
An InternatloMl Journal

computers &
mathematics
with applkationa

PERGAMON Computers and Mathematics with Applications 46 (2003) 105-123
www.elsevier.com/locate/camwa

Data Structures and Load Balancing for
Parallel Adaptive kq Finite-Element Methods

A. K. PATRA*, A. LASZLOFFY AND J. LONG
State University of New York, Buffalo, NY 14260, U.S.A.

<lend><j124><abani>Qeng.buffalo.edu

Abstract-Adaptive hp finite-element methods (FEM), in which both grid size h and local poly-
nomial order p are dynamically altered, are very effective discretiaation schemes for the numerical
solution of a large class of partial differential equations. However, these schemes generate computa-
tions that require dynamic and irregular patterns of data storage, access, and computation, making
their use on multiprocessor machines very difficult. We describe here the development of a suite of
data structures and load balancing techniques that addresses these concerns. The central idea is the
use of a spatially local ordering of all data and computation using a key generated from geometric
data using a space filling curves-based ordering for data storage, distribution, and access. We also
evaluate the suitability of tree and table type data structures for adaptive meshing. Example appli-
cations and performance data complete the presentation. @ 2003 Elsevier Science Ltd. All rights
reserved.

Keywords-Adaptive hp finite-element methods, Parallel computing, Data management, Load
balancing.

1. INTRODUCTION

Adaptive hp finite-element methods can yield highly advantageous cost/accuracy ratios. Several
researchers [l-5] have, in fact, shown that the reduction in discretization error with respect to the
number of unknowns can be exponential for general classes of elliptic boundary-value problems
when properly designed meshes are used (O(expeTN) where N is the number of unknowns and y
is a constant). The methods are intrinsically complex and this is reflected in the complexity
of the techniques required to manage the data and computations associated with these schemes
(see [4] for an early implementation). Parallel versions of these methods offer the potential for
very accurate solution of large scale physically realistic models of important physical systems.
However, parallel processing introduces the following additional difficulties:

l need to dynamically allocate and deallocate memory in a distributed memory environment
as the computation proceeds;

l need to maintain refinement/enrichment constraints during the adaptive process;
l need to balance the computational load dynamically among the multiple processes;

The financial support of the National Science Foundation through Grant ASC9702947, AC10102805 is acknowl-
edged. Computer time was provided by the National Partnership for Advanced Computing Infrastructure, San
Diego, and Center for Computational Research, University at Buffalo.
*Author to whom all correspondence should be addressed.

08981221/03/$ - see front matter @ 2003 Elsevier Science Ltd. All rights reserved. Typ=et by -4%-‘&S
PII: SO8981221(03)00110-X

106 A. K. PATRA et al.

l need to use linear equation solvers, designed to exploit the special structure of the irregular
sparse systems generated from adaptive hp schemes.

These problems have attracted much attention in recent years and several approaches have been
published, especially, for the related though simpler problems of adaptive mesh refinement with
h-version finite elements and finite differences. The contributions of Berger and Saltzman [6]
with the CHAOS++ system [7], Bad en et al. [8] with the KeLP system, and Parashar and
Browne [9] with the DAGH system have been particularly notable. The KeLP [8] programming
system developed by Baden et al. used -simple geometric abstractions which enable the pro-
grammer to conveniently express complicated communication patterns for dynamic applications.
Parashar and Browne [9] developed the distributed adaptive grid hierarchy package (DAGH)
for supporting parallel adaptive mesh refinement using hierarchical finite-difference grids. The
load balancing and processor mapping strategy of DAGH that maps grids to processors through
locality-preserving space-filling curves (SFC) is one that we adopt in the current work.

More recently, there have been a few efforts at supporting parallel hp adaptivity. The first one
of this kind being the scalable distributed dynamic arrays (SDDA), developed by Edwards and
Browne [lO,ll], SDDA supports fine-grain data parallel operations on arrays distributed across
processors. It automatically manages data decomposition, interprocessor communication, and
synchronization. SDDA has been applied to two-dimensional problems using adaptive hp finite-
element methods. Another large family of integrated tools designed to support hp schemes has
been developed by Flaherty, Devine, Shephard, Loy, Ozturan et aE. [12-151 using octree-based
structures for mesh generation and data decomposition. The finite-element .data is stored in the
parallel mesh database based on the octree decomposition. Dynamic load balancing, refinement,
and derefinement algorithms are also provided by this library.

In this paper, we describe a set of distributed dynamic data structures and load balancing
schemes that address the needs listed above. The central thesis in our data management schemes
is that the cotiplexity of the task can be greatly alleviated by using a global index space based
on a spatially local ordering of the data. The primary contributions of this work are

l support for adaptive hp finite-element schemes using constrained node-based approxima-
tions (Figure 1) necessary for using all-quadrilateral and all-hexahedral meshes,

Figure 1. Constrained node approximations to maintain continuous approx-
imations across interelement boundaries.

hp Finite-Element Methods 107

l a clean classification of finite-element data and a delineation of the requirements for data
structures necessary to support parallel adaptivity,

l a clear evaluation of the suitability of tree and table type data structures for parallel
adaptive meshing,

l the use of predictive strategies for dynamic load balancing that greatly reduce excessive
data migration during rebalancing of load among processors, and finally,

l providing very close integration with equation solvers designed for such grids.

We begin by describing the data that has to be managed for an adaptive finite-element simu-
lation and basic requirements for data structures suitable for this application. We then describe
two suitable distributed dynamic data structures, two simple schemes for load balancing, and a
brief review of solution algorithms. A presentation of extensive numerical tests completes the
paper.

2. FINITE-ELEMENT DATA AND
REQUIREMENTS FOR DATA STRUCTURES

2.1. hp Finite-Element Data

Adaptive finite-element simulations generate data that can be decomposed into persistent
mesh/solution data and transient computational data. The mesh data is retained and modified
through multiple solution cycles, and hence, is labeled as persistent, while during each solution
cycle, large amounts of temporary computational data are generated. The transient computa-
tional data is fairly voluminous but has a simple matrix/vector structure. The persistent mesh
data is complex and comprises geometric location, node connectivity, neighbor information, par-
ent/child element information, local orders of approximation, material, and solution data. All
of this data is also easily associated with nodes and/or elements (see Figure 2). Note the own-
ership relationship between the mesh and computed data. This relationship will be central to
our data parallel computing strategy where computations will be distributed among processors
using an “owner-computes” strategy. This complex data has to be stored and accessed efficiently
in properly designed parallel data structures. The choice of the data structure is vital for this
application, and a bad choice can largely destroy advantages obtained by adaptivity and parallel
computing. We will now clearly delineate the requirements of a data structure to store this data
efficiently.

Finite Element Data
1

Y-----c 3------
Problem Data and Mesh Data e*g*Matcridhma,Mesh ,-ec_-__-

Node Related Data Element Related

__-- __-- __--
>\ Owner __--

._..._-___--___--__---~~~--~~-~~~---

Figure 2. Organization of finite-element data into persistent mesh data and transient
computational data. Note the ownership relations among the data sets.

108 A. K. PATRA et al.

2.2. Data Structure Requirements

The most important requirements of a data structure storing mesh data in supporting parallel
hp adaptive FEM are as follows.

l Dynamic data storage. During adaptive mesh refinementlderefinement and mesh redis-
tribution, objects are created/transferred and have to be inserted; and old objects are
removed and have to be deleted from the data structure. In other words, the storage
scheme must be able to grow/shrink at runtime.

l Fast storage and retrieval. Quite often, one particular object has to be recovered from the
database and modified, ,e.g., neighbor of a refined element for information update, etc.

l Fast data set traversal. Some of the procedures in the solution process (e.g., stiffness
matrix construction) involve operations which must be performed on all, or a list of the
entities. In this case, a sweep through these objects is necessary. In other words, the
whole or parts of the data structure have to be traversed in sequence.

l Uniqueness of the identifier. Each object in the data set should possess an identifier that
is unique and remains so as the mesh evolves and new objects are introduced and old
ones removed. Renumbering (reidentifying) schemes are not trivial to implement and
expensive, especially in the case of parallel processing.

l Memory and cache eficiency. Data has to be stored with the most efficient memory
usage possible. The aim is to use the local memory associated with the processor and
avoid reading from/writing to remote memory as much as possible. It is also preferable
to maximize cache hits when processing the data. An effort has to be made to store data
in memory in the order in which it is accessed to maximize cache reuse. On superscalar
processors, such cache reuse can greatly increase efficiency.

Unfortunately, a scheme efficient in one criteria might not be efficient in another, and usually
an acceptable balance should be found. For example, linked lists [IS] are very suitable for full
set traversal and memory efficiency requirements but have poor data retrieval properties. Tables
are fast access but can be difficult to grow and shrink. Trees can be easy to grow and shrink
but make access complex and slow. In this work, the local data structure has been implemented
using two different schemes, namely, B-trees and hash tables. Both are dynamic data structures
with different characteristics. The unique identifier is obtained from a key given by a space-filling
curve (SFC) discussed in the next section.

3. SFC-BASED INDEXING

The starting point of the data structure design is the construction and assignment of an indexing
using identifier (a key) assigned to each piece of persistent mesh data. Since all of the mesh data
may be related to either a node or an element object, we begin by assigning keys or identifiers to
each node/element object based on their geometric location. This key has to be associated with
the object at the time of creation and ideally should be unique throughout the computation, or
until the entity vanishes. Following Edwards (111, we will use here the location along a space-
filling curve passing through the element centroid for element keys and one passing through nodes
for node keys.

The SFC [17] maps the n-dimensional data to a one-dimensional sequence and in the limit will
fill the multidimensional space. Sagan [17] lists a series of such curves and algorithms for obtaining
them. The standard procedure for obtaining an SFC is to use a mapping h, : [0, 1)” + (0, 11.
Thus, to obtain keys for elements,

(1) we scale the coordinates xi = (zi, yi, zi) with the maximum of xi, yi, ti over all element
centroids ,

(2) compute Ic,. = h, (xi, yi, zi), and

hp Finite-Element Methods 109

(3) convert k, into an integer using k = int (kr * B), where B is a large integer, e.g., 10s.

Note that schemes for constructing h, were published in [18].
A sorted list of the keys C = {ki} defines a space-filling curve passing through the points xi.

Because the mapping is purely based on coordinates, the key remains unique over the entire
computation in the case of stationary meshes. It should be noted that the use of this type of
key effectively generates a global address space. This space can be easily partitioned to obtain a
decomposition of the problem.

_---__ - - - - I

,

- - . - - I
/

: I !

: 1 1

I
; I

I

.__. . :

---.-I q I (... : ;. ”
Figure 3. Space filling curve orderings of element centroids. Levels 1, 2, and 3 curves
shown for uniform and adaptive meshes.

Two important characteristics of the SFC ordering pertinent for the case of adaptive meshes
are clearly revealed in Figure 3. These are the following.

(1) Subcube property. If the entire domain is visualized as a hypercube and then split up into
subcubes in a recursive fashion, the curve passes through all the points in each subcube
at a particular level before going through points in a neighboring subcube.

(2) Self-similarity. The curve can be generated from a basic stencil at each level of subcubes.

The primary consequence of the subcube property is geometric locality. Thus, points close to
each other in the n-dimensional space are also close to each other in the one-dimensional (key)
space in the mean sense. Since the FEM process usually requires processing of elements that are
geometrically adjacent in sequence, geometric locality can be exploited for the efficient storage
and retrieval of the mesh data. Further, a geometrically local ordering will lead to the generation
of sparse linear equation systems that require less storage and less work to factorize.

The locality properties of SFCs have been systematically explored by Gotsman and Linden-
baum [19] and Perez et al. [20] among others. While pointwise locality cannot be guaranteed
for all sets of points in multidimensional space, one can show good behavior in a sum or mean
sense. To make concrete our observations above, let us now denote the set [N] = (1.. . N} and
define an m-dimensional SFC of length N” as a bijective mapping C : [Nm] -+ [Nlm such that
d(Xiy Xj+l) = 1 for all i E [Nm - l] where d(., .) is the Euclidean metric. A basic topological
theorem [21] proves that it is impossible to show that any two points xi, xj E R”, n = 2,3 that
are close to each other in a Euclidean distance metric d(zi, zj) are also close in the mapped space.
However, Gotsman and Lindenbaum [19] were able to prove the converse-“If two points are close
in the mapped space then the points will also be close in the above-defined Euclidean metric.”
We cite below their theorem establishing upper and lower bounds on the locality measure L,
for Hilbert space-filling curves in two dimensions. Looser bounds have also been shown for more
general curves.

110 A. K. PATRA et al.

THEOREM 1. For a two-dimensional Hilbert space-filling curve C traversing a uniform grid of 4k
points, the locality metric Lm(C) = msxi,jEc,i<j d(s, xj)/li - jl is bounded as

6 (1 - 0 (2-k)) 5 L,(C) < 6 ;. (1)

4. DATA STRUCTURE SCHEME

In the case of distributed memory architectures (MPP systems), two levels of data storage can
be distinguished. The first level is local to a processor, and each processor maintains its own
data structure describing its own subdomain. The second level is the collection of local data
structures defining the global structure, the parallel mesh database (PMDB). This second level
may or may not exist physically. It can be simulated by creating a virtual shared space, and
provide mechanisms to operate on remote data without explicit message passing [9,10]. In our
design the second level (see Figure 4) is obtained by a simple partitioning of the index space (key
set) associated with the element objects. The first level is implemented using structures that
facilitate the dynamic memory management necessary for adaptive meshing.

EWNode coord. - (sFC ordering)--+ Key K

Figure 4. Distributed dynamic data structure--Global index space based on SFC
partitioned for data distribution.

Of all the fundamental data structures, namely stacks, queues, lists, graphs, tables, binary,
and multiway trees [16], only trees and tables are clearly suitable for adaptive meshes. Stacks,
queues, and lists are clearly disadvantageous since data is often accessed in an unpredictable
and irregular pattern. Graphs can be useful if the mesh is represented by a graph, although data
structures based on graphs are hard to design and maintain. We have implemented the remaining
two types of data structures, i.e., tables and trees.

In our parallel mesh database, each processor maintains two data structures for storing element
and node objects. The mesh data related to nodes and elements are structured into object
data types defined in the C++ language. These objects contain all data associated with the
node/element. Furthermore, they provide functions to operate on the data. The local data
structures holding these entities have been implemented using both hash tables and B-trees.
During the experiments both (node and element) data structures used the same scheme; however,

hp Finite-Element Methods 111

hybrid implementation is also possible, and requires further consideration. We now describe the
two schemes. Note that tree/hash structure is local to a processor and stores all the data belonging
to a processor (see Figure 4). Redistribution will involve deleting objects from one processor’s
data structure and inserting it in another processor’s data structure.

4.1. B-Tree

A B-tree [16,22] is a special type of tree with properties that make it useful for sorting and
retrieving large sets of information. A tree-based data structure stores the data in its nodes and
a predefined relation (parent-child) exists among these nodes. As shown in Figure 5, finding an
element stored in a B-tree requires searching only a single path between the root (parent node)
and a leaf (node without any children).

Figure 5. B-tree with order 5.

The insertion and deletion algorithms guarantee that the longest path between the root and
the leaf is O(log, N). It should be noted, adaptive meshing inherently leads to tree-like structure.
Each node may contain m - 1 data and may have m children. Because of this, and because it
is well balanced, the B-tree provides the possibility of very short path lengths for accessing very
large collections of elements. Furthermore, related records are kept on the same disk or memory
page which takes advantage of the geometric locality. Thus, the B-tree can be adjusted to account
for hierarchical storage (CPU, Cache, RAM, disk, etc.) and can provide high cache efficiency. In
our implementation, a B-tree node contains the keys of its records, and references (pointers) to
the node/element objects.

4.2. Hash Tables

In a hash table structure, data elements are kept in an array-based data structure, called the
hash table [16,22]. The table is divided into buckets (slots) which are basically the elements of a
one-dimensional array. Based on a key, the address calculator (hashing) function determines in
which slot of the array the data should be located. The process of accessing a record by mapping
a key value to a position is called hashing. In other words, the hashing function (h) is a mapping
from the key space to the physical memory address space.

memory-address = h(key).

Theoretically, the scheme has very fast data retrieval (O(1) if there is no collision), data
insertion, and deletion properties. However, collisions (two data items hash to the same key)
must be apprapriately handled. Slots in the table are wasted since collision minimization requires
some sparsity resulting in poor memory and cache efficiency compared to trees. The efficiency
of the mapping is critical for good performance; i.e., the function should be able to give different
slots for different keys. In order to achieve this, clearly the number of slots must be more than the
number of existing keys. However, satisfying this criteria is in general still not enough to avoid
collisions. Moreover, in the case of AMR, the number of objects increases during the simulation.
Collision occurs when the particular slot given by h is already occupied by another data member.
Several methods exist to handle collisions. To deal with the problem, we use separate linked lists

112 A. K. PATRA et al.

to store all the items with a conflict. This is called ezternal chaining (Figure 6). Other possible
schemes are linear rehashing, or double hashing using more complex strategies.

When the table becomes full, a new array can be created with double the size of the original
(extendible hashing). For insertion and deletion, the place in the array is located by the hashing
function. If collision occurs, the true location is obtained from the collision handler. Now the
data can be inserted or deleted, but depending on the collision handling, further steps might
be required (e.g., establish/change pointers to next and previous data members in the case of
external chaining).

by-

,
a-----a
0 3

.

.

.

0 k-l

Figure 6. Hashing with external chaining.

In the case of multiple collisions, traversal of the hash table can be expensive when compared
to the traversal of the trees. In our implementation, the hashing function uses a projection of
the key space to the memory space, i.e.,

h=
key - minkey

maxkey - minkey
*arraysize,

where key represents the object to be looked up, minhey is the lowest, and maz-key is the highest
key of the domain. Collision handling is solved with external chaining so the hash-entry structure
contains two pointers to the previous and next structures in the chain. Moreover, the key of, and
a pointer to, the actual object (element/node) is stored in the entry structures.

4.3. Advantages of the SFC-Based Data Structure

We may now summarize the main advantages of this data structure as the following.

l Fast key generation. The self-similarity property leads to a series of inexpensive computer
algorithms to create the keys using basic bit interleaving operations [17].

l Uniqueness. Due to the uniqueness of the key, a simple indexing scheme can be maintained
using minimal sorting. No complex renumbering of the objects is necessary when data
is inserted or deleted. In the case of conventional array index-based data structures,
renumbering is unavoidable after changes to the mesh during refinement.

l Global address space. Again, because of the uniqueness, no local to global mapping of the
identifiers is required. Furthermore, because the elements are assigned to processors in
contiguous lists, the knowledge of the key of an element and the two extremes of the local
key space of all subdomains will determine in which subdomaln an element is situated; i.e.,
given an element or node’s coordinates, its key, and hence, its storage location including
owning processor is very easy to obtain.

l Data locality. Because of the inherent geometric locality property of the ordering, a
“smart” data structure that stores adjacent keys in adjacent locations in the physical
memory will have the advantage of data locality and all of its attendant advantages.

hp Finit-Element Methods 113

l Support for hierarchical AMR. The coarse grid is the basis of the grid hierarchy and it is
represented by a simple list of keys. As the simulation evolves, newly created elements
are incorporated within the hierarchy as shown in Figure 7. These new elements form a
new level, and can be interpreted as a sublist corresponding to the refined region. This
structure is the result of the subcube property, and it is useful for maintaining data locality
and connection between the different levels. This further results in easy implementation
of coarsening (derefinement) strategies. The feature has been explored by Parashar and
Browne in [9]. M oreover, a tree-like data structure can be implemented based on the
hierarchy. The children elements are the siblings and the parent is the root of the subtree,
resulting in a quadtree in two- (one to four refinement) and an octree in threedimensions
(one to eight refinement).

IO, L&3)

Figure 7. Hierarchical AMR.

5. LOAD BALANCING AND SUPPORT
FOR IRREGULAR COMPUTATIONS

The second part of effective data management for parallel adaptive computation is the balanc-
ing of load as the computation evolves. Adaptive mesh refinement can result in highly irregular
patterns of computational load that change as the mesh is modified. Thus, dynamic load bal-
ancing is an important issue in the case of this application. As outlined earlier, our basic data
distribution strategy is a partitioning of the key space (see Figure 4). Static partitioning schemes
have been presented earlier (see for instance [18,23]).

We outline below two simple algorithms to implement dynamic load balancing. More complex
strategies may be seen in the work of Biswas and Oliker [24], and Schloegel, Karypis and Ku-
mar [25]. In all our approaches, we use a strategy outlined in [26] to minimize data migration
during repartitioning. We repartition coarse grids based on a weight (typically error estimate)
and then create the refined elements on target processors; i.e., we repartition before refinement.
Figure 8 outlines the strategy. After the creation of the new elements, a few smoothing iterations
may be used to remove any small imbalances. In previous work [26], we have also conducted
numerical experiments with more complex graph-based partitioning tools and complex weight-
ing schemes (error as vertex weight, polynomial order as edge weight, etc.) and concluded that
while partition quality is usually somewhat better in such approaches, the simplicity and code
development ease of the approaches outlined here makes them quite competitive.

5.1. Incremental Repartitioning

Simple incremental repartitioning algorithms are used to transfer elements between the sub-
domains until required load balance is achieved. Since we want to maintain the contiguous list
of keys in a subdomain, elements from the end and/or the beginning of the local key space are
shipped to adjacent subdomains (Figure 8). This algorithm can be used for local improvement be-
tween (overlapping) pairs of processors and it can also be applied as a global rebalancing strategy.

114 A. K. PATRA et al

Subdomain 0 Subdomain 1

(a) Before mesh refinement.

Subdomain 0 Subdomain 1 Subdomain 0 Subdomain 1
(c) Repartitioning and mesh refinement. (d) Repartitioning, mesh refinement, and smoothing

Figure 8. Incremental load balancing based on the SFC.

In the first case, neighboring subdomains ensure local load balance, and iterative application can
lead to global balance. In the second case, elements are relocated to/from a certain subdomain
until it reaches the ideal work load per processor (one subdomain is mapped to one processor).
Although an SFC-based balancer does not give as high quality partitions as a graph partitioner,
it is easy to implement, the algorithm runs fast in parallel, and it is incremental.

5.2.. Scratch-Remap Repartitioning

In this strategy, instead of starting with an existing distribution and adjusting partitions, we
compute a new distribution from scratch. This strategy is particularly suitable when the mesh
size changes rapidly (e.g., by 50% or more elements). Such changes can be seen when we use
adaptive strategies that attempt to obtain a mesh for a certain error in one refinement cycle,
e.g., [27]. Using a set of global weights, we first determine a final destination processor for every
element, and then move the element directly to the destination. The first question to be answered
is how to determine the destination of an element after repartitioning. This is achieved easily
and in parallel by having every processor set up a current global weight picture (cgwl), and an
expected weight picture (egwl) for the entire grid. From these two pictures, every processor can
determine the final destination of every element/node object it owns. Since the elements/nodes
are stored in a sorted table, this can be done quite simply by going through the table and
marking the elements. Each processor can then package and move elements to target processors
(see Figure 9).

corront staaing point of pmccssor 1 current ending point of processor 1

cgwl I o , I
1 I 2 3 I

Figure 9. Scratch-remap load balancing baaed on the SFC.

hp Finite-Element Methods 115

6. SOLUTION ALGORITHM
The adaptive hp FEM schemes discussed in this work give rise to sets of linear systems that are

irregularly sparse and poorly conditioned. The irregular sparsity (as opposed to the nice band
structure of classical FEM) is a consequence of the different sizes and connectivities of different
elements as the polynomial order is changed from element to element. Efficient algorithms for
parallel solution of these irregularly sparse systems are not readily available. The poor condition-
ing (large ratio of maximum and minimum eigenvalues for symmetric positive definite systems),
is a result of the simultaneous refinement and enrichment process. Theoretical and numerical
evidence suggests that the condition number increases as O(p4/h2) [5] in two space dimensions,
Numerical roundoff error in the solution process and convergence for iterative solvers are de-
graded as the conditioning deteriorates. A final difficulty that is encountered in the design of a
solver for use across a large class of parallel architectures is the choice of solution method for best
efficiency. Different algorithms have very different efficiencies on different architectures. Thus,
one must either change algorithms (code) based on architecture or design a solver that is able to
adjust to the architecture. In recent years, much effort has been dedicated towards the design
of efficient solvers for such grids [28-321 using domain decomposition techniques. Special solver-
specific storage techniques must also be developed to store the irregularly sparse matrices. We
have experimented with standard variable block row and compressed sparse row storage schemes
(see [33] for more details). The locality preserving orderings employed appear to produce smaller
envelope sizes and allow fairly large-sized problems to be solved on small memory.

To address these concerns, we have developed a class of special solvers based on multilevel
iterative substructuring described in [18,32]. The basic idea of our special solver is to combine
direct and iterative solution methodologies. This mix is achieved by organizing the unknowns
into a multilevel hierarchy. The bubble, face, and edge functions associated with higher-order
elements provide the higher levels of the hierarchy while lower levels can be obtained by clustering
patches of elements. Higher levels in this hierarchy are closely coupled and usually assigned to
the same local memory. Using substructuring, we can then eliminate these using a direct solver
approach. The lower levels are then solved using an iterative solver. The iterative solution is
accelerated using a coarse grid type preconditioner. The procedure is detailed in [5].

We have also developed interfaces to popular solver library PETSC (portable extensible toolkit
for scientific computation [33]). PET% provides a wide variety of Krylov space-type iterative
solvers with a range of preconditioners including popular domain decomposition preconditioners
like the additive Schwartz methods and the algebraic incomplete LU-type preconditioners.

‘7. NUMERICAL TESTS

7.1. Test Problem

We use two test problems in linear elastostatics. The first is inspired by the problem of
analyzing the response of a dental implant to biting loads, and the second is a three-dimensional
version of the classic L-shaped domain.

Uij,j + fi = 0 E fl c Rn, n = 2,3,

u’ij = 2p6ij + kkk, Eij = i (U,i +U,j),

u = 9, on ~RD, a.n = t, on dQjv,

(2)

where UQ is the Cauchy stress, fi is the body force, Eij is the corresponding strain, p, X are
the Lamb parameters, u is the displacement field, and dRD is the part of the boundary on
which Dirichlet boundary conditions are applied and dSl~ is the part of the boundary on which
Neumann boundary conditions are applied. Figure 10 illustrates the first problem.

116 A. K. PATRA et al.

Table 1. Time in seconds to traverse full data set and perform ordering of the un-
knowns on eight processors of the Cray T3E and the Origin 2000.

Ordering

Total dof

8598

33328

133300

534082

Cray T3E SGI 02000

Hashing B-tree Hashing B-tree

8pr 16pr 8pr 16pr 8pr 16pr 8pr 16pr

0.99 0.40 0.12 0.31 0.15 0.23 0.07 0.32

0.71 0.79 0.65 0.66 0.35 0.43 0.25 0.49

12.69 4.34 13.18 4.50 3.30 1.67 3.49 1.89

210.38 61.51 212.16 62.5 49.61 13.93 49.18 14.29

Table 2. Time in seconds’to refine elements and propagate constraints on eight and 16
processors of the Cray T3E and the Origin 2000.

Refinement Cray T3E SGI 02000

Elements Hashing B-tree Hashing B-tree

Refined 8pr 16pr 8pr 16pr 8pr 16pr 8pr 16pr

1046 0.39 0.31 0.39 0.22 0.11 0.10 0.13 0.15

4184 1.16 0.63 1.716 0.82 0.34 0.20 0.51 0.49

16736 8.24 2.98 11.27 4.38 2.32 0.95 2.83 1.19

66944 101.14 30.63 114.93 36.92 32.10 9.60 33.85 8.82

Table 3. Time in seconds to enrich elements and propagate constraints on eight
processors of the Cray T3E and the Origin 2000.

Refinement Cray T3E SGI 02000

Elements Hashing B-tree Hashing B-tree

Enriched 8pr 16pr 8pr 16pr 8pr 16pr 8pr 16pr

4184 0.07 0.06 0.13 0.12 0.03 0.02 0.05

16736 0.21 0.12 0.59 0.29 0.11 0.08 0.22

66944 0.88 0.48 7.32 1.28 0.59 0.37 0.98 1.23

267776 6.72 3.68 11.67 5.67 5.16 2.59 4.37 1.98

Table 4. Time in seconds to perform dynamic load balancing on eight processors of
the Cray T3E and the Origin 2000.

Load Balancing Cray T3E SGI 02000

Elements Hashing B-tree Hashing B-tree

Moved 8pr 16pr 8pr 16pr 8pr 16pr 8pr 16pr

648 0.50 0.52 0.57 0.37 0.27 0.29 0.09 0.09

3025 2.9 3.12 1.62 1.53 1.42 1.29 0.51 0.43

11674 16.44 14.69 19.01 6.88 6.67 5.94 4.52 2.23

44582 130.65 84.60 194.82 67.22 43.60 26.17 59.58 21.51

Two major kinds of experiments were carried out. In the first, the performance of the two
data storage schemes are compared on two different supercomputer architectures. The second
illustrates dynamic load balancing based on the space-filling curve ordering.

7.2. Data Management

Sample results from implementing the above-described data structures in a parallel adaptive hp
FEM code are presented. The time taken for several representative data management operations

hp Finite-Element Methods 117

are measured, namely:

(1) time taken for a full data set traversal in order (for visualization or local to global map-

pings);
(2) time taken to refine/enrich elements;
(3) time taken to rebalance the partitions using data migration.

The initial mesh of the experiments is presented in Figure 10. The results of the experiments
are presented in tabular and simple plot format. Tables l-4 compare the current implementa-
tion of the two storage schemes performing the operations listed .above. The experimental runs
were carried out on a Cray T3E and an SGI Origin 2000 supercomputer. These machines have
significant architectural differences (the SGI is a distributed shared memory with cache coherent
nonuniform memory while the Cray T3E is a simple distributed memory) and the effect of the
architecture on our schemes is of interest. Table 1 demonstrates the time taken to order the
unknowns. At the end of the local, subdomain ordering, synchronization and communication
are essential to construct the global ordering. Clearly, this communication dominates the whole
operation, since there is no remarkable difference between the performances of the B-tree and
hashing. However, there is a significant difference between the results on the two architectures,
the T3E showing poorer efficiency. Tables 2 and 3 consider the adaptation processes. This exper-
iment traverses the element data structure and refines the mesh repeatedly. During the process,
synchronization/communication is necessary for updating information across subdomains. The
fact that there are no significant differences between the timings leads to the conclusion that
most of the time is spent in communication (very fast runs on the supercomputers do not give
reliable results). It is speculated that the small differences are due to the slower traversal, but
faster search of the hashing scheme. It should be also noted that since the bit level interleaving
operations are architecture dependent, the distributions of the key space are inconsistent between
the two architectures. During adaptation, the Origin 2000 generated more closely packed keys
than the ones generated by the T3E. This degraded the hashing scheme on the SGI, making both
the traversal and search algorithms inefficient in the case of enrichment.

Table 4 demonstrates the timings of the dynamic load-balancing algorithm. This process
requires: the location of the elements with lowest/highest key; deletion from the old subdomain
data structure; interprocessor transfer; and finally, insertion in the new subdomain data structure
of the elements/nodes. Eight processor experiments show the advantage of the hashing, mainly
because deletion from a B-tree comes with substantial overhead. However, in the case of the 16
processor runs, the hashing scheme degrades due to slower traversal. This is especially observable
when the table is very sparse (small number of elements/nodes).

To further explore the sensitivity of the hashing to the size of the table, several more measure-
ments were carried out with half and one-fourth of the size of the original 40000 element and
160000 node buckets. The results are presented in Tables 5-7. These results suggest that all the
processes and especially the enrichment are sensitive to the hash table size.

Preliminary three-dimensional results are presented in Table 8. Time taken to adapt and
repartition are presented for different mesh sizes. Data migration times appear to be bounded
as the problem size and number of processors goes up. Refinement and enrichment times are
also quite small for the problem sizes and are a very small fraction of solution times. Note that
the number of elements migrated appears to be very large since these results are for a uniform
refinement of the whole mesh, i.e., the worst case.

Further, we wish to emphasize here that the total time spent in different data management
operations in our structure is typically smaller than the time spent in the solution process.
Table 9 shows the time spent on the solver outlined in the previous section on a 2D test problem
for different maximum polynomial orders on different numbers of processors of an IBM SP. In
another test, the systems arising from the 3D mesh shown in Figure 11 took 180.53 seconds on 16
processors for 90453 unknowns.

118 A. K. PATRA et al
Table 5. Effect of the hash table size on the refinement, on 16 processors of the
Cray T3E.

I Refinement I Cray T3E I

Table 6. Effect of the hash table size on the enrichment, on 16 processors of the
Cray T3E.

Enrichment Cray T3E

Elements Enriched B-tree Hashing-l Hashing-i Hashing-t

4184 0.121 s 0.063 s 0.043s 0.034 s

16736 0.291 s 0.118s 0.127s 0.137s

66944 1.278s 0.486 s 0.616 s 0.923 s

267776 5.677s 3.680s 6.571 s 13.844s

Table 7. Effect of the hash table size on the dynamic load balancing, on 16 processors
of the Cray T3E.

Load Balancing

Elements Moved

648

2872

10608

39218

B-tree

0.372 s

1.530s

6.885s

67.223 s

Cray T3E

Hashing-l Hashing-f Hashing-i

0.515s 0.359s 0.283 s

3.122s 1.936 s 1.377s

14.694s 9.722 s 7.518s

84.596 s 63.589s 66.655 s

Finally, it should be concluded that our current implementation of the two schemes gives
comparable results with better overall performance on the SGI. It should be also noted that the
data structure operations of both schemes occupy a very small part of the total simulation time,
especially when compared to the time taken by the solver algorithm. Hashing can be tuned for
efficiency but in the case of adaptive techniques, this is very difficult. Since at the beginning
of the simulation, the number of objects in the final mesh is not known, extendible hashing or
prediction is necessary. Furthermore, since the address locator is based on the two extreme keys
in the domain, the objects of the subdomains occupy only a small fraction of their table. On
the other hand, the use of the global extremes is necessary because load balancing continuously
changes the local key space. Finally, because adaptive techniques refine the mesh at certain
locations of interest, the uneven distribution of the keys in the key space leads to poor efficiency.
However, frequent runtime rearrangement of the table in order to resolve these problems and
deliver constant efficiency can be expensive. As a result, future work should be directed towards
further improving the efficiency of the B-tree, that needs much less tuning and has constant,
repeatable performance.

7.3. Load Balancing

Figures lo-13 demonstrate the dynamic load balancing of the partitions as the computation
and the adaptation evolve. The model of the dental implant problem is defined in part (a) of
Figure 10. Different colors of this plot indicate the three different materials of the model: the
dental implant, the hard outer shell of the bone, and the soft trabecular bone inside. The initial

hp Finite- .Element Methods

(a) The model. (b) Partitioned initial uniform mesh of the
model (hli = 7.5%).

Figure 10. The 11 lode1 and its initial mesh

(a) Final hp mesh for 2D bone-implant model. (b) Final hp mesh for 3D “L-shape” problem.

Figure 11. Adapted hp meshes.

120 A. K. PATRA et al

10

5 10
X -

(4 After the first stage (hli = 12%).

-__--.. -..~lll_--l .---

(b) After the second stage (hli = 15%).

Figure 12. After adaptation and redistribution--I

(a) After the third stage (hli = 22%). (b) After the fourth stage (hli = 13.5%)

Figure 13. After adaptation and redistribution-II.

hp Finite-Element Methods

Table 8. Time taken to adapt and repartition on a 3D problem on four, eight, and 16
processors of the SGI Origin 2000.

Table 9. Time in seconds to perform different solver operations on 2D test problem
on different numbers of processors of the IBM SP.

4pr 8pr 16pr 32pr 64pr

dof Time dof Time dof Time dof Time dof Time

902 0.17 1740 0.42 3402 0.72 13202 3.29 26106 9.54

3402 0.38 6670 0.99 13202 1.81 52002 9.27 103282 22.8

7502 0.96 14792 1.98 29402 3.22 116402 11.0 231530 27.4

13202 2.24 26106 4.0 52002 6.18 206402 15.8 410850 31.2

20502 4.81 40612 7.82 81002 11.7 322002 23.2 641242 45.0

29402 10.3 58310 15.2 116402 22.6 463202 40.4 922706 63.4

121

mesh is partitioned to eight subdomains shown in the second figure. The computational load
imbalance of a subdomain mesh is measured by the absolute value of the load imbalance factor,
given by the difference between the ideal load of a subdomain and the actual load normalized by
the ideal load

li =
ideal subdomain load - actual subdomain load

ideal subdomain load

The highest load imbalance factor of the mesh is denoted by hli.
The changing size and shape of the subdomains in Figures 12 and 13 indicate element move-

ments between the processors aiming to balance the computational load represented.by the num-
ber of unknowns within the partitions. It is observable how the size of the subdomains containing
small, refined elements shrinks, while the ones with the bigger element sizes grow. The incremen-
tal property of the SFC-based load balancing is revealed by the fact that the color scheme does
not change dramatically between the different stages. It should be also noted that even though
the subdomains are load balanced well, the quality of the partitioning is not too high. This
is indicated by the relatively large interface area due to the irregular geometry of the problem
domain. This may be remedied by using graph-based partitioners. However, if, as in our case,
the data storage itself is based on the space-filling curve ordering, the contiguous property of the
local key spaces of the subdomains will be lost.

8. CONCLUSIONS
We have described here the design and implementation of an integrated set of data management

and load-balancing tools necessary for the development of efficient parallel adaptive hp finite-
element codes. Our development relies on the use of a locality preserving space-filling curve
ordering to index the element/node data. We have illustrated the use of this ordering to create a

122 A. K. PATRA et al.

virtual shared memory by providing easily available globally accessible keys. Local tree and hash
tables complete the data management schemes. Both trees and tables show good performance as
evidenced by extensive numerical tests over wide ranges of h and p refinements in both two- and
three-dimensional grids. However, the hash table needs problem-specific tuning parameters, and
hence, is not as robust as the B-tree. Several dynamic load-balancing schemes designed to obtain
good load balance while minimizing data migration have been presented. The data management
schemes have been tightly integrated to both specialized solution algorithms and general purpose
PETS.2 solver library. Good performance has been obtained in all cases. Furthermore, the tools
can be easily customized to develop new application codes. All code used in this paper is available
for download from http: //wings. buf f alo. edu/eng/mae/acm2e/.

REFERENCES
1. W. Gui and I. Babuska, The h, p and hp versions of the finite element method, Part I, Numer. Math. 49,

571-612, (1986).
2. W. Gui and I. Babuska, The h, p and hp versions of the finite element method, Part II, Numer. Math. 49,

613657, (1986).
3. W. Gui and I. C-rbuska, The h, p and hp versions of the finite element method, Part III, Numer. Math. 49,

659-683, (1986).
4. L. Demkowicz, J.T. Oden, W. Rachowicz and 0. Hardy, Towards a universal hp adaptive finite element

strategy, Part 1, Constrained approximation and data structure, Comput. Methods Appl. Mech. Engrg. 77.
79-112, (1989).

5. A. Patra and J.T. Oden, Computational techniques for adaptive hp finite element methods, Finite Elements
in Analysis and Design 25, 27-39, (1997).

6. M.J. Berger and J. Saltsman, Structured adaptive mesh refinement on the connection machine, In Proceedings
of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, (March 1993).

7. C. Chang, A. Sussman and J. Salts, Support for distributed dynamic data structures in C++, Technical
Report CS-TR-3416 and UMIACS-TR-95-19, Department of Computer Science, University of Maryland,
(1995).

8. S.J. Fink, S.R. Kohn and S.B. Baden, Efficient run-time support for irregular block-structured applications,
J. Parallel and Distributed Computing 50 (l/2), 61-82, (April/May 1998).

9. M. Parashar and J.C. Browne, Distributed dynamic data-structures for parallel adaptive mesh refinement.
Available from: http : //www . caip. rutgers . edu/“parashar/DAGH/, (December 1995).

10. H.C. Edwards and J.C. Browne, Scalable Distributed Dynamic Away (SDDA) and Its Application to a
Distributed Adaptive Mesh Data Structure, Available from: www ticam. utexas . edu/“caxter/sdda. html,
(January 1996).

11. M. Parashar, J.C. Browne and K. Klimkowski, A common data.management infrastructure for adaptive
algorithms for PDE solutions, SuperComputing97, Technical Paper.

12. K. Devine and J.E. Flaherty, Parallel adaptive hp refinement techniques for conservation laws, Appl. Namer.
Math. 20, 367-386, (1996).

13. J.E. Flaherty, R. Loy, M. Shephard, B. Szymansky, J. Teresco and L. Ziantz, Adaptive local refinement with
octree load-balancing for the parallel solution of three-dimensional conservation laws, J. Parallel Distrib.
Comput. 47, 139-152, (1998).

14. J.E. Flaherty, R.M. Loy, C. Czturan, MS. Shephard, B.K. Szymanski, J.D. Teresco and L.H. Ziantz, Parallel
structures and dynamic load balancing for adaptive finite element computation, Appl. Numer. Maths. 26,
241-263, (1998).

15. J.E. Flaherty, R.M. Loy, M.S. Shephard, M.L. Simone, B.K. Szymansky, J.D. Teresco and L.H. Ziantz,
Distributed octree data structures and local refinement method for the parallel solution of three-dimensional
conservation laws, In Grid Generation and Adaptive Algorithms, (Edited by M.W. Bern, J.E. Flaherty and
M. Luskin), Springer, (1999).

16. R.L. Kruse and A.J. Ryba, Data Structures and Program Design in C+f, Prentice Hall, (1999).
17. H. Sagan, Space Filling Curves, Springer, Berlin, (1994).
18. A. Patra and J.T. Oden, Problem decomposition strategies for adaptive hp finite element methods, Computing

Systems in Engineering 6 (2), (1995).
19. C. Gotsman and M. Lindenbaum, On the metric properties of discrete space filling curves, IEE ‘Ikansactions

on Image Processing 5 (5), (May 1996).
20. A. Peres, S. Kamata and E. Kawaguchi, Peano scanning of arbitrary size images, In Proc. Int. Conf. Patt.

Recogn., pp. 565-568, (1992).
21. J. Dugundji, Topology, Allyn and Bacon, Boston, (1966).
22. S. Sengupta and C.P. Korobkin, C++ Object Oriented Data Stmctures, Springer-Verlag, (1996).
23. J.R. Pilkington and S.B. Baden, Partitioning with space filling curves, CSE Technical Report, Department

of Computer Science and Engineering, University of California, San Diego, (1994).

hp Finite-Element Methods 123

24. R. Biswas and L. Oliker, Experiments with repartitioning and load balancing adaptive meshes, In Grid
Generation and Adaptive Algorithms, (Edited by M.W. Bern, J.E. Flahery and M. Luskin), Springer, (1999).,

25. K. Schloegel, G. Karypis and V. Kumar, Multilevel diffusion algorithms for repartitioning of adaptive meshes,
Journal of Parallel and Distributed Computing 47, 109-124, (1997).

26. A. Patra and D.W. Kim, Efficient mesh partitioning for adaptive hp finite element methods, In Proceedings
of the Xph Domain Decomposition Conference, Greenwich, U.K., July 1998, (submitted).

27. A. Patra and A. Gupta, A strategy for adaptive hp mesh modification using non-linear programming, Comp.
Meth. App. Me&. and Eng. (to appear).

28. I. Babuska, A. Craig, J. Mandel and J. Pitkaranta, Efficient preconditioning for the p version finite element
method in two dimensions, SIAM J. Numer. Anal. 28 (3), 624-661, (1991).

29. B.Q. Guo and W. Cao, Domain decomposition method for the h-p version finite element method, Comp.
Meth. Appl. Mech. Engrg. 157, 425-440, (1998).

30. M. Ainsworth, A preconditioner based on domain decomposition of hp finite element approximation on quasi-
uniform meshes, Mathematical and Computer Science Technical Reports, No. 16, University of Leicester,
(1993).

31. L.F. Pavarino and 0. Widlund, Iterative substructuring methods for spectral element discretizations of elliptic
systems I. Compressible linear elasticity, SIAM J. Namer. Anal. 37 (6), 353-374, (1999).

32. J.T. Oden, A. Patra and Y.S. Feng, Domain decomposition solvers for adaptive hp finite element methods,
SIAM J. Numer. Anal. 34 (6), 2090-2118, (1997).

33. S. Balay, W.D. Gropp, L. Curfman McInnes and B.F. Smith, PET.!% 2.0 Users Manual, ANL-95/11- Revision
2.0.28, Argonne National Laboratory, (2000).

34. A. Patra, A. Laszloffy and J. Long, AFEAPI: Adaptive finite elements application interface, In Proceedings
of Ihe gth SIAM Conference of Parallel Processing for Scientific Computing, (March 1999).

35. G.W. Zumbusch, Dynamic load balancing in a lightweight adaptive parallel multigrid PDE solver, In Pro-
ceedings of the gth SIAM Conference of Parallel Processing for Scient$c Computing, (March 1999).

36. W.Y. Crutchfield and M.L. Welcome, Object oriented implementation of adaptive mesh refinement algo-
rithms, Scientific Programming 2, 145-156, (Winter 1993).

37. B. Hendrickson and K. Devine, Dynamic load balancing in computational mechanics, Comp. Meth. Applied
Mechanics and Engineering (to appear).

38. A. Pothen, H. Simon and K. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix
Anal. 11, 430-452, (1990).

