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The disconnection number d(X) is the least number of points in a connected topological
graph X such that removal of d(X) points will disconnect X (Nadler, 1993 [6]). Let Dn

denote the set of all homeomorphism classes of topological graphs with disconnection
number n. The main result characterizes the members of Dn+1 in terms of four possible
operations on members of Dn . In addition, if X and Y are topological graphs and X is a
subspace of Y with no endpoints, then d(X) � d(Y ) and Y obtains from X with exactly
d(Y ) − d(X) operations. Some upper and lower bounds on the size of Dn are discussed.
The algorithm of the main result has been implemented to construct the classes Dn for
n � 8, to estimate the size of D9, and to obtain information on certain subclasses such as
non-planar graphs (n � 9) and regular graphs (n � 10).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The subject of this paper, topological graph theory, is a rare encounter of topology with combinatorics, leading to results
that count something. Throughout, we consider connected graphs with multiple edges and loops allowed. For all undefined
notions in graph theory, see Harary [4].

The topological realization |G| of a graph G is obtained by replacing symbolic edges by arcs and symbolic loops by circles.
This results in a topological graph, that is: the union of finitely many topological arcs which are mutually disjoint except,
possibly, for one or two common endpoints. The (local) degree of a point p in a connected and locally connected topological
space is the supremal cardinal number of components of N \ {p} where N is a connected open neighborhood of p. (The
number of components of N \ {p} does not decrease if N gets smaller.) With the exception of the circle, each topological
graph is the realization of a graph G (henceforth referred to as canonical), the vertices of which are the points of |G| of
(local) degree �= 2.

Let X be a connected topological space and let n > 0. The disconnection number d(X) of X equals n provided for each
subset A of X with n points the subspace X \ A is disconnected, and n is the least number with this property. If X = |G|
then d(X) is also called the disconnection number of G , alternatively denoted as d(G). Nadler [6] showed that a metric
continuum with a finite (or even countably infinite) disconnection number must be a topological graph.

* Corresponding author.
E-mail address: MLJ.van.de.Vel@few.vu.nl (M. van de Vel).
0166-8641/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2010.11.019

http://dx.doi.org/10.1016/j.topol.2010.11.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:MLJ.van.de.Vel@few.vu.nl
http://dx.doi.org/10.1016/j.topol.2010.11.019


H. Gladdines, M. van de Vel / Topology and its Applications 158 (2011) 424–431 425
Fig. 1. The graphs in class D3.

Let Dn denote the set of all homeomorphism classes of graphs with disconnection number n. Our main result is a
construction of Dn+1 from Dn with four types of operations. In addition, we prove that if X and Y are topological graphs,
where X is a subspace of Y and has no endpoints, then d(X) � d(Y ) and Y can be produced from X with exactly d(Y )−d(X)

admissible operations. This result, which we overlooked in [2], is needed to support some of the computational results at
the end of this paper.

In the sequel, we use #A to denote the number of elements in a (finite) set A. Inductive application of the main theorem
leads directly to an upper bound for the size of a graph in Dn and to upper and lower bounds for #Dn . Let Tn denote the
set of homeomorphism classes of compact trees with n endpoints. (Note that Tn ⊆ Dn+1.) It appears that #Dn+1 grows
proportionally at least with n3 · #Tn (improving the bound in [2]) and at most with n2 · #Dn . The sequence of numbers #Tn

is known as A007827 in the On-Line Encyclopedia of Integer Sequences.1

These formulae lead to an absolute upper bound for #Dn in [2], which was improved by Cropper [1]. Cropper’s result
has been included here with a minor correction. Behind this result lies an alternative algorithm, constructing the class Dn+1
directly from Tn .

The algorithm of our main theorem has been implemented to construct Dn for n � 8, to find a fairly accurate estimate
of #D9, and to obtain some information on a few subclasses of Dn for n � 10. The values of #D8 and #D9 were left
open in [2]. We note that Cropper’s algorithm, although leading to a better upper bound for Dn , is less suited for an
implementation. In fact, when constructing D8 from T7, the number of operations to be performed on a single tree can be
up to 200 times larger than the total number of operations that must be performed on D7 according to our main theorem.

The 26 members of D4 have been collected in Fig. 3 at the end of this paper.

2. Constructing the classes Dn and estimating their size

In this section we describe the operations that lead from one disconnection class to the next. We also derive some
bounds on the size of graphs in Dn and on the size of Dn itself. Up to homeomorphism, the circle is the only continuum
with disconnection number 2. The following five graphs constitute the class D3 (Nadler [6]; see Fig. 1): an arc, a figure eight,
a theta curve, a figure six, and a dumbbell. Only the first is a simple graph; the others have multiple edges or loops.

Henceforth we use the term line either for an edge or a loop of a graph. The following formula of Nadler [6] is funda-
mental. It links the disconnection number d(G) of a connected graph G with the number, v(G), of vertices, the number,
l(G), of lines, and the number, end(G), of pendant vertices (“endpoints”) of G .

d(G) = 2 − v(G) + l(G) + end(G). (1)

For instance, a tree G has v(G) = l(G) + 1, whence d(G) = 1 + end(G).
Eq. (1) can also be formulated in terms of the Euler characteristic χ(G) = v(G) − l(G) of G . Also, the disconnection

number of a planar graph G is the sum of (i) the number of endpoints of G , and (ii) the number of components of R
2 \ |G|

[6, Cor. 5.2].

Theorem 2.1. Let n � 3. Every element of Dn+1 can be obtained from an element X of Dn by applying one of the following operations
to X :

(1) Adding an arc A to X such that X ∩ A = {p}, where p is an endpoint of A and p is not an endpoint of X .
(2) Adding an arc A to X such that X ∩ A = {p1, p2}, where p1 �= p2 are the endpoints of A and neither of them is an endpoint of X .
(3) Adding a circle C to X such that X ∩ C = {p}, where p is not an endpoint of X .
(4) Adding a figure six B to X such that X ∩ B = {p}, where p is the endpoint of B and is not an endpoint of X .

Conversely, for each n � 2 each of the operations (1)–(4), when applied to an element of Dn, yields an element of Dn+1 .

1 http://www.research.att.com/~njas/sequences/.
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Proof. The last part of the theorem follows easily from the disconnection formula in Eq. (1) by observing the changes
caused in the various terms by the operations (1)–(4). We will concentrate on the first part and use this fact below. Let
n � 3 and let Y be an element of Dn+1. We consider Y with its canonical (minimal) graph representation as explained in
the introduction. Note that Y is not a circle (which is a member of D2).

Suppose first that Y has an endpoint y and let A be the arc realizing the edge at y. As Y is not an arc (which is a
member of D3) and as Y is represented by a minimal (canonical) graph, the other endpoint x of A is of degree at least
3 in Y . Let X := (Y \ A) ∪ {x}. We find that X is a topological graph and that x is not an endpoint of X . Therefore, Y is
obtained from X by an instance of the procedure (1), whence d(X) = d(Y ) − 1 = n.

We may henceforth assume that Y has no endpoints and is not a circle. As the canonical graph is not a tree, Y contains
a topological circle S . Note that if a topological graph has endpoints, then so does the result of each of the procedures
(1)–(4), applied to it. We distinguish the following cases.

Case 1. There are at least two vertices of Y in S of degree � 3 in Y .
In this situation, S must be derived from a circuit in Y ’s canonical graph. We may therefore assume that there is an arc

A in S with endpoints x and y of degree � 3 in Y , such that degree(z) = 2 in Y for all z ∈ A \ {x, y}. Let X := (Y \ A)∪{x, y}.
Then X is connected since in each path of Y that uses A, we can replace A by (S \ A) ∪ {x, y} ⊆ X . We obtain Y from X by
adding the arc A that intersects X only in the endpoints of A. The vertices x and y having degree � 3 in Y , the respective
degrees in X are � 2. Hence neither x nor y are an endpoint of X (they need not be vertices of X ). Hence we have an
instance of procedure (2) of the theorem and consequently d(X) = d(Y ) − 1 = n.

Case 2. The topological circle S has exactly one vertex of Y and that point has degree � 4 in Y .
Let x ∈ S have degree � 4 in Y , and let X = (Y \ S) ∪ {x}. We can obtain Y from X by attaching the circle S to X at x.

As degree(x) � 4 we have that x is not an endpoint of X . We have an instance of procedure (3) of the theorem, whence
d(X) = d(Y ) − 1 = n.

Case 3. The topological circle S has exactly one vertex of Y and that point has degree 3 in Y .
Let y ∈ S have degree 3 in Y . There is an arc A of Y realizing an edge of type xy. The vertex x is not in S and S ∪ A is

a figure six. Let X := (Y \ (S ∪ A)) ∪ {x}. Then x is the endpoint of S ∪ A but not an endpoint of X . We can obtain Y from X
by attaching a figure six to X at the point x as described in procedure (4). Hence d(X) = d(Y ) − 1 = n. �

Note that the attachment rules of the theorem are somewhat restrictive. Breaking the rules can have unexpected conse-
quences. For instance, if X is a topological graph with two endpoints, and if Y obtains from X by connecting these points
with an arc, then d(Y ) = d(X) − 1. Also, attaching a circle at an endpoint gives a proper extension with equal disconnection
number. This may help to appreciate the following result, needed in Section 3.

Proposition 2.2. Let X be a non-trivial connected topological graph without endpoints and let Y be a connected topological graph
with subspace X. Then d(X) � d(Y ) and Y can be obtained from X with exactly d(Y ) − d(X) operations as in the main Theorem 2.1.

Proof. As X has no endpoints, it follows from [6, Prop. 8.1] that d(X) � d(Y ). We henceforth assume that Y is properly
larger than X and that Y contains no vertices of local degree 2. If X happens to be a circle, we may assume that its unique
vertex is also a vertex of Y (note that the circle is the only space with d = 2).

Let Z be the union of all lines of Y not included in X (the “surplus” lines of Y relative to X ). The case where each
component of Z is a tree, touching X in one vertex, is solved directly as follows. Note that, given a component of Z , each
endpoint /∈ X must be an endpoint of Y . The one endpoint which is in X has local degree � 3 in Y . There is a well-known
characterization of trees in graph theory, stating that trees are exactly the graphs that can be reduced to any pre-chosen
single vertex by successively removing (“detaching”) a pending edge and its endpoint. We apply this result on each tree
component of Z (choosing its vertex in X as the surviving vertex) to find a sequence of detachments of pending surplus
edges of Y , taking care to clean up vertices of local degree 2 when they arise, until we are left with the subspace X . If
n detachments are needed, the main Theorem 2.1 (last part) shows that d(Y ) = d(X) + n. Having explicitly dealt with this
case, we will proceed by strong induction on the number s > 0 of surplus lines of Y relative to X .

If some component of Z touches X in at least two points (vertices), then it has a subcontinuum A which is an arc
touching X in its endpoints. In this case, we define X ′ := X ∪ A. Assume all components of Z touch X in only one point. If
some component of Z is not a tree, then it has a subcontinuum C which is a simple closed curve. If C touches X , we define
X ′ := X ∪C . If C doesn’t touch at X , there must be a subcontinuum A of Z which is a topological arc joining C with a vertex
of X and meets C in exactly one point. In this case we define X ′ := X ∪ A ∪ C . The remaining case (all components are trees
touching X at one point) being solved already, we proceed as follows. In all situations at hand, we have d(X ′) = d(X)+ 1 by
the last part of 2.1. Furthermore, X ′ has no endpoints, and the number of surplus lines in Y relative to X ′ is properly less
than s. The result follows from the induction hypothesis. �
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Fig. 2. A counterexample on endpoints.

In [6, Prop. 8.1] Nadler has shown that d(X) � d(Y ) if X ⊆ Y are non-trivial topological graphs and end(X) � end(Y ).
This may suggest an extension of Proposition 2.2, where the condition on the absence of endpoints of X is replaced by the
condition end(X) � end(Y ). However, here is a counterexample.

We consider the graphs X and Y as drawn in Fig. 2. Both graphs have one endpoint, X can be embedded as a subspace
of Y in essentially one way, and d(X) = 5,d(Y ) = 6. Yet Y cannot be obtained from X by operations as described in the
main theorem.

In order to determine an upper bound for #Dn+1, we only have to find out how many new graphs we can obtain from
each graph in Dn by applying one of the procedures (1)–(4) in Theorem 2.1. This depends on the number of vertices and
lines occurring in the initial graph.

Corollary 2.3. Let n � 3 and let X ∈ Dn be a topological graph represented with its canonical graph. Then X has at most 2n−4 vertices
and at most 3n − 6 lines.

Proof. For n = 3, the result correctly predicts a maximum of 2 vertices and 3 lines. We proceed by induction on n � 3,
assuming the result is valid for n. By Theorem 2.1, a member of the class Dn+1 can be written as X ∪ F , where X ∈ Dn , and
where the union with F falls into one of the following descriptions.

(i) F is an arc meeting X in an endpoint of F .
(ii) F is an arc meeting X in both endpoints of F .

(iii) F is a circle meeting X in one point.
(iv) F is a figure six meeting X in the endpoint of F .

In addition, no point of F ∩ X is an endpoint of X . Operation (i) adds at most 2 new vertices to X and the number of lines
of X increases by at most 2. In case (ii), the number of vertices increases by at most 2 and the number of lines increases
by at most 3. In situation (iii), the number of vertices increases by at most 1 and the number of lines increases by at most
2. In case (iv), the number of vertices and the number of lines increase by at most 2 and 3, respectively. �
Corollary 2.4. For n � 3,

n∑
k=0

(−1)n−k
(

k + 3

k

)
· #Tn � #Dn+1 �

(
25n2

2
− 69n

2
+ 19

)
· #Dn,

where Tn denotes the subclass of Dn+1 , consisting of all trees with n endpoints.

Proof. Let X ∈ Dn . By Corollary 2.3, there are at most 3 · (2n − 4) possibilities to attach an arc, a circle or a figure six at a
vertex of X , and there are at most 3 · (3n − 6) possibilities to use a non-vertex point of a line for attaching one of these
objects.

In order to attach an arc to X with both its endpoints, there are at most 1
2 · (2n − 4) · (2n − 5) possibilities to select two

distinct vertices of X , there are at most (2n − 4) · (3n − 6) possibilities to select a vertex and a line of X , and there are at
most 1

2 · (3n − 6) · (3n − 7) + (3n − 6) possibilities to choose two lines (which need not be different).
Adding things up, we find that X can be extended in at most 25

2 n2 − 69
2 n + 19 ways to an object in Dn+1.

To obtain the lower bound, we consider the following operations on an object X of Dn+1:

(1) Attaching a circle at an endpoint of X . This produces a circle containing exactly one vertex of X , and this vertex has
degree 3 in the extension.

(2) Attaching a double arc between two endpoints of X . This produces a circle containing exactly two vertices of X , each
of degree 3 in the extension.
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(3) Replacing the edge of an endpoint by a circle (attached at the same point as the edge was). This produces a circle
containing exactly one vertex of X , and this vertex has degree � 4 in the extension.

By the disconnection number formula in Eq. (1), none of these operations affect the disconnection number. As Tn ⊆ Dn+1,
this allows us to create a number of mutually disjoint subclasses of Dn+1 which are in 1–1 correspondence with Tn as
follows.

Let (r, s, t, u) be a decomposition of n, that is: r + s + t + u = n. We require r, s, t, u � 0 with r even. The number of such
decompositions of n with distinguished parts equals

n∑
k=0

(−1)n−k
(

k + 3

k

)
.

This can be seen with the classical generating functions method; see, for instance, Grimaldi [3, Ch. 9].
A decomposition (r, s, t, u) of n is used as follows. Let T ∈ Tn . Choose r endpoints of T , divide them into r/2 pairs,

and connect each pair by a double arc. Then choose another s endpoints and attach a circle to each of them. Choose yet
another t endpoints and replace its edge by a circle. The remaining u endpoints are left untouched. For each decomposition
(r, s, t, u) of n, we consider one partition of the endpoints into sets of size r, s, t and u, and one subdivision of the r-set into
pairs.

Things being done this way, we obtain an extension of T having a collection of disjoint topological circles as subspaces.
The number of vertices on each circle, together with their degree, fall under the descriptions (1)–(3) above. These are
topological characteristics that allow to reconstruct T and the operations performed on it. It can now be seen that distinct
decompositions of n and/or topologically distinct trees all lead to nonhomeomorphic results. �

The lower bound of #Dn+1 improves the bound in [2] which is (roughly) 1
4 · n2 · #Tn . The upper bound of #Dn+1 can be

simplified as #Dn+1 < 25
2 n2 · #Dn . Recursive application down to #D3 = 5 yields

#Dn �
(

25

2

)n−2

· (n − 1)!2
10

(n � 3). (2)

This bound is somewhat more efficient than the one in [2].
In computations as above, it is difficult to take into account that different operations may lead to homeomorphic graphs,

even when starting from the same graph. When expressing #Dn+1 in terms of #Dn , the estimate appears to be a factor too
large (e.g., n = 4: about 10 times; n = 5: about 15 times). The upper bound of inequality (2) accumulates these factors. An
improvement was made by Cropper [1], linking #Dn+1 directly with #Tn (which is a known sequence). To this end, consider
the following algorithm on a topological tree T with n endpoints (where by an inner point is meant a non-endpoint).

Choose k endpoints of T . At each chosen point, attach an arc with one endpoint; the other endpoint of the arc is attached
to an inner point of T (which may or may not be a vertex). The attached arcs are disjoint except, possibly, for the inner
attachment point.

If the tree has i inner vertices (i � n − 2) then there are n + i − 1 edges. Taking into account the relative positions of the
inner attachment points, the number of possible choices is

1 +
n∑

k=1

(
n

k

)
·

k−1∏
j=0

(n + 2i + 2 j − 1) �
n∑

k=0

(
n

k

)
· (n + 2i + 2k − 3)k

�
n∑

k=0

(
n

k

)
· (3n + 2i − 3)k.

The latter equals (3n + 2i − 2)n � (5n − 6)n . (In Cropper’s computation, part of a factor got lost; it must be 5n, not 4n.) The
result provides a better estimate of #Dn than the inequality (2) for n � 8.

Proposition 2.5. ([1, Cor. 1.3]) The class Dn+1 consists exactly of those topological graphs that can be obtained from Tn by an operation
of the above kind. Consequently,

#Dn+1 � (5n − 6)n · #Tn (n � 2).

Proof. (Sketch) Let X ∈ Dn+1 and consider a spanning tree T0 of X . On each arc or circle of X not in T0 we take a point
halfway and delete one of the resulting half-arcs or half-circles. This can be done in a balanced way, so that no endpoint
of T0, which is not an endpoint of X , loses all its half-arcs and half-circles. The result is a tree T ∈ Dn+1 with (exactly n)
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Table 1
Size of Dn .

D3 D4 D5 D6 D7 D8 D9

5 26 213 2310 32 512 555 323 ±10 612 000

Table 2
Descendants of Kuratowski graphs.

Class K3,3 K5 Non-planar graphs

D5 1 0 1 (0.46%)
D6 13 0 13 (0.56%)
D7 354 1 355 (1.08%)
D8 12 238 12 12 247 (2.22%)
D9 493 374 410 493 558 (±4.64%)

endpoints among the endpoints of X and among the chosen points. The reconstruction of X from T follows exactly the
description above, which explains both the statement and the formula. �

As a simple illustration of his algorithm, Cropper [1] shows how all five members of D3 obtain from an arc (which is
the only tree in D3).

3. Some numerical data

Most of the (numerical) results in this section have been obtained with the aid of a computer program based on the
information of the main Theorem 2.1. As this journal is not the proper forum to discuss the fine points of the method, we
only present the numerical data with some comments. For more details or the source code, the reader may contact the
second author.

3.1. Determination of #Dn for n � 9

Starting with the list of (five) members of D3, and using the operations of Theorem 2.1, we can successively compute all
members of the classes Dn for n = 4,5, . . . . The resulting quantities are presented in Table 1. Comparing with [2], we have
now solved the case of #D8. The approximation of #D9 is also new. Basing ourselves on the largest observed difference
between computations with large samples, we think the approximation is accurate up to 0.5%.

The numbers of Table 1 answer the question of how many topologically distinct graphs exist, where each subcollection
of n points disconnects the space (n � 8) while some n − 1 points do not. Our program’s output of D4 upon input of D3
has been used to draw the 26 graphs of the former class at the end of this paper.

3.2. Non-planar graphs

In his pioneering paper, Nadler used the Kuratowski graphs K3,3 and K5 to conclude that non-planar topological graphs
have a disconnection number � 5 [6, Cor. 8.2]. The disconnection numbers of K3,3 and K5 are, respectively, 5 and 7. As
these two graphs have no endpoints, every connected topological graph, which properly extends one of them, must have a
larger disconnection number by Proposition 2.2.

The famous Kuratowski non-planarity theorem [5], combined with Proposition 2.2, leads us to the following conclusion.
Every connected non-planar topological graph can be obtained from K3,3 or from K5 with an appropriate amount of op-
erations as in the main theorem. Conversely, every finite sequence of such operations leads to a connected non-planar
topological graph. This makes non-planar graphs computable by iterated runs of our program, feeded with just the edge list
of K3,3 and of K5. The results are summarized in Table 2.

We already observed that K3,3 is the only non-planar member of D5. All non-planar graphs in D6 can be built on K3,3
by one admissible operation of the main theorem. As K3,3 has six points of local degree 3, it is evidently not a subspace
of K5. Hence K5 cannot be built on K3,3.

Note that the total number of non-planar graphs in a class is not simply the sum of the numbers to its left. In fact,
starting with the class D8, there is an overlap between spaces built on K3,3 and spaces built on K5.

The percentage in the right column indicates the relative amount of non-planar topological graphs in the appropriate
class Dn .

3.3. Simple and regular graphs

Each vertex v of a graph goes with so-called local invariants: the number n of neighbors of v , the number a of arcs at v ,
and the number c of circles at v . Given that multiple arcs may join v with a neighbor, this leads to a partition p [3, p. 432ff]
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Table 3
Special subclasses.

D3 D4 D5 D6 D7 D8 D9 D10

Simple graphs 1 2 9 49 416 4818 74 974
Regular graphs 4 5 9 14 28 107 520 4095
Simple regular graphs 1 1 2 5 20 86 511 4066

of the number a into n parts. The quadruple (n, c,a, p) gives complete numerical information on the neighborhood of a
vertex.

Simple graphs are graphs without multiple edges and without loops. We define regular graphs somewhat stricter than
usual: each vertex has the same quadruple (n, c,a, p) of local invariants. For simple graphs, this agrees with the standard
notion of regularity.

Some counting results are summarized in Table 3.
By Nadler’s formula for the disconnection number (our Eq. (1)), regular graphs with the same number of vertices and the

same constant local degree are in the same disconnection class. Moreover, regular graphs of a fixed class Dn have restricted
types. For instance, the simple regular graphs of D6 are 3-regular and have 8 vertices; the simple regular graphs of D7 are
either 4-regular with 5 vertices (just K5) or 3-regular with 10 vertices. Such information can easily be obtained for each
disconnection class by using a few equations involving the relevant invariants.

It is rather wasteful, however, to compute regular graphs via disconnection classes. Actually, there are specialized pro-
grams available2 which rapidly compute all simple regular graphs of given size and local degree.

Fig. 3. The 26 graphs of D4.

2 The number in the right lower corner of Table 3 was computed with the program genreg: exactly 6 simple graphs with 8 points are 4-regular
(which can also be seen by a combinatorial analysis), and exactly 4060 simple graphs with 16 points are 3-regular. See http://www.mathe2.uni-bayreuth.
de/markus/reggraphs.html.

http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
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