
P E R G A M O N

An Ir~nwlional ,Ioun~ll

computers &
mathematics
with q~dir, ations

Computers and Mathematics with Applications 40 (2000) 971-983
www.elsevier.nl/locate/camwa

A n Iterat ive A l g o r i t h m for
F inding a Neares t Pair of Po ints

in Two Convex Subsets of R n

B. LLANAS AND M . FERNANDEZ DE SEVILLA
Dpto. de Matem£tica e Inform£tica, E.T.S.I. de Caminos

Ciudad Universitaria, 28040, Madrid, Spain

V . FELIU
Dpto. de Ingenierfa El~ctrica, E.T.S.I de Industriales
Campus Universitario s/n, 13071, Ciudad Real, Spain

(Received and accepted January 2000)

A b s t r a c t - - W e present an algorithm for finding a nearest pair of points in two convex sets of R n,
and therefore, their distance. The algorithm is based on the fixed-point theory of nonexpansive
operators on a Hilbert space. Its practical implementation requires a fast projection algorithm. We
introduce such a procedure for convex polyhedra. This algorithm effects a local search in the faces
using visibility as a guide for finding the global minimum. After studying the convergence of both
algorithms, we detail computer experiments on polyhedra (projection and distance). In the case of
distances, these experiments show a sublinear time complexity relative to the total number of vertices.
© 2000 Elsevier Science Ltd. All rights reserved.

Koywords--Polyhedra, Local search, Projection algorithms, Euclidean distance, Nonexpansive
operators.

1. I N T R O D U C T I O N

The efficient computation of distances between two bodies is a crucial element of many path

planners in robotics and other applications. As polyhedra are good models of real objects, fast

methods for computing the distance between them are necessary.

Most of the algorithms proposed to this date, the fastest ones included, have a time complexity

linear or superlinear (in relation to the sum of vertices of both polyhedra). This implies that

their performance for polyhedra having a great number of faces (for example, in advanced virtual

reality simulations [1]) can be poor.

We can classify most of the known (nonrandomized) algorithms according to the dimension n
and the type of sets they handle.

• n = 2 .
- Algorithms for finding the distance between planar polygons have been studied in

[2,3].
The research reported in this paper was financially supported (I+D 0105/94) by the Consejerfa de Educaci6n y
Cultura de la Comunidad de Madrid and the electric company IBERDROLA.

0898-1221/00/$ - see front matter (~) 2000 Elsevier Science Ltd. All rights reserved. Typeset by ~4~-TEX
PII: S0898-1221 (00)00212-1

972 B. LLANAS et al.

• n = 3 .

- Polyhedra. (Intersection of a finite number of closed half spaces.)
* Methods based on a hierarchical decomposition of the polyhedra as proposed

in [4].
* Methods based on an exhaustive computation of the distance between all the

pairs of faces of both polyhedra (brute force method) [5].
* Methods based on a sequence of constrained minimizations [6].
* Local methods that only process a subset of every polyhedron [7,8].

- General Sets . Gilbert et al. [9] have generalized the algorithm presented in [10] to the
case of objects with curved boundary. This problem is also studied in [7]. Related
collision detection problem methods which use bounding volume hierarchies ("BV-
trees") are described in Ill].

• n a r b i t r a r y
- Polytopes. (Intersection of a finite number of closed half spaces.)

* Methods based on a descent procedure which works on the distance between
elementary polytopes contained in the convex sets [10].

* Methods based on duality [12].
* Local Methods [13].

- General Sets . An algorithm for the case of convex sets defined as the intersection of
an infinite number of closed half spaces was studied in [14].

In Section 2 of this article, we give the theoretic foundation of an iterative algorithm for finding
a nearest pair of points in two convex, bounded, and closed subsets of R n. We will call it "swap"
algorithm (SA). This method differs from those cited above. To be practical, it must use a fast
algorithm for projecting points onto a convex set of R n.

In Section 3, we introduce such a fast projection algorithm onto a convex polyhedron. This
algorithm performs a local search over the faces visible from the point to be projected. Con-
vergence to the nearest face is proved. From now on, we denote this algorithm by "local search
algorithm based in faces" (LSABF).

In Section 4, we present numerical experiments on a wide variety of polyhedra, including large
ones (more than 1000 faces).

The experiments show that LSABF is a fast projection procedure. If we combine it with SA,
we get an algorithm for finding the distance between polyhedra which has a sublinear behavior.

2. THE "SWAP" A L G O R I T H M

From now on, R ~ will denote the Euclidean n-space.
Let 7) and Q be two convex, bounded, and closed sets in R n. Our problem is to find a point

a E 7) and other point b E Q such that

d(a, b) = x~nd(x ,y) _ d(P , •). (1)
yEQ

(d(., .) denotes the Euclidean distance.)

LEMMA 1. Let 7) and Q be convex, bounded, and closed subsets o f R n and ~rp and vQ pro jec t ion

operators on 7) and Q~, respec t ivdy .

(a) I f a 6 7) is such that there exis ts b 6 Q such tha t d(a, b) = d(P, Q), then a is a fLxed

po in t o f the operator: Ir~, o ~rQ : 7) --* 7).

(b) C o n v e r s e l y , / f a 6 7) is a f ixed po in t of~r~, o ~rQ, then d(a,~rQ(a)) = d(7 ~, Q).

PROOF a. By (1), 7rQ(a) = b and 7rp(b) = a. So we have

~rp(IrQ(a)) = Ir~,(b) = a.

Iterative Algorithm 973

PROOF b. We have to prove that

d(a,~rQ(a)) < d(x ,y) , Vx E 7 ~, Vy E Q,

note tha t for arbitrary x E P and y e Q,

Ix - y[2 = Ix - a + a - ~TQ(a) + zr•(a) - y[2

= I x - a + zrQ(a) - y]2 + [a - 7rQ(a)[2 + 2(x - a) . (a - 7rQ(a)) (2)

+ 2(~rQ(a) - y) . (a - zrQ (a)).

The hypothesis lrv [lrQ (a)] = a implies that

(x - a) . (a - 7rQ(a)) > 0, Yx E P. (3)

Also, since 7rQ(a) is the projection of a onto Q,

(lrQ(a) - y) . (a - 7r@(a)) > 0, Vy E Q. (4)

From (2)-(4), we have

[x - y [> [a - ~ r Q (a) [, V x E P , V y E Q. 1

From now on, we shall use the notation zrpQ - Irp o ~r~2. A fixed point of this operator can be
found by means of the following algorithm (we give a FORTRAN 90-like pseudocode).

S w a p A l g o r i t h m (SA)

Step 1: We choose x0 E 7 ~, the stopping criterion (EPS)

and t E (0, 1)
Step 2: Xn+l -- t xn + (1 - t) ~rp Q(xn)
Step 3: i f [Xn+l - xn[< EPS t h e n

go t o Step 4
else

X n = X n . b l

go to Step 2
e n d i f

Step 4: xn is an approximation to a and 7rQ(xn)
is an approximation to b (STOP)

LEMMA 2. ~rpQ : P --+ 7 ~ is a nonexpansive operator.

PROOF. The projection operator onto a closed convex set of a Hilbert space is nonexpansive [15],
therefore,

< < I x - x'l

for all x, x ' 6 P. |

THEOREM 1. Tile swap algorithm (SA) converges to a point a E 7 p such that a and b --- r e (a)
verify expression (1).

PROOF. From the theorem of Browder, G6hde and Kirk [16, pp. 478-479], and Lemma 2, we can
conclude that the set of fixed points of the operator 7rpQ is a nonempty, closed, and convex set.

We can now apply the following result [16, p. 481].
Let T : M C H -* H be a nonexpansive operator on a set M in a real Hilbert space H, M

being nonempty, convex, bounded, and closed. Then, for a fixed t E (0, 1), the iterative sequence

Xn+l ~--- (1 - t) T x n + t xn

converges weakly to a fixed point of T.
Finally, we use the fact that in a Hilbert space of finite dimension strong and weak convergence

are equivalent [15, p. 36]. Then we apply the second part of Lemma 1. |

974 B. LLANAS et al.

3. A FAST M E T H O D FOR P R O J E C T I N G A
P O I N T ON A C O N V E X POLYHEDRON: THE

LOCAL SEARCH A L G O R I T H M B A S E D ON FACES

The computation of the projection of a point onto a subset of R ~ has practical importance in
many applications: obstacle avoidance algorithms based on potential functions, pattern recogni-
tion, image reconstruction (computerized tomography) ,

In addition to the methods that find a nearest pair of points in two sets, the following algorithms
for solving this problem have been described in the following literature:

1. methods based on the inequality of Wolfe that use techniques inspired by linear program-
ming [17];

2. other iterative methods [18-20];
3. exhaustive computation of the distance of the point to the faces of the polyhedron (brute

force).

To apply SA, we need a fast algorithm for projecting a point p on a convex polyhedron. In this
section, we introduce a local search procedure which can be used. This algorithm only examines
the distance of selected faces of the polyhedron to the point p. Local descent along visible faces
is used to find the point nearest to p.

3.1. T h e Loca l Search A l g o r i t h m

In this section, we introduce an algorithm for solving the projection problem. Its convergence
will be a consequence of the following fact (Corollary 1): a local minimum of d(A,b) on a
polyhedron face visible from b is, in fact, the global minimum.

To prove this, we need some definitions.
R n will denote the Euclidean n-space and . the usual dot product. A closed segment in R 3 is

defined by
[a , b]= { x e R 3 / x = a + t (b - a) , r e (O , 1)} .

Let (A, hA) be an oriented polygon that forms a polyhedral face of P. The unit vector nA is
supposed to be directed towards the exterior of P. We shall say that the face (A, hA) is visible
from b if for any a E A we have

(a - b) .nA _< O.

Let us denote by Vis (b) the set of faces of 79 which are visible from b.
The following lemma implies that the search of the nearest face to b need only consider faces

visible from b.

LEMMA 3. If p is the projection of a point b (external to 7 9) on 79, then p belongs to a face of 79
visible from b.

PROOF. This result is a particular case of the following lemma.

LEMMA 4. Let b be a point external to the convex polyhedron 79 and let a E 79. The intersection
point c of the segment [a, b] with the boundary 079, which is nearest to b, has the following
property.

There exists at least one face (A, n) E F(P) , such that

• c e A ,
• bc.n _< 0 (A is visible from b).

PROOF. We have that

~' = {x / x.ni <_ c~, i = 1 , m},

O'P = {x ~ 79 /2 i / x.n~ = c~}

x E [a, b] can be expressed as x = a + t(b - a) with t e [0, 1].

Iterative Algorithm 975

Now consider the following auxiliary functions:

hi(t) = [a + t (b - a)].ni - ci, i = 1 , . . . , m .

Since b is external to 79: h i (l) > 0 for i = 1 , . . . , k (where 0 < k < m, renumbering faces if
necessary).

Since a E 79, we have hi(0) < 0 for i = 1 , . . . , m.
For i = 1 , . . . , k, let t~ E [0, 1] be a value of t for which hi(ti) = O.
Let to = mini=l k{ti}. Then there exists at least one index s (1 < s < k) such that hs(to) = 0

and hi(to) <_ O, Vi = 1, . . . ,m. Therefore, we put

Subtracting the formulae

and

c = a ÷ to (b - a) E 079.

hs(to) = c.n, - c8 = 0

h s (1) = b . n s - c8 > 0,

we find (c - b).ns < 0. 1

Let F(79) denote the set of oriented polygons that form the faces of F(79). If A E F(79), let
N (A) denote the set of faces of 79 which have a point or an edge in common with A excluding A
itself. The number of elements of N (A) will be called NA .

L o c a l S e a r c h A l g o r i t h m B a s e d on Faces (L S A B F)

Step 1: Choose A0 E F(79) such that A0 E Vis (b)
Compute d(A0, b).

A = A0
Step 2: do k = 1, N A (Ak E N (A))

i f (Ak E Vis (b) and d(Ak, b) < d(A, b)) t h e n

A = Ak
go t o the start of Step 2

e n d i f
e n d d o

Step 3: d(79, b) = d(A, b) (STOP)

Before showing the convergence of this algorithm, we need to derive some technical results.
Let b be a point external to 79 and let x be a point belonging to 79. We shall use the auxiliary

function f , defined as follows.
Define I - [x, b] M 07 9, and let f map x to the point of I closest to b.
Using Lemma 4, the following properties of f can be verified.

1. f is continuous on 79.
2. If x E Vis (b), then f (x) = x.
3. For all x E 79, we have that f (x) E Vis (b).
4. If x E 079 and x • Vis (b), then f (x) ~ x.

LEMMA 5. I / a , b E R n and [a I < Ib[, then

l a + t (b - a) l < Ibl, for all t E [0, 1).

PROOF. By the properties of the norm

I a + t (b - a)I = la(1 - t) + b t I < la(1 - t)l + IbtI

= l a l (1 - t) + IbI t < IbI(1 - t) + IbI t = Ibl .

976 B. LLANAS et al.

LEMMA 6. Let b be a point external to 7) and let A • Vis (b). Suppose that there exists
A' • F(P) such that d(A', b) < d(A, b). Then there exists A • N(A) M Vis (b) such that
d(A, b) < d(A, b).

PROOF. Let a and a t be the points of A and A t, respectively, nearest to b. By hypothesis
d(a t, b) < d(a, b). Using Lemma 5, we see that for all x • (a, at],

d (x ,b) < d(a ,b) . (5)

The continuity of the auxiliary function f , implies that given e > 0 there exists 5 > 0 such that

f[B~(a) ¢17)] C Be(f[a]) M 0P.

(We denote by B~(c) the open ball of radius "y centered in c.)
Since a belongs to a visible face, this second property of f implies that f (a) = a. Therefore,

S[B~(a) riP] c Be(a) hOP,

that is, if we take x • (a,a '] M (B~(a) M P), then f (x) • Be(a) M OP (arbitrarily close to a).
Furthermore, from (5) we have

d (f (x) , b) < d(x ,b) < d(a ,b) .

Therefore, there exist points on the boundary OP arbitrarily close to the face A which belong
to visible faces (t]) which are nearer to b than A. I

COROLLARY l, Suppose that for all ffi • N(A) N Vis (b), we have d(A, b) >_ d(A, b). Then for
all A' • F(P), we have

d(A', b) ~ d(A, b).

PROOF. This statement is equivalent to Lemma 6. I

The above results imply we can formulate the following convergence theorem.

THEOREM 2. LSABF yields the global minimum of d(A, b) in a finite number of steps.

PROOF. Corollary 1 gives a stopping criterion. Since the number of faces is finite, and the
distance is strictly decreased in every iteration, the algorithm obtains the nearest face in a finite
number of steps. Moreover, Lemma 6 shows that we need only consider faces visible from b in
the descent procedure. I

3.2. A Criter ion for Choice of Init ial Face

The following result gives a simple and fast procedure for choice of initial face in LSABF
(a face visible from b and near it).

LEMMA 7. Let "P be a polyhedron and V(P) the set of its N vertices. If c, b • R n (c ~ b) and
v0 • V(P) is such that

vi.cb < v0.cb, (6)

for all vi • V(P), and
(c - b).(v0 - b) > 0,

then there exists a face A E F (P) such that

• v 0 E A ,
• A e Vis (b).

(7)

Iterative Algorithm 977

PROOF. We shall prove that [b, v0) N :P = 0. Then we need only apply Lemma 4.
d =_ (cb/Icbl) and k =- v0.d.

Then (6) can be written as vi .d _< k. Define the following half spaces:

H + = (x / x . d > k} ,

H - = {x /x .d < k}.

Define

Obviously, H + A H - = 0. We have that 7 ~ C H - , in effect, if p • P then p = ~-~/N=I O~iV i

(being ai ~_ O, i = 1 , . . . , N, and ~-~N 1 ai = 1), therefore,

N N

p.d = Z ~ i v i . d <_ k Z e~i = k.
i=1 i=1

We shall prove now that [b, v0) C H +, in effect, from (7) we have that b .d > k . As

[b, vo) = {x /x = b + (Vo - b)t, t e [0, 1)}.

Then, if x • [b, v0), we have

x .d = b.d(1 - t) + v0.dt > k(1 - t) + kt = k.

In practice, we take c as the barycenter or the center of the bounding box of P [21] the sides
of which are parallel to the coordinate axes.

Then, when the point b is far enough of the polyhedron, inequality (7) is always fulfilled and
Lemma 7 guarantees the existence of a visible face with v0 as vertex.

For some polyhedra, the procedure can fail in some points b near 7 ~. The following algorithm
keeps in mind this possibility, performing an exhaustive search when it is necessary.

We denote by N F the number of faces of the polyhedron, and by vii , v2i, v3i the three first
vertices (counter-clockwise) of the face Ai.

A l g o r i t h m for F ind ing an Init ial Visible Face

1. Compute c (barycenter or center of the bounding box)
2. i f (b = c) t h e n

b is inside ~v: "the projection is b"
end i f

3.Compute m = minv~eV(r) vi .cb

(we call mi - vi.cb)
4. d o i = l , N

if (mi = m a n d there exist A • F (P) such that
A • Vis (b) a n d v~ • A) t h e n

A0 = A
go to LSABF

endi f

e n d d o
b is inside 9: "the projection is b" (STOP)

(STOP)

e n d d o
5. d o i = l , N F

N~ = (v2~ - v i i) x (v3~ - v ~)

i f ((vii - b).N~ < 0) t h e n
A0 = A
go to LSABF

endi f

978 B. LLANAS et al.

4. E X P E R I M E N T S I N T H R E E D I M E N S I O N S

To calculate projections onto different types of polyhedra of increasing degree of complexity,

we have used LSABF and have applied SA to calculate the distance between several examples of

polyhedra.

LSABF and SA were programmed using Watcom C, and the computer experiments have been

realized using a Pentium (133 Mhz) processor.

Experiments are shown in Figures 1-4. They are as follows.

• Tetrahedron A: four vertices and four faces.
• Parallelepiped B: eight vertices and six faces.

• Icosahedron g: 12 vertices and 20 faces.

• Pyramid 7): 21 vertices and 21 faces.

• Polyhedron g: 34 vertices and 40 faces.

• Polyhedron ~-: 72 vertices and 80 faces.

• Polyhedron G: 409 vertices and 409 faces.
• Polyhedron 7-(: 1152 vertices and 1122 faces.

4.1. A l g o r i t h m L S A B F

* The algorithm needs the following topological da ta for every polyhedron processed.
- Number of vertices and faces of 7).

- Number and description of the vertices of every face.

- Number and description of the faces adjacent to every face.

- Number and description of the faces intersecting in every vertex.

I t also uses the coordinates of the vertices of the polyhedron.

• Compute t ime for a given polyhedron and a given point is calculated as the average of

1000 repetitions of the experiment and expressed in milliseconds. The t ime tha t appears

in Table 1 is averaged from six positions of the point to be projected on a fixed polyhedron.

• We compare LSABF with two standard algorithms: the brute force method (BF), which
calculates the distance to the point of every face of the polyhedron and selects the min-
imum one and a second procedure, a nonrecursive version of the Sekitani-Yamamoto

algorithm [22]. Both these procedures were tests on the same examples than LSABF. The
results can be seen in Table 1.

• Polyhedra are found in [22].

The table below uses the following.

• N: Number of vertices of the polyhedron.
• NDP: Mean number of distances point-polygon calculated by LSABF.
• TLSABF: CPU t ime of the LSABF.

• TBF: CPU time of the brute force algorithm.
• TSYNR: CPU time of the nonrecursive Sekitani-Yamamoto algorithm.

Table 1. Projection experiments (time × 10 -3 s).

Polyhedron N NDP TLSABF TBF TSYNR

.A 4 4 0.14 0.07 0.08

B 8 5 0.22 0.14 0.19
C 12 13 0.68 0.55 0.36
T) 21 21 1.33 0.94 0.64
g 34 11 0.83 1.31 1.24
.T" 72 13 1.19 2.83 3.19
G 409 36 4.10 14.71 50.24
7-I 1152 25 5.45 33.71 -

Iterative Algorithm 979

Figure 1. Tetrahedron .4 and Parallelepiped B.

Figure 2. Icosahedron C and Pyramid T).

Figure 3. Polyhedron £ and Polyhedron .T'.

Figure 4. Polyhedron G and Polyhedron 7-/.

4.2. Algorithm SA

SA (based on LSABF) was applied to several pairs of polyhedra.
have the following.

In these experiments, we

We take as initial point (x0) of the algorithm, the center of the bounding box of P [21],
the sides of which are parallel to the coordinate axes.

Performance times are calculated for two given polyhedra in a fixed position as the mean
of 100 repetitions of every experiment and expressed in milliseconds. Table 2 shows t ime
which is the average of the time obtained considering four different relative positions (and
distances) of the two polyhedra.
We have compared our "swap" algorithm with two alternative techniques. One is the
algorithm proposed by Red in [5]. This procedure calculates the distance between all the
pairs of faces of both polyhedra and selects the minimum one. The second technique is the
nonrecursive version of the Sekitani-Yamamoto algorithm mentioned above. Both cases
were tested on the same examples that $A and the results can be seen in Table 2.

980 B. LLANAS et al.

The table below uses the following notation.

• 7 ~, Q: Polyhedra considered in each experiment.

• N: Sum of the vertices of the polyhedra.
• PREC: I computed d i s t a n c e - e xa c t d i s t a n c e I.

• t: Parameter of the "swap" algorithm.

• NISA: Number of iterations of the "swap" algorithm.

• EPS: Stopping criterion.

• TSA: CPU t ime of the "swap" algorithm.

• TRED: CPU t ime of the Red algorithm.

• TSYNR: CPU t ime of the nonrecursive algorithm of Sekitani-Yamamoto.

In all experiments, we have used the following values of the constants: PREC < 10 -6, t = 0,
EPS = 10 -6.

Table 2. Distance experiments

Polyhedra

~4,A
B,B

)

C,C
/3,Y)

~-,~-

g,g

7-/,7-/

N NISA TSA

8 2 0.55

16 2 0.70
24 2 1.93

29 8 8.65

68 2 2.48

144 2 3.55

818 2 11.70
2304 2 25.65

(time X (10-3s)).

TRED TSYNR

3.27 0.60

10.30 2.75

83.20 6.75

35.98 12.10
434.00 269.00

1876.00 5538.00

54389.25
298892.50

Mean Time

1.

0.

0.

0.

0.

/

//

P

5 i0 15 20 25 30

Figure 5. Low complexity.

5. C O N C L U D I N G R E M A R K S

5.1. O b s e r v e d P e r f o r m a n c e o f L S A B F

The results of Table 1 can be shown as a graph of input complexity versus runtime. Here ' input
complexity ' is simply the number of vertices of the polyhedron considered. In the figures, the
thick line represents the nonrecursive Seki tani-¥amamoto algorithm and the thin line represents
the brute force method. The dashed line represents LSABF. Time is measured in milliseconds.

This graph indicates tha t for low-complexity problems, the nonrecursive Sekitani-Yamamoto
algorithm performs best.

Iterative Algorithm 981

In contrast, for problems of mean-high complexity the best performance is attained by LSABF
(Figure 6). Its empirically measured time is O (v ~) while the compute time of a brute force
approach is O(N).

Mean Time

50

40

30

20

i0

N
200 400 600 800 i000

Figure 6. Mean-high complexity.

Mean Time 01 / /
] / /
100

5

N
i0 20 30 40 50 60

Figure 7. Low complexity.

5.2. E x p e r i m e n t a l Pe r fo rmance of Algor i thm SA

The results of Table 2 can be shown as a graph of complexity versus runtime. The complexity
N is expressed as the sum of the number of vertices of both polyhedra. The time is the average
of the experiments performed for every pair of polyhedra. The thick line in the figures represents
the nonrecursive Sekitani-Yamamoto algorithm and the thin line represents the Red method. The
dashed line represents the "swap" algorithm. The unit of time is hundredths of a millisecond.
The optimal value found for the parameter t is 0. The number of iterations increases if t increases.

For low-complexity problems, the "swap" algorithm has better performance than the Red and
nonrecursive Sekitani-Yamamoto algorithms (Figure 7).

For problems of mean-high complexity (Figure 8), we have found for SA an empirical com-
putational time of O(N ~) where 1/2 < e < 1. The computational time of the Red method is
O(N~).

982 B. LLANAS et al.

Mean Time

400

300

200

I00

| w

500 I000 1500 2000
N

Figure 8. Mean-high complexity.

Indirect compar ison with other methods is difficult due to several factors: different computers ,

different p rogramming languages, and opera t ing systems. On the other hand, the complexi ty of

the polyhedra studied by other authors has generally been smaller t han those presented here.

~ l t h o u g h no firm conclusion should be drawn from such limited experiments, the a lgori thms

studied exhibit sublinear empirical computa t iona l complexity. Some other algori thms [8,12,13,23],

with this p roper ty have been reported. SA converges very rapidly (two iterations) in mos t of the

examples studied. This opens a way to get faster algori thms if project ion methods faster t h a n

L S A B F can be found.

W h e n deformable polyhedra move, the topological da ta given at the s tar t do not change.

A drawback of SA is the increase of the number of i terations tha t can occur when the po lyhedra

are very near and the points of min imum distance lie in almost parallel faces (Table 2 (B + Z))).

This can be avoided by demanding less precision or using a different s t ra tegy in applying SA [8].

R E F E R E N C E S
1. G.C. Burdea, Force and Touch Feedback for Virtual Reality, Wiley, (1996).
2. J.T. Schwartz, Finding the minimum distance between two convex polygons, In]o. Proc. Lett. 13, 168-170,

(1981).
3. F. Chin and C.A. Wang, Optimal algorithms for the intersection and the minimum distance problems between

planar polygons, IEEE Trans. Comp. C-32, 1203-1207, (1983).
4. D.P. Dobkin and D.G. Kirkpatrick, Determining the separation of preprocessed polyhedra--A unified ap-

proach, In Proc. 17 th Internat. Colloq. Automata Lang. Program, (Edited by M.S. Paterson), pp. 400-413,
Springer-Verlag, New York, (1990).

5. W.E. Red, Minimum distances for robot task simulation, Robotiea 1, 231-238, (1983).
6. J.E. Bobrow, A direct minimization approach for obtaining the distance between convex polyhedra, Interna-

tional Journal o] Robotics Research 8, 65-76, (1989).
7. M. Lin, Efficient Collision Detection]or Animation and Robotics, Ph.D. Thesis, University of California at

Berkeley, (1993).
8. B. Llanas, M. Fern~,ndez de Sevilla and V. Felid, A quasilocal descent-projection method for finding the

distance between two convex polyhedra, (submitted).
9. E.G. Gilbert and C.-P. Foo, Computing the distance between general convex objects in three-dimensionai

space, IEEE Transactions on Robotics and Automation 6 (1), 53-61, (1990).
10. E. Gilbert, D.W. Johnson and S.S. Keerthi, A fast procedure for computing the distance between complex

objects in three-dimensional space, LE.E.E. Journal of Robotics and Automation 4, 193-203, (1988).
11. J. Klosowski, M. Held, J. Mitchell, H. Sowizral and K. Zikan, Efficient collision detection using bounding

volume hierarchies of k-DOPs, IEEE Trans. on Visualization and Computer Graphics 4 (1), 21-36, (1998).
12. S. Fujishige and P. Zhan, A dual algorithm for finding a nearest pair of points in two polytopes, J. of the

Operations Research Society of Japan 35, 353-365, (1992).
13. K. Sekitani and Y. Yamamoto, A recursive algorithm for finding the minimum norm point in a polytope and

a pair of closest points in two polytopes 61, 233-249, (1993).

Iterative Algorithm 983

14. P.J. Laurent, Un algorithme dual pour le calcul de la distance entre deux convexes, In Optimization and
Optimal Control, (Edited by A. Dold and B. Eckmann), pp. 202-228, Springer-Verlag, New York, (1974).

15. H. Brezis, Analyse Fonctionelle, Masson, (1983).
16. E. Zeidler, Nonlinear Functional Analysis and its Applications, Volume 1: Fixed-Point Theorems, Springer-

Verlag, (1986).
17. Ph. Wolfe, Finding the nearest point in a polytope, Mathematical Programming 11, 128-149, (1976).
18. H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM

Review 38 (3), 367-426, (1996).
19. B. Llanas and C. Moreno, Finding the projection on a polytope: An iterative method, Computers Math.

Applic. 32 (8), 33-39, (1996).
20. B. He and J. Stoer, Solution of projection problems over polytopes, Numerische Mathematik 61 (1), 73-90,

(1992).
21. G. Glaeser, Fast Algorithms for 3D-Graphics, Springer-Verlag, (1994).
22. B. Llanas and M. Fern~.ndez de Sevilla, Una versidn no recursiva del algoritmo de Sekitani-Yamamoto para

encontrar la distancia entre dos poliedros, Sistema de Teleoperacidn basado en Realidad Virtual, Research
Report, Comunidad AutSnoma de Madrid, (1996).

23. S. Cameron, A comparison of two fast algorithms for computing the distance between convex polyhedra,
IEEE Transactions on Robotics and Automation 4, 915-920, (1997).

