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When sensing its environment, an agent often receives information that only partially
describes the current state of affairs. The agent then attempts to predict what it has not
sensed, by using other pieces of information available through its sensors. Machine learning
techniques can naturally aid this task, by providing the agent with the rules to be used for
making these predictions. For this to happen, however, learning algorithms need to be
developed that can deal with missing information in the learning examples in a principled
manner, and without the need for external supervision. We investigate this problem herein.
We show how the Probably Approximately Correct semantics can be extended to deal with
missing information during both the learning and the evaluation phase. Learning examples
are drawn from some underlying probability distribution, but parts of them are hidden
before being passed to the learner. The goal is to learn rules that can accurately recover
information hidden in these learning examples. We show that for this to be done, one
should first dispense the requirement that rules should always make definite predictions;
“don’t know” is sometimes necessitated. On the other hand, such abstentions should not be
done freely, but only when sufficient information is not present for definite predictions to
be made. Under this premise, we show that to accurately recover missing information, it
suffices to learn rules that are highly consistent, i.e., rules that simply do not contradict
the agent’s sensory inputs. It is established that high consistency implies a somewhat
discounted accuracy, and that this discount is, in some defined sense, unavoidable, and
depends on how adversarially information is hidden in the learning examples.
Within our proposed learning model we prove that any PAC learnable class of monotone or
read-once formulas is also learnable from incomplete learning examples. By contrast, we
prove that parities and monotone-term 1-decision lists, which are properly PAC learnable,
are not properly learnable under the new learning model. In the process of establishing our
positive and negative results, we re-derive some basic PAC learnability machinery, such as
Occam’s Razor, and reductions between learning tasks. We finally consider a special case
of learning from partial learning examples, where some prior bias exists on the manner in
which information is hidden, and show how this provides a unified view of many previous
learning models that deal with missing information.
We suggest that the proposed learning model goes beyond a simple extension of
supervised learning to the case of incomplete learning examples. The principled and
general treatment of missing information during learning, we argue, allows an agent to
employ learning entirely autonomously, without relying on the presence of an external
teacher, as is the case in supervised learning. We call our learning model autodidactic to
emphasize the explicit disassociation of this model from any form of external supervision.
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1. Introduction

It can be argued that a central aspect of a fully autonomous agent is the ability to learn the rules that govern its envi-
ronment, without any form of external supervision. An autonomous agent senses its environment and obtains information
that is often incomplete, which serves, then, as input to the learning process. Such settings necessitate, thus, the use of
learning algorithms that can deal with such incomplete learning examples.

In this work we propose a framework within which learning from incomplete learning examples can be formally studied.
For concreteness, our framework can be viewed as an extension of the Probably Approximately Correct semantics [28]. Our
goal is to show that it is possible to learn rules that accurately predict information missing in an agent’s sensory readings,
and that these rules can be obtained efficiently, and be accompanied by formal PAC-like guarantees, irrespectively of how
information is hidden in the learning examples available during the learning and evaluation phases. We note, however, and
point out throughout this work, that the problem of learning from incomplete learning examples goes beyond learning
classification rules as in the original PAC model. We view the results of this work as a first step towards the more ambitious
goal of devising learning algorithms that can identify more general rules.

Our exposition starts in Section 2, where the problem of learning from incomplete information is put into context,
as the problem underlying the process of scientific discovery: identifying the structure of some underlying reality, given
only partial appearances of that reality. We continue to show how the PAC semantics can be extended to this effect.
As in the PAC model, learning examples are drawn independently at random from some underlying probability distribu-
tion. Unlike the PAC model, these examples are never directly accessible by an agent. Instead, some arbitrary stochastic
process hides parts of these examples, giving rise to what we call partial observations. These observations are then given
to the agent, both during the learning phase as a means to facilitate learning, and during the evaluation phase as the
input on which learned rules are to be applied to make predictions, and against which these predictions are to be
tested.

Due to lack of complete information during the evaluation phase, we allow learned rules to make “don’t know” pre-
dictions, but only when the rules cannot be unambiguously evaluated on a given observation. Under this provision, we
define a rule to be consistent with an observation if the rule’s prediction does not directly contradict what is stated in
the observation. In particular, if the observation does not offer any information on some target attribute, then any pre-
diction is consistent. Learning is successful if highly consistent rules can be obtained efficiently in the relevant learning
parameters.

We then consider a stronger notion of learnability, that of deriving rules that make predictions in a manner
not only consistent with an observation, but accurate with the underlying example. Thus, even if the observation
does not offer any information on some target attribute, the prediction may be accurate or not depending on what
the hidden underlying value of the target attribute is. We show that this more stringent notion of learnability is
information-theoretically unattainable when information is hidden adversarially in observations. We introduce a metric
called concealment to capture the extent of this adversity, and show that consistency, accuracy, and concealment are
tied together in a natural manner: consistency implies accuracy discounted by some factor determined by the conceal-
ment. This allows us to focus on the conceptually simpler notion of consistent learnability for the remaining of this
work.

Section 3 discusses some of the choices we have made in our learning model, and contrasts them against existing work in
Statistical Analysis and Learning Theory. Three main aspects are discussed: (i) when are “don’t know” predictions allowed,
and what does it mean to predict “don’t know”; (ii) to what extent is autonomy possible when learning; and (iii) how
much regularity is assumed in the way information is missing in learning examples. This discussion shows, in particular,
that unlike most previous work, our learning framework does without the assumption of an external teacher. We call the
learning framework autodidactic in recognition of this property.

The two subsequent sections provide positive and negative learnability results for autodidactic learnability. Section 4
establishes that certain machinery available in the PAC model applies also, in some form, in the context of autodidactic
learnability. In particular, Occam’s Razor [4] applies unchanged as in PAC learnability, while reductions between learning
tasks [23] can be formalized in a way that accommodates the more stringent requirements that need to be met for auto-
didactic learnability. Using reductions we then establish that any PAC learnable concept class that contains only monotone
or read-once formulas can also be learned autodidactically. Hence, in a broad set of domains, the lack of complete infor-
mation does not render learnability any harder. By contrast, Section 5 establishes that incomplete information may in some
cases diminish learnability. We show that, although they are properly PAC learnable, the concept classes of parities and
monotone-term 1-decision lists are not properly learnable in the autodidactic model, unless RP= NP.

The case where information is not hidden completely arbitrarily in learning examples is examined in Section 6. We argue,
and demonstrate, that depending on how structured such information hiding is, the semantics of missing information may
be significantly altered, to the extent that missing information may, even, make learnability easier than in the case of
complete information. Related learning models are then presented along with the assumptions they make on this structure.

We conclude in Section 7 with a list of open problems, and some pointers to future work.
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2. Autodidactic learnability

The dichotomy between appearance and reality is inherent in the process of scientific discovery. Appearances are partial
depictions of the reality that governs our world, and through such appearances scientists attempt to derive a model, or
hypothesis, of the structure present in the underlying reality. The hypothesis is then applied on these appearances to make
predictions about unobserved properties of the world. In physics, for instance, these predictions might concern spatially
or temporally distant properties of the world, for which readings cannot be obtained through our sensors. Central in this
process seem to be certain premises:

(i) Structure exists in the underlying reality of the environment, and not necessarily in the way that sensors hide informa-
tion about this reality to give rise to appearances.

(ii) This underlying structure cannot be learned if it remains perpetually inaccessible through sensing.
(iii) Any attempt to discover this structure should rely solely on the partial information of the structure that is provided

through the sensors, without any external supervision during the learning phase.
(iv) Developed hypotheses aim to model the structure of the underlying reality, and not necessarily the way that sensors

hide information about this reality.
(v) A hypothesis about the underlying structure is applied to predict some of the missing information not present in

appearances, given only whatever other partial information is available in appearances.

Machine learning research seems to have largely ignored these premises. In the words of McCarthy [18]:

Our senses give us only partial information about the objects present in our vicinity. In particular, vision gives only a 2-dimensional
view of 3-dimensional objects. Our visual systems and our brains use sense information to learn about the 3-dimensional objects.

Also humans and dogs can represent objects that are not presently visible. (The evidence about dogs is that if a thrown ball
goes out of sight, the dog will look for it.) Humans can infer the existence of objects that are out of sight, and human learning from
experience often involves learning about the hidden reality behind some phenomenon. This is what science is usually about, but it
occurs in common sense reasoning as well.

Machine learning research, to my knowledge, has so far involved classifying appearances, and has not involved inferring reality
behind experience. Classifying experience is inadequate as a model of human learning and also inadequate for robotic applications.
[. . .] Another way of looking at it is that we use observations to recognize patterns in the world, not just patterns in the observations.

We propose next a learning model that makes explicit the dichotomy between appearance and reality, and respects the
premises set forth above. We argue that such a model goes beyond simply being able to cope with missing information in
learning examples. Instead, it shows that despite the use of supervised learning techniques, it is possible for such learning
to be carried entirely autonomously — as is the case in scientific discovery — without the supervision of some external
teacher. We call the new learning model autodidactic in recognition of this fact. We discuss other conceptual merits of
autodidactic learning throughout this work.

2.1. Learning from partial observations

In the PAC learning model [28], an agent is given access to learning examples randomly drawn from an arbitrary, but
fixed, probability distribution D over binary vectors exm ∈ {0,1}|A| , for some fixed set of binary attributes A. The examples
are structured, in the sense that the value of a designated target attribute xt is determined by some unknown, but fixed,
function ϕ ∈ C of the remaining attributes A \ {xt}; the function ϕ is known as the target concept, and the class C of all
possible target concepts is known as the concept class. During an initial learning phase an agent is expected to efficiently
produce a hypothesis function h ∈ H that is highly accurate with respect to D, in the sense that it predicts with high
probability the value of the target attribute xt in evaluation examples drawn from D, given access to the values of only the
remaining attributes A \ {xt}; the class H of all possible hypotheses is known as the hypothesis class.

Implicit in the definition of the PAC learning model is the premise that an agent has access to complete information on
the values of attributes. Each example contains sufficient information to determine the value of the target attribute xt ; the
primary challenge of the learning task, thus, is that of forming a hypothesis of how to determine the value of the target
attribute given the values of the remaining attributes. In most realistic domains, however, an agent is burdened with an
additional challenge: some of the information necessary to determine the value of the target attribute is missing in the
examples. The agent has, therefore, access only to partial depictions of the learning examples, and this is the case during
both the learning and the evaluation phase. These partial depictions of the learning examples we shall call observations.
Although in the general case observations could also be noisy with respect to the learning examples, we shall not consider
such a scenario in this work, and we will henceforth assume that observations are only incomplete.

Observations are ternary vectors obs ∈ {0,1,∗}|A| , with the value ∗ indicating that the corresponding attribute is un-
observed or “don’t know”. The mapping from examples to observations happens through a masking process, a (stochastic)
process mask : {0,1}|A| → {0,1,∗}|A| aimed to model an agent’s sensors. The masking process mask induces a probability
distribution mask(exm) over observations that may depend on the example exm; we write obs← mask(exm) to denote
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that observation obs is drawn from this probability distribution with non-zero probability. The noiseless nature of sensing
amounts to insisting that whenever obs← mask(exm) and for every attribute xi ∈ A, obs[i] ∈ {exm[i],∗}, where obs[i]
and exm[i] correspond, respectively, to the value of the i-th attribute according to obs and exm. An observation obs that
is an image of an example exm under some masking process is said to mask exm. Each attribute xi ∈ A in an observation
obs with obs[i] = ∗ is said to be masked in obs.

Masking processes are, in general, many-to-many mappings from examples to observations. Given, for instance, the
examples exm1 = 0010110 and exm2 = 0100100, and the observations obs1 = 0 ∗ 10 ∗ ∗0, obs2 = ∗10 ∗ ∗00, and
obs3 = 0 ∗ ∗01 ∗ ∗, one masking process mask is the following: on input exm1 it returns obs1 with probability 0.3 and
obs3 with probability 0.7; on input exm2 it returns obs2 with probability 0.6 and obs3 with probability 0.4. The one-to-
many nature of masking processes is intended to capture the stochastic nature of sensing. An agent attempting to sense the
same reality twice (e.g., exm1) may end up with two different appearances (e.g., obs1 and obs3). On the other hand, their
many-to-one nature is intended to capture the loss of information due to an agent’s limited sensing abilities. Two distinct
realities (e.g., exm1 and exm2) may appear to be the same (e.g., obs3) to an agent; no indication is given in the obtained
appearance as to which reality was the one that was actually sensed.

The loss of information due to masking happens during both the learning and the evaluation phase. Thus, the agent never
directly observes the learning examples, but has access only to observations that mask the learning examples. Yet, as in the
PAC model, the agent is expected to produce a hypothesis for predicting the value of a target attribute. We emphasize
that the hypothesis is a function over boolean attributes as is the case in the PAC model. In some sense, the agent is
trying to encode in this hypothesis knowledge about the structure of the underlying examples — not knowledge about the
structure of observations and the way the masking process hides information. Indeed, the central premise of this work is
that information in observations is hidden in an arbitrary manner. The central question, then, is whether the structure of
the underlying examples can still be learned in the PAC sense given such arbitrarily selected partial information. The PAC
model can be viewed as the special case of our model when observations do not contain ∗ values.

To formalize the way that structure is present in examples (i.e., the requirement that the value of the target attribute is
determined by some function of the remaining attributes), but also the way that predictions are made through a hypothesis
function, we follow the PAC model and employ boolean formulas: syntactic objects over the set of attributes A, associated
with the typical semantics for evaluating them given a complete assignment of values to their attributes. Given a formula
ϕ and an example exm, we write val(ϕ | exm) to denote the value of ϕ on exm. Unlike the PAC semantics, however, it
is necessary to define also the value val(ϕ | obs) of a formula ϕ on an observation obs, since in the general case the
agent will make predictions by evaluating a learned hypothesis on such a partial observation. Note that it is possible for
val(ϕ | obs) to have a value even if obs does not offer {0,1} values for all the attributes in ϕ . On the other hand, if
val(ϕ | obs) remains undetermined due to missing information, then we define val(ϕ | obs) to equal ∗, to indicate a
“don’t know” value for ϕ on obs.

Note that evaluating some formula on some observation cannot necessarily be done efficiently, even if the formula is
efficiently evaluatable on every example. Indeed, evaluating 3-CNF formulas on the observation in which all attributes are
masked is as hard as deciding whether 3-CNF formulas have a satisfying assignment; an NP-complete problem [8]. Most
definitions and results that we later state do not rely on actually evaluating formulas (efficiently); hence, they are not
conditioned on the formulas involved being efficiently evaluatable. When formulas need to be efficiently evaluatable for
a result to hold, this is stated explicitly in the conditions of the result. It remains open whether formulas that are not
efficiently evaluatable on observations, but are so on examples, can be learned in the sense defined later on.

We proceed now to define how (a particular type of) structure is encoded in examples.

Definition 2.1 (Supported concept classes). A target attribute xt ∈ A is expressed by a formula ϕ over A \ {xt} w.r.t. a proba-
bility distribution D if

Pr
[
val(ϕ | exm) = exm[t] | exm← D

] = 1.

A probability distribution D supports a concept class C of formulas over A \ {xt} for a target attribute xt ∈ A if there exists
a formula c ∈ C such that xt is expressed by c w.r.t. D; c is the target concept for xt under D.

We view the values of all attributes as being drawn from some probability distribution D. We regard this approach
as corresponding more closely to what conceptually happens in certain domains, than the approach typically taken by
supervised learning models: The attributes that encode the state of affairs are not a priori distinguished into target and
non-target attributes; they are all equivalent, and nature, as captured by the probability distribution D, assigns a value to
each of these attributes. An agent’s sensors may then mask some of the attributes without distinguishing any one of them.
The distinction of a target attribute, and the assumption that this attribute is somehow correlated with the rest of the
attributes serve only as premises of a particular type of learning task, and such a correlation is imposed by appropriately
restricting D. Indeed, under this view it is possible to easily generalize Definition 2.1 to encode other types of correlation
between attributes, like, for instance, that the number of attributes in A that are assigned the value 1 in an example
exm ← D is divisible by 3 with probability 0.95. Although we find these types of correlation intriguing, and meriting
further investigation, we focus in this work on the type of correlation stated in Definition 2.1.
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To complete the description of our learning model, we need to define when a prediction of a formula is consistent with
respect to an observation. In other words, we wish to determine when the two sources of information available to an agent,
its sensor readings, and the conclusions it draws through (learned) rules, agree with each other. We define a formula ϕ
to have a consistency conflict with a target attribute xt w.r.t. an observation obs if {val(ϕ | obs),obs[t]} = {0,1}; the
value of the formula and the observed value of the target attribute are both {0,1}, and differ from each other. In all other
cases, either the two suggested {0,1} values agree, or at least one of the two suggested values is “don’t know”. We extend
the notion of consistency to apply to a probability distribution over observations. This probability distribution we denote by
mask(D) to indicate that it is induced by the probability distribution D from which examples are drawn, and the masking
process mask through which these examples are mapped to observations.

Definition 2.2 (Degree of consistency). A formula ϕ over A \ {xt} is (1 − ε)-consistent with a target attribute xt ∈ A under a
probability distribution D and a masking process mask if

Pr
[{
val(ϕ | obs),obs[t]} = {0,1} | exm← D;obs← mask(exm)

]
� ε.

We now state formally the learning requirements under the autodidactic learning model that we consider. In what
follows we will denote a learning task over A by a triple 〈xt , C, H〉, where xt is a target attribute in A, C is a concept class
of formulas over A \ {xt}, and H a hypothesis class of formulas over A \ {xt}.

Definition 2.3 (Consistent learnability). An algorithm L is a consistent learner for a learning task 〈xt , C, H〉 over A if for
every probability distribution D supporting C for xt , every masking process mask, every real number δ ∈ (0,1], and every
real number ε ∈ (0,1], algorithm L has the following property: given access to A, 〈xt , C, H〉, δ, ε, and an oracle returning
observations drawn from mask(D), algorithm L runs in time polynomial in 1/δ, 1/ε, |A|, and the size of the target concept
for xt under D, and returns, with probability 1− δ, a hypothesis h ∈ H that is (1−ε)-consistent with xt under D and mask.
The concept class C over A \ {xt} is consistently learnable on the target attribute xt ∈ A by the hypothesis class H over
A \ {xt} if there exists a consistent learner for 〈xt , C, H〉 over A.

The definition of consistent learnability follows closely the PAC semantics, with the added requirement that learnability
succeeds for an arbitrary masking process mask, and not only when mask is the identity mapping (as is the case under
the PAC semantics). Although the added requirement might at first seem too arduous, recall that exactly in those situations
where learnability becomes harder due to missing information, formulas may make “don’t know” predictions more freely,
avoiding thus consistency conflicts. We emphasize, however, that “don’t know” predictions cannot be abused, since a learner
may not produce a hypothesis that arbitrarily chooses to abstain from making predictions. It is the masking process that
gives a formula the ability to make “don’t know” predictions, and this is beyond the control of the learner. We later contrast
our approach to other models of learning where hypotheses actively choose when to abstain from making predictions. In such
models, one is required to introduce a second metric for measuring success of a hypothesis: its degree of completeness; the
probability with which a {0,1} prediction is made.

2.2. Are accurate predictions possible?

With a complete proposal for a learning model, we now revisit our original motivation for developing a model for
learning from partial observations: to recover missing information in the incomplete sensory inputs of an agent. Does
our definition of consistent learnability address this goal? Recall that a highly consistent formula is guaranteed to make
predictions that are consistent with randomly drawn observations. In particular, in those cases where the problem of missing
information is interesting, namely when the target attribute is masked in an observation, the consistency guarantee seems
to offer essentially nothing, since any prediction is consistent with such an observation. What we need, therefore, is a notion
of predictive correctness, not with respect to the observations, but with respect to the underlying examples: an agent wishes
to be able to match the unobserved reality behind the appearances of its environment.

We define a formula ϕ to have an accuracy conflict with a target attribute xt w.r.t. an observation obs obtained from
an example exm if {val(ϕ | obs),exm[t]} = {0,1}; the value of the formula and the actual value of the target attribute
are both {0,1}, and differ from each other. In all other cases, either the two suggested {0,1} values agree, or the value
of the formula is “don’t know”. As in the case of consistency, we extend the notion of accuracy to apply to a probability
distribution over observations.

Definition 2.4 (Degree of accuracy). A formula ϕ over A \ {xt} is (1 − ε)-accurate w.r.t. a target attribute xt ∈ A under a
probability distribution D and a masking process mask if

Pr
[{
val(ϕ | obs),exm[t]} = {0,1} | exm← D;obs← mask(exm)

]
� ε.

It is now natural to ask that our definition of learnability be revised so that highly accurate (instead of highly consistent)
hypotheses be returned. A naive revision would, however, lead to a vacuous definition, where learnability would be trivially
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unattainable. Indeed, when the masking process is such that the target attribute and only the target attribute is masked in
all observations, then clearly the learning algorithm has no access to any information about the value of the target attribute.
Yet, any formula over the remaining attributes will be forced to make a {0,1} prediction. It is, then, impossible to determine
which one amongst two formulas has a higher degree of accuracy, as both formulas will always make {0,1} predictions,
but no feedback will be provided as to which, if any, of the two formulas makes a correct prediction. This compromises
learnability even in domains where the concept and hypothesis classes contain only two formulas.

Theorem 2.1 (Statistical indistinguishability in adversarial settings). Consider a target attribute xt ∈ A, a class F of formulas over
A \ {xt}, and two formulas ϕ1,ϕ2 ∈ F such that ϕ1 /∈ {ϕ2,ϕ2}. For every real number ε ∈ [0,1], there exist probability distributions
D1, D2 , and a masking process mask0 , such that:

(i) ϕ1 is 1-accurate and ϕ2 is not more than (1 − ε)-accurate, both w.r.t. xt under D1 and mask0;
(ii) ϕ1 is not more than (1 − ε)-accurate and ϕ2 is 1-accurate, both w.r.t. xt under D2 and mask0;

(iii) mask0(D1) = mask0(D2), and no attribute in A \ {xt} is masked in any drawn observation.

Proof. Let S be the set of truth-assignments to the attributes A \ {xt} for which ϕ1,ϕ2 are assigned different truth-values.
Fix any probability distribution D over all truth-assignments to the attributes A \ {xt} that assigns probability ε to the
set S , and probability 1 − ε to the complement of S; since ϕ1 /∈ {ϕ2,ϕ2}, both S and its complement are non-empty.
For each i ∈ {1,2}, extend D to the probability distribution Di over examples from {0,1}|A| , by completing the truth-
assignments to the attributes A \ {xt} so as to assign the induced truth-value of ϕi to the target attribute xt . Choose mask0
to be the masking process that maps each example exm to an observation obs in which xt is masked if and only if
val(ϕ1 | exm) �= val(ϕ2 | exm), and no attribute in A \ {xt} is masked. By construction of mask0, for each example exm
and each observation obs← mask0(exm), it holds that xt is masked in obs if and only if val(ϕ1 | obs) �= val(ϕ2 | obs).
By construction of D1, D2, and mask0, all three conditions of the claim follow. �

It becomes evident that although masking processes may arbitrarily hide information, completely ignoring the extent to
which information is hidden may prevent us from attaining a meaningful and useful notion of learnability. Given a moment’s
thought, this is a natural conclusion. Structure exists in examples, yet a learner attempts to learn this structure given access
only to observations. Thus, learnability becomes possible only if the masking process allows some of the structure of the
underlying examples to carry over to the observations. In other words, we expect the observations to occasionally provide
some feedback, according to the structure of the underlying examples, as to whether a candidate hypothesis is indeed highly
accurate. The extent to which such feedback is provided depends on the masking process, and is quantified next.

Feedback is necessary only when a candidate hypothesis errs, i.e., has an accuracy conflict with the target attribute.
Recall that an agent is not necessarily aware of an accuracy conflict. By way of illustration, if the target attribute x3 is
masked in an observation 10 ∗ 1010, then ϕ has an accuracy conflict with the observation depending on which of the
examples 1001010,1011010 the observation was obtained from; the agent is oblivious to the choice of example, and
hence to the existence of an accuracy conflict. In case of such accuracy conflicts, we expect that with some probability the
value of the target attribute will be made known to the agent, so that the conflict might be detected. That is, we expect
that any particular reality will not be indefinitely sensed by an agent without the agent realizing that it is making a wrong
prediction.

Definition 2.5 (Degree of concealment). A masking process mask is (1 − η)-concealing for a target attribute xt ∈ A w.r.t. a
class F of formulas over A \ {xt} if η ∈ [0,1] is the minimum value of

Pr
[
obs[t] �= ∗ | obs← mask(exm);{val(ϕ | obs),exm[t]} = {0,1}]

across all choices of an example exm ∈ {0,1}|A| , and a formula ϕ ∈ F .1

The concealment degree in Definition 2.5 is a worst-case bound, across all possible examples, and all possible formulas
used for making predictions. Each pair of a formula ϕ and an example exm imposes a constraint on η, and implies a lower
bound on the concealment degree 1 − η of the masking process mask. Note that a probability distribution D may assign
zero probability to the examples that “bring out” the adversarial nature of a masking process, making it, thus, look less
adversarial than in the worst case. Note, also, that the concealment degree of a masking process may vary arbitrarily across
target attributes.

As an illustration, consider a particular domain in which the target attribute is x6, one of the formulas is ϕ = (x2 ∨ x4) ⊕
x7, where ⊕ denotes the “exclusive or” binary operator, and one of the examples is exm= 0110011. The masking process

1 A conditional probability is undefined when the event in its condition occurs with probability 0. In such cases, we define the conditional probability
to equal 1. In the context of Definition 2.5, this choice implies that cases in which a formula does not have an accuracy conflict with the target attribute
w.r.t. any of the observations obtained from a particular example, can be safely ignored, since such cases do not constrain the concealment degree of the
masking process in any way.
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Table 1
Observations obtained from the example exm = 0110011 by applying a particular masking process mask,
and the corresponding predictions of formula ϕ = (x2 ∨ x4) ⊕ x7 for the target attribute x6.

obs← mask(exm) Prediction for x6

observation probability val(ϕ | obs) accuracy conflict

0 ∗ 1 0 ∗ 1 1 0.27 0 yes
∗ 1 ∗ 0 ∗ 1 1 0.15 0 yes
∗ 1 1 ∗ 0 ∗ 1 0.33 0 yes
0 ∗ 1 0 ∗ 1 ∗ 0.04 ∗ no
0 ∗ 1 ∗ 0 ∗ 1 0.21 ∗ no

mask is such that exm is mapped to observations as shown in Table 1. According to mask, the observations that give rise
to accuracy conflicts are drawn with a total probability of 0.75. Among those, the observations in which the target attribute
x6 is not masked are drawn with a total probability of 0.42. By the law of conditional probabilities, it follows that

Pr
[
obs[t] �= ∗ | obs← mask(exm);{val(ϕ | obs),exm[t]} = {0,1}] = 0.42

0.75
= 0.56.

Definition 2.5 now implies that η � 0.56, and the masking process mask is at least 0.44-concealing. Additional formulas
and examples may impose extra bounds on η, which, in turn, may increase the concealment degree of mask. If none of
the extra bounds on η is smaller than 0.56, then the definition of η would imply that the masking process mask is exactly
0.44-concealing for the particular target attribute x6.

2.3. Going from consistency to accuracy

Given a crisp metric of the degree of feedback that a masking process provides to an agent, it is easy to see that the
negative learnability result of Theorem 2.1 holds precisely because it appeals to a 1-concealing masking process. As in
other learning models were some parameterized resource renders learnability impossible when the parameter riches some
relevant limit (e.g., in the case of random classification noise [1], learnability becomes impossible when the noise rate
becomes 1/2), we could extend the definition of learnability to allow resources that grow inversely with the distance of this
parameter from its limit. In the case of the concealment degree the limit is 1, and η defines the distance of the concealment
degree of a (1−η)-concealing masking process mask from this limit. Hence, we could revise the definition of learnability so
that highly accurate (instead of highly consistent) hypotheses be returned, but at the same time allow additional resources
that grow with 1/η to account for the adversarial nature with which mask may hide information. A learner expected to
return a (1 − ε)-accurate hypothesis could then exploit the additional resources in order to obtain a (1 − η · ε)-consistent
hypothesis, and then appeal to the following result to establish that this hypothesis is, in fact, (1 − ε)-accurate. The proof
of the next result builds on the natural realization that a prediction is consistent if and only if it is either accurate or the
target attribute is masked. Informally, then, in set-theoretic terms it holds that consistency = accuracy ∪ concealment.

Theorem 2.2 (The relation of consistency and accuracy). Consider a target attribute xt ∈ A, and a class F of formulas over A \ {xt}.
For every real number η ∈ [0,1], and every masking process mask that is (1 − η)-concealing for xt w.r.t. F , the following conditions
hold:

(i) for every probability distribution D, and every formula ϕ ∈ F , it holds that: ϕ is (1 − ε)-accurate w.r.t. xt under D and mask for
some real number ε ∈ [0,1], if ϕ is (1 − η · ε)-consistent with xt under D and mask, and η �= 0;

(ii) there exists a probability distribution D0 , and a formula ϕ0 ∈ F , such that: ϕ0 is (1 − ε)-accurate w.r.t. xt under D0 and mask
for some real number ε ∈ [0,1], only if ϕ0 is (1 − η · ε)-consistent with xt under D0 and mask.

Proof. For every formula ϕ ∈ F , every example exm ∈ {0,1}|A| , every observation obs ∈ {0,1,∗}|A| that masks exm,
and every probability distribution D, denote by Edr(exm,obs, D) the event that exm ← D and obs ← mask(exm), by
Ecc(ϕ,obs) the event that ϕ has a consistency conflict with xt w.r.t. obs, by Eac(ϕ,exm,obs) the event that ϕ has an
accuracy conflict with xt w.r.t. obs obtained from exm, and by Enm(obs) the event that xt is not masked in obs. Clearly,
the event Ecc(ϕ,obs) holds exactly when the events Eac(ϕ,exm,obs) and Enm(obs) hold simultaneously. In particular,
this is true even when exm and obs are restricted so that the event Edr(exm,obs, D) is true. Thus,

Pr
[
Ecc(ϕ,obs) | Edr(exm,obs, D)

] = Pr
[
Eac(ϕ,exm,obs) ∧ Enm(obs) | Edr(exm,obs, D)

]
.

From the law of conditional probabilities, the right hand side of the equation equals

Pr
[
Enm(obs) | Edr(exm,obs, D) ∧ Eac(ϕ,exm,obs)

] · Pr
[
Eac(ϕ,exm,obs) | Edr(exm,obs, D)

]
.

We proceed to derive bounds for the first term of the product above. In the first direction, Definition 2.5 implies that for
every example exm ∈ {0,1}|A| , and every formula ϕ ∈ F , it holds that:
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Pr
[
obs[t] �= ∗ | obs← mask(exm);{val(ϕ | obs),exm[t]} = {0,1}] � η.

Now, if exm is drawn from any given probability distribution D, the overall probability that obs[t] �= ∗ given that {val(ϕ |
obs),exm[t]} = {0,1} remains lower bounded by η. Thus,

Pr
[
Enm(obs) | Edr(exm,obs, D) ∧ Eac(ϕ,exm,obs)

]
� η. (1)

In the other direction, Definition 2.5 implies that there exists an example exm0 ∈ {0,1}|A| , and a formula ϕ0 ∈ F , such that:

Pr
[
obs[t] �= ∗ | obs← mask(exm0);

{
val(ϕ0 | obs),exm0[t]

} = {0,1}] � η.

Now, if exm0 is replaced with an example exm drawn from the probability distribution D0 that is defined so that it assigns
probability 1 to exm0 being drawn, the probability that obs[t] �= ∗ given that {val(ϕ0 | obs),exm[t]} = {0,1} remains
upper bounded by η. Thus,

Pr
[
Enm(obs) | Edr(exm,obs, D0) ∧ Eac(ϕ0,exm,obs)

]
� η. (2)

Finally, we proceed to establish that the conditions of the claim hold. For Condition (i), fix an arbitrary probability
distribution D, and an arbitrary formula ϕ ∈ F , and assume that ϕ is (1 − η · ε)-consistent with xt under D and mask for
some real number ε ∈ [0,1], and that η �= 0. Then, Pr[Ecc(ϕ,obs) | Edr(exm,obs, D)] � η · ε, or equivalently

Pr
[
Enm(obs) | Edr(exm,obs, D) ∧ Eac(ϕ,exm,obs)

] · Pr
[
Eac(ϕ,exm,obs) | Edr(exm,obs, D)

]
� η · ε.

Since η �= 0, Inequality (1) immediately implies that Pr[Eac(ϕ,exm,obs) | Edr(exm,obs, D)] � ε. Therefore ϕ is (1 − ε)-
accurate w.r.t. xt under D and mask.

For Condition (ii), consider the probability distribution D0, and the formula ϕ0 ∈ F , both as defined in the context of
Inequality (2), and assume that ϕ0 is (1 − ε)-accurate w.r.t. xt under D0 and mask for some real number ε ∈ [0,1]. Then,
Pr[Eac(ϕ0,exm,obs) | Edr(exm,obs, D0)] � ε. Inequality (2) immediately implies that

Pr
[
Enm(obs) | Edr(exm,obs, D0) ∧ Eac(ϕ0,exm,obs)

] · Pr
[
Eac(ϕ0,exm,obs) | Edr(exm,obs, D0)

]
� η · ε,

or equivalently Pr[Ecc(ϕ0,obs) | Edr(exm,obs, D0)] � η · ε. Therefore ϕ0 is (1 − η · ε)-consistent with xt under D0 and
mask. The claim follows. �

Condition (i) of Theorem 2.2 provides a formal implication from highly consistent hypotheses to highly accurate ones.
There is, however, a caveat to this implication. The degree of accuracy of the predictions is not necessarily as high as
their degree of consistency. Given a moment’s thought, this makes perfect sense. The requirement of making accurate
predictions is a stronger one as compared to that of making consistent predictions. In those cases that the target attribute
is not masked, accuracy conflicts and consistency conflicts are equivalent, whereas in those cases that the target attribute
is masked, consistency conflicts never occur, while accuracy conflicts are still possible. What is perhaps more intriguing is
the fact that the extent to which the degree of accuracy diminishes with respect to the degree of consistency, depends
on the degree of concealment of the masking process. Assuming that our sensors and physical world do not adversarially
hide information from us, one may interpret the above result as corroborating that the approach humans follow in using
consistent theories for recovering missing information in their appearances is a rational strategy.

The dependence of accuracy on the concealment degree explains also why it is possible in certain cases for the implica-
tion from consistency to accuracy to be violated. This happens exactly in those cases where the concealment degree is high,
and thus η is close to zero. Condition (ii) of Theorem 2.2 establishes that there exist domains in which certain formulas
with a high degree of consistency have a low degree of accuracy. At the same time, Condition (ii) suggests also that the use
of consistent hypotheses is, in the worst case, an optimal strategy for recovering missing information; in certain domains,
the bound on the degree of accuracy that Condition (i) guarantees for a highly consistent formula, is tight. Furthermore, this
optimality is guaranteed without any knowledge of the concealment degree, which, as we will later discuss in Section 3.2,
may be hard or even impossible to determine, for all but very simple masking processes.

Obtaining highly accurate hypotheses through highly consistent hypotheses (cf. Definition 2.3) is, thus, a valid and op-
timal, in the worst case, approach. Still, why should a direct approach of learning highly accurate hypotheses not be used
instead? The answer is simple. Consistency is a much more natural notion to work with, and avoids complications arising
from having to deal with the degree of concealment of a masking process. More importantly, a formula’s degree of con-
sistency can be reliably empirically estimated as the following simple result shows, while its degree of accuracy cannot (cf.
Theorem 2.1), as that would require access to the value of the target attribute even when the target attribute is masked in
observations.

Definition 2.6 (Degree of consistency (sample version)). A formula ϕ over A \ {xt} is (1 − ε)-consistent with a target attribute
xt ∈ A given a sample O of observations if ϕ has a consistency conflict with xt w.r.t. at most an ε fraction of the observa-
tions in O.
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Theorem 2.3 (Empirical estimability of consistency degree). Consider a target attribute xt ∈ A, a formula ϕ over A \ {xt}, a probability
distribution D, a masking process mask, and a sample O of observations drawn independently from mask(D). For every pair of real
numbers ε,γ ∈ [0,1], if ϕ is (1 − ε)-consistent with xt given O, then, with probability at least 1 − e−2|O|γ 2

, it holds that ϕ is
(1 − (ε + γ ))-consistent with xt under D and mask.

Proof. For each observation obsi ∈ O, let the random variable Xi be the indicator variable for the event Ecc(ϕ,obsi) that
ϕ has a consistency conflict with xt w.r.t. obsi ; by construction of O the random variables are independent. Define the
random variable X � |O|−1 · ∑|O|

i=1 Xi to be the mean of these random variables. By linearity of expectations, E[X] is the

mean |O|−1 · ∑|O|
i=1 E[Xi] of the expectations of these random variables. By standard Hoeffding concentration bounds [12],

the probability that |X − E[X]| > γ is at most e−2|O|γ 2
. Clearly, X is the fraction of the observations in O w.r.t. which ϕ has

a consistency conflict with xt , and therefore X � ε. By definition of the random variables, E[X] = E[X1] = Pr[Ecc(ϕ,obs1)];
thus ϕ is (1 − E[X])-consistent with xt under D and mask. Since X � ε, it follows that with probability 1 − e−2|O|γ 2

,
E[X] � ε + γ , as needed. �

Whether a formula’s degree of consistency can be reliably empirically estimated in an efficient manner is an orthogonal
issue, and depends on whether the formula can be evaluated efficiently on partial observations.

3. Discussion and related work

The problem of missing information in learning settings had been recognized early on in the literature. Valiant [28]
himself in the paper that introduced PAC learning had, in fact, considered some form of learning from partial observations.
Various frameworks developed since then have offered solutions to related problems. Within the Learning Theory commu-
nity, extensions of the PAC model have been proposed to deal, to varying degrees, with the problem of missing information.
Within the broader Machine Learning community the problem of dealing with missing information has received significant
attention, especially in devising practical solutions in real-world settings. Other communities within the area of Artificial
Intelligence and within Computer Science at large have also offered solutions to problems related to the manipulation of
incomplete data. Fields outside Computer Science have also dealt with the problem, especially within the area of Statistical
Analysis. It is beyond the scope of this work to do a full survey of the problems that have been examined and the solutions
that have been offered. In this section we will mostly focus on discussing work closely related to ours: extensions of the
PAC model that deal with missing information.

In the sequel we defend certain modelling choices within our framework. We then contrast the degree of concealment
as a measure of the degree of missing information to other standard metrics found in the Statistical Analysis literature. We
finally consider related PAC learning frameworks and discuss how those relate to autodidactic learning. We identify three
dimensions along which these frameworks may be compared and contrasted to each other and to autodidactic learning:
(i) the semantics of “don’t know” predictions, (ii) the degree of supervision while learning, and (iii) the regularity on how
information is hidden in observations.

3.1. Are “don’t know” predictions justified?

Our choices as to when “don’t know” predictions are considered justified, and as to how such predictions are accounted
for when measuring a formula’s degree of accuracy (cf. Definition 2.4), may raise certain objections. We discuss here three
classes of objections that we have identified.

A first objection relates to our choice of when “don’t know” predictions are allowed. Recall that a formula ϕ predicts ∗
on an observation obs0 if and only if val(ϕ | obs0) is undetermined. It could be argued that a “don’t know” prediction
might not be justified if, for instance, ϕ evaluates to 1 on the vast majority (but not all, since val(ϕ | obs0) is undefined)
of the examples masked by obs0; would it not be more reasonable to define the value of ϕ on obs0 to be 1 in this
case? Our answer is no. Just because the majority of the possible underlying examples exm of observation obs0 are such
that val(ϕ | exm) = 1, it does not follow that such examples will be drawn with high, or even non-zero, probability from
the underlying probability distribution D. That is, there is no way to exclude the eventuality that the agent’s environment
will supply the agent only with examples exm such that val(ϕ | exm) = 0, which would then completely undermine the
reason for choosing to define the value of ϕ on obs0 to be 1. Thus, determining the value of a formula on obs0 simply by
counting the number of examples masked by obs0 that exhibit a certain property is not meaningful.

Following the argument above, a refined version of the objection could be raised. Consider a probability distribution D
and a masking process mask such that

Pr
[
val(ϕ | exm) = 1 | exm← D;obs← mask(exm);obs= obs0

]
� 0.999;

that is, in those cases that the particular observation obs0 is drawn, formula ϕ evaluates to 1 on the underlying example
with overwhelming probability. This situation is often illustrated via a toy domain of observing birds, without, however,
observing whether the birds are penguins. In this domain the underlying probability distribution D is taken to be such that
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most observed birds are not penguins, and thus have the ability to fly. The question, then, is whether it would be more
reasonable to define the value of ϕ (the formula that we employ to make predictions on the ability of observed birds to fly)
on the observation obs0 of the bird Tweety, to be 1. Our answer remains no. There exists no theoretical justification as to
why a probability of 0.999, or any other probability for that matter, is high enough for a prediction of 1 to be made over
a “don’t know” prediction. It is easy to devise scenarios where it is preferable for an agent to predict “don’t know” and be
aware of this lack of certainty, rather than predicting a {0,1} value and risking a wrong prediction without knowing that
this is happening. In such scenarios it is preferable for a “don’t know” prediction to be made, for the lack of certainty to
be recorded, and only then for the “don’t know” prediction to be replaced with a {0,1} value by the agent’s deliberation
mechanism, in case such a value is believed to be likely true.

Suppose that we even subscribe to the view that for all practical purposes a probability of, say, at least 0.75 would
be appropriate for ϕ to predict 1, and a probability of, say, at most 0.25 would be appropriate for ϕ to predict 0; ϕ
would predict “don’t know” only in the remaining cases. That is, suppose that for some domains it is more preferable
to risk making a wrong prediction with a small probability, over making a “don’t know” prediction. This setting is still
not meaningful. An agent has no access to the underlying probability distribution D from which examples are drawn,
and thus the problem of determining the probability in question given only obs0 is generally impossible. That is, given
that val(ϕ | obs0) = ∗, it is not possible to estimate what the risk of making a wrong prediction is, and thus there
is no argument in favor of choosing to make a {0,1} prediction over the “don’t know” prediction that is suggested by
val(ϕ | obs0) = ∗.

A second objection relates to our choice of how to measure the degree of accuracy. Recall that the degree of accuracy of
a formula ϕ is the probability with which it predicts the correct underlying value of the target attribute, or it predicts “don’t
know”. It could be argued that the degree of accuracy should be computed with respect only to the {0,1} predictions made
by a formula, ignoring all “don’t know” predictions; that is, the degree of accuracy should be defined to be the percentage
of correct predictions among the {0,1} predictions. After all, would it not be more natural to account for the percentage of
“don’t know” predictions by introducing a second metric, call it the degree of completeness of a formula, that captures the
probability with which {0,1} predictions are made? We agree that this alternative approach does have an appeal. However,
we opted not to follow it for two main reasons:

(i) The degree of completeness 1 −ω of a formula, the degree of its accuracy 1 − ε under our proposed definition, and the
degree of its accuracy 1 − ε′ under the alternative definition discussed above, can be trivially derived from each other,
since ε′ = ε/(1 − ω);

(ii) While the alternative degree of accuracy would not be meaningful by itself without the associated degree of complete-
ness, our proposed degree of accuracy encompasses both metrics in one, building on the existence of a natural degree
of completeness for a formula, as this follows from the fact that formulas cannot choose to abstain from making {0,1}
predictions, and predict ∗ only when sufficient information is missing for such a “don’t know” prediction to be justified
(cf. the first objection).

A third objection relates to our choice of the requirements for learnability. Recall that we require the returned hypothesis
to be highly accurate only. It could be argued that among the formulas that achieve the same degree of accuracy, one should
prefer those formulas that have a higher degree of completeness (cf. the second objection), punishing, thus, the formulas
that predict “don’t know” more often. For instance, consider the case where the target concept is a parity ϕ that depends
on a strict subset of all the attributes A, and assume that the masking process is such that exactly one attribute is masked
in each observation. Clearly, the parity ϕ0 over all the attributes A will always predict “don’t know”, and will, thus, be
1-accurate. Note, however, that the parity ϕ is also 1-accurate, and does not always predict “don’t know” since the formula
ϕ might not depend on the attribute that is masked in some observations. Should we not prefer that a learning algorithm
returns ϕ instead of ϕ0? Yes, we should. However, we argue that the way to do this is not by imposing an additional
requirement on the learner, but by restricting the hypothesis class to capture our prior knowledge that the target concept
does not depend on all the attributes A. This would exclude the parity ϕ0 from being considered as a possible hypothesis.
Looking at the same argument from a different angle, if some target concept cannot be a priori excluded (and be removed
from the hypothesis class), then it is not possible during the learning phase to make a case for one hypothesis over another;
after all, the hypothesis that makes more “don’t know” predictions might be the actual target concept that the learner is
looking for.

It could, nonetheless, be argued that a learning algorithm need not necessarily identify the actual target concept, but any
hypothesis that is highly accurate. Among those that satisfy this requirement, then, would it not be meaningful to insist that
the returned hypothesis is as complete as possible? We agree that it would be desirable to obtain a hypothesis that achieves
the highest possible degree of completeness. At the same time, however, we note that insisting that this be the case in
general is not reasonable. Unlike the feedback that observations provide on how the accuracy of a hypothesis compares to
the optimal accuracy (which is achieved by the target concept), observations provide no indication on how the completeness
of a hypothesis compares to the optimal completeness (which is achieved by some hypothesis that might differ from the
target concept). In the general case, then, one cannot expect a learning algorithm to provide the same type of guarantees
for completeness as it does for accuracy. The characterization of domains for which certain completeness guarantees on the
learned hypothesis could be meaningfully insisted upon remains open.
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3.2. Qualitative characteristics of masking

In addition to their concealment degree, masking processes may be characterized based on qualitative criteria. We briefly
discuss next some representative types of masking processes along two dimensions that have been traditionally considered
in the Statistical Analysis literature [16,26]. In the first dimension, the pattern of masked attributes is considered: in a
univariate pattern only a single attribute is masked, or more generally, attributes in a fixed set are either all masked or all
non-masked; in an arbitrary pattern any of the attributes may be masked without any constraints.2 In the second dimension,
the nature of the dependence of the masked attributes on the underlying examples is considered: attributes are masked
completely at random (MCAR) if the masking of attributes is independent of the underlying example; attributes are masked at
random (MAR) if the masking of attributes may depend on the values of the non-masked attributes only; finally, attributes
are masked not at random (MNAR) if the masking of attributes depends on the values of the masked attributes in the
underlying example.

In the simplest scenario (Type 1: univariate pattern and MCAR), a masking process mask maps examples to observations
that mask only some target attribute xt , and this happens randomly with some fixed probability p, and independently of
the example being mapped. Since every accuracy conflict is observed with probability at least 1 − p, and since there are
accuracy conflicts that are observed with probability at most 1 − p, it follows that mask is p-concealing for the target
attribute xt w.r.t. any class F of formulas.

The preceding scenario captures situations where some component in an agent’s sensors randomly fails to provide a
reading. In a natural variation (Type 2: univariate pattern and MAR (possibly not MCAR)), a component does not provide a
reading in a manner possibly dependent on the readings of other components, but still independent of its own reading. The
degree of concealment of masking processes with such dependence properties may take any value in the range [0,1].

In a different scenario (Type 3: arbitrary pattern and MCAR with independent masking), each attribute xi is masked in
observations randomly with some fixed probability pi , which may differ across attributes. The attributes are still masked
independently of the underlying example, and of each other. For any given target attribute xt , formulas may now predict
“don’t know” on some observations, since the remaining attributes may also be masked. This fact seemingly makes the
calculation of the concealment degree of a Type 3 masking process mask for xt more involved than for a Type 1 masking
process. Yet, the independence of masking across attributes, imposed by the product distribution, implies that mask is, in
fact, pt -concealing for each particular target attribute xt w.r.t. any class F of formulas.

It is possible for attributes to be masked independently of the underlying example, but not from each other (Type 4:
arbitrary pattern and MCAR with correlated masking). For instance, a masking process could map examples to observations
so that with probability 0.23 the first half of the attributes are masked, with probability 0.36 those attributes indexed with
a prime number are masked, and with probability 0.41 attribute x4397 is masked. Due to the correlation, the evaluation of
the concealment degree of this masking process is far from straightforward, and depends on the target attribute xt , and the
class F of formulas.

In the most general case (Type 5: arbitrary pattern and MNAR), each attribute xi is masked in observations in a manner
that depends on its value in the underlying example. The human eyes exhibit such a behavior, by masking readings that are
very bright, through the closing of the eyelids. A survey, viewed as a sensor, also behaves thus, since the lack of response in
a question may be correlated with the answer. Masking processes of this type may hide information adversarially, and may
have a high degree of concealment.

Although not an exhaustive list of types, the aforementioned discussion illustrates that the qualitative characteristics of a
masking process are largely orthogonal to its degree of concealment, and to the ease with which the degree of concealment
may be calculated. To emphasize this point further, consider the deterministic masking process mask that maps examples
to observations so that some target attribute xt is either always or never masked, depending on whether the Goldbach
Conjecture is true or false under the standard axioms of mathematics. It is easy to see that attributes in observations are
masked completely at random in a univariate pattern, yet, the concealment degree of mask for xt w.r.t. any class F of
formulas is either 0 or 1. In fact, as far as we know, the truth of the Goldbach Conjecture might be independent of the
standard axioms of mathematics, in which case so would be the actual concealment degree of mask, meaning that it would
be impossible to mathematically prove what the concealment degree of mask is.

3.3. Semantics of “don’t know” predictions

Recall that in autodidactic learning, a formula makes a “don’t know” prediction if and only if insufficient information
exists in an observation for the formula to be evaluated — we have already defended this choice earlier in this section. Thus,
although a learner may return a hypothesis that abstains from making predictions in certain observations, the abstention
is beyond the control of the learner or the hypothesis, and depends only on the masking process and the observations to
which it gives rise.

2 A third possibility exists, that of a monotone pattern. This pattern appears in certain statistical studies where an attribute masked in some observation
remains so in all subsequent observations. Monotone patterns are not meaningful in the setting we consider, where observations are assumed to be drawn
independently from each other.
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An immediate alternative is to consider a setting where the learner returns a program, rather than a hypothesis. The
program receives as input an observation, and decides whether to predict “don’t know”, or a {0,1} value. In this setting,
the program may decide to predict “don’t know” even on observations that offer complete information on all attributes. It
is then evident that simply measuring how accurate the predictions of a program are is not sufficient, as the program may
simply choose to always abstain from making predictions. A second metric of completeness is needed, that measures how
often “don’t know” predictions are made. In a PAC-like model, then, one would expect not only that the degree of accuracy
of the program is sufficiently high, but that the same is true also for the degree of completeness of the program. Overall, we
would expect a learner to produce a program that makes only a few “don’t know” predictions, and only a few inaccurate
{0,1} predictions. Put differently, we may simply consider both “don’t know” predictions and inaccurate predictions as
wrong predictions, and then ask that the program produced by a learner makes only a few such wrong predictions. Rivest
and Sloan [24] consider a treatment of when “don’t know” predictions are made similar to that discussed above, in the
context of complete information.

In a second alternative, the learner is expected to produce a hypothesis (or program) that never predicts “don’t know”.
Thus, a {0,1} prediction is made even on observations that offer incomplete information for the value of the target attribute
to be uniquely determined. The PAC-like guarantees that one may expect in such a setting is to achieve a probability
of making an accurate prediction that is sufficiently close to the information-theoretically optimal probability that can
be achieved. Since the value of the target attribute does not follow deterministically from the available information, the
information-theoretically optimal probability is, in general, not 1. Such a treatment is followed, for instance, by Kearns and
Schapire [13].

A third alternative exists also, where the goal of a learner is to produce a hypothesis that given an observation predicts
whether the target attribute is masked in that observation. Thus, the hypothesis no longer attempts to accurately recover
the missing value of the target attribute. The learning goal is no longer that of identifying the structure that exists in the
underlying examples. Instead, the goal is that of identifying the structure that exists in the observations. In some sense,
then, in this setting one assumes that the way information is sensed by an agent, including what this information is and
what parts of it are missing, is structured. For instance, the target attribute might be masked if and only if certain other
attributes are masked. Note that this setting resembles the case of learning from complete information as in the original
PAC model, with the only difference that instead of learning a boolean formula over boolean attributes, one learns a ternary
formula over ternary attributes. This approach has been taken, for instance, in the work of Valiant [29] on Robust Logics,
and the work of Goldman et al. [9].

3.4. Degree of supervision while learning

The focus of the autodidactic learning model is to provide a framework for studying what can be learned in a truly
autonomous manner, where no teacher is ever present. This, in particular, implies that the value of the target attribute
might not be always available, not even during the learning phase. Varying the degree of availability of the value of the
target attribute gives rise to various settings that relate to certain learning models in the literature. The orthogonal issue of
how non-target attributes are masked is dealt with later on.

On the one extreme, one may consider a setting where the target attribute is always masked in the observations available
to a learner. According to the autodidactic learning model, in any non-trivial setting the degree of concealment of the
masking process that gives rise to these observations is 1. It is, thus, impossible to learn to predict the missing value of the
target attribute accurately (cf. Theorem 2.1).

Such a scenario may be contrasted to the unsupervised learning model, where it is also the case that the target attribute
is always masked. Despite this lack of information, in unsupervised learning one is expected to group the available obser-
vations in meaningful clusters that maximize some metric. The fundamental difference between the goal of unsupervised
learning and autodidactic learning is that the former does not attempt to uncover some hidden, but definite, reality about
the value of the target attribute. It simply partitions observations into clusters without associating each cluster with a value
for the target attribute. That is, even if the clusters are identified perfectly, i.e., all observations where the masked target
attribute has a hidden value of 0 are grouped together, it is impossible to know whether a given cluster corresponds to
the target attribute having a 0 value or a 1 value. Overall, then, the focus of unsupervised learning is different from that
of autodidactic learning, and the predictive guarantees that unsupervised learning offers are unrelated to those required for
the task of information recovery that is examined in this work.

On the other extreme, one may consider a setting where the target attribute is never masked in the observations available
to a learner. According to the autodidactic learning model, the degree of concealment of the masking process that gives rise
to these observations is 0. Thus, learning to predict the missing value of the target attribute accurately is not compromised,
and, in fact, accuracy degenerates to consistency.

The assumption that the value of the target attribute is available during the learning phase is that followed by super-
vised learning models. Similar to autodidactic learning, supervised learning seeks to identify how the value of the target
attribute is determined by the values of the rest of the attributes. The fundamental difference between the goal of super-
vised learning and autodidactic learning lies in the availability of the value of the target attribute during the evaluation
phase. In autodidactic learning, the observations during the evaluation phase come from the same source as the observa-
tions during the learning phase, namely the sensors of an agent. Thus, by assuming that the target attribute is never masked
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in observations during the learning phase, it follows that the same is true during the evaluation phase. This implication,
then, makes the goal of learning to predict the value of the target attribute superfluous; the value of the target attribute is
always observed, and need not be predicted. In supervised learning, on the other hand, it is valid to assume that the value
of the target attribute is not available during the evaluation phase; thus, the goal of learning to predict the value of the
target value is meaningful. The natural way to interpret the discrepancy between the learning and the evaluation phase in
supervised learning is to take the approach that the learner’s sensors never provide the agent with the value of the target
attribute. However, during the learning phase an external teacher supervises the learner and provides it with the values of
the target attribute. Overall, then, the premises of supervised learning are in contrast to our goal of developing a framework
for learning in a completely autonomous manner. Yet, this does not restrict us from using within the context of autodidactic
learning, techniques and algorithms that were developed for supervised learning models.

3.5. Regularity on how information is hidden

In a truly autonomous learning setting, where no teacher is available to offer the agent sufficient information to aid the
learning task, few or no assumptions can be made as to how information is hidden in observations when an agent senses
its environment. In autodidactic learning this is reflected by making no assumptions on what the masking process looks
like; in this respect, we follow the treatment of the PAC model, where no assumption is made on what the distribution over
examples is, and thus, on how nature chooses the states of the environment that will be sensed by the agent. Nonetheless, in
certain domains, most notably those involving a teacher, some regularity may be assumed on the sensors of an agent; more
precisely, the regularity might be a result of the combined workings of an agent’s sensors and a teacher that completes some
of the information missing in the agent’s sensory inputs (cf. the discussion on supervised learning earlier in this section). In
these teacher-based settings, thus, the regularity of how information is hidden often differs between the learning and the
evaluation phase. We examine next the assumptions that some learning models place on the regularity of how information
is hidden during the learning phase.

On the one extreme we have learning models where complete observations are assumed. The original PAC model is
often taken to fall in this category, as well as most of its variants in the Learning Theory literature (e.g., [24]). Despite this,
Valiant’s seminal paper that introduced the PAC model [28] also discusses learnability from partial observations, where a
certain benign type of missing information in observations is considered. It is assumed that information may be hidden on
non-target attributes as long as the non-masked attributes provide enough information for the target concept to evaluate to
1 when the value of the target attribute is 1 in an observation. So, examples in which the value of the target attribute is 1
are masked by observations in a manner that no essential information is lost, whereas examples in which the value of the
target attribute is 0 might be masked by arbitrary observations.

We are not aware of any other learning models beyond autodidactic learning that lie on the other end of the spectrum,
and make essentially no assumptions on how information is missing. Among the approaches that we are aware of, concep-
tually closer to autodidactic learning are learning models that assume some independence on the way the various attributes
are masked. Such is the case in the work of Decatur and Gennaro [6], where each attribute is masked in observations ran-
domly and independently of the underlying example and other attributes, with some fixed probability p that is constant
across attributes.

Other learning models make no assumptions on how information is hidden in observations for non-target attributes, but
restrict the target attribute is some way that depends on the masked non-target attributes. This is the case in the model of
learning from examples with unspecified attribute values [9], where the target attribute is masked if and only if the value
of the target concept cannot be determined by the values that are available on the rest of the attributes. This asymmetry is
best explained by the presence of a teacher that ensures that this constraint is met. The Robust Logics framework [29] does
not a priori impose a similar restriction on the masking of any particular target attribute, but it implicitly assumes that this
is the case for learnability to be possible. In both cases, a learner attempts to learn to predict when the value of the target
attribute is “don’t know” by learning the structure of observations, and by allowing hypotheses to condition their predictions
on whether the values of certain non-target attributes are “don’t know”. Contrast this to the autodidactic learning model
where the goal is to learn the structure of the underlying examples, and where the “don’t know” values of attributes cannot
be explicitly taken into account by hypotheses.

Schuurmans and Greiner [27] consider a model where the target attribute is never masked, and examine various cases
on how the remaining attributes are masked: arbitrarily, according to some product distribution (cf. Type 3 masking in
Section 3.2), or not masked at all. Ben-David and Dichterman [2] consider a different setting where k attributes are not
masked in each observation, but the choice of which attributes are not masked may change across observations, and can be
actively chosen by the learner.

A number of other models that on the surface consider complete observations, can be effectively viewed as dealing with
a special class of partial observations, where the masked attributes are those in a fixed unknown subset. If one attempts
then to compute the value of the target attribute as a function of the values of the non-masked attributes, then one can
interpret the lack of existence of a deterministic function as being due to either classification noise [1], the existence of only
a probabilistic function [13], or the existence of a deterministic function that is occasionally switched [3]. Fig. 1 shows how
missing information may manifest itself in these three ways.
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Manifestations of Missing Information Assume that the set of attributes required to fully describe an environ-
ment is partitioned into a set of hidden attributes A′ = {x′

1, x′
2, . . . , x′

|A′ |}, always assigned a “don’t know” value
in observations, and a set of known attributes A = {x1, x2, . . . , x|A|}, always assigned a {0,1} value in observa-

tions. Let obs ∈ {0,1}|A| be a complete observation, obs′ ∈ {0,1,∗}|A′∪A| be the unique corresponding partial
observation, and exm′ ∈ {0,1}|A′∪A| be an example among those masked by obs′ that is randomly drawn from
some underlying probability distribution. Then:

(i) When the target attribute xt ∈ A is expressed by the target concept ϕ′ ↔ ϕ , where ϕ′ is a formula over
A′ , and ϕ is a formula over A, then partial observations over A′ ∪ A may manifest themselves as complete
observations over A, with xt being noisily expressed by the manifested target concept ϕ . The hidden value of ϕ′
on exm′ determines whether xt obtains the value of the manifested target concept ϕ , or a noisy value, on the
manifested complete observation obs.

(ii) When the target attribute xt ∈ A is expressed by the target concept ϕ′ , where ϕ′ is a formula over A′ , then
partial observations over A′ ∪ A may manifest themselves as complete observations over A, with xt being ex-
pressed by a manifested probabilistic target concept that evaluates to 1 on obs with some probability pϕ′ (obs).
The probability with which the hidden value of ϕ′ is 1 on exm′ determines the probability pϕ′ (obs) with which
xt obtains the value 1 on the manifested complete observation obs.

(iii) When the target attribute xt ∈ A is expressed by the target concept
∧k

j=1(ϕ′
j → ϕ j), where {ϕ′

1,ϕ′
2, . . . ,ϕ′

k} is

a set of formulas over A′ exactly one of which evaluates to 1 on any given truth-assignment to the attributes A′ ,
and {ϕ1,ϕ2, . . . ,ϕk} is a set of formulas over A, then partial observations over A′ ∪ A may manifest themselves
as complete observations over A, with xt switching between being expressed by one of the manifested target
concepts in {ϕ1,ϕ2, . . . ,ϕk}. The unique formula ϕ′

j whose hidden value is 1 on exm′ determines the manifested
target concept ϕ j of which xt obtains the value on the manifested complete observation obs.

Fig. 1. Various ways in which missing information may manifest itself.

4. Learnability results and tools

We continue in this section to establish some learnability results in the autodidactic learning model. In the spirit of the
PAC model, which the autodidactic learning model extends, the goal is to establish that certain concept classes are learnable,
despite the arbitrary manner in which information is hidden in observations. Since our ultimate goal is that of predicting
accurately the value of the target attribute, we expect learned hypotheses to be highly accurate. By Theorem 2.2, then, it
suffices to learn highly consistent hypotheses.

Our learnability results are derived through existing PAC learning algorithms and techniques, which we extend to the
case of partial observability. As a motivating example of how this can be done, we consider the following algorithm for
properly learning monotone conjunctions under the PAC semantics.

Consider only those observations that assign the value 1 to the target attribute xt . Out of the attributes in A \{xt}, remove
those that are assigned the value 0 in any observation during the learning phase. Return the hypothesis comprised of
the conjunction of all remaining attributes.

This algorithm was proposed and was proved correct under the PAC semantics in Valiant’s seminal paper [28]. The idea
behind the algorithm is essentially the following: identify a hypothesis that agrees with all given learning examples, and
then appeal to an Occam’s Razor type of argument.

Consider the application of the algorithm above on partial observations. Clearly, observations obs with obs[t] = ∗ are
ignored. Since this is also the case for observations obs with obs[t] = 0, one could safely replace all ∗ values of the target
attribute xt in observations, with the value 0, without affecting the outcome of the algorithm. By an entirely analogous
argument, replacing all ∗ values of the attributes A \ {xt} in observations, with the value 1, would not affect the outcome of
the algorithm, since those attributes are ignored by the algorithm. Overall, there exist certain “default” values that may be
assigned to masked attributes so that the algorithm will face complete observations, without this affecting the algorithm’s
behavior. This suggests that it may be possible to obtain consistent learners by reducing the learning problem to one
over complete observations. It suggests also that the principle known as Occam’s Razor may apply to the case of partial
observations. Consequently, certain positive results and certain learnability techniques under the PAC semantics may be
lifted to the case of consistent learnability from partial observations.

4.1. Learnability through Occam’s Razor

Intuitively, one may see that the ideas behind Occam’s Razor [4] do not rely on the learning observations being com-
plete. For completeness of the presentation, we reproduce below one version of Occam’s Razor for the case of consistent
learnability. Although we do not actually employ this technique to derive our positive learnability results later on, some
of those results could have also been derived through an Occam’s Razor argument. It remains an interesting prospect to
derive novel autodidactic learnability results that cannot be established through the other techniques that we consider in
this section.
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Definition 4.1 (Compressibility). An algorithm L is a compressor for a learning task 〈xt , C, H〉 over A if there exists a real
number β ∈ [0,1) such that for every sample O of observations given which a formula c ∈ C is 1-consistent with xt ,
every real number δ ∈ (0,1], and every real number ε ∈ (0,1], algorithm L has the following property: given access to A,
〈xt , C, H〉, δ, ε, and O, algorithm L runs in time polynomial in 1/δ, 1/ε, |A|, size(c), and |O|, and returns, with probability
1 − δ, a hypothesis h ∈ H that is (1 − ε)-consistent with xt given O, and its size is linear in |O|β and polynomial in 1/δ,
1/ε, |A|, and size(c). The concept class C over A \ {xt} is compressible on the target attribute xt ∈ A by the hypothesis class
H over A \ {xt} if there exists a compressor for 〈xt , C, H〉 over A.

Unlike a consistent learner (cf. Definition 2.3), a compressor is not given oracle access to observations, but instead a
sample O of observations, with no mention of an underlying reality from which observations are obtained. The consistency
guarantees of the returned hypothesis are expected to be with respect to the given sample, while it is assumed that a
perfectly consistent formula from the concept class exists. The compressor is also allowed to expend resources that increase
with the size of O. The compression requirement is accounted for by insisting that the size of the returned hypothesis grows
only linearly in |O|β , for some non-negative constant β less than 1. We next establish that a compressor for a learning task
is essentially a consistent learner for that learning task.

Theorem 4.1 (Learning through compression). Consider a learning task 〈xt , C, H〉 over A. The concept class C is consistently learnable
on xt by H if the concept class C is compressible on xt by H.

Proof. Consider an algorithm L′ that is a compressor for the learning task 〈xt , C, H〉 over A. We construct an algorithm L
as follows. Fix a probability distribution D supporting C for xt , with c being the target concept for xt under D, a masking
process mask, a real number δ ∈ (0,1], and a real number ε ∈ (0,1]. Then, algorithm L, given access to A, 〈xt , C, H〉, δ, ε,
and an oracle returning observations drawn from mask(D), proceeds as follows:

Algorithm L draws a sample O of a number of observations (to be determined later) from the oracle, and simulates
algorithm L′ with input A, 〈xt , C, H〉, δ′ = δ/2, ε′ = ε/2, and O. When algorithm L′ returns a hypothesis h, algorithm L
returns the hypothesis h, and terminates.

We now prove that algorithm L is a consistent learner for the learning task 〈xt , C, H〉 over A. To do so, we prove that,
with probability 1 − δ, the returned hypothesis h is (1 − ε)-consistent with xt under D and mask, and that algorithm L
runs in time polynomial in 1/δ, 1/ε, |A|, and size(c).

By construction of algorithm L, the simulated algorithm L′ is given access to the sample O. Clearly, c ∈ C is 1-consistent
with xt given O. By the choice of δ′ and ε′ , and by Definition 4.1, there exists a constant β ∈ [0,1) such that algorithm L′
runs in time polynomial in 2/δ, 2/ε, |A|, size(c), and |O|, and returns, with probability 1 − δ/2, a hypothesis h ∈ H that is
(1 − ε/2)-consistent with xt given O, and its size is linear in |O|β and polynomial in 2/δ, 2/ε, |A|, and size(c).

Consider the set H′ of all formulas in H that are (1 − ε/2)-consistent with xt given O, and their size is linear in
|O|β and polynomial in 2/δ, 2/ε, |A|, and size(c). By Theorem 2.3, and setting γ = ε/2, each formula ϕ ∈ H′ is, except
with probability e−|O|ε2/2, such that ϕ is (1 − ε)-consistent with xt under D and mask. By a union bound, except with
probability |H′|e−|O|ε2/2, every formula ϕ ∈ H′ is (1 − ε)-consistent with xt under D and mask. Overall, algorithm L will
return, except with probability δ/2+|H′|e−|O|ε2/2, a hypothesis h ∈ H that is (1−ε)-consistent with xt under D and mask.

Since H′ contains formulas with size only linear in |O|β and polynomial in 2/δ, 2/ε, |A|, and size(c), it follows that
log |H′| � m|O|β · poly(2/δ,2/ε, |A|, size(c)), for some constant m. Thus, the probability that algorithm L will return a
hypothesis that is not (1 − ε)-consistent with xt under D and mask, is at most

δ/2 + 2m|O|β ·poly(2/δ,2/ε,|A|,size(c))e−|O|ε2/2 � δ/2 + 2−|O|β (|O|1−βε2/2−m·poly(2/δ,2/ε,|A|,size(c))).

Fixing |O| to be the least positive integer that exceeds the quantity

(
2

ε2

(
log

2

δ
+ m · poly

(
2/δ,2/ε, |A|, size(c)

))) 1
1−β

,

trivially implies that |O|β � 1, and also ensures that |O|1−βε2/2 − m · poly(1/δ,1/ε, |A|, size(c)) � log 2
δ

, making the prob-
ability that algorithm L will return a hypothesis that is not (1 − ε)-consistent with xt under D and mask, be at most δ, as
required.

The running time of algorithm L comprises the time required to draw the sample O of observations, and the time
required to simulate algorithm L′ . Both tasks are carried out in time polynomial in 2/δ, 2/ε, |A|, size(c), and |O|, and since
|O| is also polynomial in 1/δ, 1/ε, |A|, and size(c), the claim follows. �
4.2. Learnability through reductions

Efficiently reducing one problem to another is a natural approach to establish that solving the first problem is not harder
than solving the second one. Thinking of each input of a problem as corresponding to an instance of that problem, we term
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the mapping between inputs an instance mapping. Thinking of an output of a problem as corresponding to a solution of
an instance of that problem, we term the mapping between outputs a solution mapping. Such reductions have been widely
employed within the area of computational complexity, but also within the context of PAC learning [23], where the oracle
available to the first learner is transformed to an oracle to be made available to the second learner, while the returned
hypotheses of the second learner are transformed to hypotheses to be returned by the first learner. Other inputs required
during learning (e.g., δ, ε) may also be transformed through the instance mapping. In the case of reductions between
learning problems, a solution mapping is referred to as a hypothesis mapping.

The transformation of oracles in reductions in the context of PAC learning is relatively straightforward. Each complete
observation drawn from the original oracle is mapped to another complete observation, and the latter one is thought of
as being drawn from the transformed oracle. In the case of autodidactic learning, however, an oracle returns observations
drawn from some probability distribution mask1(D1), where mask1 is not necessarily the identity mapping. Transforming
this oracle to another one could, in principle, be done by simply mapping each drawn observation to another observation.
This, however, does not suffice. The induced probability distribution over the resulting observations needs to be express-
ible in the form mask2(D2), so that the resulting observations may be thought of as masking examples drawn from some
underlying distribution D2. The following definition captures this requirement. For generality, we define one-to-many reduc-
tions, where one learning problem may be transformed to many others. This generality is not invoked later on to obtain our
positive learnability results. In fact, we are unaware of any learnability results that were obtained through a one-to-many
reduction. Whether one-to-many reductions are more powerful than one-to-one reductions in the context of learnability
remains an interesting open problem.

Definition 4.2 (Reductions between learning tasks). A learning task 〈xt , C, H〉 over A is reducible to a set {〈x j
t , C j, H j〉 over

A j}r
j=1 of learning tasks if there exists a hypothesis mapping g : H1 × · · · × Hr → H, and for every j: 1 � j � r there

exists an instance mapping f j : {0,1,∗}|A| → {0,1,∗}|A j | , and for every probability distribution D supporting C for xt ,
with c being the target concept for xt under D, and every masking process mask, there exists a probability distribution D j

supporting C j for x j
t , with c j being the target concept for x j

t under D j , and a masking process mask j , such that:

(i) for every tuple 〈h1, . . . ,hr〉 ∈ H1 × · · · × Hr , and every observation obs ∈ {0,1,∗}|A| , it holds that g(〈h1, . . . ,hr〉) has
a consistency conflict with xt w.r.t. obs only if there exists j: 1 � j � r such that h j has a consistency conflict with x j

t
w.r.t. f j(obs);

(ii) for every j: 1 � j � r, the induced probability distribution f j(mask(D)) is equal to mask j(D j);
(iii) each of the instance and hypothesis mappings is computable in time polynomial in |A|, size(c), and the size of its

input; both r, and size(c j) for every j: 1 � j � r, are polynomial in |A| and size(c).

Roughly speaking, the three conditions of Definition 4.2 correspond, respectively, to the following requirements: Condi-
tion (i) ensures that the transformations of inputs and outputs between the involved learning problems are such that highly
consistent hypotheses in the resulting problems correspond to a highly consistent hypothesis in the original problem. At the
same time, Condition (ii) ensures that the instance mappings respect the requirement that the resulting observations mask
examples drawn from some appropriate probability distribution. Finally, Condition (iii) ensures that the entire reduction is
carried out efficiently. One may note that Definition 4.2 does not dictate how parameters δ and ε, which are, also, part of
the inputs of a learning problem, are transformed. Indeed, given that the three aforementioned conditions hold, δ and ε
may always be transformed appropriately; the proof of the following result illustrates this.

Theorem 4.2 (Learning through reductions). Consider a learning task 〈xt , C, H〉 over A that is reducible to the set of learning tasks
{〈x j

t , C j, H j〉 over A j}r
j=1 . The concept class C is consistently learnable on xt by H if for every j: 1 � j � r, the concept class C j is

consistently learnable on x j
t by H j .

Proof. Assume that for every j: 1 � j � r the concept class C j is consistently learnable on x j
t by H j , and let algorithm L j

be a learner for the learning task 〈x j
t , C j, H j〉 over A j . Let g : H1 × · · · × Hr → H be the hypothesis mapping, and for every

j: 1 � j � r, let f j : {0,1,∗}|A| → {0,1,∗}|A j | be the instance mapping, whose existence is guaranteed by Definition 4.2.
We construct an algorithm L as follows. Fix a probability distribution D supporting C for xt , with c being the target concept
for xt under D, a masking process mask, a real number δ ∈ (0,1], and a real number ε ∈ (0,1]. Then, algorithm L, given
access to A, 〈xt , C, H〉, δ, ε, and an oracle returning observations drawn from mask(D), proceeds as follows:

For every j: 1 � j � r, algorithm L simulates algorithm L j with input A j , 〈x j
t , C j, H j〉, δ j = δ/r, ε j = ε/r, and an oracle

returning observations. Whenever algorithm L j accesses the oracle and requests an observation, algorithm L draws an
observation obs from its own oracle, and passes f j(obs) to algorithm L j . When each simulated algorithm L j returns
a hypothesis h j , algorithm L computes and returns the hypothesis g(〈h1, . . . ,hr〉), and terminates.
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We now prove that algorithm L is a consistent learner for the learning task 〈xt , C, H〉 over A. To do so, we prove that,
with probability 1 − δ, the returned hypothesis g(〈h1, . . . ,hr〉) is (1 − ε)-consistent with xt under D and mask, and that
algorithm L runs in time polynomial in 1/δ, 1/ε, |A|, and size(c).

By construction of algorithm L, each simulated algorithm L j is given access to the oracle f j(mask(D)). By Condition (ii)
of Definition 4.2, there exists a probability distribution D j supporting C j for x j

t , with c j being the target concept for x j
t under

D j , and a masking process mask j , such that f j(mask(D)) = mask j(D j). By Definition 2.3, algorithm L j runs in time poly-
nomial in 1/δ j , 1/ε j , |A j |, and size(c j), and returns, with probability 1 − δ j , a hypothesis h j ∈ H j that is (1 − ε j)-consistent
with x j

t under D j and mask j . By a union bound it follows that with probability 1−∑r
j=1 δ j = 1−δ, every algorithm L j will

return a hypothesis h j ∈ H j that is (1 − ε j)-consistent with x j
t under D j and mask j . Assume, now, that g(〈h1, . . . ,hr〉) is

not (1 − ε)-consistent with xt under D and mask. Thus, the probability that g(〈h1, . . . ,hr〉) has a consistency conflict with
xt w.r.t. an observation obs ← mask(D) is more than ε. By Condition (i) of Definition 4.2, it follows that the probability
that there exists j: 1 � j � r such that h j has a consistency conflict with x j

t w.r.t. f j(mask(D)) = mask j(D j) is more than
ε. By the pigeonhole principle it follows that there exists j: 1 � j � r such that the probability that h j has a consistency
conflict with x j

t w.r.t. f j(mask(D)) = mask j(D j) is more than ε/r = ε j ; so, h j is not (1 − ε j)-consistent with x j
t under

D j and mask j . This event, however, happens with probability at most δ. Therefore, with probability 1 − δ, the returned
hypothesis g(〈h1, . . . ,hr〉) is (1 − ε)-consistent with xt under D and mask, which establishes the first claim.

The running time of algorithm L comprises the running time of the r simulated algorithms, the time required to simulate
all the oracle calls of those algorithms through the application of the instance mappings, and the time required to obtain
the hypothesis g(〈h1, . . . ,hr〉) through the application of the hypothesis mapping. By Condition (iii) of Definition 4.2, each
of the instance mappings is computable in time polynomial in |A| and size(c); thus, the size |A j| of the set of attributes in
each of the resulting learning tasks is polynomial in |A| and size(c). By the same condition, the size size(c j) of the target
concept in each of the resulting learning tasks is also polynomial in |A| and size(c). Since the same condition implies that r
is polynomial in |A| and size(c), it follows that both 1/δ j = r/δ and 1/ε j = r/ε are polynomial in 1/δ, 1/ε, |A|, and size(c).
Therefore, the input of each simulated algorithm L j is polynomial in 1/δ, 1/ε, |A|, and size(c), and since the running time
of algorithm L j is polynomial in its input, it is also polynomial in 1/δ, 1/ε, |A|, and size(c). This, in turn, implies that each
algorithm L j accesses its oracle a number of times that is polynomial 1/δ, 1/ε, |A|, and size(c); hence, all applications of
the instance mapping f j are computable in time polynomial 1/δ, 1/ε, |A|, and size(c). Furthermore, the running time of the
simulated algorithms implies that the size of 〈h1, . . . ,hr〉 is polynomial in 1/δ, 1/ε, |A|, and size(c), and by Condition (iii)
of Definition 4.2 the hypothesis mapping is computable in time polynomial in 1/δ, 1/ε, |A|, and size(c). In conclusion,
algorithm L runs in time polynomial in 1/δ, 1/ε, |A|, and size(c). This concludes the proof. �

Our motivating example of an algorithm for learning monotone conjunctions suggests the special case of reductions
where observations in all the resulting learning tasks are complete. In terms of Definition 4.2, this corresponds to having,
for each resulting learning task, an instance mapping whose codomain is that of complete observations.

Definition 4.3 (Total reductions between learning tasks). As a special case of Definition 4.2, a reduction from a learning task
〈xt , C, H〉 over A to a set of learning tasks {〈x j

t , C j, H j〉 over A j}r
j=1 is total if for every j: 1 � j � r, the instance mapping

is of the form f j : {0,1,∗}|A| → {0,1}|A j | .

Establishing total reductions is of particular interest for two reasons: (i) from a philosophical point of view, total re-
ductions establish links between partial and complete observability, allowing one to identify conditions under which the
lack of complete information does not affect learnability; (ii) from a more pragmatic point of view, these established links
also relate autodidactic learnability to the well-studied PAC semantics, allowing one to carry positive results from the latter
model to the former one.

4.3. Monotonicity preserves learnability

By using reductions we now establish a general result, showing that monotonicity of the concept class compensates
for missing information in observations, in the sense that if a concept class of monotone formulas is learnable under the
standard PAC semantics, then it remains so under the autodidactic learning semantics.

A formula ϕ over a set of attributes A is monotone if for every pair of examples exm1,exm2 ∈ {0,1}|A| such that
{i | xi ∈ A;exm1[i] = 1} ⊆ {i | xi ∈ A;exm2[i] = 1}, it holds that val(ϕ | exm1) � val(ϕ | exm2), where � imposes the
natural ordering over the values {0,1}. In words, changing the input of a monotone formula so that more attributes are
assigned the value 1 may result in the formula’s value only remaining the same, or changing from 0 to 1. Consider, now,
the value of a monotone formula ϕ on an observation obs. If val(ϕ | obs) ∈ {0,1}, then clearly mapping all attributes
masked in obs to any {0,1} value will not affect the value of the formula. Furthermore, if val(ϕ | obs) = ∗, then mapping
attributes masked in obs either all to 0, or all to 1 will result in the formula obtaining the respective value. These simple
properties suggest that partial observations may be replaced with complete observations so that the value of a monotone
formula is affected in a predictable manner. This predictability, then, facilitates the existence of total reductions.
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Theorem 4.3 (Total self-reduction of monotone formulas). A learning task 〈xt , C, H〉 over A is total reducible to a learning task
〈x′

t , C′, H′〉 over A′ such that A′ = A, x′
t = xt , C′ = C , H′ = H, and the hypothesis mapping is restricted to be the identity mapping,

if the concept class C and the hypothesis class H are classes of monotone formulas, and C does not contain the tautology formula �.

Proof. We first define the constructs whose existence is required by Definition 4.2. Define the hypothesis mapping g : H′ →
H to be the identity mapping. Define the instance mapping f : {0,1,∗}|A| → {0,1}|A′| so that for every observation obs ∈
{0,1,∗}|A| , and every attribute x′

i ∈ A′ , it holds that: f (obs)[i] = 0 if obs[t] = ∗; f (obs)[i] = obs[t] if obs[i] = ∗ and
obs[t] ∈ {0,1}; f (obs)[i] = obs[i] if obs[i] ∈ {0,1} and obs[t] ∈ {0,1}. For every probability distribution D supporting C
for xt , with c being the target concept for xt under D, and every masking process mask, define the probability distribution
D′ to be equal to the induced probability distribution f (mask(D)), and define the masking process mask′ to be the identity
mapping.

We proceed to prove some properties of monotone formulas with respect to the instance mapping f . For every observa-
tion obs ∈ {0,1,∗}|A| , and every attribute x′

i ∈ A′ , the definition of f directly implies that:

• if val(xi | obs) ∈ {0,1} and obs[t] ∈ {0,1}, then val(x′
i | f (obs)) = val(xi | obs);

• if val(xi | obs) = ∗ and obs[t] ∈ {0,1}, then val(x′
i | f (obs)) = obs[t].

Thus, for every observation obs ∈ {0,1,∗}|A| , and every formula ϕ′ ∈ {x′
t} ∪ C′ ∪ H′ , it holds that:

• if val(ϕ | obs) ∈ {0,1} and obs[t] ∈ {0,1}, then val(ϕ′ | f (obs)) = val(ϕ | obs);
• if val(ϕ | obs) = ∗ and obs[t] ∈ {0,1}, then val(ϕ′ | f (obs)) = obs[t].

For Condition (i) of Definition 4.2, consider a hypothesis h′ ∈ H′ and an observation obs ∈ {0,1,∗}|A| such that g(h′)
has a consistency conflict with xt w.r.t. obs. Then, {val(g(h′) | obs),obs[t]} = {0,1}. By the properties discussed above,
it follows that val(h′ | f (obs)) = val(g(h′) | obs) and val(x′

t | f (obs)) = obs[t]. Hence, {val(h′ | f (obs)),val(x′
t |

f (obs))} = {0,1}, and, therefore, h′ has a consistency conflict with x′
t w.r.t. f (obs), as needed.

Condition (ii) of Definition 4.2 follows trivially by definition of the probability distribution D′ , and the masking process
mask′ . To establish that D′ supports C′ for x′

t , we show that the formula c′ = c ∈ C′ is the target concept for x′
t under

D′ . Consider any fixed observation obs drawn from mask(D). Clearly, c does not have a consistency conflict with xt w.r.t.
obs, and thus {val(c′ | obs),obs[t]} = {val(c | obs),obs[t]} �= {0,1}. We proceed by case analysis on the remaining
possibilities.

• In the first case assume that obs[t] = ∗. By definition of the instance mapping f , it follows that val(x′
i | f (obs)) = 0

for all x′
i ∈ A′ . Thus, any monotone formula ϕ other than the tautology is such that val(ϕ | f (obs)) = 0. In particular,

val(c′ | f (obs)) = 0= val(x′
t | f (obs)).

• In the second case assume that obs[t] ∈ {0,1} and val(c | obs) = obs[t]. By the properties discussed earlier, it follows
that val(c′ | f (obs)) = val(c | obs) and val(x′

t | f (obs)) = obs[t]. The assumption implies that val(c′ | f (obs)) =
val(x′

t | f (obs)).
• In the third case assume that obs[t] ∈ {0,1} and val(c | obs) = ∗. By the properties discussed earlier, it follows that
val(c′ | f (obs)) = obs[t] and val(x′

t | f (obs)) = obs[t]. Therefore, val(c′ | f (obs)) = val(x′
t | f (obs)).

In each case we have established that val(c′ | f (obs)) = val(x′
t | f (obs)) for every observation f (obs) drawn from

f (mask(D)). Since observations drawn from f (mask(D)) are complete, and since D′ = f (mask(D)), we obtain that
val(c′ | exm′) = val(x′

t | exm′) for every example exm′ drawn from D′ . Definition 2.1 implies that x′
t is expressed by

c′ w.r.t. D′; thus, c′ is the target concept for x′
t under D′ .

With regards to Condition (iii) of Definition 4.2, the instance mapping f and the hypothesis mapping g are clearly
computable in time linear in the size of their inputs, the number r of resulting learning tasks is 1, and size(c′) is equal to
size(c). At this point the reduction has been established.

The totality of the established reduction follows by Definition 4.3 and by definition of the instance mapping f . This
concludes the proof. �

Theorem 4.3 establishes that the monotonicity of formulas in the concept and hypothesis classes is a sufficient condition
under which the lack of complete information does not affect learnability. Interestingly enough, consistent learnability from
partial observations reduces to consistent learnability of the same concept class from complete observations. Equally intrigu-
ing is the fact that a hypothesis learned (from complete observations) in the resulting learning task, applies unmodified for
making predictions (on partial observations) in the original learning task. Since this same hypothesis is appropriate also for
information recovery (cf. Theorem 2.2), it follows that a concrete strategy to accurately recover missing information is to
simply assign appropriate default truth-values to masked attributes during the learning phase, consistently learn from the
resulting complete observations, and employ the learned hypothesis as is to make predictions.

Two technical points are worth discussing here. The first one relates to the requirement for the tautology formula not to
be part of the concept class. This restriction is without loss of generality. An agent attempting to learn the structure of its
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environment may always employ sampling to determine, with high probability, whether the target concept for a given target
attribute could be the tautology, and employ Theorem 4.3 only when this is not the case. The second technical point relates
to the encoding of the value of the target attribute in certain attributes of the resulting learning task. Although agnostic to
this fact, an agent learning in the resulting learning task utilizes the value of the target attribute in a much more involved
manner than its typical use as a means to test the predictions of hypotheses. What makes the established result non-trivial,
is the fact that the returned hypothesis does not depend on the target attribute in the context of the original learning task,
in which the hypothesis is eventually employed for making predictions.

A useful sufficient condition for consistent learnability follows immediately by Theorems 4.2 and 4.3.

Corollary 4.4 (Sufficient condition for consistent learnability). Consider a learning task 〈xt , C, H〉 over A. The concept class C is
consistently learnable on xt by H, if the concept class C is learnable by H under the Probably Approximately Correct semantics, and
both C and H are classes of monotone formulas.

Building on known learnability results under the PAC semantics [5,14,28], Corollary 4.4 implies learnability results for
certain concept classes under the consistent learnability semantics. Distribution-specific PAC learnability results — where
learning is expected to succeed only for a particular (often the uniform) probability distribution — do not fall under the
auspices of Corollary 4.4, since the reduction that transforms a learning task in the context of consistent learnability to one
under the PAC semantics, distorts the probability distribution over examples.

Corollary 4.5 (Proper consistent learnability of certain concept classes). Each of the concept classes in {conjunctions,disjunctions,
k-CNF,k-DNF, linear thresholds} of monotone formulas over A \ {xt}, is properly consistently learnable on the target attribute xt ∈ A.

4.4. Shallowness preserves learnability

One of the tools employed by humans in modelling their environment is that of abstraction. The same tool can be
employed while learning. Structure captured by a complex formula can be abstracted into a monotone disjunction, with
each disjunct representing a complex situation. In some of these cases, the ability to learn the latter type of formulas
(cf. Corollary 4.5) might imply the ability to learn the former one — this is so when abstraction is applied with certain
moderation. We develop next the notions necessary to model the process of abstraction during learning, and to determine
the degree of moderation that preserves learnability.

In terms of a given formula ϕ over a set of attributes A, abstraction may be thought of as the process of substituting
new attributes for sub-formulas of ϕ , in a manner prescribed by a set M of substitutions. Recall that we think of formulas
as syntactic objects; equivalently, we may think of each formula as corresponding to a particular circuit that computes the
formula. Abstraction, then, is the process of replacing parts of the representation of a formula (i.e., certain sub-circuits with
their associated inputs) with new attributes. Each substitution in M is of the form x′

i(ψ)
/ψ , and indicates that attribute

x′
i(ψ)

∈ A′ is to be substituted for the sub-formula ψ . We require that M induces a bijection from sub-formulas ψ to
attributes x′

i(ψ)
∈ A′ , so that the substitution process is invertible, a property that is critical for the abstraction to make

sense. In the general case, substitutions may be applied non-deterministically on a formula ϕ , and more than one possible
resulting formula may be produced. The unique maximal subset of all such resulting formulas that obeys the following
constraints is known as the basis of ϕ given M, and is denoted by basis(ϕ | M):

(i) for every formula ϕ′ ∈ basis(ϕ | M), and every pair ψ1,ψ2 of sub-formulas of ϕ that belong in the set {ψ | x′
i(ψ)

/ψ ∈
M; x′

i(ψ)
appears in ϕ′}, there is no attribute xi ∈ A that is shared by ψ1 and ψ2;

(ii) each formula ϕ′ ∈ basis(ϕ | M) is over the new set of attributes A′ = {x′
i(ψ)

| x′
i(ψ)

/ψ ∈ M}.

Roughly speaking, Condition (i) asks that the abstracted components are independent of each other, a restriction imposed
to ensure that learnability is preserved, while Condition (ii) asks that all attributes in ϕ are replaced during the substitution
process, a restriction imposed for notational convenience. Note that Condition (i) is trivially satisfied for a read-once formula
ϕ , in which each attribute appears at most once. A number of valid and invalid sets of substitutions are illustrated in
Table 2. An intuitive graphical illustration of the substitution process and the constraints it is defined to respect is depicted
in Fig. 2.

Definition 4.4 (Shallowness in classes of formulas). A class F of formulas over a set of attributes A is shallow for a class F ′
of formulas over set of attributes A′ w.r.t. a set M of substitutions, if F ′ is a subset of

⋃
ϕ∈F basis(ϕ | M) such that for

each formula ϕ ∈ F , there exists a formula ϕ′ ∈ basis(ϕ | M) ∩ F ′ .

A class F formulas that is shallow for a class F ′ of formulas w.r.t. a set M of substitutions, contains formulas that
exhibit structure not fundamentally different (as determined by M) from the structure exhibited by formulas in F ′ (cf.
Table 2). Thus, any given class of read-once formulas is shallow for the same class of monotone formulas w.r.t. the set of
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Table 2
The bases of the formula (x80 → x5) ∨ (x7 ∧ x2) ∨ (x9 ⊕ x56), given various sets of substitutions. Whenever a set of
substitutions is valid, the formula’s underlying disjunctive nature is preserved in its basis.

Set M of substitutions Basis of formula given M
{x′

1/(x80 → x5), x′
2/(x7 ∧ x2), x′

3/(x9 ⊕ x56)} {x′
1 ∨ x′

2 ∨ x′
3}

{x′
1/(x80 → x5), x′

2/(x7 ∧ x2), x′
2/(x9 ⊕ x56)} invalid M: x′

2 not invertible
{x′

1/(x80 → x5), x′
2/(x7 ∧ x2), x′

3/(x9 ⊕ x56), x′
4/(x80 → x5)} {x′

1 ∨ x′
2 ∨ x′

3, x′
4 ∨ x′

2 ∨ x′
3}

{x′
1/(x80 → x5) ∨ (x9 ⊕ x56), x′

2/(x7 ∧ x2)} {x′
1 ∨ x′

2}
{x′

1/(x80 → x5), x′
2/x7, x′

3/x2, x′
4/x9, x′

5/x56} {x′
1 ∨ (x′

2 ∧ x′
3) ∨ (x′

4 ⊕ x′
5)}

{x′
1/(x80 → x5), x′

2/(x7 ∧ x2), x′
3/x9} {} (x56 is not replaceable)

Fig. 2. Graphical illustration of the substitution process operating on a circuit that implements a formula ϕ over A. Each substitution x′
i(ψ)

/ψ ∈ M
corresponds to a gadget that implements formula ψ , with x′

i(ψ)
standing for the name of that gadget. For notational convenience, we assume that for every

attribute xi ∈ A, the substitution x′
i/xi belongs in M; hence, each circuit input xi is implemented by gadget x′

i in M. The substitution process amounts
to employing gadgets from M to replace the shaded parts of the circuit. Once a circuit input has been replaced with a gadget, it becomes unavailable, so
that other gadgets that refer to that input may no longer be employed. Nonetheless, gadgets may internally refer to the same input multiple times. When
all the circuit inputs have been replaced with gadgets, we are left with a new circuit over new inputs that correspond to the names of the gadgets in M.
The resulting circuit may vary, depending on the choice of gadgets that were employed. Every new circuit is a truncated version, and hence an abstraction,
of the original circuit, and the formula ϕ′ that it implements is an element of the basis of ϕ given M.

substitutions that replace each possible literal with a new attribute. Similarly, the class of read-once formulas in disjunctive
normal form is shallow for the class of disjunctions w.r.t. the set of substitutions that replace each possible term (i.e.,
conjunction of literals) with a new attribute.

In the context of learning, F and F ′ may be viewed as representing the possible structures of two different envi-
ronments; the structure of the first environment corresponds to some formula in F , while the structure of the second
environment corresponds to some formula in F ′ . Establishing that F is shallow for F ′ w.r.t. M, then, implies that the
structure of the second environment is essentially an abstraction of the structure of the first one. As we have already
pointed out, if the extent of this abstraction is moderate, then it might be possible to establish that learnability in the
environment with the more abstract structure carries over to the environment with the more refined structure. The follow-
ing definition describes conditions under which this is possible, in terms of M, which is what ultimately determines the
relation between F and F ′ .

Definition 4.5 (Moderately shallow learning tasks). A learning task 〈xt , C, H〉 over A is moderately shallow for a learning task
〈x′

t , C′, H′〉 over A′ , if there exists a set M of substitutions such that:

(i) basis(xt | M) = {x′
t}, C is shallow for C′ w.r.t. M, and H is shallow for H′ w.r.t. M;

(ii) M is enumerable in time polynomial in |A|;
(iii) for every x′

i(ψ)
/ψ ∈ M, and every observation obs ∈ {0,1,∗}|A| , it holds that val(ψ | obs) is computable in time

polynomial in |A|.

Theorem 4.6 (Reduction of moderately shallow learning tasks). A learning task 〈xt , C, H〉 over A is reducible to a learning task
〈x′

t , C′, H′〉 over A′ , if the former is moderately shallow for the latter.

Proof. Assume that the learning task 〈xt , C, H〉 over A is moderately shallow for the learning task 〈x′
t , C′, H′〉 over A′ , and

let M be the set of substitutions whose existence is guaranteed by Definition 4.5.
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We first define the constructs whose existence is required by Definition 4.2. By Definition 4.4, for every hypothesis
h′ ∈ H′ , there exists a hypothesis h ∈ H such that h′ ∈ basis(h | M), and by definition of the set M of substitutions,
h is unique; define the hypothesis mapping g : H′ → H to map formula h′ to this unique formula h. Define the instance
mapping f : {0,1,∗}|A| → {0,1,∗}|A′| so that for every observation obs ∈ {0,1,∗}|A| , and every attribute x′

i(ψ)
∈ A′ , it

holds that f (obs)[i(ψ)] = val(ψ | obs); for every example exm masked by obs, the definition of formula evaluation
implies that val(ψ | obs) ∈ {val(ψ | exm),∗}, which by definition of the instance mapping f implies that f (obs)[i(ψ)] ∈
{ f (exm)[i(ψ)],∗}, and thus that f (obs) masks f (exm). For every probability distribution D supporting C for xt , with
c being the target concept for xt under D, and every masking process mask, define the probability distribution D′ to
be equal to the induced probability distribution f (D), and define the masking process mask′ so that for every example
exm ∈ {0,1}|A| , mask′ maps f (exm) to f (obs), where obs← mask(exm); note that f (obs) masks f (exm), so mask′ is
well-defined.

We proceed to prove some properties of formulas with respect to the instance mapping f . For every observation obs ∈
{0,1,∗}|A| , and every x′

i(ψ)
/ψ ∈ M, the definition of f directly implies that:

• val(x′
i(ψ)

| f (obs)) = val(ψ | obs).

Now, fix a formula ϕ ∈ {xt} ∪ C ∪ H, a formula ϕ′ ∈ basis(ϕ | M), and an observation obs ∈ {0,1,∗}|A| . We continue to
show how for each example exm′ ∈ {0,1}|A′| that is masked by f (obs), one may construct an example exm ∈ {0,1}|A|
that is masked by obs, and is such that val(ϕ′ | exm′) = val(ϕ | exm). The sought example exm is obtained by starting
from observation obs and proceeding as follows:

For every x′
i(ψ)

/ψ ∈ M such that attribute x′
i(ψ)

appears in ϕ′ , and val(ψ | obs) = ∗, fix the masked attributes of
obs that appear in ψ so that ψ will evaluate to val(x′

i(ψ)
| exm′). Fix any remaining masked attributes of obs to any

arbitrary {0,1} value to obtain exm.

By the requirement that the sub-formulas of ϕ that were replaced to obtain ϕ′ do not share any attributes, it follows that
the construction of example exm is well-defined. It is also clear that exm is masked by obs. Also, for each sub-formula ψ of
ϕ that was replaced with an attribute x′

i(ψ)
it holds that val(x′

i(ψ)
| exm′) = val(ψ | exm). Indeed, either val(ψ | obs) = ∗,

in which case the construction of exm guarantees the claimed condition holds, or val(ψ | obs) ∈ {0,1}, in which case the
claimed condition follows, since: val(ψ | exm) = val(ψ | obs), since obs masks exm; val(x′

i(ψ)
| f (obs)) = val(ψ |

obs), by definition of the instance mapping f ; val(x′
i(ψ)

| exm′) = val(x′
i(ψ)

| f (obs)), since f (obs) masks exm′ . Thus,

for every example exm′ ∈ {0,1}|A′| that is masked by f (obs), there exists an example exm ∈ {0,1}|A| that is masked by
obs, such that val(ϕ′ | exm′) = val(ϕ | exm). This now implies that:

• for every formula ϕ′ ∈ basis(ϕ | M), val(ϕ′ | f (obs)) = val(ϕ | obs) if val(ϕ | obs) ∈ {0,1}.

For Condition (i) of Definition 4.2, consider a hypothesis h′ ∈ H′ and an observation obs ∈ {0,1,∗}|A| such that
g(h′) has a consistency conflict with xt w.r.t. obs. Then, {val(g(h′) | obs),obs[t]} = {0,1}. By definition of the hy-
pothesis mapping, g(h′) ∈ H is such that h′ ∈ basis(g(h′) | M). By the properties discussed above, it follows that
val(h′ | f (obs)) = val(g(h′) | obs) and val(x′

t | f (obs)) = obs[t]. Hence, {val(h′ | f (obs)),val(x′
t | f (obs))} = {0,1},

and, therefore, h′ has a consistency conflict with x′
t w.r.t. f (obs), as needed.

Condition (ii) of Definition 4.2 follows immediately by definition of the probability distribution D′ , and the masking
process mask′ , since D′ = f (D), and mask′( f (D)) = f (mask(D)). To establish that D′ supports C′ for x′

t , we show that
any formula c′ ∈ basis(c | M) ∩ C′ is the target concept for x′

t under D′; by Definition 4.4, such a formula exists. Since c
is the target concept for xt under D′ , Definition 2.1 implies that xt is expressed by c w.r.t. D, and thus

Pr
[
val(c | exm) = exm[t] | exm← D

] = 1.

By the properties discussed above, it follows that val(c′ | f (exm)) = val(c | exm) and val(x′
t | f (exm)) = exm[t], for every

example exm ∈ {0,1}|A| . Hence,

Pr
[
val

(
c′ | f (exm)

) = val
(
x′

t | f (exm)
) | exm← D

] = 1.

Since it also holds that D′ = f (D), we conclude that

Pr
[
val

(
c′ | exm′) = val

(
x′

t | exm′) | exm′ ← D′] = 1.

Definition 2.1 implies that c′ is the target concept for x′
t under D′ .

With regards to Condition (iii) of Definition 4.2, the instance mapping f is computable in the time required to traverse
the set M of substitutions, and evaluate each of the associated sub-formulas on an observation; by Conditions (ii) and (iii)
of Definition 4.5, both operations can be carried out in time polynomial in |A|. The hypothesis mapping g is computable in
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the time required to read its input, and traverse the set M of substitutions to identify the sub-formula to be substituted for
each attribute in the input formula; by Condition (ii) of Definition 4.5, each sub-formula can be identified in time polynomial
in |A|. The number r of resulting learning tasks is 1, and size(c′) is at most equal to size(c). At this point the reduction has
been established, and the proof is complete. �

A generalized version of the sufficient condition for consistent learnability that was established by Corollary 4.4 follows
when Corollary 4.4 is taken in conjunction with Theorems 4.2 and 4.6.

Corollary 4.7 (Generalized sufficient condition for consistent learnability). Consider a learning task 〈xt , C, H〉 over A. The concept class
C is consistently learnable on xt by H, if the learning task 〈xt , C, H〉 over A is moderately shallow for the learning task 〈x′

t , C′, H′〉
over A′ , C′ is learnable by H′ under the Probably Approximately Correct semantics, and both C′ and H′ are classes of monotone
formulas.

This generalized sufficient condition implies the consistent learnability of additional concept classes. For the classes of
conjunctions, disjunctions, and linear thresholds, the following result generalizes Corollary 4.5, by retracting the mono-
tonicity assumption. For the classes of k-CNF and k-DNF formulas, the following result provides new consistently learnable
subclasses that are incomparable to the subclasses whose consistent learnability was established by Corollary 4.5, by sub-
stituting the read-once property for the monotonicity property; k-CNF and k-DNF formulas may have none, either, or both
of these two properties. As for Corollary 4.4, distribution-specific PAC learnability results do not fall under the auspices of
Corollary 4.7.

Corollary 4.8 (Proper consistent learnability of additional concept classes). Each of the concept classes in {conjunctions,disjunctions,
read-once k-CNF, read-once k-DNF, linear thresholds} of formulas over literals in A \ {xt}, is properly consistently learnable on the
target attribute xt ∈ A.

In a preliminary version of this work it was incorrectly reported that the general classes of k-CNF and k-DNF formulas
are properly consistently learnable. We find it informative to discuss the subtle, but critical, point that prevents our results
from generalizing to these classes. Consider the formula ϕ1 ∨ ϕ2. When this formula is evaluated on an example exm,
by definition it holds that val(ϕ1 ∨ ϕ2 | exm) = val(ϕ1 | exm) ∨ val(ϕ2 | exm); similar properties hold for other logical
connectives. Observe, however, that such local evaluation of the formula cannot be carried out on partial observations. Indeed,
if val(ϕ1 | obs) = val(ϕ2 | obs) = ∗, then val(ϕ1 ∨ ϕ2 | obs) cannot, in general, be uniquely determined. If, for instance,
ϕ1 is semantically the negation of ϕ2, then val(ϕ1 ∨ ϕ2 | obs) = 1, whereas if ϕ1 and ϕ2 are semantically equivalent,
then val(ϕ1 ∨ ϕ2 | obs) = ∗. Note that the locality of evaluation is restored if the formulas ϕ1 and ϕ2 are assumed not
to share any attributes. Although we are unaware of any relevant formal result in the learning literature, it seems natural
to conjecture that locality of formula evaluation is essential for reductions to go through in learning settings. This, in turn,
explains why while reductions can establish the learnability of general k-CNF and k-DNF formulas under the PAC semantics,
they seem to be able to establish the learnability of only their read-once counterparts under the autodidactic learning
semantics.

5. Negative learnability results

We have already pointed out that learnability under the PAC semantics is a special case of autodidactic learnability. So
far, we have not excluded the possibility that the two learning models are equivalent in terms of the concept classes that are
learnable. On the contrary, our general positive learnability results indicate that the two models are equivalent on a broad
set of concept classes, tempting one to conjecture that lack of information during learning does not render learnability
any harder — this we have shown to be true, for instance, for concept classes of monotone formulas. In this section we
make some progress towards disproving such a conjecture. We show that two particular concept classes that are properly
learnable under the PAC semantics are not properly learnable under the autodidactic learning semantics (i.e., if one insists
that the concept and hypothesis classes coincide). Such representation-specific non-learnability results have been studied
before in the context of PAC learnability [22], and do not preclude the possibility that such concept classes are non-properly
learnable. The non-proper learnability under the autodidactic learning semantics of the two concept classes discussed in
this section remains open.

The negative results that we prove are with respect to consistent learnability. Note that accuracy implies consistency,
irrespectively of the concealment degree of the masking process. Thus, our results also imply that learning accurately is not
possible in certain cases. It is worth emphasizing that the established negative results do not require the use of masking pro-
cesses with a high degree of concealment. Indeed, observations with a masked target attribute do not constrain the learner
in any way (since any hypothesis makes consistent predictions on such observations), and thus using a masking process
that masks the target attribute in any observation does not offer any advantage. All our results employ only 0-concealing
masking processes. We also note that our results do not rely on using formulas that cannot be efficiently evaluated on
observations.

We start with a general result that we later use to obtain specific negative autodidactic learnability results.
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Theorem 5.1 (Sufficient condition for hard learning tasks). Fix an arbitrary positive integer n ∈ N. Consider a set of attributes A of size
polynomial in n, and a learning task 〈xt , C, H〉 over A such that log |C| is of size polynomial in n. Assume that there exists an algorithm
that on input a 3-CNF formula χ of size n runs in time polynomial in n and outputs a set of observations O(χ) ⊆ {0,1,∗}|A| such
that:

(i) every formula in H is evaluatable in time polynomial in n on every observation in O(χ);
(ii) χ is satisfiable if there exists a formula in H that is 1-consistent with xt given O(χ);

(iii) χ is satisfiable only if there exists a probability distribution D over {0,1}|A| , and a masking process mask such that D supports
C for xt , and mask(D) is the uniform distribution over O(χ).

Then, the concept class C is not consistently learnable on the target attribute xt by the hypothesis class H, unless RP= NP.

Proof. Assume that the concept class C is consistently learnable on the target attribute xt by the hypothesis class H.
Let L be a consistent learner for the learning task 〈xt , C, H〉 over A, and let q(·, ·, ·, ·) be the associated polynomial that
determines the running time of algorithm L given its input parameters. Consider the algorithm Lsat defined as follows:

On input a 3-CNF formula χ of size n, algorithm Lsat constructs the set of observations O(χ). It then proceeds to
simulate algorithm L with input A, 〈xt , C, H〉, δ = 1/3, ε = 1/2|O(χ)|, and an oracle returning observations. The sim-
ulation is interrupted after q(1/δ,1/ε, |A|, log |C|) time-steps. During the simulation, whenever algorithm L accesses
the oracle and requests an observation, algorithm Lsat draws an observation obs uniformly at random from O(χ), and
passes obs to algorithm L. If the simulated algorithm L returns a hypothesis h ∈ H, algorithm Lsat checks and returns
whether h does not have a consistency conflict with xt w.r.t. any observation in O(χ). If the simulation of algorithm L
is interrupted, algorithm Lsat returns false. In either case, algorithm Lsat terminates after returning a truth-value.

We now prove that algorithm Lsat runs in time polynomial in n and determines whether a given arbitrary 3-CNF formula
χ of size n is satisfiable so that: if χ is unsatisfiable, then algorithm Lsat will return false with probability 1; if χ is
satisfiable, then algorithm Lsat will return true with probability at least 2/3.

Assume first that χ is unsatisfiable. By Condition (ii), every formula in H has a consistency conflict with xt w.r.t. some
observation in O(χ). Therefore, algorithm Lsat will return false, as expected, irrespectively of whether algorithm L re-
turns some hypothesis h ∈ H, or its simulation is interrupted.

Assume now that χ is satisfiable. By Condition (iii), there exists a probability distribution D and a masking process
mask such that D supports C for xt , and the oracle of algorithm L draws observations from mask(D); let c be the target
concept for xt under D. By Definition 2.3, algorithm L will run in time q(1/δ,1/ε, |A|, size(c)), and return, with probability
1− δ, a hypothesis h ∈ H that is (1−ε)-consistent with xt under D and mask. Since size(c) � log |C|, then the simulation of
algorithm L will not be interrupted, and algorithm Lsat will obtain h. Since ε is strictly less than the probability with which
any particular observation from O(χ) is drawn, it follows that, with probability 1 − δ, the returned hypothesis h ∈ H will
have no consistency conflict with xt w.r.t. any observation in O(χ), and algorithm Lsat will verify this and return true, as
expected. Since δ = 1/3, the probability with which algorithm Lsat will correctly report that χ is satisfiable is at least 2/3.

Since 1/δ = 3, 1/ε = 2|O(χ)| = poly(n), |A| = poly(n), and log |C| = poly(n), it follows that q(1/δ,1/ε, |A|, log |C|) is
polynomial in n. The set of observations O(χ) is constructible in time polynomial in n, observations are uniformly samplable
from O(χ) in time polynomial in n, and, by Condition (i), returned hypotheses are testable for consistency conflicts with
xt w.r.t. observations in O(χ) in time polynomial in n. Hence, algorithm Lsat runs in time polynomial in n. In conclusion,
we have established the existence of an algorithm, namely algorithm Lsat , that solves an NP-complete problem within the
resource constraints allowed for problems in RP. This implies that RP= NP, and concludes the proof. �

Under the standard computational complexity assumption that RP �= NP, we present next intractability results on the
proper consistent learnability of certain explicit concept classes that are known to be properly PAC learnable. Our results
hold even if at most three attributes are masked in observations, none of which is the target attribute, suggesting that the
property of an agent’s sensing process that compromises consistent learnability is not the frequency with which information
is missing in the obtained appearances, but rather the context in which this happens.3 This realization is further corrobo-
rated when viewed in conjunction with, and in contrast to, certain results from the literature that establish that learnability
is not severely impaired when information in observations is missing independently at random on each attribute, despite
this giving rise to observations with possibly many simultaneously masked attributes [6].

3 Recall, by Theorem 2.1, that a similar phenomenon occurs also when learned hypotheses are eventually employed by an agent for making predictions.
The predictive accuracy of hypotheses, even highly consistent ones, is compromised in a manner that depends not only on the frequency with which
sensors hide information, but mainly on the context in which this happens. Intriguing is also the fact that in obtaining the impossibility of learning highly
accurate hypotheses it suffices for the target attribute to be masked, whereas in obtaining the intractability of learning highly consistent hypotheses it
suffices for non-target attributes to be masked. Hence, masked “features” are, in some sense, associated with a more fundamental reason for unlearnability
as compared to masked “labels” in learning instances.
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5.1. Non-learnability of parities

A parity formula over a set of attributes A is a formula of the form xi1 ⊕ · · · ⊕ xir , where ⊕ denotes the “exclusive or”
binary operator. A parity formula evaluates to 1 on an example exm exactly when an odd number of the formula’s attributes
are assigned the value 1 in exm.

The concept class of parity formulas is one associated with numerous open problems in the learning literature. Nonethe-
less, the concept class is known to be properly learnable under the PAC semantics [7,11], albeit using techniques that rely
critically on the availability of an explicit set of complete observations. In particular, the concept class of parity formulas is
known to be unconditionally non-learnable in the representation-independent sense in the Statistical Query model [15], and
non-evolvable [31] indicating the singularity of this concept class. A justification of its singularity may appeal to the ex-
treme sensitivity of parity formulas on their attributes; independently of the values of the remaining attributes, the change
of an attribute’s value affects the value of a parity formula. It is this property that the following result exploits. Interest-
ingly, parity formulas are highly non-monotone, which is in accordance with the consistent learnability of concept classes
of monotone formulas.

Theorem 5.2 (Intractability of proper consistent learnability of parities). The concept class C of parities over A \ {xt} is not properly
consistently learnable on the target attribute xt ∈ A, unless RP= NP.

Proof. Fix an arbitrary positive integer n ∈ N. Let V = {v1, v2, . . . , vn} be the set of variables over which instances of 3-SAT
of size n are defined. Construct the learning task 〈xt , C, H〉 over A as follows: Define A � {x+

i , x−
i | vi ∈ V } ∪ {xt}, C to be

the set of all parities over A \ {xt}, and H � C .
For each variable vi ∈ V , we define a(vi) � x+

i and a(vi) � x−
i ; by construction, the mapping from the set of literals over

V to the set of attributes A \ {xt} is bijective. For every 3-CNF formula

χ =
m∧

j=1

(l j,1 ∨ l j,2 ∨ l j,3),

where each l j,k is a literal over V , denote by O(χ) the set of observations that contains exactly the following:

(i) for every i: 1 � i � n, the observation obsvar(i) that assigns the value 1 to attributes x+
i , x−

i , the value 1 to attribute xt ,
and the value 0 to attributes in A \ {x+

i , x−
i , xt};

(ii) for every j: 1 � j � m, the observation obscls( j) that assigns the value ∗ to attributes a(l j,1),a(l j,2), a(l j,3), the value 1
to attribute xt , and the value 0 to attributes in A \ {a(l j,1),a(l j,2),a(l j,3), xt}.

We continue to establish that formula χ is satisfiable if (and only if) there exists a parity formula ϕ ∈ H that does not
have a consistency conflict with the target attribute xt w.r.t. any observation in O(χ). Consider any set of literals τ over
V , and let ϕτ �

⊕{a(l) | l ∈ τ } ∈ H be the corresponding parity formula; by the bijective property of a, the mapping from
the set of literal-sets over V to the set H of hypotheses is bijective. We next prove certain properties of this mapping.
The following derivation establishes a correspondence between truth-assignments induced by τ for χ , and the lack of
consistency conflicts of ϕτ with xt w.r.t. the observations in O(χ) that are of type (i):

τ induces a truth-assignment for χ

⇔
for every i: 1 � i � n, exactly one of vi, vi belongs in τ

⇔
for every i: 1 � i � n, exactly one of x+

i , x−
i belongs in ϕτ

⇔
for every i: 1 � i � n, ϕτ does not have a consistency conflict with xt w.r.t. obsvar(i).

A second derivation establishes a correspondence between sets of literals determined by τ that would satisfy χ , and the
lack of consistency conflicts of ϕτ with xt w.r.t. the observations in O(χ) that are of type (ii):

τ contains at least one literal from each clause of χ

⇔
for every j: 1 � j � m, at least one of l j,1, l j,2, l j,3 belongs in τ

⇔
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for every j: 1 � j � m, at least one of a(l j,1),a(l j,2),a(l j,3) belongs in ϕτ

⇔
for every j: 1 � j � m, val(ϕτ | obscls( j)) = ∗

⇔
for every j: 1 � j � m, ϕτ does not have a consistency conflict with xt w.r.t. obscls( j).

Together, the two derivations imply that τ induces a satisfying truth-assignment for χ if and only if ϕτ does not have a
consistency conflict with xt w.r.t. any observation in O(χ). This conclusion then, along with the bijection property of the
mapping, leads to the following derivation, which establishes the claim:

χ is satisfiable

⇔
there exists a set of literals τ over V that induces a satisfying truth-assignment for χ

⇔
there exists τ such that ϕτ does not have a consistency conflict with xt w.r.t. any observation in O(χ)

⇔
there exists ϕ ∈ H that does not have a consistency conflict with xt w.r.t. any observation in O(χ).

To conclude the proof it suffices to show that the conditions of Theorem 5.1 are satisfied. Clearly, |A| is polynomial
in n, and so is log |C|, since there are at most 2|A| formulas in C . Also, the set of observations O(χ) is constructible in
time polynomial in n. For Condition (i) of Theorem 5.1, note that each parity ϕ ∈ H can be evaluated on each observation
obs ∈ O(χ) in time polynomial in n. Indeed, either an attribute in ϕ is masked in obs, in which case val(ϕ | obs) = ∗,
or none of the attributes in ϕ is masked in obs, in which case the number of attributes that are assigned the value 1 in
obs determines val(ϕ | obs).

Condition (ii) of Theorem 5.1 follows directly from the last derivation above. For Condition (iii) of Theorem 5.1, assume
that χ is satisfiable, and let τ be a set of literals over V that induces a satisfying truth-assignment for χ . Consider the set
of examples that contains exactly the following:

(i) for every i: 1 � i � n, the example exmvar(i) that assigns the value 1 to attributes x+
i , x−

i , the value 1 to attribute xt ,
and the value 0 to attributes in A \ {x+

i , x−
i , xt};

(ii) for every j: 1 � j � m, the example exmcls( j) that assigns the value 1 to the least (under some fixed ordering of the
attributes in A) attribute a(l j,k) in the set {a(l j,1),a(l j,2),a(l j,3)}∩ {a(l) | l ∈ τ }, the value 1 to attribute xt , and the value
0 to attributes in A \ {a(l j,k), xt}.

Define the probability distribution D that returns each of these examples with equal probability. Define the masking process
mask that maps each example to the observation in O(χ) with the same subscript with probability 1. Clearly, mask(D)

is uniform over O(χ), and the target attribute xt is expressed by the parity formula ϕτ ∈ C w.r.t. the probability distribu-
tion D; thus, D supports C for xt , and ϕτ is the target concept for xt under D. Condition (iii) of Theorem 5.1 follows, and
the proof is complete. �

When compared with related results from the literature (see, e.g., [22]), the existence of partial observations complicates
the required reduction from an NP-complete problem that lies in the heart of the proof of Theorem 5.2. Yet, partial obser-
vations also allow for a more flexible manipulation of the learning algorithm in the proof of Theorem 5.1 that is invoked in
the reduction, which then explains the ability to establish the particular intractability result. More precisely, the reduction
relies on constructing observations that in order to be explained consistently, require the learned hypothesis to depend on
any non-empty subset of the masked attributes, without, however, the observations specifying which such subset is to be
chosen. Such constraints allude to a combinatorial problem, which is precisely what the learning algorithm is expected to
solve. It is the case that with complete observations one may still force the learned hypothesis to depend on certain subsets
of attributes, but the possible dependencies on these attributes are necessarily restricted by the observations themselves in
what seems to be a subtle, yet critical, manner.

5.2. Non-learnability of decision lists

A k-decision list over a set of attributes A is an ordered sequence 〈c1, v1〉 . . . 〈cr, vr〉〈�, vr+1〉 of pairs comprising a con-
dition ci that is a term of at most k ∈ N literals over A, and an associated decision vi that is a {0,1} value. A decision list
evaluates on an example exm to the value vi associated with the least-indexed condition ci that evaluates to 1 on exm;
the tautology formula that appears as the last condition ensures that the evaluation process is well-defined.
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The concept class of k-decision lists, for any constant k ∈ N, is known to be properly learnable under the PAC semantics
[25]. The proper learnability is retained even if only monotone-term k-decision lists are considered. Unlike parity formulas,
(monotone-term) k-decision lists are learnable under the Statistical Query semantics [15], and in the presence of random
classification noise [1].

Rivest [25], who introduced this concept class and established its PAC learnability, asked whether learnability is preserved
when instead of complete observations one considers partial observations. In our notation, he defined agreement4 of a
formula ϕ with an observation obs to mean val(ϕ | obs) = obs[t], assuming that the target attribute xt is never masked
in drawn observations. As posed, the question almost always admits a trivial negative answer: an observation obs generally
masks a set of examples across which the value of ϕ varies, implying that val(ϕ | obs) = ∗, and making ϕ “disagree” with
obs. We recast the notion of “agreement” to what, we believe, is a more appropriate (and possibly the intended) form:
a formula ϕ agrees with an observation obs if ϕ does not have a consistency conflict with the target attribute xt under
obs. This notion of “agreement” is weaker, as it requires that val(ϕ | obs) = obs[t] only when val(ϕ | obs) ∈ {0,1} and
obs[t] ∈ {0,1}. We partially answer this new question in the negative, by showing the concept class of monotone-term
1-decision lists not to be properly consistently learnable from partial observations, unless RP = NP. The negative answer
carries to Rivest’s original question, due to the stronger notion of “agreement” that he used.

Theorem 5.3 (Intractability of proper consistent learnability of monotone-term 1-decision lists). The concept class C of monotone-term
1-decision lists over A \ {xt} is not properly consistently learnable on the target attribute xt ∈ A, unless RP= NP.

Proof. Fix an arbitrary positive integer n ∈ N. Let V = {v1, v2, . . . , vn} be the set of variables over which instances of 3-SAT
of size n are defined. Construct the learning task 〈xt , C, H〉 over A as follows: Define A � {x+

i , x−
i | vi ∈ V } ∪ {xt}, C to be

the set of all monotone-term 1-decision lists over A \ {xt}, and H � C .
For each variable vi ∈ V , we define a(vi) � x+

i and a(vi) � x−
i ; by construction, the mapping from the set of literals over

V to the set of attributes A \ {xt} is bijective. For every 3-CNF formula

χ =
m∧

j=1

(l j,1 ∨ l j,2 ∨ l j,3),

where each l j,k is a literal over V , denote by O(χ) the set of observations that contains exactly the following:

(i) the observation obszero that assigns the value 0 to attributes in A;
(ii) for every i: 1 � i � n, the observation obsvar(i,0) that assigns the value 1 to attributes x+

i , x−
i , the value 0 to attribute

xt , and the value 0 to attributes in A \ {x+
i , x−

i , xt};
(iii) for every i: 1 � i � n, the observation obsvar(i,1) that assigns the value ∗ to attributes x+

i , x−
i , the value 1 to attribute

xt , and the value 0 to attributes in A \ {x+
i , x−

i , xt};
(iv) for every j: 1 � j � m, the observation obscls( j) that assigns the value ∗ to attributes a(l j,1),a(l j,2),a(l j,3), the value 1

to attribute xt , and the value 0 to attributes in A \ {a(l j,1),a(l j,2),a(l j,3), xt}.

Without loss of generality, for the remainder of this proof we consider only read-once monotone-term 1-decision lists,
where no attribute appears in conditions more than once; for any monotone-term 1-decision list that violates this assump-
tion one may simply drop all but the first condition out of those that contain any particular attribute, and obtain a new
monotone-term 1-decision list that respects the assumption and is equivalent to the first one.

We continue to establish that formula χ is satisfiable if there exists a monotone-term 1-decision list ϕ ∈ H that does
not have a consistency conflict with the target attribute xt w.r.t. any observation in O(χ). Consider any monotone-term
1-decision list ϕ ∈ H that does not have a consistency conflict with xt w.r.t. any observation in O(χ), and let τϕ � {l |
〈a(l),1〉 ∈ ϕ} be a set of literals over V . We continue to verify that τϕ induces a satisfying assignment for χ . For each
observation obs ∈ O(χ), we identify the conclusions that follow given that ϕ ∈ H does not have a consistency conflict with
xt w.r.t. obs. We proceed by case analysis on the four types of observations in O(χ):

(i) from observation obszero , it follows that the value corresponding to the tautology condition of ϕ is 0;
(ii) for every i: 1 � i � n, from observation obsvar(i,0) , it follows that ϕ does not contain both of the pairs 〈x+

i ,1〉, 〈x−
i ,1〉,

for otherwise ϕ would evaluate to 1 on obsvar(i,0);
(iii) for every i: 1 � i � n, from observation obsvar(i,1) , it follows that ϕ contains at least one of the pairs 〈x+

i ,1〉, 〈x−
i ,1〉,

for otherwise only the tautology condition of ϕ would be satisfied, and by Conclusion (i), ϕ would evaluate to 0 on
obsvar(i,1);

4 Rivest [25] actually used the term “consistency” in his work, rather than the term “agreement” that is employed here. We avoid, however, the use of
the term “consistency” in this context, as this term has a different meaning in our framework.
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(iv) for every j: 1 � j � m, from observation obscls( j) , it follows that ϕ contains at least one of the pairs 〈a(l j,1),1〉, 〈a(l j,2),

1〉, 〈a(l j,3),1〉, for otherwise only the tautology condition of ϕ would be satisfied, and by Conclusion (i), ϕ would
evaluate to 0 on obscls( j) .

Conclusions (ii) and (iii) imply that τϕ induces a truth-assignment for χ , and Conclusion (iv) implies that the induced
truth-assignment is a satisfying one for χ ; thus, χ is satisfiable, as needed.

To conclude the proof it suffices to show that the conditions of Theorem 5.1 are satisfied. Clearly, |A| is polynomial in
n, and so is log |C|, since there are at most 2 · 3|A||A|! formulas in C . Also, the set of observations O(χ) is constructible
in time polynomial in n. For Condition (i) of Theorem 5.1, note that each monotone-term 1-decision list ϕ ∈ H can be
evaluated on each observation obs ∈ O(χ) in time polynomial in n. Indeed, for each attribute in ϕ that is assigned the
value 1 in obs one may prune the suffix of ϕ that follows the tuple 〈ci, vi〉 of ϕ whose condition ci is the attribute, and
replace the condition of the said tuple with the tautology formula �, without affecting the value of ϕ on obs. Similarly,
for each attribute in ϕ that is assigned the value 0 in obs one may drop the tuple 〈ci, vi〉 of ϕ whose condition ci is the
attribute, without affecting the value of ϕ on obs. After the monotone-term 1-decision list ϕ has been thus processed to
obtain ϕ′ , all remaining attributes in ϕ′ will be masked in obs. By construction, val(ϕ | obs) = val(ϕ′ | obs), and clearly
val(ϕ′ | obs) is 1 if all decisions in ϕ′ are the value 1, is 0 if all decisions in ϕ′ are the value 0, and is ∗ otherwise.

Condition (ii) of Theorem 5.1 follows directly from the conclusions above. For Condition (iii) of Theorem 5.1, assume
that χ is satisfiable, and consider any set of literals τ over V that induces a satisfying truth-assignment for χ . Let
ϕτ �

∏{〈a(l),0〉〈a(l),1〉 | l ∈ τ }〈�,0〉, where multiplication between tuples is taken to correspond to their noncommu-
tative concatenation, and l is taken to traverse τ in some fixed order over the literals over V . By construction, for every
vi ∈ V , the conditions x+

i , x−
i appear in ϕτ , with the condition appearing second with a corresponding value 1 being the

one associated with the truth-value of vi as determined by τ . By inspection, val(ϕτ | exm) = exm[t] for each example exm
in the set of examples that contains exactly the following:

(i) the example exmzero that assigns the value 0 to attributes in A;
(ii) for every i: 1 � i � n, the example exmvar(i,0) that assigns the value 1 to attributes x+

i , x−
i , the value 0 to attribute xt ,

and the value 0 to attributes in A \ {x+
i , x−

i , xt};
(iii) for every i: 1 � i � n, the example exmvar(i,1) that assigns the value 1 to the single attribute x±

i in the set {x+
i , x−

i } ∩
{a(l) | l ∈ τ }, the value 1 to attribute xt , and the value 0 to attributes in A \ {x±

i , xt};
(iv) for every j: 1 � j � m, the example exmcls( j) that assigns the value 1 to all attributes Acls( j) in the set

{a(l j,1),a(l j,2),a(l j,3)} ∩ {a(l) | l ∈ τ }, the value 1 to attribute xt , and the value 0 to attributes in A \ (Acls( j) ∪ {xt}).

Define the probability distribution D that returns each of these examples with equal probability. Define the masking process
mask that maps each example to the observation in O(χ) with the same subscript with probability 1. Clearly, mask(D) is
uniform over O(χ), and the target attribute xt is expressed by the monotone-term 1-decision list ϕτ ∈ C w.r.t. the proba-
bility distribution D; thus, D supports C for xt , and ϕτ is the target concept for xt under D. Condition (iii) of Theorem 5.1
follows, and the proof is complete. �

The intractability result of Theorem 5.3 provides yet another indication that learnability from partial observations is
harder than learnability from complete observations. This indication remains true even when learnability from complete
observations is restricted to the use of statistical queries [15], or the use of complete observations with random classification
noise [1].

6. Sensor-restricted learnability

We have taken the approach that in many domains an agent cannot a priori make any assumptions on the nature of
information loss that results from its imperfect sensors. This premise is reflected in the definition of learnability that we
have introduced, which asks that learning be possible for every masking process. In this section we turn our attention to
domains where some bias exists on the way information is hidden when an agent senses its environment. Such a bias
exists, for instance, in the way the human eye provides information on our surroundings in a spatially-dependent manner,
hiding the values of those properties of the environment that lie outside the range of our sight. A cryptanalyst attempting
to break some decrypting device through the use of probes, may gain some insight on the internal workings of the device
by obtaining readings independently at random from each of the probes attached to the device. A piece of text, viewed as
an appearance of some underlying reality, presumably hides information asymmetrically, so that, for instance, the properties
of the underlying reality that are false are hidden more often than those that are true.

Bias on an agent’s sensors may be captured by letting the masking process that models them be a member of a class
S of masking processes, known as the sensor class; the class contains the possible masking processes out of which one is
used to obtain observations. Consistent learnability may then be redefined so that learning will be expected to be successful
only if the employed masking process is a member of S ; the sensor class S is available to the learner, in the same way that
the concept and hypothesis classes are.
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Definition 6.1 (Consistent learnability with restricted sensor class). An algorithm L is a consistent learner for a learning task
〈xt , C, H〉 over A with sensors in S if for every probability distribution D supporting C for xt , every masking process
mask ∈ S , every real number δ ∈ (0,1], and every real number ε ∈ (0,1], algorithm L has the following property: given
access to A, 〈xt , C, H〉, S , δ, ε, and an oracle returning observations drawn from mask(D), algorithm L runs in time
polynomial in 1/δ, 1/ε, |A|, and the size of the target concept for xt under D, and returns, with probability 1 − δ, a
hypothesis h ∈ H that is (1 − ε)-consistent with xt under D and mask. The concept class C over A \ {xt} is consistently
learnable on the target attribute xt ∈ A by the hypothesis class H over A \ {xt} with sensors in in the sensor class S if
there exists a consistent learner for 〈xt , C, H〉 over A with sensors in S .

The existence of a restricted sensor class S may critically affect what is learnable, and thus, what information can be
recovered in partial observations. First, the restrictions obeyed by S may guarantee that the agent’s sensors do not hide
information in an entirely arbitrary manner, due to the exclusion of certain sensors from S . This might, then, imply that the
agent obtains more information than what would have been the case had S been unrestricted. Second, the restricted sensor
class S may allow the agent to employ a learning algorithm tailored to S , while no learning algorithm may be known, or
even exist, for the general case. Through learned rules the agent may then be able to recover yet more information.

6.1. Parameterized sensor classes

It is conceivable for an agent to have a bias on the characteristics of its sensors that depends on the structure of its envi-
ronment. Consider, for instance, a student in an introductory Artificial Intelligence course, during the lecture that discusses
what an “agent” is. The teacher, acting as the student’s sensors, presents positive and negative instances of “agents”, along
with various properties of the entity depicted in each instance. In trying to learn what constitutes an “agent”, the student
has a bias as to the sensing process through which appearances are obtained. For one, the sensing process never hides
information on the property of interest that states whether an entity is an “agent” or not; this bias is readily representable
in terms of a restricted sensor class, as per Definition 6.1. The student, however, has an additional, more subtle, type of
bias on the sensing process: it never hides those properties that are important in defining what an “agent” is; the teacher
ensures that this is the case. The bias on the type of the student’s sensors depends on the definition of an “agent”, and this
bias would have been different had the definition been different.

Formalizing a structure-dependent sensor class is straightforward. We simply update Definition 6.1 so that S is the union⋃
c∈C Sc of subclasses, one for each possible structure c ∈ C of the environment, and then ask that learning succeeds for

every masking process mask ∈ Sc , where c is the target concept for xt under D. The learning algorithm is given access
only to the sensor class S , and not the particular subclass Sc , since the actual structure of the agent’s environment remains
unknown. One may, in fact, generalize the definition even further, by allowing distribution-dependent sensor classes, where
the bias on the characteristics of an agent’s sensors depends not only on the structure of the agent’s environment, but also
on the precise probability distribution from which the reality is obtained; note that this probability distribution determines
also the structure of the environment. We may then update Definition 6.1 so that S is the union

⋃
D SD of subclasses, one

for each possible probability distribution D, and ask that learning succeeds for every masking process mask ∈ S D . Similar
to the case of structure-dependent sensor classes, the learning algorithm is still given access only to the sensor class S , and
not the particular subclass S D .

Appearances provided by teachers do not only hide information about the underlying reality, but may also convey addi-
tional information on the structure of the environment that would not normally be available. A teacher presenting an entity
as a positive or negative instance of what an “agent” is, presents only a subset of the entity’s properties, but also conveys
the message that hidden information is irrelevant. This additional piece of information would not have been available to the
student had complete information on the entity been presented. In a teacher-assisted learning context, the “don’t know”
interpretation of hidden properties does no longer characterize the nature of the value ∗. Instead, depending on the setting,
the value ∗ may be better interpreted as a new, distinct, and information-baring value, indicating, for instance, a value that
is “irrelevant”, “the most probable”, “non-deducible”, “costly to obtain”, or “always hidden”; in all these cases the value ∗
provides implicit information that may, in fact, play a critical role in facilitating learnability.

As a proof of concept, consider the concept class C of formulas in disjunctive normal form. The learnability of C by
any hypothesis class under the PAC semantics remains one of the long-standing open questions in Computational Learning
Theory, while the proper learnability of C when the DNF formulas are restricted to contain at most k ∈ N terms is known
to be intractable for every constant k � 2, unless RP= NP [22]. Yet, a teacher with the power to determine which parts of a
randomly drawn example will be made visible to a student might assist the learning process by hiding information that is
irrelevant in each example. More precisely, given the learning task 〈xt , C, H〉 over A, where C and H are classes of k-term
DNF formulas, consider a teacher that is modelled by the following structure-dependent sensor class Srelevant = ⋃

c∈C Sc ,
where for every masking process mask ∈ Sc , and every observation obs in the range of mask, the target attribute xt is
not masked in obs, if obs[t] = 1 then a maximal subset of attributes such that val(c | obs) = 1 is masked in obs, and if
obs[t] = 0 then no attribute is masked in obs. The next result shows the power of structure-dependent sensor classes.
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Theorem 6.1 (Proper consistent learnability of k-term DNF formulas with sensors in Srelevant). The concept class C of formulas over
A \ {xt} in disjunctive normal form with at most k ∈ N terms is properly consistently learnable on the target attribute xt ∈ A with
sensors in Srelevant .

Proof. We construct an algorithm L as follows. Fix a probability distribution D supporting C for xt , with c being the target
concept for xt under D, a masking process mask ∈ Sc ⊆ Srelevant , a real number δ ∈ (0,1], and a real number ε ∈ (0,1].
Then, algorithm L, given access to A, 〈xt , C, C〉, Srelevant , δ, ε, and an oracle returning observations drawn from mask(D),
proceeds as follows:

Algorithm L draws a sample O of a number of observations (to be determined later) from the oracle, constructs and
returns the hypothesis h = ∨

obs∈O;obs[t]=1((
∧

xi∈A\{xt };obs[i]=1 xi)∧ (
∧

xi∈A\{xt };obs[i]=0 xi)), and terminates.

We now prove that algorithm L is a consistent learner for the learning task 〈xt , C, C〉 over A with sensors in Srelevant .
We show that: the returned hypothesis h ∈ C ; h, with probability 1 − δ, is (1 − ε)-consistent with xt under D and mask;
and algorithm L runs in time polynomial in 1/δ, 1/ε, |A|, and size(c).

Note first that each observation obs ← mask(D) with obs[t] = 1 encodes one of the terms of the DNF formula c.
Indeed, by construction of mask, whenever obs[t] = 1, it also holds that val(c | obs) = 1, and thus at least one term of c
evaluates to 1 on obs. Thus, none of the attributes of this term are masked in obs. By construction of mask the rest of the
attributes are masked. It follows that (

∧
xi∈A\{xt };obs[i]=1 xi) ∧ (

∧
xi∈A\{xt };obs[i]=0 xi) is precisely a term of c, and hence h is

a DNF formula with a subset of the terms in c; in particular, h ∈ C . Therefore, whenever c evaluates to 0 on an observation,
so does h.

Consider now an observation obs ← mask(D) w.r.t. which h has a consistency conflict with xt , so that {val(h |
obs),obs[t]} = {0,1}. By construction of mask, it holds that obs[t] = val(c | obs), and hence {val(h | obs),val(c |
obs)} = {0,1}. By our preceding discussion, it holds that val(c | obs) = 1 and val(h | obs) = 0. Thus, obs encodes a
term of c that does not appear in h, and this implies that this term was not encoded in any of the observations in O.
Consequently, if the probability of drawing such an observation is more than ε, then the probability of this observation not
being part of O is less than (1 − ε)|O| � e−ε|O|. When |O| = �(1/ε) · ln(1/δ)�, this probability is less than δ, as needed.

The running time of algorithm L is clearly linear in 1/δ, 1/ε, and |A|. This concludes the proof. �
Obtaining consistent learnability results with sensors in a sufficiently restricted sensor class is trivial. One need ensure only

that enough attributes are masked in each drawn observation so that either the target attribute is masked, or the returned
hypothesis predicts “don’t know”. We emphasize that the proof of Theorem 6.1 does not rely on this technique. All masking
processes in Srelevant are 0-concealing for the target attribute xt w.r.t. any class of formulas, so that xt is never masked, and
highly consistent hypotheses are equally highly accurate (by Theorem 2.2). One may also verify that the returned hypotheses
are simultaneously highly consistent and highly complete, in that they have a consistency conflict or predict “don’t know”
with a total probability less than the input parameter ε. Thus, even if the returned hypotheses are forced to make {0,1}
predictions during the evaluation phase (either by changing the masking process to the identity mapping, or by assigning
arbitrary values to the masked attributes), the accuracy of the returned hypotheses will not suffer. Overall, Theorem 6.1
implies a learning algorithm for obtaining hypotheses that are highly accurate even when tested on complete observations,
as per the PAC semantics.

Theorem 6.1 exemplifies that attempts to examine learnability in domains where teachers choose which parts of the
underlying reality students are to observe, a situation that was shown to be naturally modelled through the parameterization
of sensor classes, may lead to a distortion of the meaning of missing information. Such domains essentially turn the value
∗ into a third, in addition to {0,1}, distinguished value, which may then be employed to transmit side information to
an agent. This side information may then allow the agent to learn in environments where learnability would be provably
impossible even with complete observations, as already illustrated. Such a treatment of missing information lies outside the
scope of autodidactic learnability, as demonstrated by our choice not to permit the use of parameterized sensor classes in
Definition 6.1. This problem is further dealt with in the work of Greiner et al. [10].

6.2. Special classes of sensors

The assumption that the sensor class S is somehow restricted underlies many previous attempts in the literature to
model learnability from partial observations. Most previous work implicitly assumes the existence of a teacher in the process
of learning, and as such the corresponding learning settings are naturally modelled as relying on a parameterized sensor
class. The various learning models differ primarily on the type of restrictions they impose on the sensor class S , and the
type of parameterization they consider. These restrictions, in turn, explain why stronger learnability results may be obtained
in other learning models, when compared to those we have obtained under the autodidactic learning semantics. We revisit
some of the learning models discussed in Section 3, and summarize in Table 3 how their approach of partial observability
during the learning phase can be viewed under the unifying prism of a restricted or parameterized sensor class.
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Table 3
A unified view of various models that deal with the problem of learning from partial observations.
Each model is associated with the restrictions and parameterization it imposes on the sensor class.

Learning model Imposed restrictions and parameterization on sensor class S
[This work] None.

[28] S = ⋃
c∈C Sc , and each Sc is restricted so that:

for every mask ∈ Sc , and every obs in the range of mask,
obs[t] ∈ {0,1}, and
obs[t] = 1 if and only if val(c | obs) = 1.

[9] S = ⋃
c∈C Sc , and each Sc is restricted so that:

for every mask ∈ Sc , and every obs in the range of mask,
obs[t] = val(c | obs).

[29] None a priori, but makes an implicit assumption as in [9]
for learnability to be possible.

[6] For any given probability p, S = {maskbernoulli(p)} so that:
for every example exm, and every xi ∈ A,
Pr[obs[i] = ∗ | obs← maskbernoulli(p)(exm)] = p.

[27] S is restricted so that:
for every mask ∈ S , and every obs in the range of mask,
obs[t] ∈ {0,1}.

[2] For any given model parameter k, S is restricted so that:
for every mask ∈ S , and every obs in the range of mask,
|{xi | xi ∈ A;obs[i] �= ∗}| = k.

[1,3,13] Effectively, when the set of attributes A is extended to A′ ∪ A,
S = {maskhide}, where maskhide is the unique masking process
that maps each example to the unique observation obs that
masks exm and is such that {xi | xi ∈ A′ ∪ A;obs[i] �= ∗} = A.

7. Outlook and future directions

We have presented the autodidactic learning model that offers a principled treatment of partial information in a PAC-
like learning setting. Although it allows the use of supervised learning techniques, the autodidactic learning model does
not assume the presence of an external teacher, since supervision (i.e., the label of the target attribute) is provided only to
the extent that an agent’s sensors do so. Within this learning model we have shown that the principle known as Occam’s
Razor, and the technique of reductions among learning problems are still applicable. Through reductions we have shown
that monotone and read-once formulas that are PAC learnable remain learnable even if learning examples are arbitrarily
incomplete. On the other hand, parities and monotone-term 1-decision lists, which are properly PAC learnable, are not
properly learnable from incomplete learning examples, even if the values of only three attributes are hidden.

Numerous questions remain open: To what extent can shallowness be used to establish further learnability results?
Are one-to-many reductions more beneficial than one-to-one reduction in the context of learnability? What other general
techniques can be used to establish positive or negative learnability results? Can PAC learnable concept classes of formulas
that are not efficiently (e.g., general 3-CNF) or locally (e.g., general 2-CNF) evaluatable on partial observations be learned,
or can a general result be proven that excludes the possibility of learning such formulas? Can learnability be improved
under reasonable assumptions on the masking process, without sacrificing the autonomy of learning? Does it make sense to
attempt to learn the structure of the masking process, in addition to the structure of the underlying examples? Is it possible
to establish the representation-independent non-learnability of some PAC-learnable concept class? Under what conditions
can a certain degree of completeness be guaranteed for learned hypotheses?

Endowing learning algorithms with certain properties would significantly improve their practical applicability: One prop-
erty would be to achieve running time independent of the observation size, and dependent on the number of only the
non-masked attributes. It is an easy exercise to show that the Winnow algorithm [17] for learning linear thresholds can be
modified to obtain this property. Another property would be the ability to exploit information in observations where the
target attribute is masked; existing techniques for semi-supervised and unsupervised learning from complete information
suggest that this direction is fruitful. Noise could also be dealt with. Due to the equivalent treatment of all attributes in
the autodidactic learning model, it might be harder to justify the consideration of certain forms of noise considered in the
literature, such as classification noise [1]. On the other hand, random noise across all attributes could be meaningfully con-
sidered [6]. The extent to which reductions preserve noise-resilience could also be investigated. Conceivably, our obtained
algorithms are, to some extent, noise-resilient since they build on existing noise-resilient PAC algorithms. Noise-resilience
could alternatively be established by formulating a corresponding Statistical Query model as in the case of PAC learning
[15]. Finally, it would be interesting to examine whether learning is possible from examples where attributes obey more
general types of correlation than that considered in this work. The role of learned rules in this setting may then change
from an explanatory one that explains why the value of the target attribute is what it is given the values of the remaining
attributes, to a descriptive one that simply describes what holds in examples.
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We believe that the treatment of partial observability introduced herein may provide the basis for addressing certain
broader issues, both in the theoretical understanding and actual implementation of systems that sense their environment
via the use of imperfect sensors, for which existing solutions may be problematic or artificial. Learning rules in parallel for
multiple distinct target attributes cannot be expressed in typical PAC-like supervised learning models, because the target
attribute is a priori distinguished and treated differently; this is not the case in autodidactic learning. The use of learned
rules for reasoning, so that their conclusions can be chained is not meaningfully supported in learning models that assume
complete information. Autodidactic learning, on the other hand, naturally accommodates reasoning as the process through
which some of the missing information is completed. Finally, domains where machine learning is typically employed, such
as that of the autonomous acquisition of unaxiomatized or commonsense knowledge from large corpora of text [19,30], can
be understood in a conceptually cleaner manner through autodidactic learning. Text can be naturally viewed as a partial
depiction of some underlying and not directly accessible reality, and, then, commonsense knowledge acquisition amounts to
learning to infer what holds in this reality [21]. Some of these considerations have been investigated [20].

Acknowledgements

The author is grateful to Leslie Valiant for his advice, and for valuable suggestions and remarks on this research. Useful
feedback was also received from the anonymous IJCAI and AIJ reviewers.

References

[1] Dana Angluin, Philip D. Laird, Learning from noisy examples, Machine Learning 2 (4) (April 1988) 343–370.
[2] Shai Ben-David, Eli Dichterman, Learning with restricted focus of attention, Journal of Computer and System Sciences 56 (3) (April 1998) 277–298.
[3] Avrim Blum, Prasad Chalasani, Learning switching concepts, in: Proceedings of the Fifth Annual Workshop on Computational Learning Theory (COLT’92),

July 1992, pp. 231–242.
[4] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, Manfred K. Warmuth, Occam’s Razor, Information Processing Letters 24 (6) (April 1987) 377–380.
[5] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, Manfred K. Warmuth, Learnability and the Vapnik–Chervonenkis dimension, Journal of the

ACM 36 (4) (October 1989) 929–965.
[6] Scott E. Decatur, Rosario Gennaro, On learning from noisy and incomplete examples, in: Proceedings of the Eighth Annual Conference on Computational

Learning Theory (COLT’95), July 1995, pp. 353–360.
[7] Paul Fischer, Hans-Ulrich Simon, On learning ring-sum expansions, SIAM Journal on Computing 21 (1) (February 1992) 181–192.
[8] Michael R. Garey, David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman & Co, New York, USA,

1979.
[9] Sally A. Goldman, Stephen S. Kwek, Stephen D. Scott, Learning from examples with unspecified attribute values, Information and Computation 180 (2)

(January 2003) 82–100.
[10] Russell Greiner, Adam J. Grove, Alexander Kogan, Knowing what doesn’t matter: Exploiting the omission of irrelevant data, Artificial Intelligence 97 (1–

2) (December 1997) 345–380.
[11] David P. Helmbold, Robert H. Sloan, Manfred K. Warmuth, Learning integer lattices, SIAM Journal on Computing 21 (2) (April 1992) 240–266.
[12] Wassily Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 58 (301) (March

1963) 13–30.
[13] Michael J. Kearns, Robert E. Schapire, Efficient distribution-free learning of probabilistic concepts, Journal of Computer and System Sciences 48 (3)

(June 1994) 464–497.
[14] Michael J. Kearns, Umesh V. Vazirani, An Introduction to Computational Learning Theory, The MIT Press, Cambridge, Massachusetts, USA, 1994.
[15] Michael J. Kearns, Efficient noise-tolerant learning from statistical queries, Journal of the ACM 45 (6) (November 1998) 983–1006.
[16] Roderick J.A. Little, Donald B. Rubin, Statistical Analysis with Missing Data, 2nd ed., John Wiley & Sons, Inc., New York, USA, 2002.
[17] Nick Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm, Machine Learning 2 (4) (April 1988) 285–318.
[18] John McCarthy, Appearance and reality, John McCarthy’s home page http://www-formal.stanford.edu/jmc/appearance.html, 30 August 2006.
[19] Loizos Michael, Leslie G. Valiant, A first experimental demonstration of massive knowledge infusion, in: Proceedings of the Eleventh International

Conference on Principles of Knowledge Representation and Reasoning (KR’08), September 2008, pp. 378–388.
[20] Loizos Michael, Autodidactic learning and reasoning, PhD thesis, School of Engineering and Applied Sciences, Harvard University, USA, May 2008.
[21] Loizos Michael, Reading between the lines, in: Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI’09), July

2009, pp. 1525–1530.
[22] Leonard Pitt, Leslie G. Valiant, Computational limitations on learning from examples, Journal of the ACM 35 (4) (October 1988) 965–984.
[23] Leonard Pitt, Manfred K. Warmuth, Prediction-preserving reducibility, Journal of Computer and System Sciences 41 (3) (December 1990) 430–467.
[24] Ronald L. Rivest, Robert Sloan, A formal model of hierarchical concept learning, Information and Computation 114 (1) (1994) 88–114.
[25] Ronald L. Rivest, Learning decision lists, Machine Learning 2 (3) (November 1987) 229–246.
[26] Joseph L. Schafer, John W. Graham, Missing data: Our view of the state of the art, Psychological Methods 7 (2) (June 2002) 147–177.
[27] Dale Schuurmans, Russell Greiner, Learning default concepts, in: Proceedings of the Tenth Canadian Conference on Artificial Intelligence (AI’94), May

1994, pp. 99–106.
[28] Leslie G. Valiant, A theory of the learnable, Communications of the ACM 27 (11) (November 1984) 1134–1142.
[29] Leslie G. Valiant, Robust logics, Artificial Intelligence 117 (2) (March 2000) 231–253.
[30] Leslie G. Valiant, Knowledge infusion, in: Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI’06), July 2006, pp. 1546–

1551.
[31] Leslie G. Valiant, Evolvability, Journal of the ACM 56 (1) (January 2009) 3.1–3.21.

http://www-formal.stanford.edu/jmc/appearance.html

	Partial observability and learnability
	Introduction
	Autodidactic learnability
	Learning from partial observations
	Are accurate predictions possible?
	Going from consistency to accuracy

	Discussion and related work
	Are "don't know" predictions justified?
	Qualitative characteristics of masking
	Semantics of "don't know" predictions
	Degree of supervision while learning
	Regularity on how information is hidden

	Learnability results and tools
	Learnability through Occam's Razor
	Learnability through reductions
	Monotonicity preserves learnability
	Shallowness preserves learnability

	Negative learnability results
	Non-learnability of parities
	Non-learnability of decision lists

	Sensor-restricted learnability
	Parameterized sensor classes
	Special classes of sensors

	Outlook and future directions
	Acknowledgements
	References


