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Abstract. In this note we consider, for a number of linear algebra problems, an environment
allowing a.pproximate computations. Within this framework we show that the relative com-
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corresponds to the well-known many-one reducibility of combinatorial complexity.

i. INTRODUCTION
The concept of resource bounded reduction has played a major role in deepening the under-
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settings. Generally speaking, to say that a problem A is reducible to a problem B amounts
to saying that an algorithm R can be found which solves A given (e.g., as a subroutine to R)
an algorithm Rp for B. When the computational cost of R is not higher than that of Rpg,
we can immediately draw the conclusion that A is not harder than B. Thus reducibility is
one of the most important theoretical tools suitable to classify problems basing upon their
demand of computational resources (e.g., time or space).

We point out that, in computational complexity, problems have almost always been clas-
sified according to the cost of the available “exact” solution methods. However, many
important problems are not feasibly solvable in an exact way, and in fact there exists a
huge body of literature on approximate solution methods, again for both combinatorial and
algebraic problems. It is then pretty natural to ask whether and how the concept of approx-
imation can affect the complexity hierarchies given by the known reductions. Motivated
by this question, we present here some prehrmnary results on parallel reducibility within
approximation settings which apply to a number of linear algebra problems.

Let F' be a field. We are concerned with the following problems defined over F:

e DETFp(n): computing the determinant of an n x n matrix;

CHARPOLYp(n): computing the characteristic polynomial of an n x n matrix;
ADJOINTp(n): computing the adjoint matrix of an n x n matrix;
INVERSEp(n): computing the inverse of a nonsingular n X n matrix;
NONSINGEQpr(n): solving a nonsingular system of n linear equations in n un-
knowns;

e o & 0

L] I’Uth’,bp(n) computing the powers 2 through n of an n x n matrix;
e INTEPRODp(n): computing the product of n n X n matricest.
ol
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1st1c 0, in O(log” n) depth and polynomial (in n) size, i.e. that they belong to the complexity
class NC%. (For a definition of NCr and NCE see [2].) Csanky’s result has been later im-
proved by various authors, so that it is now possible to achieve the same depth-size bound
over more general algebraic structures, such as arbitrary fields or even, for what concerns

TS

DET (n) and CHARPOLY (n), commutative rings with unity [J—DJ

We have been unable to communicate with the author with respect to galley proof corrections. Hence, this
work is published without the benefit of such corrections. {Ed.)

tFor the sake of brevity, in the following we write DET (n) for DETr(n) (and analogously for the other
problems).
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2. REDUCTIONS IN AN EXAcT ENVIRONMENT

In [1] Csanky also presents O(logn) time reductions among some of the above defined
problems. In this early work, the model of computation adopted was somewhat informal.
Here we consider the more rigorous model of arithmetic circuits [2,6], and give two informal
definitions of resource bounded reduction, which correspond to the well known notions of
polynomial (or Turing) reduction and polynomial transformation (or many-one reduction).

DEFINITION 1. (NCk REDUCTION). A problem P(n) is NC} reducible to R(m) if there
is an NC}L circuit which solves P(n) using oracle nodes for R(i),i € {1,...,m},m = n®(),
An oracle node with k inputs counts O(log k) depth. [ |

If P(n) is NC} reducible to R(m) we write P(n) <% R(m).

DEFINITION 2. (NC} TRANSFORMATION). A problem P(n) NC} transforms to R(m) if
there exists an NC} circuit o which transforms an instance x of P(n) to an instance a(x)
of R(m), and such that any solution to a(x) can be interpreted as a solution to x. 1

If P(n) NC} transforms to R(m), we write P(n) <E R(m).

Since the definition of NC} reduction is more general, if P(n) <P R(m) holds, then also
P(n) <. R(m) holds. The converse is not necessarily true, in general. We later show that
the notion suitable to the case of approximating algorithms is that of NC} transformation.

Two problems P(n) and R(m) are said to be <B, (<%) equivalent if both P(n) <§ R(m)
and R(n) <P P(k) (P(n) <P R(m) and R(n) <B P(k)) hold. In this case we write
P =P R(P =%} R). Note that, within the NCF theory, it is sufficient that m,k = no),
The known reductions allow to conclude that all the problems introduced in the previous
section are <. equivalent. On the other hand, the reductions that we can show to be of the
<P type are listed below.

(1) INVERSE(n) <k, NONSINGEQ(n?) and NONSINGEQ(n) <k, INVERSE(n);
(2) DET(n) <P, ADJOINT(n + 1);

(3) DET(n) <P, CHARPOLY (n);

(4) POWERS(n) <B, ITEPROD(n) and ITEPROD(2n — 1) <k, POW ERS(n?).

3. REDUCTIONS IN PRESENCE OF APPROXIMATION ERRORS

As previously stated, in past studies on the complexity of algebraic problems, the general
notion of NC} reduction was adopted (see [2]). Below we show that NC} transformation
is indeed necessary when dealing with approximation. We begin by defining (in an informal
way) the equivalent of NCr when approximation is allowed.

DEFINITION 3. An arithmetic circuit family o = {a, },en over the field F is an e-Approz-
imating Arithmetic Circuit (or simply a.-circuit) family for a problem P if and only if for
all possible inputs of size n the relative error (according to a well-defined measure) by which
the output of a,, is affected with respect to an exact solution is bounded by ¢. [ |

According to the NCF theory, we define NC¥, for all ¢ > 0 and integers k > 1, as the class
of problems solvable by a.-circuit families of O(logf input size) depth and (input size)O)
size. The following proposition can be easily proved, provided that the relative error bound ¢
is independent of the problem size. This is the main reason for using NC} transformations.

PROPOSITION 4. Let € > 0 and let k > 1 be an integer. Then R € NC¥ and P <P, R imply
P e NC?t. |

Proposition 4 states that the <P, relation is transitive with respect to the error limitations.
We now show that the reductions (1), (2), and (4) are indeed of <E, type (the proof of (3)
is trivial).

PROPOSITION 5.

a) INVERSE(n) <k, NONSINGEQ(n?), and
b) NONSINGEQ(n) <P, INVERSE(n).
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PRrooF:

a) To invert the matrix A4, form the n? x n2 block diagonal linear system
diag(4,...,A) = (ef|...|eI)T.

The n? elements of the vector solution are the elements of the matrix A~! (in column
major order). Moreover, with respect to the most commonly used matrix norms, the
condition number of the matrix diag(A4,..., A) is equal to that of A.

b) To reduce NONSINGEQ(n) to INVERSE(n), consider the n x n linear system
Ax = b. Assume, without loss of generality, that |b;| = max{|b;| :i=1,...,n} =1
(the condition }b;] = 1 can be easily satisfied by scaling). With a step of Gaussian
elimination, in constant time and without loss of precision, obtain the equivalent
system A’x = e;. Then the solution of the system coincides with the first column
of A'~1. The condition number of A’, with respect to the infinity norm, is bounded
by the quantity u(A)u(E), where p(E) is the condition number of the matrix

1
~by 1
E= .
—b, 1
which describes the step of Gaussian elimination. It is easy to see that ||E||ec < 2
and ||E~!|| < 2, where || - ||oo denotes the infinity matrix norm. ]

The reason for studying the effect of <P reductions on the condition number of matrices is
that the behaviour of approximating (e.g. iterative) algorithms depends on such a measure,
as well as on the input size.

ProrosITION 6. DET(n) <P ADJOINT(n +1).

ProoOF: Given an order n matrix A, we consider the (n + 1) x (n + 1) matrix

A0
s=(22).

It is then easy to see that

det(4)A™' 0
adj(B) = . (D
(1 det(A)

Strictly speaking, this is not an NC}. transformation, since the result is one element of the
adjoint and not the adjoint itself. The determinant can be obtained from the adjoint by a
single use of projectiont. However, from the standpoint of the error analysis, it is necessary
that no arithmetic computation be performed on the result of the transformed problem, and
clearly projections meet this requirement. |

PROPOSITION 7.

a) POWERS(n) <?, INTEPROD(n), and
b) ITEPROD(2n — 1) <2, POW ERS(n?).

tWe recall that a projection p; : F¥* — F is defined as follows: pi(z1,...,2x) = z;, for any k > 1 and
1<i1<k.

AML 4:6-C
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SKETCH OF THE PROOF: The proof of a) is straightforward. To prove b), consider the
following n? x n? matrix

/B 0] O\
B )
M=10 Caa O |>
l : - A2 O Cn—lJ
\O ... 0 Ay o J
where A;,C;;i=1,...,n—1,and B la. e nxn matrices. It can be shown that the n x n matrix

in the bottom right corner of M?"=1 is the product A,_1Ap_2---A1BCCq---Cp_;. [ |

We do not know of any NC}. transformation which relates (in either directions) from
one side matrix inversion and linear system solution, from the other the computation of
determinant, adjoint and characteristic polynomial of a matrix. In particular, it can be
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shown that no NC} transformation INVERSE(n) <P, ADJOINT(n) exists. In fact,

given a matrix A, we should determine a matrix B such that adj(B) = A~!. But this
implies B = "“/l /r‘]pf(A A, and the quantity "“/1 /dpf{A\ is not Nf'L computable.
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Problems that are equlvalent under NCL transformatlons appear strongly related even in
an approximation environment. In some sense, approximation makes it apparent the differ-
ent nature of the problems under investigation. We do know iterative (approximate) pro-
cesses for solving NONSINGEQ(n) and, by Propositions 4 and 5, INVERSE(n) in NCg
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solving problems with a sort of combinatorial flavour, such as DET (see [7]).

By taking the more general notion of NC} reduction into account, other relations can
be considered which can be of some help also in an approximation environment. We know
that Proposition 4 does not hold for <k reductions. In fact, according to Definition 1, an
NC} reduction allows both a polynomial number of oracle gates and a polynomial number
of operations to be performed on the oracle outputs. From the viewpoint of approxima-
tion (i.e. in order to succeed in producing a result which is affected by a relative error
bounded by a given constant ¢), this fact may require the error bound at the oracle nodes
to be of the form —%. Consider, for instance, the well-known reduction from DET(n) to
LU(n). This consists of multiplying the diagonal elements of the U tactor produced by the
oracle for LU(n). However, this can decrease the precision of the result by a factor O(n)

('n — gize of the innut matrix)
= 81Z€ O Ln¢ Inputl mairxj.

Under NC} reductions, we are able to relate INV ERSE(n) and ADJ(n+1) by means of
the formula (1). The i, j-th element of A~! can be easily obtained by projecting the i, j-th
and the n+ 1,n + 1-th element of adj(B) and then computing the quotient, ¢,j =1,...,n
The error bound on the result is only “slightly” increased with respect to the error introduced

PRovpap PN n7r{.. . 7 | P g Ty

41 radd
U_y l:uC oracie 1Ul llLIJ L\ T L) Lll lacy, uuc Luuuwuxs plupumuuu cai oe pirouvcu.

PROPOSITION 8. Let A be a nonsingular n x n matrix, and let A = adj(A) and d = det(A).
Let A’ and d’ be approximations of A and d that satisfy

A=Al _ o ld=d]
AT Il

< €2,

witere the reiacive errors ¢; and €; are supposed to be independent from n. Then the
approximation 4 T of & A = A™! is affected by a relative error €3 = O(€; + €2).
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