Lemma 4. Let 0=
⋃m

i = 1 Sol(Exi). The sequence of equations obtained by appending
0 to / is in canonical form.

The above lemma implies that each Exi can be processed in isolation and the solutions
appended together is the solution for s= t. Let Vi be the set of variables occurring in
the terms in Exi .

Lemma 5. In computing Sol(Exi) we make at most O(|Vi |) substitutions.

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 203

Proof. Note that substitutions are made only in procedure CommonPart. We use a
counting technique to prove this result. In this counting technique we associate an oc-
currence counter and substitution counter with each variable. The substitution counter
of a variable keeps count of the total number of substitutions made to that variable. We
say that a term in an equation queue is processed iJ procedure CommonPart will never
be invoked on it. All other terms are set to be unprocessed. An occurrence counter of
a variable, say x, keeps a count of the number of occurrences of x in all unprocessed
terms. Intuitively, this count is an upper bound on the number of substitutions x can
take in common part computations yet to be done on the unprocessed terms. Recall
that reducing an equation queue involves iterating over three major steps, viz: (1) BR
operation (2) MergeQ and (3) UpdateCounters (see while loop in procedure Unif in
Fig. 2). We use induction on number of such iterations.

Let t1; t2; : : : ; tl be the terms in Exi . The occurrence counter of each variable in t1
and tl is initialized to 1 whereas the occurrence counter of the variables in all other
terms is set to 2. This is because in the BR operations each of these terms is used
twice. To begin with the substitution counter of each variable is initialized to 0. We
now show by induction that the sum of the two counters is at most two.
Base case: Since we use BR operation, we invoke procedure CommonPart l− 1

times. In these invocations tj is used at most twice-once in CommonPart(tj−1; tj) and
again in CommonPart(tj; tj+1). Let x be a variable in tj. Suppose we compute a sub-
stitution for x in CommonPart(tj−1; tj) then x cannot be in any subterm computed
as substitution for any variable in tj−1 (terms in Exi are nonoverlapping subterms
of s). The same argument holds for CommonPart(tj; tj+1). Therefore if two substitu-
tions are computed for x then it cannot appear in the rhs of any equations appearing in
the frontier computed in the two invocations of CommonPart. As x cannot appear on
any other term in Exi , x cannot appear on the rhs of equations appearing in the frontier
computed in other l−3 invocations of CommonPart also. This means that at the end of
this iteration the occurrence counter of x becomes 0. Therefore the sum of the counter
remains two. On the other hand, suppose x takes a substitution only in one invocation,
say CommonPart(tj−1; tj), and not in the other. Clearly in CommonPart(tj; tj+1) a sub-
stitution containing x must have been computed for a variable, say y. Now at the end
of this iteration Ey will have a term containing an occurrence of x. Once again using
the fact that x occurs only in tj we can show that this will be the only occurrence of x
among the terms in equation queues remaining at the end of this iteration. Therefore in
this case also the sum of the counters is at most 2 at the end of the iteration. Finally in
the case when x does not acquire any substitution in both invocations of CommonPart
involving tj, it can be shown by similar arguments that the sum of the two counters
is at most two.
Induction step: Assume the claim is true at the end of qth iteration. Let Ey be the

equation queue processed in the (q+ 1)th iteration. Since the substitution counter of y
is at most two at the end of qth iteration, Ey has at most two terms. Furthermore, by
induction hypotheses each variable can occur at most two times among the terms in
Ey. Since Ey has at most two terms, there will be only one invocation of CommonPart

204 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

and the two terms in Ey will be used only once. By arguments similar to those used
in the base case we can again show that at the end of this iteration the sum of the
counters of all variable remains at most two.

We remark that the proof of the induction step in the above lemma crucially depends
on the fact that each term is used at most once. This is a direct consequence of
applying the BR operation in the &rst iteration. Had we used each term more than
two times in the &rst iteration we cannot obtain this bound. Since the complexity of
procedure CommonPart is proportional to the number of substitutions computed in it
(see Theorem 4), Tcp for computing Sol(Exi) is O(|Vi |). We now show that Tmerge and
Tupdate are also O(|Vi |) in computing Sol(Exi).

Corollary 2. Tupdate is O(|Vi |) for computing Sol(Exi).

Proof. The technique of updating occurrence counter used in the proof of Lemma 5
can be used to implement procedure UpdateCounter. Hence the result.

While solving Exi we compute at most two substitutions for each variable. We can
exploit this fact to implement MergeQ e$ciently. Note that MergeQ forms a single
equation queue from all those merged together. In addition, a leader is chosen from the
variables whose equation queues have been merged. A substitution computed (later) for
any variable in this merged group is placed in the leader’s equation queue. Therefore,
all the variables in the merged group must know their current leader. In general, a
merged group can grow dynamically requiring constant update of leader information.
Suppose it can be guaranteed that a variable is not going to acquire any new substitution
then its leader information need not be updated when the group expands. We use this
fact to implement MergeQ e$ciently. The details are as follows. Let x1; x2; : : : ; xl be
the variables in a merged group.

Lemma 6. There are at most two variables that can acquire new substitutions.

Proof. Construct a graph G as follows. The nodes of G are x1; x2; : : : ; xl. There is
an edge between xi and xj iJ the xi = xj was generated. x1; x2; : : : ; xl constitutes one
group and so G must be connected. Observe that when xi = xj is generated both xi and
xj acquire a substitution each. Since there can be at most two substitutions for any
variable, G must be a chain. Obviously, the two variables at the ends of the chain can
alone acquire any additional substitutions.

Lemma 7. Each invocation of MergeQ takes only O(1) time.

Proof. Let L1 and L2 be the two groups to be merged. Let x1; x2; : : : ; xn be the variables
in L1 and y1; y2; : : : ; ym be the variables in L2. Without loss of generality let x1 =y1

be the equation that causes L1 and L2 to be merged. Arbitrarily pick the leader of L1

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 205

to be the leader of the merged group. Since xn and yn alone can acquire any new
substitutions, we update only their leader information. Hence the lemma.

Lemma 8. Tmerge is O(|Vi |) in computing Sol(Exi).

Proof. By the previous lemma each invocation of MergeQ takes only O(1) time. As
there are at most O(|Vi |) invocations of MergeQ, Tmerge is O(|Vi |).

Since each of Tcp; Tupdate and Tmerge is O(|Vi |):

Corollary 3. Computing Sol(Exi) takes O(|Vi |) time.

Combining the above results we get:

Theorem 5. Uni8cation of s and t takes O(k) time.

Proof. From Lemma 4, solution to s= t is obtained by computing Sol(Exi) (16i6n)
in isolation and appending them together. From the above corollary computing Sol(Exi)
takes O(|Vi |) time. Furthermore

∑n
i = 1 |Vi |6k. Hence the theorem.

Observe that the above theorem also holds for the special case when both s and t
are linear.

4.2. Nonlinear–nonlinear uni8cation

We now analyze the case where both s and t are nonlinear. Unlike the previous
case, the equation queues in this case do not have any special structure. Speci&cally,
each equation queue now can have many terms and the substitutions computed can be
overlapping subterms. Therefore the variable occurrences in them can get duplicated
arbitrarily as shown below.

Consider the scenario (see Fig. 7) when invoking procedure CommonPart &rst on the
pair of terms ti−1 and ti and again on pair ti and ti+1. Let t1 and t2 be the substitution
computed for xr and xq as a result of these invocations. Observe that y occurs both
in t1 and t2. So what was one occurrence of y in ti has now become two distinct
occurrences in terms t1 and t2. We refer to this as occurrence duplication of y. It is
possible for t1 and t2 to be used in common part computations later on and they in turn
can duplicate occurrences of y further. Some (or all) the new occurrences of y can
acquire substitutions. So occurrence duplication can adversely aJect the complexity
of our method. Suppose kd is the number of distinct variables in s and t together
then (with occurrence duplication) it is trivial to establish an upper bound of O(k2kd)
substitutions that can be potentially computed when unifying s and t. But we now
establish a tighter bound of O(kdk).

Lemma 9. At most O(kdk) substitutions are computed in the uni8cation of s and t.

206 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

Fig. 7. Occurrence duplication of variables. (a) Two CommonPart invocations involving ti; (b) substitutions
for xq and xr .

Proof. Let t1; t2; : : : ; tl be the terms in Ex. Now consider the iteration in procedure
Unif when Ex is processed. Observe that for s and t to unify the terms in Ex must
also unify. This means that there cannot be two terms ti and tj in Ex such that ti is
a subterm of tj (we deal with &nite terms only). Therefore, the terms in Ex must be
nonoverlapping subterms of s and t. This means that there can be at most k occurrences
of variables among the terms in Ex. In case we compute 2k + 1 substitutions in this
iteration then there are two terms in Ex such that one is subterm of another and hence
uni&cation fails. Hence the number of substitutions computed in this iteration is at
most O(k). Note that this argument holds for any iteration. Since there are kd distinct
variables there can be at most kd iterations and hence the bound.

Observe that kd and k can both be O(|s |+ | t |) and hence the uni&cation can become
quadratic. In fact, we show that this bound is tight through a carefully constructed
nontrivial example in Fig. 8. Now the interesting question is whether this bound can
be improved when no variables in s and t occur more than q times for a &xed q. It
can be shown that any such q-occurrence case can be converted into a 3-occurrence
case with an increase only by a constant factor in |s | + | t | and k. This means the
above bound is tight for any n-occurrence case for n¿3. However, for n= 2, we
can improve the bound to O(k). This is because each equation queue will contain
only two terms and hence the arguments used in (induction step of) the proof of
Lemma 5 apply, i.e., the sum of the occurrence and substitution counters will never
be more than 2 and hence we have:

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 207

• All nonleaf nodes in s and t are labeled by either f or g. f and g have arities 2
and 1 respectively.

• T1; T2 and T3 represent portions of s and t that are full binary trees.
• T2 and T3 have O(n) leaves that are labeled by the variable xn+1.
• The paths in s marked by ? and contain n− 1 and n− 2 nodes (labeled by g)

respectively.
The equation queues computed in the uni&cation of s and t:

Ex1 = {g3(x4); g(x2); g2(x3); gn−1(T2); gn−1(T2); g2(x3); g(x2); g(x2)}
Ex2 = {g3(x5); g(x3); g2(x4); gn−2(T3); gn−2(T3); g2(x4); g(x3); g(x3)}
Ex3 = {g3(x6); g(x4); g2(x5); gn−3(T2); gn−3(T2); g2(x5); g(x4); g(x4)}
Ex4 = {g3(x7); g(x5); g2(x6); gn−4(T3); gn−4(T3); g2(x6); g(x5); g(x5)}
...

...

Exn−3 = {g3(xn); g(xn−2); g2(xn−1); g3(T2); g3(T2); g2(xn−1); g(xn−2); g(xn−2)}
Exn−2 = {g2(T3); g2(T3); g2(xn); g(xn−1); g(xn−1)}
Exn−1 = {g(T2); g(T2); g(xn)}
Exn = {T3; T2}

Fig. 8. Example in which O(n2) substitutions are computed.

Theorem 6 (2-occurrence nonlinear uni&cation). When no variable in either s or t oc-
curs more than twice then uni8cation of s and t requires at most O(k) time.

Proof. As explained above the argument used in the proof of Lemma 5 carries over in
this case. Hence we can again show that each variable acquires at most two substitution.
Consequently Tcp, Tupdate and Tmerge are O(k) and hence uni&cation takes O(k) time.

208 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

5. Improving the e�ciency of nonlinear–nonlinear uni$cation

We now describe modi&cations to our algorithm so that its complexity is at most
linear for q-occurrence (q¿2) cases. Speci&cally, these modi&cations guarantee that
when s and t have arbitrary number of variable occurrences, we compute at most
O(min{kdk; |s |+ | t |}) substitutions. The key idea here is to prevent occurrence dupli-
cation through sharing. Consider Fig. 7 where the two substitutions computed represent
the equations xq = t1 and xr = t2. Now suppose t1 is a term obtained by replacing the
subterm t2 in t1 by xr . Clearly xr = t2 implies that t1 = t1. In other words, the set of
equations {xq = t1; xr = t2} is equivalent to {xq = t1; xr = t2}. This means that the so-
lution to the uni&cation problem and hence the correctness of the algorithm will not
change if we use t1 instead of t1. Furthermore, observe that the occurrence of y is not
duplicated if t1 is used as a substitution for xq instead of t1. However now, t1 instead
t1 must participate in common part computations requiring addition of new strings to
the automaton. However explicit addition of new strings (and hence explicit creation
of t1) defeats the whole purpose of preprocessing. Hence we use a marking technique
to simulate t1 without modifying t1 explicitly. The details are as follows.

We say that node v is a variable node if it is labeled by a variable. We say that v
is the 8rst variable node in term t iJ its preorder number is the smallest among the
variable nodes in t.

Let P1 and P2 denote the preorders of t1 and t2 (see Fig. 9). Let P1 denote the
preorder of t1. Suppose we place a mark on v2 in P1. By using this mark we can
simulate P1. The mark also represents variable xr in P1. To compute common part of
P1 with any other term, say P′; CommonPart will perform string-matching operations

Fig. 9. Avoiding occurrence-duplication. (a) Substitutions for xq and xr ; (b) modi&ed Substitutions for xq
and xr .

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 209

involving preorder strings of P1 and P′. This means the preorder strings of P1 along
with the mark placed at v2 must be used in place of the preorder strings of P1. Now
recall that prior to performing a string-matching operation, procedure CommonPart
&rst computes the length of the strings involved in a match (see lines 10, 11 and
48–49). This is done using the position of the variables in the preorder of the term.
Therefore we must know the position of the mark in P1 in order to simulate the
preorder strings in P1. If we place the mark on v2 then we must scan P1 one symbol
at a time to determine its position. But doing so will degrade performance. Furthermore,
it runs counter to our objective of not inspecting symbols one at a time. Therefore, we
physically place the mark on the &rst variable, say y in P2. With this mark we also
maintain information about the two endpoints of P2 in P1. By retrieving this information
at y we can compute the lengths of preorder strings of P1. If t1 is a ground term then
no occurrence duplication is possible and hence there is no need for a mark.

We now de&ne a mark formally. Recall that we store preorders of primary terms in
an array and specify preorders of subterms using a triple notation (see Section 3.1.4).
Let t be a substitution for x. Suppose i and j are the two endpoints of preorder of t
and w is the root of t then:

De$nition 1 (Mark). A mark associated with the node w is the triple 〈i; j; x〉 and it
is physically placed on the &rst variable node in t (i.e., the subterm rooted at w).

We say that the node w is the vertex associated with the mark 〈i; j; x〉. We can view
this mark as creating a virtual variable x on w and we say that w is labeled by this
virtual variable x. This virtual variable is like any other occurrence of x, i.e., it can
acquire substitutions which will be placed in Ex and it can also trigger a MergeQ
operation.

Let M1; M2; : : : ; Mn be the marks (physically) placed on a variable node in term t.
Let v1; v2; : : : ; vn be the vertices associated with M1; M2; : : : ; Mn respectively. It is quite
easy to see that for any pair vi; vj either vi is an ancestor of vj or vice versa.

De$nition 2. Mi is said to be the outermost mark with respect to t iJ vi is the closest
descendant (among vj’s 16j6n) of the root of t.

Next we show how the marks are used to obtain the simulated terms and their
preorder. Given a term t with marks placed on its variables the simulated term t is
obtained as follows. For each outermost mark 〈i; j; x〉 associated with a node v replace
subterm rooted at v by the variable x. The resulting term is t. For example, consider the
subterm t of s in Fig. 10. Here m1 and m2 are the only two outermost marks in t. We
obtain t by replacing the subterms t1 and t2 in t by the variables x1 and x2 respectively.
Suppose pre(q) denote the preorder of term q then we now show how to obtain pre(t)
from pre(t). Observe that pre(t) is represented by the triple 〈S; begin; end〉 where S
is preorder of s, and begin and end are two endpoints of preorder of t in S. Now
pre(t) is 1x12x23 where 1 = 〈S; begin; i1〉; 2 = 〈S; j1; i2〉 and 3 = 〈S; j2; end〉. In

210 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

Fig. 10. Extracting simulated term t, and its preorder pre(t).

general, if the set of outermost marks are {〈i1; j1; x1〉; 〈i2; j2; x2〉; : : : ; 〈in; jn; xn〉} then
pre(t) = 1x12x2 : : : nxnq+1 where 1 = 〈S; begin; i1〉, q+1 = 〈S; jn; end〉 and l = 〈S;
jl−1; il〉 (26l6n).

A mark is placed every time a nonground and non-variable term is computed as a
substitution. Observe that terms in an equation queue Ex are substitutions acquired by
x. This means that the root of each nonground term in Ex must be associated with a
mark. At the beginning of the iteration (in procedure Unif) that processes Ex, these
marks are deleted prior to invoking CommonPart for the &rst time (in this iteration).
We now show that no unprocessed term is simulated by the deleted marks.

Lemma 10. If a mark is deleted then it is not the outermost mark for any unprocessed
term.

Proof. Suppose we delete a mark 〈i; j; x〉 and it is one of the outermost marks for
some unprocessed term q. This mark denotes a virtual variable x in q. This means
there is an unprocessed term containing x. Hence, Ex could not have been selected for
processing and so this mark could not have been deleted.

To quickly access the outermost mark the set of marks on a variable node are
maintained in a sorted order; sorted in decreasing distance from the variable node. We
now show that a stack data structure su$ces to maintain this sorted order.

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 211

Lemma 11. If CommonPart is invoked on a term t then the 8rst mark in the sorted
list of marks (placed on a variable in t) is an outermost mark with respect to t.

Proof. Suppose it is not. Then the node associated with the &rst mark must be an
ancestor of the root of t. In that case we cannot process the equation queue containing
t and hence CommonPart cannot be invoked with t – a contradiction. Hence the lemma.

Lemma 12. When a mark is to be deleted it is the 8rst mark in the sorted list.

Proof. Recall that we delete marks only at the beginning of each iteration (in Unif).
Suppose Ex is the equation queue being processed. Let t be a term in Ex and m be
the mark associated with the root of t. Now suppose n �=m is the &rst mark in the
sorted list. Let v be the node associated with n and t′ be the term rooted at v. Since t′

contains an occurrence of x the equation queue containing t′ must have been processed
earlier. In such a case n must have been deleted – a contradiction. Hence the lemma.

Lemma 13. Whenever a new mark is placed on a variable node then its distance is
larger than that of any other mark placed on the same node.

Proof. Let v denote a variable node. Now a new mark can be placed on v only
when CommonPart is invoked on a term t containing v. Suppose such an invocation
computes a substitution that causes a new mark to be placed on v. Let w be the root
of the term computed as the substitution. By Lemma 11 the &rst mark in the sorted list
is the outermost mark with respect to t. Obviously, w must be ancestor of the vertex
associated with this outermost mark. Hence this new mark must be &rst in the updated
sorted list.

Based on the above results we show:

Theorem 7. The sorted list of marks can be organized as a stack.

Proof. From the above three lemmas it is clear that the marks are inserted, accessed
and deleted only from one end of the sorted list. Hence the theorem.

An immediate consequence of the above result is:

Corollary 4. A mark can be inserted; accessed and deleted from the sorted list in
O(1) time.

5.1. Computing common part of simulated terms

We describe modi&cations to procedure CommonPart to deal with simulated terms.
Suppose we want to compute the common part of t1 and t2. We now show how to

212 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

compute it using pre(t1) and pre(t2) only. Observe that a mark denotes a virtual vari-
able in a simulated term. A variable of a primary term within a substitution is said
to be covered by the virtual variable corresponding to the substitution. We refer to
the variables in the primary terms as actual variables. The only variables appearing
in a simulated terms are either virtual variables (corresponding to outermost marks)
or actual variables not covered by them. In the absence of any virtual variables the
string-matching questions would be identical to those discussed in Section 3.1.2. But
the presence of virtual variables introduce a new string-matching question. In a simu-
lated term the string appearing between two consecutive virtual variables corresponds
to a substring of a primary string (such as 2 in Fig. 10). To perform a string matching
operation with such a string we must now answer whether a substring of a primary
string occurs in another at position l. Our automaton cannot directly answer this ques-
tion. However, we now show that this question can be transformed into an equivalent
one that can be answered by the automaton.

The main idea is based on the following observation. t1 and t2 are created only
to avoid occurrence duplication. The solution to uni&cation will remain unaltered had
we allowed occurrence duplication, i.e., the equation t1 = t2 must have a solution for
uni&cation to succeed. This means that the common part between t1 and t2 must exist.
In other words, while computing common part of t1 and t2 if we can infer that t1 and
t2 do not have a common part then we can conclude that the common part computation
of t1 and t2 fails regardless of whether common part of t1 and t2 exists. Based on this
observation we can transform the new string-matching questions into those involving
strings in pre(t1) and pre(t2).

Recall from Fig. 4, the four scenarios that arise in common part computation. Since
we are dealing with simulated terms, the variables in Fig. 4 can now be virtual vari-
ables. Fig. 11 replicates situations in Fig. 4 for virtual variables. We now show how
to transform the string matching questions arising in situations shown in Fig. 11 into
those that can be answered by the automaton. We begin with Fig. 11(a). Herein we
want to verify whether (occurs in 6 at l. Here, v1 is a virtual variable in t2. Let the
mark corresponding to v1 be placed on the node labeled by variable y1. Without loss
of generality assume | |6|' |. For the common part of t1 and t2 to exist must occur
in ' at l. As is a su$x of a primary string (since y1 is a actual variable) this can
be veri&ed in O(1) time by our automaton. Furthermore, if occurs in ' at l then (
also occurs in 6 at l. If does not occur at l in ' then uni&cation fails and hence we
conclude that the common part computation of t1 and t2 also fails. Similarly, the string
matching questions that arise in the other situations can also be transformed into those
than can be answered by the automaton. Speci&cally, in each of the other cases, we
transform the question that checks for occurrence of (in 6 at l into the one that checks
for occurrence of in ' at l. Since the transformed questions can be answered by our
automaton, we conclude that all the string matching questions that arise in computing
the common part of two simulated terms takes only O(1) time.

Note that we do not place marks when ground terms are computed as substitutions.
Recall that computing common part of ground terms involves comparing their codes

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 213

Fig. 11. String matching operations with simulated terms.

only (see Section 3.1.2). Hence, we do not invoke CommonPart on two ground terms.
Instead, we place all ground terms at the front of the equation queue and compare their
codes prior to invoking BR operation. If the codes of these ground terms are identical
then all but one of them are deleted from the equation queue. If any one of the codes
is diJerent then uni&cation fails. Following successful processing of ground terms we
apply BR operation to reduce the equation queue. It is quite straightforward to extend
procedure CommonPart to process simulated terms.

5.2. Complexity analysis

We now analyze the complexity of the general uni&cation algorithm developed above.
Our analysis proceeds in two stages. First we show that the number of substitutions
computed when unifying s and t is at most O(|s | + | t |). Next we show that it is also
bounded by O(kdk) where kd is the number of distinct variables in s and t together.
Hence, the total number of substitutions computed is O(min{(|s |+ | t |); kdk}). We also

214 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

show that counters of all variables can be updated within the above bound. By using
the UNION-FIND method in [11], we can merge equation queues in O(kd(kd)) time. 5

When kd is large (say when O(kd(kd))¿|s | + | t |) we can use the technique found
in [7] to implement MergeQ in O(|s | + | t |) time. Depending on which of the two
techniques is used the actual running time of unifying s and t is either O(min{(|s | +
| t |); kdk}) or O(|s | + | t |) time.

We now establish the bound on number of substitutions computed using a counting
technique. With each node we associate an occurrence and substitution counter. The
occurrence counter of a node is a count of the number times that node appears in
a substitution. This counter is nonzero only when this node is either labeled by an
actual variable or represents a virtual variable. The substitution counters are used for
amortization of the total number of substitutions computed.

Lemma 14. The sum of the substitution and occurrence counters of any node labeled
by an actual or virtual variable is at most 2 and is zero for all other nodes.

Proof. We use induction on the number of invocations of CommonPart.
Base case: Prior to invoking CommonPart for the &rst time, no substitutions have

been made and no marks have been placed. The occurrence counter of a node labeled
by an actual variable is set to 1. Substitution counters of all nodes are set to zero. So
the lemma holds for the base case.
Induction step: Assume that the lemma holds for the &rst q−1 invocations of Com-

monPart. Consider its qth invocation on the terms t1 and t2. Assume without loss of
generality that t1 is ahead of t2 in the equation queue. Let u be a node in t1 labeled
by a variable, say x (either virtual or actual) that acquires subterm t3 rooted at v in
t2 as a substitution in this invocation. Bases on the structure of t3 we now have three
cases to consider.
Case 1: t3 is a nonground and nonvariable (neither actual nor virtual) subterm (see

Fig. 12(a)). By induction hypotheses the sum of occurrence and substitution counters
of v is zero. As a result of this substitution we create a new virtual variable at v thereby
transforming t2 to t2. So the occurrence counter of v is set to 1. Also observe that the
variables y1; y2; : : : ; yl have now been moved to t3 which will in turn be placed in Ex.
So the occurrence counters of nodes labeled by y1; y2; : : : ; yl will remain unaJected.
Finally we account the O(1) cost of computing this substitution by incrementing the
substitution counter of u by 1. Observe that t1 appears to the left of t2 in the equation
queue and so it will cease to be an unprocessed term. Therefore the occurrence counter
of u is decremented by 1 and hence the sum of the two counters of u is at most 2.
The counters of nodes not involved in this substitution remain unaJected and therefore
their sum is at most 2.

5 is the inverse of Ackermann’s function.

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 215

Fig. 12. Situations used in the proof of Lemma 14. (a) Case 1 in the Proof of Lemma 14; (b) case 2 in the
Proof of Lemma 14; (c) case 3 in the Proof of Lemma 14.

Case 2: t3 is a ground subterm (see Fig. 12(b)). No new marks will be placed in
this case. The counter of all nodes except that of u remain unaJected. The substitution
counter of u is incremented by 1 to absorb the cost of the computed substitution
whereas its occurrence counter is decremented by 1. Therefore the sum of the two
counters of each node is at most 2.
Case 3: t3 is a variable (virtual or actual) (see Fig. 12(c)). Changes to the counter

are exactly the same as in case 2.
Any substitution computed in this invocation of procedure CommonPart falls in one

the above three cases and so the lemma holds at end of this invocation.

From the above result it readily follows that:

Corollary 5. The number of substitutions computed is at most O(|s | + | t |).

Lemma 15. The total number of substitutions computed is at most O(kdk).

Proof. Let m be the total number of variables in a equation queue Ex. When process-
ing Ex the same term can appear as one of the input parameters to two successive

216 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

invocations of procedure CommonPart. Suppose ti is such a such term. Then at the
end of CommonPart(ti−1; ti), ti is modi&ed to (ti) by introducing new marks. How-
ever, the total number of variables in (ti)6 the total number of variables in ti. This
is because we do not mark ground substitutions. Consequently the number of sub-
stitutions computed in CommonPart((ti); ti+1) cannot be more than that computed in
CommonPart(ti; ti+1). This means if there are m variable occurrences among the terms
in Ex then in processing Ex we will compute at most 2m substitutions.

Now suppose in processing Ex we compute more than 2k substitutions. This means
that the number of occurrences of variables among the terms in Ex is more than k. As
each virtual variable covers at least one actual variable it follows from the proof of
Lemma 9 that this uni&cation will fail. So we can terminate processing any equation
queue as soon as 2k + 1 substitutions are computed. This means we will compute at
most 2k substitutions in processing each equation queue in a successful uni&cation. As
there are kd distinct variables the lemma follows.

Theorem 8. The total number of substitution computed is O(min{kdk; |s | + | t |}).

Proof. Follows from the above lemma and Lemma 14.

Recall the equation queue Ex is selected for processing when occurrence counter of x
becomes 0. From the proof of Lemma 14, note that the occurrence counter of variable
is the sum of the occurrence counters of nodes labeled by x (either virtual or actual).
Using this it is quite straightforward to implement UpdateCounters without increasing
the asymptotic complexity of computing the substitutions. Therefore Tupdate6Tcp. If
MergeQ is implemented using the UNION-FIND algorithm [11] then Tmerge is O(kdk).
If kd is very large, i.e., O(kd(kd))¿|s |+ | t | then the technique in [7] can be used to
implement MergeQ so that Tmerge is O(|s | + | t |).

6. Subterm uni$cation

In the previous section we described e$cient algorithms to unify s with a subterm t
of p. These algorithms are optimized to exploit the number of occurrences of variables
in s and t. In this section we show how to integrate these algorithms to do subterm
uni&cation. To unify s with subterms of p we &rst construct two string-matching au-
tomata based on the primary strings of s and p. Prior to each uni&cation attempt we
will identify the structure of the subterm (i.e., whether it is linear, nonlinear, number
of variable occurrences, etc.) and deploy the most e$cient algorithm (described in the
previous section) appropriate for that structure. In order to identify the number of oc-
currences of each variable in a subterm, recall that the preorders of the primary terms
are stored in arrays. Recall also that with every node v in the array we keep a pointer
that points to the variable node closest to v occurring after it. Using this pointer we
can visit all the variable nodes in a subterm t in time proportional to the number of

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 217

variable occurrences in it. In addition, we can also count the number of occurrences
of each variable in t within the same time. Thus, we can identify the structure of t in
time proportional to the number of variables in it.

6.1. Time complexity

We now analyze the running time complexity of the subterm uni&cation algorithm.
Note that at a subterm t of p we apply the uni&cation algorithm most e$cient for
that term’s structure. So the complexity for subterm uni&cation will be the sum of the
complexities of the diJerent uni&cation algorithm applied to subterms. We estimate this
through a simpli&ed analysis. In this analysis we assume that the uni&cation algorithms
applied to the subterms of p are the same. For the analysis to be complete we consider
the following cases:
1. s and p are linear. Here we apply the linear–linear uni&cation at each subterm of

p.
2. s is nonlinear and p is linear. In this case we apply the linear–nonlinear uni&cation

algorithm at each subterm of p.
3. s is linear and every subterm of p is nonlinear. In this case also we apply linear–

nonlinear uni&cation algorithm at each subterm of p.
4. s and every subterm of p is nonlinear with at most two occurrences of each variable.

In this case we apply the 2-occurrence uni&cation algorithm at each subterms of p.
5. Both s and p are nonlinear and every subterm of p and s have more than two

occurrences of each variable. Herein we apply the optimized general nonlinear–
nonlinear uni&cation in each attempt.

Observe that from a complexity viewpoint, cases 1 and 5 are the best- and worst-
case scenarios and so the actual complexity of subterm uni&cation will lie between
these two extremes. But in practice it is unlikely that we reach the bound of 5. This
is because in both cases 4 and 5 we have assumed pessimistic scenarios whereas in
practice the number of occurrences of a variable in subterms can only decrease as its
distance increases from the root of p.

We use the following terminology in the remainder of our analysis. We use n; m; dp
and ds to denote the size of p, size of s, depth of p and depth of s respectively. We
also use kp; kt and ks to denote number of variable occurrences in p, t (a subterm of
p) and s respectively.

We now develop the concept of su?x index that is used in the description of
our complexity results. Let label(v) denote the label of a node v in t. Further let
label(vi; vj) be q if vj is the qth child (in the left-to-right order) of vi. Now suppose
v1; v2; : : : ; vl is a sequence of vertices in on the path from v1 to vl in t

De$nition 3. The labeled path from v1 to vl, denoted by lp(v1; vl) is the string label
(v1)◦label(v1; v2)◦label(v2)◦label(v2; v3) : : : label(vn−1)◦label(vn−1; vl), i.e., lp(v1; vl)
is a string formed by alternatively concatenating the vertex and edge labels on the path
from v1 to vl (excluding label(vl)).

218 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

Table 2
Table of asymptotic complexities

Let rs be the root of s and v1; v2; : : : ; vks be the vertices (in s) that are labeled with
variables. Further let Ks = {lp(rs; vi) | 16i6ks}. Then,

De$nition 4. The su$x number of a string � in Ks is the number of strings in Ks

which are su$xes of � and the su?x index of Ks, denoted by k∗s , is the maximum
among the su$x numbers of all strings in Ks. If ks is 0 then k∗s is 1.

Table 2 summarizes the complexity results for cases 1–5 discussed above. (In the
table, multiplicity is the maximum over the number of occurrences of any variable.)
In the following, we establish these results.

6.1.1. Linear–linear subterm uni8cation
Here both s and p are linear. As p is linear every subterm t of p is also linear.

Therefore, each uni&cation in this case requires a single invocation of procedure Com-
monPart. Furthermore, the complexity of subterm uni&cation is given by the sum of
the substitutions computed over all invocations of CommonPart. We now show that:

Lemma 16. Linear–linear subterm uni8cation computes at most O(nk∗s + dskp) sub-
stitutions.

Proof. We divide the substitutions computed in the subterm uni&cation into two groups.
The &rst group contains substitutions computed for variables in s and the second con-
tains those made for variables in p. We &rst show that the bound on &rst group is
O(nk∗s).

Let t be the subterm of p be rooted at v. Now suppose that in the uni&cation of s
with t the term rooted at w is computed as a substitution for a variable x in s (see
Fig. 13). Based on Theorem 2 we can show that CommonPart computes this substi-
tution (even when it terminates with failure) only if

lp(rs; u) = lp(v; w): (1)

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 219

Fig. 13. Bound on number of substitutions computed for variables in s.

Fig. 14. Bound on number of substitutions computed for variables in p.

In other words, lp(rs; u) is a su$x of lp(rp; w). We call subterm rooted at such a
w as a legal substitution. Note that if the subterm rooted at w is computed as the
substitution for some other variable y (in another uni&cation) which is the label of
node u1 in s then lp(rs; u1) must also be a su$x of lp(rp; w). If this is the case either
lp(rs; u) is a su$x of lp(rs; u1) or the vice versa. From this we can deduce that the
subtree rooted at w can be a legal substitution at most k∗s times over all uni&cations.
As there are n nodes in p and each can be a legal substitution at most k∗s times, there
can be at most O(nk∗s) substitutions in the &rst group.

Now we consider the substitutions in the second group. These are made to variables
in p. Let y be a variable in p. Now suppose that during the uni&cation of s and t
(rooted at v) the subterm q of s is computed as the substitution for y (see Fig. 14).
Let w be the root of q. Then,

lp(rs; w) = lp(v; u): (2)

In particular lp(rs; w) is a su$x of lp(rp; u). Observe that this condition is satis&ed by
every substitution computed by CommonPart (as all of them are legal substitutions).

220 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

We now show that the roots of legal substitutions made to the same variable in p
must have distinct depth in s. Assume that this is not true, i.e., assume that two nodes
w and Sw of same depth in s are roots of two substitutions computed for y. As w
and Sw are distinct nodes having same depth it is clear that |lp(rs; w) |= |lp(rs; Sw) | and
lp(rp; w) �= lp(rp; Sw). Therefore both of them cannot be su$xes of lp(rp; u). Hence
only one of can be a legal substitution by (2) above – a contradiction. Therefore each
variable in p can acquire at most ds substitutions. As there are kp variables in p, the
second group contains at most O(dskp) substitutions.

Therefore the total number of substitutions in both groups together is at most O(nk∗s +
dskp).

Theorem 9. Subterm uni8cation of s with every subterm of p takes at most O(nk∗s +
dskp) time.

Proof. Follows from the above lemma.

6.1.2. Linear–nonlinear subterm uni8cation
Herein we have two cases depending on whether s nonlinear or p is nonlinear.

However in both cases each uni&cation attempt takes time proportional to the number
of substitutions computed in it (see Section 4.1). Therefore, the complexity of sub-
term uni&cation can again be established by deriving a bound on the total number of
substitutions computed. We &rst derive this bound for the case in which s is nonlinear.

Lemma 17. The linear–nonlinear subterm uni8cation computes at most O(nk∗s +dpkp)
substitutions.

Proof. As before we divide the substitutions computed into two groups. The &rst group
contains the substitution made to the variables in s and second one contains those made
to the variables in the p.

Let t be a subterm of p. As t is linear we may compute multiple substitutions only
for variables in s in the invocation CommonPart(s; t). Observe that all such substitu-
tions must be subterms of t. Therefore in subsequent common part computations only
variables in t can receive substitutions. In other words, the variables in s can receive
substitutions only in the &rst invocation of CommonPart. Therefore the substitutions
computed for variables in s over all uni&cation attempts must be a legal substitutions.
Hence there can be at most O(nk∗s) substitutions made for variables in s (see proof of
Lemma 16).

Note that the variables in t receive substitutions either during the &rst invocation
of CommonPart (i.e., CommonPart(s; t)) or during the BR operations applied to solve
equation queues (of variables in s). Since t is linear each variable can receive at
most one substitution in the invocation CommonPart(s; t). Furthermore a variable that
receives a substitution in this invocation cannot receive additional substitutions during
the BR operations (see Section 4.1). As by Lemma 5, each variable receives at most

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 221

two substitutions during the BR operations, the number of substitutions computed for
variables in t is at most 2 × kt . Using this we now show that the size of the second
group is bounded by 2dp × kp. We do this by induction on the height of p
Base case: When height of p is 1 the result holds trivially.
Induction step: Let us assume that that the result holds for all terms with height less

than dp. Now consider the case when the depth is dp. Let p=f(t1; t2; : : : ; tl). Further
let di and ki denote the depth and number of variables in ti (16i6l). Now the subterm
uni&cation of s and p is performed by &rst unifying s and p (at p’s root) and then
by applying l subterm uni&cations to unify s with subterms of every ti’s. Observe
that the height of each ti is smaller than dp. Therefore by the induction hypothesis, in
the subterm uni&cation of s and ti there are at most 2diki substitutions in the second
group. By Lemma 5 while unifying s and p we compute at most 2 substitutions for
each variable in p. Let R(q; s) and T (q; s) denote the total number of substitutions
(in the second group) computed in the uni&cation and subterm uni&cation of s and q
respectively. Then,

T (p; s) = R(p; s) +
i=l∑

i=1
T (ti; s)

6 2 ∗ kp +
i=l∑

i=1
2 ∗ di ∗ ki:

Let Sd be the largest among di’s. Since ti’s are nonoverlapping subterms of s, dp = Sd+1
and kp =

∑i=l
i=1 ki. Using these we get

T (p; s)6 2 ∗ kp +
i=l∑

i=1
2 ∗ Sd ∗ ki

6 2 ∗ kp + 2 ∗ (dp − 1) ∗
i=l∑

i=1
ki

6 2 ∗ kp + 2 ∗ (dp − 1) ∗ kp = 2 ∗ dp ∗ kp:

Hence the lemma.

Theorem 10. Subterm uni8cation of p with subterms of s takes O(nk∗s + dpkp).

Proof. Follows from the above lemma, Corollary 2 and Lemma 8.

The complexity of subterm uni&cation for the second case, namely for nonlinear p
and linear s, is given by the following theorem.

Theorem 11. If s is linear and p is nonlinear then linear–nonlinear subterm uni8ca-
tion requires at most O(nks + dskp) time.

Proof. Similar to the proof of Lemma 17.

222 R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223

6.1.3. Nonlinear–nonlinear subterm uni8cation
We begin with the simple case wherein we assume that each uni&cation involves

terms that contain at most two occurrence of each variable. As each uni&cation attempt
can be solved by the 2-occurrence uni&cation algorithm we have:

Theorem 12. Subterm uni8cation with 2-occurrence uni8cation requires at most O(nks
+ dpkp) time.

Proof. By Theorem 6 each uni&cation attempt takes time proportional to the number
of variable occurrences in the terms being uni&ed. We can divide the substitutions into
two groups as done before and obtain the bounds on them. Since there are ks variables
in s and n uni&cation attempts, the number substitutions computed for variables in s
is nks. By using induction on height of p (as done in Lemma 17) we can establish
that the number of substitution made to variables in p is bounded by dpkp. Hence the
result.

Now we consider the most pessimistic scenario in which each uni&cation attempt
requires the general uni&cation algorithm developed in Section 5. In this case MergeQ
can be implemented in two diJerent ways. Suppose we use UNION-FIND method
then uni&cation of s and (subterm) t requires O(min{|s | + | t |; k1(ks + kt)} + k1(k1))
where k1 is the number of distinct variables in s and t. On the other hand if we use
the method outlined in [7] then each uni&cation requires O(|s | + | t |) time. Although
it is possible to mix the two implementations in a single subterm uni&cation for our
analysis we will consider them separately. Suppose we implement MergeQ using the
method in [7]. By using induction on p (as done in the proof of Lemma 17) we can
show that subterm uni&cation requires at most O((m+dp)n) time. Now suppose we use
the UNION-FIND approach to implement MergeQ. Further assume that the number of
distinct variables in s and any subterm t is the same as that in s and p (i.e., kd).

Lemma 18. With UNION-FIND implementation of MergeQ; subterm uni8cation re-
quires O(min{(m + dp)n; kd(dpkp + nks)} + nkd(kd)) time.

Proof. Assuming that in each uni&cation min{| t | + m; kd(kt + ks)} is | t | + m and
summing up this quantity over all uni&cations we get (m + dp)n. Similarly assuming
that min{| t |+m; kd(kt +ks)} is kd(kt +ks) we get kd(dpkp+nks). As we assume that kd
remains the same in all n uni&cation attempts, the complexity of subterm uni&cation
is at most O(min{(n + dp)m; kd(dpkp + nks)} + nkd(kd)).

7. Conclusions

We presented an algorithm for e$cient subterm uni&cation. The basic idea underly-
ing the algorithm is to exploit the commonality among subterms. Our algorithm uses
a suite of techniques that are deployed in such a way that in most cases it performs

R. Ramesh et al. / Theoretical Computer Science 254 (2001) 187–223 223

much better than applying the linear time uni&cation algorithms in [7, 8] at each sub-
term. Furthermore our algorithm is guaranteed to perform no worse even in the most
pessimistic scenario. The techniques used in our algorithm are also potentially useful
in problems where one term is repeatedly uni&ed with a set of terms.

References

[1] A.V. Aho, M.J. Corasick, E$cient string matching: an aid to bibliographic search, CACM 18 (6) (1975)
333–340.

[2] P.J. Downey, R. Sethi, R.E. Tarjan, Variations on the common subexpression problem, J. Appl. Comput.
Math. 24 (4) (1980) 758–771.

[3] C.H. HoJmann, M.J. O’Donnell, Pattern matching in trees, J. Appl. Comput. Math. 29 (1) (1982)
68–95.

[4] G. Huet, J.-J. Levy, Computations in orthogonal rewriting systems, in: J.-L. Lassez, G. Plotkin (Eds.),
Essays in Computational Logic (in honor of Alan Robinson), MIT Press, Cambridge, MA, 1991.

[5] D.E. Knuth, P. Bendix, Simple word problems in universal algebras, in: J. Leech (Ed.), Computational
Problems in Abstract Algebra, Pergammon Press, Oxford, 1970, pp. 263–297.

[6] A. Martelli, U. Montanari, An e$cient uni&cation algorithm, ACM TOPLAS 4 (2) (1982) 258–282.
[7] A. Martelli, U. Montanari, Uni&cation in linear time and space: a structured presentation, internal report

#B76-16, Instituto di Elaborazione della Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy,
July 1976.

[8] M.S. Paterson, M.N. Wegman, Linear uni&cation, J. Comput. System Sci. 16 (2) (1978) 158–167.
[9] R. Ramesh, I.V. Ramakrishnan, Nonlinear pattern matching in trees, J. Appl. Comput. Math. 39 (2)

(1992) 295–316.
[10] R. Ramesh, I.V. Ramakrishnan, Automata-driven indexing of prolog clauses, Technical Report

UTDCS2092, Department of Computer Science, University of Texas at Dallas, (To appear in J. Logic
programm.), Also available through anonymous ftp as ftp.utdallas.edu:=pub=cs=ramesh=jlp.dvi.

[11] R.E. Tarjan, On the e$ciency of a good but not linear set merging algorithm, J. Appl. Comput. Math.
22 (2) (1975) 215–225.

