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Abstract. In this note we consider, for a number of linear algebra problems, an environment 
allowing approximate computations. Within this framework we show that the relative com- 
plexity of these problems should be studied according to a strict notion of reducibility, which 
corresponds to the well-known many-one reducibility of combinatorial complexity. 

1. INTRODUCTION 

The concept of resource bounded reduction has played a major role in deepening the under- 
standing on the complexity of computational problems, in both combinatorial and algebraic 
settings. Generally speaking, to say that a problem A is reducible to a problem B amounts 
to saying that an algorithm R can be found which solves A given (e.g., as a subroutine to R) 
an algorithm RB for B. When the computational cost of R is not higher than that of RB, 
we can immediately draw the conclusion that A is not harder than B. Thus reducibility is 
one of the most important theoretical tools suitable to classify problems basing upon their 
demand of computational resources (e.g., time or space). 

We point out that, in computational complexity, problems have almost always been clas- 

sified according to the cost of the available “exact” solution methods. However, many 
important problems are not feasibly solvable in an exact way, and in fact there exists a 
huge body of literature on approximate solution methods, again for both combinatorial and 
algebraic problems. It is then pretty natural to ask whether and how the concept of approx- 
imation can affect the complexity hierarchies given by the known reductions. Motivated 
by this question, we present here some preliminary results on parallel reducibility within 
approximation settings which apply to a number of linear algebra problems. 

F be a field. We are concerned with the following problems-defined over F: 

DETF(~): computing the determinant of an n x n matrix; 
CHARPOLYF(n): computing the characteristic polynomial of an n x n matrix; 
ADJOINTp(n): computing the adjoint matrix of an n x n matrix; 
INVERSEF(n): computing the inverse of a nonsingular n x n matrix; 
NONSINGE&F(n): solving a nonsingular system of n linear equations in n un- 
knowns; 

POWERSF(n): computing the powers 2 through n of an n x n matrix; 
INTEPRODF(n): computing the product of n n x n matricest. 

In [l] Csanky shows that the above problems can be solved, when F is a field of character- 

istic 0, in O(log’ n) depth and polynomial (in n) size, i.e. that they belong to the complexity 
class NC;. (For a definition of NCF and NC: see [2].) Csanky’s result has been later im- 
proved by various authors, so that it is now possible to achieve the same depth-size bound 
over more general algebraic structures, such as arbitrary fields or even, for what concerns 
DET(n) and CHARPOLY(n), commutative rings with unity [3-51. 

We have been unable to communicate with the author with respect to galley proof corrections. Hence, this 
work is published without the benefit of such corrections. (Ed.) 
tFor the sake of brevity, in the following we write DET(n) for DEAF (and analogously for the other 
problems). 
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2. REDUCTIONS IN AN EXACT ENVIRONMENT 

In [l] Csanky also presents O(logn) time reductions among some of the above defined 
problems. In this early work, the model of computation adopted was somewhat informal. 
Here we consider the more rigorous model of arithmetic circuils [2,6], and give two informal 
definitions of resource bounded reduction, which correspond to the well known notions of 
polynomial (or Turing) reduction and polynomial transformation (or many-one reduction). 

DEFINITION 1. (NC$ REDUCTION). A problem P(n) is NCk reducible to R(m) if there 

is an NC; circuit which solves P(n) using oracle nodes for R(i), i E { 1, . . . , m}, m = no(l). 
An oracle node with k inputs counts O(log k) depth. I 

If P(n) is NC; reducible to R(m) we write P(n) $. R(m). 

DEFINITION 2. (NC; TRANSFORMATION). A problem P(n) NC; transforms to R(m) if 
there exists an NC; circuit CY which transforms an instance x of P(n) to an instance e(x) 
of R(m), and such that any solution to o(x) can be interpreted as a solution to x. 1 

If P(n) NC& transforms to R(m), we write P(n) 5% R(m). 

Since the definition of NC; reduction is more general, if P(n) sE R(m) holds, then also 
P(n) 5; R(m) holds. The converse is not necessarily true, in general. We later show that 
the notion suitable to the case of approximating algorithms is that of NC; transformation. 

Two problems P(n) and R(m) are said to be <E (5;) equivalent if both P(n) <E R(m) 
and R(n) 5% P(k) (P(n) I+, R(m) and R(n) <g P(k)) hold. In this case we write 

P + R(P ~5 R). Note that, within the NCF theory, it is sufficient that m,k = no@). 
The known reductions allow to conclude that all the problems introduced in the previous 
section are <& equivalent. On the other hand, the reductions that we can show to be of the 
<E type are listed below. 

INVERSE(n) <E NONSINGEQ(n2) and NONSINGEQ(n) SE INVERSE(n); 
DET(n) <E ADJOINT(n + 1); 
DET(n) <E CHARPOLY(n); 
POWERS(n) <E ITEPROD(n) and ITEPROD(2n - 1) <E POWERS(n2). 

3. REDUCTIONS IN PRESENCE OF APPROXIMATION ERRORS 

As previously stated, in past studies on the complexity of algebraic problems, the general 
notion of NC& reduction was adopted (see [2]). B e ow we show that NC’:, transformation 1 
is indeed necessary when dealing with approximation. We begin by defining (in an informal 
way) the equivalent of NCF when approximation is allowed. 

DEFINITION 3. An arithmetic circuit family a = {(Y,},,~N over the field F is an c-Approx- 
imating Arithmetic Circuit (or simply a,-circuit) family for a problem P if and only if for 
all possible inputs of size n the relative error (according to a well-defined measure) by which 
the output of cr, is affected with respect to an exact solution is bounded by e. I 

According to the NCF theory, we define NC!, for all 6 > 0 and integers k 2 1, as the class 

of problems solvable by cr,-circuit families of O(logk input size) depth and (input size)‘(‘) 
size. The following proposition can be easily proved, provided that the relative error bound e 
is independent of the problem size. This is the main reason for using NC; transformations. 

PROPOSITION 4. Let 6 > 0 and Jet k 2 1 be an integer. Then R E NC: and P <pm R imply 
P E NC;. I 

Proposition 4 states that the <k relation is transitive with respect to the error limitations. 
We now show that the reductions (l), (2), and (4) are indeed of <E type (the proof of (3) 
is trivial). 

PROPOSITION 5. 

a) INVERSE(n) <E NONSINGEQ(n2), and 
b) NONSINGEQ(n) IL INVERSE(n). 
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a) 

b) 

To invert the matrix A, form the n2 x n2 block diagonal linear system 

diag(A,. . . , A)=(eyI...lez)T. 

The n* elements of the vector solution are the elements of the matrix A-’ (in column 
major order). Moreover, with respect to the most commonly used matrix norms, the 
condition number of the matrix diag(A, . . . , A) is equal to that of A. 
To reduce NONSINGEQ(n) to INVERSE(n), consider the n x n linear system 
Ax = b. Assume, without loss of generality, that lb1 1 = msx{ lbil : i = l,, . . , n} = 1 
(the condition lb11 = 1 can be easily satisfied by scaling). With a step of Gaussian 
elimination, in constant time and without loss of precision, obtain the equivalent 
system A’x = el. Then the solution of the system coincides with the first column 
of A’-‘. The condition number of A’, with respect to the infinity norm, is bounded 
by the quantity p(A)p(E), where p(E) is the condition number of the matrix 

which describes the step of Gaussian elimination. It is easy to see that llElldo < 2 
and IlE-’ Iloo < 2, where )I . Iloo denotes the infinity matrix norm. I 

The reason for studying the effect of <k reductions on the condition number of matrices is 
that the behaviour of approximating (e.g. iterative) algorithms depends on such a measure, 
as well as on the input size. 

PROPOSITION 6. DET(n) Lk ADJOINT(n + 1). 

PROOF: Given an order n matrix A, we consider the (n + 1) x (n + 1) matrix 

B= A O ( > OT 1 * 

It is then easy to see that 

adj(B) = (1) 

Strictly speaking, this is not an NC; transformation, since the result is one element of the 
adjoint and not the adjoint itself. The determinant can be obtained from the adjoint by a 
single use of projectiont. However, from the standpoint of the error analysis, it is necessary 
that no arithmetic computation be performed on the result of the transformed problem, and 
clearly projections meet this requirement. I 

PROPOSITION 7. 

a) POWERS(n) I& INTEPROD(n), and 
b) ITEPROD(2n - 1) <$ POWERS(n*). . 

twe read that a projection pi : F’ - F is defined as follows: pi(Zl, . . . , zk) = Zi, for any k > 1 and 
l<_i<k. 

AM 4:6-C 
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SKETCH OF THE PROOF: The proof of u) is straightforward. To prove b), consider the 
following n2 x n2 matrix 

M=~Z!Y2!J> 

whereAi,Ci,i= l,..., n-l, and B are nxn matrices. It can be shown that the 7~x71 matrix 
in the bottom right corner of M2+’ is the product An_1An_2. ..A~BCIC~. ..C,_l. 1 

We do not know of any NC; transformation which relates (in either directions) from 
one side matrix inversion and linear system solution, from the other the computation of 
determinant, adjoint and characteristic polynomial of a matrix. In particular, it can be 
shown that no NC; transformation INVERSE(n) <k ADJOINT exists. In fact, 
given a matrix A, we should determine a matrix B such that adj(B) = A-‘. But this 

implies B = “-u-A, and the quantity n-v_ is not NC; computable. 
Problems that are equivalent under NC& transformations appear strongly related even in 

an approximation environment. In some sense, approximation makes it apparent the differ- 
ent nature of the problems under investigation. We do know iterative (approximate) pro- 
cesses for solving NONSINGEQ(n) and, by Propositions 4 and 5, INVERSE(n) in NC; 
(R denotes the real field), but we do not know how to take advantage of approximation for 
solving problems with a sort of combinatorial flavour, such as DET (see [7]). 

By taking the more general notion of NC& reduction into account, other relations can 
be considered which can be of some help also in an approximation environment. We know 
that Proposition 4 does not hold for 55 reductions. In fact, according to Definition 1, an 
NC; reduction allows both a polynomial number of oracle gates and a polynomial number 
of operations to be performed on the oracle outputs. From the viewpoint of approxima- 
tion (i.e. in order to succeed in producing a result which is affected by a relative error 
bounded by a given constant c), this fact may require the error bound at the oracle nodes 
to be of the form +. Consider, for instance, the well-known reduction from DET(n) to 
LU(n). This cons&s of multiplying the diagonal elements of the U factor produced by the 
oracle for M(n). However, this can decrease the precision of the result by a factor O(n) 
(n = size of the input matrix). 

Under NC; reductions, we are able to relate INVERSE(n) and ADJ(n+l) by means of 
the formula (1). The i,j-th element of A-l can be easily obtained by projecting the i,j-th 
and the n + 1, n + 1-th element of adj(B) and then computing the quotient, i, j = 1,. . . , n. 
The error bound on the result is only “slightly” increased with respect to the error introduced 
by the oracle for ADJ(n + 1). In fact, the following proposition can be proved. 

PROPOSITION 8. Let A be a nonsingular n x n matrix, and Jet A = adj(A) and d = det(A). 
Let A’ and d’ be approximations ofd and d that satisfy 

IId-d’ll < E1 and Id-d’) <~2 
lldll PI ’ 

where the relative errors 61 and ~2 are supposed to be independent from n. Then the 

approximation $ of 4 = A-’ is affected by a relative error ~3 = O(c1 + 62). I 
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