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Free Cumulants and Enumeration of Connected Partitions

FRANZ LEHNER

A combinatorial formula is derived which expresses free cumulants in terms of classical cumu-
lants. As a corollary, we give a combinatorial interpretation of free cumulants of classical distribu-
tions, notably Gaussian and Poisson distributions. The latter count connected pairings and connected
partitions, respectively. The proof relies on Möbius inversion on the partition lattice.

c© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

A partition of [n] = {1, 2, . . . , n} is called connected if no proper subinterval of [n] is
a union of blocks. Connected partitions have been studied by various authors under various
names. They were introduced as irreducible diagrams in [9] and [10] (see also earlier work of
Touchard [22]), where their asymptotic enumeration properties are studied. They are reconsid-
ered under the name of linked diagrams in [13, 20] and [21] and a recursion is derived there.
They also appear as a basic example in the theory of decomposable combinatorial objects
developed in [3]. There and in [4, 5] asymptotics of more general irreducible partitions are
studied.

We reserve the term irreducible partition to partitions which cannot be ‘factored’ into sub-
partitions, i.e., partitions of [n] for which 1 and n are in the same connected component. A
partition is called noncrossing if its blocks do not intersect in their graphical representation,
i.e., if there are no two distinct blocks B1 and B2 and elements a, c ∈ B1 and b, d ∈ B2
s.t. a < b < c < d . Equivalently one could say that a partition is noncrossing if each of
its connected components consists of exactly one block. Typical examples of these types of
partitions are shown in Figure 1.

We denote the lattice of partitions of [n] by �n , the irreducible partitions by �irr
n and

the order ideal of connected partitions by �conn
n ; the lattice of noncrossing partitions will

be denoted by NCn , and the sublattice of irreducible noncrossing partitions by NC irr
n . Finally,

let us denote by In the lattice of interval partitions, i.e., the lattice of partitions consisting
entirely of intervals.

2. INCIDENCE ALGEBRAS

Before recalling more facts about partitions, let us briefly introduce the main concepts about
posets and incidence algebras which will be needed in the sequel. Rota et al. [8] introduced
the reduced incidence algebra of a poset. Let (P,≤) be a finite poset. On the space I (P) of
complex-valued functions f (x, y) defined on the pairs (x, y) s.t. x ≤ y (‘triangular matrices’)
we introduce a convolution (‘multiplication of triangular matrices’) by

f ∗ g(x, y) =
∑

x≤z≤y

f (x, z)g(z, y). (2.1)

With this operation I (P) becomes a unital algebra, the incidence algebra of the poset P , with
identity

δ(x, y) =
{

1 if x = y
0 if x �= y.

It is clear by induction that a function is invertible under this convolution if and only if all the
‘diagonal’ entries f (π, π) are nonzero. One prominent invertible function is the zeta-function
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connected irreducible noncrossing

FIGURE 1. Typical partitions.

defined by
ζ(x, y) = 1 for x ≤ y.

Its inverse is called the Möbius function and satisfies the recursion

µ(x, y) =
{

1 if x = y
− ∑

x≤z<y µ(x, z) if x < y.

Then we have ζ ∗µ = µ ∗ ζ = δ and more generally the Möbius inversion formula holds: for
any pair of functions f (x) and g(x) on P we have the following equivalences

∀x : f (x) =
∑

y≥x

g(y) ⇐⇒ ∀x : g(x) =
∑

y≥x

µ(x, y) f (y) (2.2)

∀x : f (x) =
∑

y≤x

g(y) ⇐⇒ ∀x : g(x) =
∑

y≤x

f (y)µ(y, x). (2.3)

In our case the posets P will be the partition lattice �n and some of its sublattices, namely
the lattice In of interval partitions and the lattice NCn of noncrossing partitions. Denote by Ln

any one of these lattices, then every segment [π, σ ] is canonically isomorphic to a finite direct
product of full lattices Lk1

1 × Lk2
2 × · · ·. The sequence of exponents (k1, k2, . . .) will be called

the type of the segment [π, σ ]. The reduced incidence algebra is the algebra of functions
whose values on an interval [π, σ ] only depend on the type of the interval. An even smaller
class of functions is the set of multiplicative functions whose values at [π, σ ] 
 Lk1

1 ×Lk2
2 ×· · ·

are given by
f (π, σ ) = f k1

1 f k2
2 · · ·

where ( f j ) is a given sequence of numbers. These functions are defined on all partition lat-
tices �n simultaneously. Examples of such functions are the zeta function and the Möbius
function and it can be shown that the space of multiplicative functions is closed under the
convolution (2.1).

Multiplicative functions on the lattice of noncrossing partitions were studied by Speicher
in [17] and interval partitions in [18], see also [24] and [25].

We refer to [1] or [19, Chapter 3] for more information on incidence algebras.

3. CUMULANTS

Cumulants linearize convolution of probability measures coming from various notions of
independence.

DEFINITION 3.1. A noncommutative probability space is pair (A, ϕ) of a (complex) unital
algebra A and a unital linear functional ϕ. The elements of A are called (noncommutative)
random variables. The collection of moments µn(a) = ϕ(an) of such a random variable
a ∈ A will be called its distribution and denoted µa = (µn(a))n.

Thus noncommutative probability theory follows the general ‘quantum’ philosophy of replac-
ing function algebras by noncommutative algebras. We will review several notions of inde-
pendence below. Convolution is defined as follows. Let a and b be ‘independent’ random
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variables. Then the convolution of the distributions of a and b is defined to be the distribution
of the sum a + b. In all the examples below, the distribution of the sum of ‘independent’
random variables only depends on the individual distributions of the summands and therefore
convolution is well defined and the nth moment µn(a + b) will be a polynomial function of
the moments of a and b of order less or equal to n.

For our purposes it is sufficient to axiomatize cumulants as follows.

DEFINITION 3.2. Given a notion of independence on a noncommutative probability space
(A, ϕ), a sequence of maps a �→ kn(a), n = 1, 2, . . . is called a cumulant sequence if it
satisfies

1. kn(a) is a polynomial in the first n moments of a with leading term µn(a). This ensures
that conversely the moments can be recovered from the cumulants.

2. Homogeneity: kn(λa) = λnkn(a).
3. Additivity: if a and b are ‘independent’ random variables, then kn(a + b) = kn(a) +

kn(b).

Möbius inversion on the lattice of partitions plays a crucial role in the combinatorial appro-
ach to cumulants. We will need three kinds cumulants here, corresponding to classical, free
and boolean independence, and which are connected to the three lattices of partitions con-
sidered in Section 1. Let X be a random variable with distribution ψ and moments mn =
mn(X) = ∫

xndψ(x).

3.1. Classical cumulants. Let

F(z) =
∫

exz dψ(x) =
∞∑

n=0

mn

n! zn

be the formal Laplace transform (or exponential moment generating function). Taking the
formal logarithm we can write this series as

F(z) = eK (z)

where

K (z) =
∞∑

n=1

κn

n! zn

is the cumulant generating function and the numbers κn are called the (classical) cumulants
of the random variable X .

Set partitions come in as follows. Let f and g be the multiplicative functions in the reduced
incidence algebra of �n determined by the sequence mn and κn , respectively, then f = g ∗ ζ
and g = f ∗ µ, i.e., if for a partition π = {π1, π2, . . . , πp} we put mπ = m|π1|m|π2| · · · m|πp|
and κπ = κ|π1|κ|π2| · · · κ|πp|, then we can express moments and cumulants mutually as

mπ =
∑

σ<π

κσ κπ =
∑

σ<π

mσµ(σ, π).

For example, the standard Gaussian distribution γ = N(0, 1) has cumulants

κn(γ ) =
{

1 n = 2
0 n �= 2

while the Poisson distribution Pλ (with weights Pλ({k}) = e−λ λk

k! ) has cumulants κn(Pλ) = λ.
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It follows that the even moments m2n = 2n!
2nn! of the standard Gaussian distribution count

the number of pairings of a set with the corresponding number of elements.
On the other hand, the moments of a Poisson variable with parameter 1 are known as Bell

numbers Bn and they are equal to the numbers of partitions of the finite sets with the corre-
sponding cardinalities. The moment interpretation leads to Dobinski’s formula (cf. [14])

Bn = e−1
∞∑

k=0

kn

k! .

3.2. Free cumulants. Free cumulants were introduced by Speicher [17] in his combinatorial
approach to Voiculescu’s free probability theory [23]. Given our random variable X , let

M(z) = 1 +
∞∑

n=1

mnzn (3.1)

be its ordinary moment generating function. Define a formal power series

C(z) = 1 +
∞∑

n=1

cnzn

implicitly by the equation
C(z) = C(zM(z)).

Then the coefficients cn are called the free or noncrossing cumulants. The latter name stems
from the fact that combinatorially these cumulants are obtained by Möbius inversion on the
lattice of noncrossing partitions:

mπ =
∑

σ∈NCn
σ≤π

cσ cπ =
∑

σ∈NCn
σ≤π

mσµNC (σ, π). (3.2)

3.3. Boolean cumulants. Boolean cumulants linearize boolean convolution [18, 24, 25].
Let, again, M(z) be the ordinary moment generating function of a random variable X defined
by (3.1). It can be written as

M(z) = 1

1 − H (z)

where

H (z) =
∞∑

n=1

hnzn

and the coefficients are called boolean cumulants. Combinatorially the connection between
moments and boolean cumulants is described by Möbius inversion on the lattice of interval
partitions.

mπ =
∑

σ∈In
σ≤π

hσ hπ =
∑

σ∈In
σ≤π

mσµI(σ, π). (3.3)

The term ‘boolean cumulants’ is due to the fact that the lattice of interval partitions is anti-
isomorphic to the boolean lattice of subsets of the same set with the first element removed.
The isomorphism maps a partition to the set of first elements of its blocks, where clearly the
first element of the first block is always the same and therefore redundant.
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4. ENUMERATION OF CONNECTED PARTITIONS

In this note we apply Möbius inversion to show that the free cumulants count connected
partitions with certain weights given by the classical cumulants. The result is inspired by [3].

THEOREM 4.1. Let (mn) be a (formal) moment sequence with classical cumulants κn.
Then the free cumulants of mn are equal to

cn =
∑

π∈�conn
n

κπ (4.1)

the boolean cumulants are equal to

hn =
∑

π∈�irr
n

κπ =
∑

π∈NCirr
n

cπ .

PROOF. We consider only the identity (4.1), the proof of the others being similar (and also
contained in the lattice path picture of [11]). For σ ∈ �n we denote by σ̄ its noncrossing
closure, that is the smallest noncrossing partition π s.t. σ ≤ π . This noncrossing partition is
obtained from σ by taking unions of all blocks which cross in the graphical representation, as
in the example depicted in Figure 2.

For each π ∈ NCn define the number

c̃π =
∑

σ∈�n
σ̄=π

κσ .

Now note that the preimage of 1̂n = {{1, 2, . . . , n}} is the set of all connected partitions, i.e.,

c̃n := c̃1̂n
=

∑

σ∈�conn
n

κσ .

For general π ∈ NCn , by considering subpartitions induced by the blocks of π , we have
multiplicativity c̃π = ∏

B∈π c̃|B|. Now for π ∈ NCn we can collect terms as follows

mπ =
∑

ρ∈�n
ρ≤π

κρ

=
∑

σ∈NCn
σ≤π

∑

ρ∈�n
ρ̄=σ

κρ

=
∑

σ∈NCn
σ≤π

c̃σ

and by Möbius inversion (2.3) and (3.2) it follows that cπ = c̃π . �

COROLLARY 4.2. The free cumulants of the standard Gaussian variable are equal to the
number of connected pairings.

c2n(γ ) = #�conn,pair
2n .

COROLLARY 4.3. The free cumulants of the Poisson distribution with parameter 1 are
equal to the number of connected partitions

cn(P1) = #�conn
n .
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−

FIGURE 2. A partition π and its noncrossing closure.

Moreover, if we leave the formal parameter λ, the expression for the nth cumulants is the
generating function of the numbers of blocks of the connected partitions.

cn(Pλ) =
∑

π∈�conn
n

λ|π |.

Similar identities hold for the q-Gaussian and q-Poisson laws [7, 12] where the free cumu-
lants provide a generating function of the number of left-reduced crossings of the connected
partitions. Alternatively, the free cumulants of the q-Poisson laws of [2, 15, 16] count the
number of reduced crossings, cf. [6]. In all these examples a continued fraction expansion
of the moment generating function is known and the free cumulants can be expressed via
Lagrange inversion. See also [11].
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