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A b s t r a c t - - W e  present an algorithm for finding a nearest pair of points in two convex sets of R n, 
and therefore, their distance. The algorithm is based on the fixed-point theory of nonexpansive 
operators on a Hilbert space. Its practical implementation requires a fast projection algorithm. We 
introduce such a procedure for convex polyhedra. This algorithm effects a local search in the faces 
using visibility as a guide for finding the global minimum. After studying the convergence of both 
algorithms, we detail computer experiments on polyhedra (projection and distance). In the case of 
distances, these experiments show a sublinear time complexity relative to the total number of vertices. 
© 2000 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

The efficient computation of distances between two bodies is a crucial element of many path 

planners in robotics and other applications. As polyhedra are good models of real objects, fast 

methods for computing the distance between them are necessary. 

Most of the algorithms proposed to this date, the fastest ones included, have a time complexity 

linear or superlinear (in relation to the sum of vertices of both polyhedra). This implies that  

their performance for polyhedra having a great number of faces (for example, in advanced virtual 

reality simulations [1]) can be poor. 

We can classify most of the known (nonrandomized) algorithms according to the dimension n 
and the type of sets they handle. 

• n = 2 .  
- Algorithms for finding the distance between planar polygons have been studied in 

[2,3]. 
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• n = 3 .  

- Polyhedra. (Intersection of a finite number of closed half spaces.) 
* Methods based on a hierarchical decomposition of the polyhedra as proposed 

in [4]. 
* Methods based on an exhaustive computation of the distance between all the 

pairs of faces of both polyhedra (brute force method) [5]. 
* Methods based on a sequence of constrained minimizations [6]. 
* Local methods that  only process a subset of every polyhedron [7,8]. 

- General Sets .  Gilbert et al. [9] have generalized the algorithm presented in [10] to the 
case of objects with curved boundary. This problem is also studied in [7]. Related 
collision detection problem methods which use bounding volume hierarchies ("BV- 
trees") are described in Ill]. 

• n a r b i t r a r y  
- Polytopes.  (Intersection of a finite number of closed half spaces.) 

* Methods based on a descent procedure which works on the distance between 
elementary polytopes contained in the convex sets [10]. 

* Methods based on duality [12]. 
* Local Methods [13]. 

- General  Sets .  An algorithm for the case of convex sets defined as the intersection of 
an infinite number of closed half spaces was studied in [14]. 

In Section 2 of this article, we give the theoretic foundation of an iterative algorithm for finding 
a nearest pair of points in two convex, bounded, and closed subsets of R n. We will call it "swap" 
algorithm (SA). This method differs from those cited above. To be practical, it must use a fast 
algorithm for projecting points onto a convex set of R n. 

In Section 3, we introduce such a fast projection algorithm onto a convex polyhedron. This 
algorithm performs a local search over the faces visible from the point to be projected. Con- 
vergence to the nearest face is proved. From now on, we denote this algorithm by "local search 
algorithm based in faces" (LSABF). 

In Section 4, we present numerical experiments on a wide variety of polyhedra, including large 
ones (more than 1000 faces). 

The experiments show that  LSABF is a fast projection procedure. If we combine it with SA, 
we get an algorithm for finding the distance between polyhedra which has a sublinear behavior. 

2. THE "SWAP" A L G O R I T H M  

From now on, R ~ will denote the Euclidean n-space. 
Let 7) and Q be two convex, bounded, and closed sets in R n. Our problem is to find a point 

a E 7) and other point b E Q such that  

d(a, b) = x~nd(x ,y )  _ d(P ,  •). (1) 
yEQ 

(d(., .) denotes the Euclidean distance.) 

LEMMA 1. Let 7) and Q be convex,  bounded,  and closed subsets o f  R n and ~rp and vQ pro jec t ion  

operators on 7) and Q~, respec t ivdy .  

(a) I f  a 6 7) is such that there exis ts  b 6 Q such tha t  d(a, b) = d(P, Q), then  a is a fLxed 

po in t  o f  the  operator: Ir~, o ~rQ : 7 ) --* 7). 

(b) C o n v e r s e l y , / f a  6 7) is a f ixed po in t  of~r~, o ~rQ, then d(a,~rQ(a)) = d(7 ~, Q). 

PROOF a. By (1), 7rQ(a) = b and 7rp(b) = a. So we have 

~rp(IrQ(a)) = Ir~,(b) = a. 
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PROOF b. We have to prove that  

d(a,~rQ(a)) < d(x ,y) ,  Vx E 7 ~, Vy E Q, 

note tha t  for arbitrary x E P and y e Q, 

Ix - y[2 = Ix - a + a - ~TQ(a) + zr•(a) - y[2 

= I x - a + zrQ(a) - y]2 + [a - 7rQ(a)[ 2 + 2(x - a) . (a  - 7rQ(a)) (2) 

+ 2(~rQ(a) - y ) . (a  - zrQ (a)). 

The  hypothesis lrv [lrQ (a)] = a implies that  

(x - a) . (a  - 7rQ(a)) > 0, Yx E P. (3) 

Also, since 7rQ(a) is the projection of a onto Q, 

(lrQ(a) - y ) . (a  - 7r@(a)) > 0, Vy E Q. (4) 

From (2)-(4), we have 

[ x - y [ > [ a - ~ r Q ( a ) [ ,  V x E P ,  V y E  Q. 1 

From now on, we shall use the notation zrpQ - Irp o ~r~2. A fixed point of this operator can be 
found by means of the following algorithm (we give a FORTRAN 90-like pseudocode). 

S w a p  A l g o r i t h m  (SA) 

Step 1: We choose x0 E 7 ~, the stopping criterion (EPS) 

and t E (0, 1) 
Step 2: Xn+l -- t xn + (1 - t) ~rp Q(xn) 
Step 3: i f  [Xn+l - xn[ < EPS t h e n  

go t o  Step 4 
else  

X n = X n . b l  

go to  Step 2 
e n d i f  

Step 4: xn is an approximation to a and 7rQ(xn) 
is an approximation to b (STOP) 

LEMMA 2. ~rpQ : P --+ 7 ~ is a nonexpansive  operator. 

PROOF. The projection operator onto a closed convex set of a Hilbert space is nonexpansive [15], 
therefore, 

< < I x -  x'l 

for all x, x '  6 P.  | 

THEOREM 1. Tile swap algorithm (SA)  converges to a point  a E 7 p such that  a and b --- r e ( a  ) 
verify expression (1). 

PROOF. From the theorem of Browder, G6hde and Kirk [16, pp. 478-479], and Lemma 2, we can 
conclude that  the set of fixed points of the operator 7rpQ is a nonempty, closed, and convex set. 

We can now apply the following result [16, p. 481]. 
Let T : M C H -* H be a nonexpansive operator on a set M in a real Hilbert space H,  M 

being nonempty, convex, bounded, and closed. Then, for a fixed t E (0, 1), the iterative sequence 

Xn+l ~--- (1 - t) T x n  + t xn  

converges weakly to a fixed point of T. 
Finally, we use the fact that  in a Hilbert space of finite dimension strong and weak convergence 

are equivalent [15, p. 36]. Then we apply the second part of Lemma 1. | 
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3. A FAST M E T H O D  FOR P R O J E C T I N G  A 
P O I N T  ON A C O N V E X  POLYHEDRON:  THE 

LOCAL SEARCH A L G O R I T H M  B A S E D  ON FACES 

The computation of the projection of a point onto a subset of R ~ has practical importance in 
many applications: obstacle avoidance algorithms based on potential functions, pattern recogni- 
tion, image reconstruction (computerized tomography) , . . . .  

In addition to the methods that  find a nearest pair of points in two sets, the following algorithms 
for solving this problem have been described in the following literature: 

1. methods based on the inequality of Wolfe that  use techniques inspired by linear program- 
ming [17]; 

2. other iterative methods [18-20]; 
3. exhaustive computation of the distance of the point to the faces of the polyhedron (brute 

force). 

To apply SA, we need a fast algorithm for projecting a point p on a convex polyhedron. In this 
section, we introduce a local search procedure which can be used. This algorithm only examines 
the distance of selected faces of the polyhedron to the point p. Local descent along visible faces 
is used to find the point nearest to p. 

3.1. T h e  Loca l  Search  A l g o r i t h m  

In this section, we introduce an algorithm for solving the projection problem. Its convergence 
will be a consequence of the following fact (Corollary 1): a local minimum of d(A,b) on a 
polyhedron face visible from b is, in fact, the global minimum. 

To prove this, we need some definitions. 
R n will denote the Euclidean n-space and . the usual dot product. A closed segment in R 3 is 

defined by 
[ a , b ]=  { x e R 3 / x = a + t ( b - a ) ,  r e ( O ,  1)} .  

Let (A, hA) be an oriented polygon that  forms a polyhedral face of P.  The unit vector nA is 
supposed to be directed towards the exterior of P. We shall say that  the face (A, hA) is visible 
from b if for any a E A we have 

(a  - b ) .nA _< O. 

Let us denote by Vis (b) the set of faces of 79 which are visible from b. 
The following lemma implies that  the search of the nearest face to b need only consider faces 

visible from b. 

LEMMA 3. If  p is the projection of a point b (external to 7 9) on 79, then p belongs to a face of 79 
visible from b. 

PROOF. This result is a particular case of the following lemma. 

LEMMA 4. Let b be a point external to the convex polyhedron 79 and let a E 79. The intersection 
point c of the segment [a, b] with the boundary 079, which is nearest to b, has the following 
property. 

There exists at least one face (A, n) E F(P) ,  such that 

• c e A ,  
• bc.n _< 0 (A is visible from b). 

PROOF. We have that  

~' = {x / x.ni <_ c~, i = 1 . . . .  , m}, 

O'P = {x ~ 79 /2 i / x.n~ = c~} 

x E [a, b] can be expressed as x = a + t(b - a) with t e [0, 1]. 
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Now consider the following auxiliary functions: 

hi(t) = [ a + t ( b -  a)].ni - ci, i = 1 , . . . , m .  

Since b is external to 79: h i ( l )  > 0 for i = 1 , . . . ,  k (where 0 < k < m, renumbering faces if 
necessary). 

Since a E 79, we have hi(0) < 0 for i = 1 , . . . ,  m. 
For i = 1 , . . . ,  k, let t~ E [0, 1] be a value of t for which hi(ti) = O. 
Let to = mini=l ..... k{ti}. Then there exists at least one index s (1 < s < k) such that  hs(to) = 0 

and hi(to) <_ O, Vi  = 1, . . .  ,m.  Therefore, we put 

Subtracting the formulae 

and 

c = a ÷ to (b - a) E 079. 

hs(to) = c.n,  - c8 = 0 

h s ( 1 )  = b . n s  - c8 > 0, 

we find (c - b).ns < 0. 1 

Let F(79) denote the set of oriented polygons that  form the faces of F(79). If A E F(79), let 
N ( A )  denote the set of faces of 79 which have a point or an edge in common with A excluding A 
itself. The  number of elements of N ( A )  will be called NA .  

L o c a l  S e a r c h  A l g o r i t h m  B a s e d  on  Faces  ( L S A B F )  

Step 1: Choose A0 E F(79) such that  A0 E Vis (b) 
Compute d(A0, b). 

A = A0 
Step 2: do  k = 1, N A  (Ak E N ( A ) )  

i f  (Ak E Vis (b) and d(Ak, b) < d(A, b)) t h e n  

A = Ak 
go t o  the start  of Step 2 

e n d i f  
e n d d o  

Step 3: d(79, b) = d(A, b) (STOP) 

Before showing the convergence of this algorithm, we need to derive some technical results. 
Let  b be a point external to 79 and let x be a point belonging to 79. We shall use the auxiliary 

function f ,  defined as follows. 
Define I - [x, b] M 07 9, and let f map x to the point of I closest to b. 
Using Lemma 4, the following properties of f can be verified. 

1. f is continuous on 79. 
2. If x E Vis (b), then f ( x )  = x. 
3. For all x E 79, we have that  f ( x )  E Vis (b). 
4. If x E 079 and x • Vis (b), then f (x )  ~ x. 

LEMMA 5. I / a , b  E R n and [a I < Ib[, then 

l a + t ( b  - a ) l  < Ibl, for all t E [0, 1). 

PROOF. By the properties of the norm 

I a + t ( b -  a)I = la(1 - t) + b t  I < la(1 - t)l + IbtI 

= l a l ( 1 -  t) + IbI t < IbI(1 - t) + IbI t = Ibl . 
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LEMMA 6. Let b be a point external to 7 ) and let A • Vis (b). Suppose that there exists 
A' • F(P) such that d(A', b) < d(A, b). Then there exists A • N(A) M Vis (b) such that 
d(A, b) < d(A, b). 

PROOF. Let a and a t be the points of A and A t, respectively, nearest to b. By hypothesis 
d(a t, b) < d(a, b). Using Lemma 5, we see that  for all x • (a, at], 

d (x ,b)  < d(a ,b) .  (5) 

The continuity of the auxiliary function f ,  implies that  given e > 0 there exists 5 > 0 such that 

f[B~(a) ¢17 )] C Be(f[a]) M 0P.  

(We denote by B~(c) the open ball of radius "y centered in c.) 
Since a belongs to a visible face, this second property of f implies that  f ( a )  = a. Therefore, 

S[B~(a) riP] c Be(a) hOP, 

that  is, if we take x • (a,a ']  M (B~(a) M P),  then f (x )  • Be(a) M OP (arbitrarily close to a). 
Furthermore, from (5) we have 

d ( f ( x ) , b )  < d(x ,b)  < d(a ,b) .  

Therefore, there exist points on the boundary OP arbitrarily close to the face A which belong 
to visible faces (t]) which are nearer to b than A. I 

COROLLARY l,  Suppose that for all ffi • N(A) N Vis (b), we have d(A, b) >_ d(A, b). Then for 
all A' • F(P),  we have 

d(A', b) ~ d(A, b). 

PROOF. This statement is equivalent to Lemma 6. I 

The above results imply we can formulate the following convergence theorem. 

THEOREM 2. LSABF yields the global minimum of d(A, b) in a finite number of steps. 

PROOF. Corollary 1 gives a stopping criterion. Since the number of faces is finite, and the 
distance is strictly decreased in every iteration, the algorithm obtains the nearest face in a finite 
number of steps. Moreover, Lemma 6 shows that we need only consider faces visible from b in 
the descent procedure. I 

3.2. A Criter ion for Choice  of  Init ial  Face 

The following result gives a simple and fast procedure for choice of initial face in LSABF 
(a face visible from b and near it). 

LEMMA 7. Let "P be a polyhedron and V(P) the set of its N vertices. If  c, b • R n (c ~ b) and 
v0 • V(P) is such that 

vi.cb < v0.cb, (6) 

for all vi • V(P),  and 
(c - b).(v0 - b) > 0, 

then there exists a face A E F ( P )  such that 

• v 0 E A ,  
• A e Vis (b). 

(7) 
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PROOF. We shall prove that  [b, v0) N :P = 0. Then we need only apply Lemma 4. 
d =_ (cb/Icbl) and k =- v0.d. 

Then (6) can be written as vi .d  _< k. Define the following half spaces: 

H + = ( x / x . d  > k} ,  

H -  = {x /x .d  < k}. 

Define 

Obviously, H + A H -  = 0. We have that  7 ~ C H - ,  in effect, if p • P then p = ~-~/N=I O~iV i 

(being ai  ~_ O, i = 1 , . . . ,  N, and ~-~N 1 ai  = 1), therefore, 

N N 

p.d  = Z ~ i v i . d  <_ k Z e~i = k. 
i=1 i=1 

We shall prove now that  [b, v0) C H +, in effect, from (7) we have that  b .d  > k .  As 

[b, vo) = {x /x  = b + (Vo - b)t, t e [0, 1)}. 

Then, if x • [b, v0), we have 

x .d  = b.d(1 - t) + v0.dt > k(1 - t) + kt  = k. 

In practice, we take c as the barycenter or the center of the bounding box of P [21] the sides 
of which are parallel to the coordinate axes. 

Then, when the point b is far enough of the polyhedron, inequality (7) is always fulfilled and 
Lemma 7 guarantees the existence of a visible face with v0 as vertex. 

For some polyhedra, the procedure can fail in some points b near 7 ~. The following algorithm 
keeps in mind this possibility, performing an exhaustive search when it is necessary. 

We denote by N F  the number of faces of the polyhedron, and by vii ,  v2i, v3i the three first 
vertices (counter-clockwise) of the face Ai.  

A l g o r i t h m  for F ind ing  an Init ial  Visible  Face 

1. Compute c (barycenter or center of the bounding box) 
2. i f  (b = c) t h e n  

b is inside ~v: "the projection is b" 
end i f  

3.Compute m = minv~eV(r) vi .cb 

(we call mi  - vi.cb) 
4. d o i = l , N  

if  (mi  = m a n d  there exist A • F ( P )  such that  
A • Vis (b) a n d  v~ • A) t h e n  

A0 = A 
go to  LSABF 

endi f  

e n d d o  
b is inside 9:  "the projection is b" (STOP) 

(STOP) 

e n d d o  
5. d o i = l , N F  

N~ = (v2~ - v i i )  x (v3~ - v ~ )  

i f  ((vii - b).N~ < 0) t h e n  
A0 = A 
go to  LSABF 

endi f  
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4.  E X P E R I M E N T S  I N  T H R E E  D I M E N S I O N S  

To calculate projections onto different types of polyhedra of increasing degree of complexity, 

we have used LSABF and have applied SA to calculate the distance between several examples of 

polyhedra. 

LSABF and SA were programmed using Watcom C, and the computer  experiments have been 

realized using a Pentium (133 Mhz) processor. 

Experiments  are shown in Figures 1-4. They are as follows. 

• Tetrahedron A: four vertices and four faces. 
• Parallelepiped B: eight vertices and six faces. 

• Icosahedron g: 12 vertices and 20 faces. 

• Pyramid  7): 21 vertices and 21 faces. 

• Polyhedron g: 34 vertices and 40 faces. 

• Polyhedron ~-: 72 vertices and 80 faces. 

• Polyhedron G: 409 vertices and 409 faces. 
• Polyhedron 7-(: 1152 vertices and 1122 faces. 

4.1. A l g o r i t h m  L S A B F  

* The algorithm needs the following topological da ta  for every polyhedron processed. 
- Number  of vertices and faces of 7 ). 

- Number  and description of the vertices of every face. 

- Number  and description of the faces adjacent to every face. 

- Number  and description of the faces intersecting in every vertex. 

I t  also uses the coordinates of the vertices of the polyhedron. 

• Compute  t ime for a given polyhedron and a given point is calculated as the average of 

1000 repetitions of the experiment and expressed in milliseconds. The  t ime tha t  appears  

in Table 1 is averaged from six positions of the point to be projected on a fixed polyhedron. 

• We compare LSABF with two standard algorithms: the brute force method (BF), which 
calculates the distance to the point of every face of the polyhedron and selects the min- 
imum one and a second procedure, a nonrecursive version of the Sekitani-Yamamoto 

algorithm [22]. Both these procedures were tests on the same examples than LSABF. The  
results can be seen in Table 1. 

• Polyhedra are found in [22]. 

The table below uses the following. 

• N: Number  of vertices of the polyhedron. 
• NDP: Mean number of distances point-polygon calculated by LSABF. 
• TLSABF: CPU t ime of the LSABF. 

• TBF:  CPU time of the brute force algorithm. 
• TSYNR: CPU time of the nonrecursive Sekitani-Yamamoto algorithm. 

Table 1. Projection experiments (time × 10 -3 s). 

Polyhedron N NDP TLSABF TBF TSYNR 

.A 4 4 0.14 0.07 0.08 

B 8 5 0.22 0.14 0.19 
C 12 13 0.68 0.55 0.36 
T) 21 21 1.33 0.94 0.64 
g 34 11 0.83 1.31 1.24 
.T" 72 13 1.19 2.83 3.19 
G 409 36 4.10 14.71 50.24 
7-I 1152 25 5.45 33.71 - 
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Figure 1. Tetrahedron .4 and Parallelepiped B. 

Figure 2. Icosahedron C and Pyramid T). 

Figure 3. Polyhedron £ and Polyhedron .T'. 

Figure 4. Polyhedron G and Polyhedron 7-/. 

4.2. Algorithm SA 

SA (based on LSABF) was applied to several pairs of polyhedra. 
have the following. 

In these experiments, we 

We take as initial point (x0) of the algorithm, the center of the bounding box of P [21], 
the sides of which are parallel to the coordinate axes. 

Performance times are calculated for two given polyhedra in a fixed position as the mean 
of 100 repetitions of every experiment and expressed in milliseconds. Table 2 shows t ime 
which is the average of the time obtained considering four different relative positions (and 
distances) of the two polyhedra. 
We have compared our "swap" algorithm with two alternative techniques. One is the 
algorithm proposed by Red in [5]. This procedure calculates the distance between all the 
pairs of faces of both polyhedra and selects the minimum one. The second technique is the 
nonrecursive version of the Sekitani-Yamamoto algorithm mentioned above. Both cases 
were tested on the same examples that  $A and the results can be seen in Table 2. 
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The  table below uses the following notation. 

• 7 ~, Q: Polyhedra considered in each experiment. 

• N: Sum of the vertices of the polyhedra. 
• PREC: I computed  d i s t a n c e  - e xa c t  d i s t a n c e  I. 

• t:  Parameter  of the "swap" algorithm. 

• NISA: Number  of iterations of the "swap" algorithm. 

• EPS: Stopping criterion. 

• TSA: CPU t ime of the "swap" algorithm. 

• TRED: CPU t ime of the Red algorithm. 

• TSYNR: CPU t ime of the nonrecursive algorithm of Sekitani-Yamamoto. 

In all experiments, we have used the following values of the constants: PREC < 10 -6,  t = 0, 
EPS = 10 -6. 

Table 2. Distance experiments 

Polyhedra 

~4,A 
B,B 

) 

C,C 
/3,Y) 

~-,~- 

g,g 

7-/,7-/ 

N NISA TSA 

8 2 0.55 

16 2 0.70 
24 2 1.93 

29 8 8.65 

68 2 2.48 

144 2 3.55 

818 2 11.70 
2304 2 25.65 

(time X (10-3s)). 

TRED TSYNR 

3.27 0.60 

10.30 2.75 

83.20 6.75 

35.98 12.10 
434.00 269.00 

1876.00 5538.00 

54389.25 
298892.50 

Mean Time 

1. 

0. 

0. 

0. 

0. 

/ 

// 

P 

5 i0 15 20 25 30 

Figure 5. Low complexity. 

5. C O N C L U D I N G  R E M A R K S  

5.1. O b s e r v e d  P e r f o r m a n c e  o f  L S A B F  

The results of Table 1 can be shown as a graph of input complexity versus runtime. Here ' input  
complexity '  is simply the number of vertices of the polyhedron considered. In the figures, the 
thick line represents the nonrecursive Seki tani-¥amamoto algorithm and the thin line represents 
the brute  force method.  The  dashed line represents LSABF. Time is measured in milliseconds. 

This graph indicates tha t  for low-complexity problems, the nonrecursive Sekitani-Yamamoto 
algorithm performs best. 
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In contrast, for problems of mean-high complexity the best performance is attained by LSABF 
(Figure 6). Its empirically measured time is O ( v ~ )  while the compute time of a brute force 
approach is O(N). 

Mean Time 

50 

40 

30 

20 

i0 

N 
200 400 600 800 i000 

Figure 6. Mean-high complexity. 

Mean Time 01 / /  
] / /  
100 

5 

N 
i0 20 30 40 50 60 

Figure 7. Low complexity. 

5.2. E x p e r i m e n t a l  Pe r fo rmance  of  Algor i thm SA 

The results of Table 2 can be shown as a graph of complexity versus runtime. The complexity 
N is expressed as the sum of the number of vertices of both polyhedra. The time is the average 
of the experiments performed for every pair of polyhedra. The thick line in the figures represents 
the nonrecursive Sekitani-Yamamoto algorithm and the thin line represents the Red method. The 
dashed line represents the "swap" algorithm. The unit of time is hundredths of a millisecond. 
The optimal value found for the parameter t is 0. The number of iterations increases if t increases. 

For low-complexity problems, the "swap" algorithm has better performance than the Red and 
nonrecursive Sekitani-Yamamoto algorithms (Figure 7). 

For problems of mean-high complexity (Figure 8), we have found for SA an empirical com- 
putational time of O(N ~) where 1/2 < e < 1. The computational time of the Red method is 
O(N~). 
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Figure 8. Mean-high complexity. 

Indirect  compar ison with other  methods  is difficult due to  several factors: different computers ,  

different p rogramming  languages, and opera t ing systems. On  the  other  hand,  the  complexi ty  of 

the polyhedra  studied by other  authors  has generally been smaller t han  those presented here. 

~ l t h o u g h  no firm conclusion should be drawn from such limited experiments,  the  a lgori thms 

studied exhibit  sublinear empirical computa t iona l  complexity. Some other  algori thms [8,12,13,23], 

with this p roper ty  have been reported.  SA converges very rapidly (two iterations) in mos t  of  the  

examples studied. This opens a way to  get faster algori thms if project ion methods  faster t h a n  

L S A B F  can be found. 

W h e n  deformable polyhedra  move, the  topological da ta  given at the  s tar t  do not  change. 

A drawback of  SA is the  increase of the  number  of i terations tha t  can occur  when the  po lyhedra  

are very near and the points  of  min imum distance lie in almost  parallel faces (Table 2 (B + Z))). 

This  can be avoided by demanding  less precision or using a different s t ra tegy  in applying SA [8]. 
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