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We show that the bounded derived category of coherent sheaves on a general complete

intersection of four quadrics in P2n−1, n ≥ 4, has a semi-orthogonal decomposition

〈O(−2n + 9), . . . ,O(−1),O,D〉,

where D is the derived category of twisted sheaves on a certain non-Kähler complex

3-fold. To do this, we develop a theory of “spinor sheaves” on singular quadrics, gener-

alizing the spinor bundles on smooth quadrics.
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Chapter 1

Overview

In §1.1 we review earlier results on intersections of quadrics and state the main theorem.

In §1.2 we discuss it in the context of string theory. In §1.3 we discuss it in relation

to Orlov’s result on matrix factorizations and derived categories of hypersurfaces and

indulge in a little speculation.

In Chapter 2 we review the main techniques used in this dissertation: linear spaces

on quadrics, spinor sheaves, stable sheaves, Fourier–Mukai transforms, semi-orthogonal

decompositions, matrix factorizations, twisted sheaves, and ordinary double points. In

Chapter 3 we introduce spinor sheaves on singular quadrics and develop the theory we

need to work with them. In Chapter 4 we prove the main theorem.

1.1 Intersections of Quadrics

In 1954 Weil was looking for evidence of his famous conjectures, and thus wanted to

count points on varieties over Fq. To a general complete intersection X of two quadrics

in P
2n−1 he associated the following variety [51]: let L be the line those quadrics span

in the space P(
2n+1

2 )−1 of quadrics in P2n−1 and M the double cover of L branched over

the 2n points of L corresponding to singular quadrics. Then M is a hyperelliptic curve

of genus n − 1, on which he knew how to count points, and he was able to relate the
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number of points on X to the number on M, and thus compute the zeta function of

X . Hirzebruch [22] had just computed the Hodge numbers of complete intersections in

projective space; the Hodge diamond of X is

1

...

1

0 · · · 0 n− 1 n− 1 0 · · · 0

1

...

1,

which contains that of M

1

n− 1 n− 1

1

in the middle, and Weil was able to verify his conjectures in this example.

In his 1972 thesis, Reid [48] showed that this is not merely a coincidence of Hodge

numbers, but that the weight 1 Hodge structure of M is isomorphic to the weight 2n−3

Hodge structure of X , or equivalently that the Jacobian of M is isomorphic to the

intermediate Jacobian of X .∗ He also showed that the Jacobian of M is isomorphic to

the Fano variety of Pn−2s on X . Donagi [17] clarified this, showing that the Abel-Jacobi

map from this Fano variety to the intermediate Jacobian is an isomorphism. Donagi

also observed that X can be recovered from M, which gives a Torelli theorem for X .

Thus the moduli space of degree 0 line bundles on M is isomorphic to the variety of

∗Even better, M is a direct summand of X in the category of motives.
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Pn−2s on X . In a series of papers starting in 1976 [16], Desale and Ramanan described

various moduli spaces of bundles on M in terms of varieties of linear spaces on X . In

1995 Bondal and Orlov [6] gave a categorical explanation of this: viewing M as the fine

moduli space of spinor bundles on X , they used the universal bundle as the kernel of a

Fourier–Mukai transform to embed D(M) in D(X) and showed that

D(X) = 〈OX(−2n+ 5), . . . ,OX(−1),OX , D(M)〉. (1.1.1)

Thus any moduli space of objects of D(M) is isomorphic to one of objects of D(X).

This can also be seen as a refinement of the Hodge-theoretic results mentioned above.

Note that if we set n = 2, so X and M are dual elliptic curves, we recover one of Mukai’s

original examples [41] of a derived equivalence.

Next we consider a general complete intersection X of three quadrics in P2n−1, the

associated plane L in the space of quadrics, and the double cover M of L branched

over the locus of singular quadrics, which is a smooth curve of degree 2n. Mukai [42]

initiated this study in the case n = 3, so X and M are K3 surfaces, describing M as the

moduli space of spinor bundles on X . It need not be a fine moduli space, so we only get

a twisted pseudo-universal bundle, twisted by some Brauer class α ∈ H2(M,O∗
M). In

his thesis on twisted sheaves, Căldăraru [11] showed that the Fourier–Mukai transform

with this twisted bundle as kernel is an equivalence D(X) ∼= D(M, α−1).

Following Mukai, many authors studied three quadrics when n > 3; to name a few,

O’Grady [43] studied the Hodge structure, Desale [5] studied varieties of linear spaces on

X as moduli spaces of bundles on M, and Laszlo [34] proved a Torelli theorem. Again
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M is a (not necessarily fine) moduli space of spinor bundles on X , and

D(X) = 〈OX(−2n + 7), . . . ,OX(−1),OX , D(M, α−1)〉. (1.1.2)

Before considering more than three quadrics, let us mention the situation with fewer

than two. For a single quadric Q ⊂ P2n−1, Kapranov [27] showed that

D(Q) = 〈OQ(−2n + 3), . . . ,OQ(−1),OQ, S+, S−〉 (1.1.3)

where S+ and S− are the two spinor bundles on Q. This is analogous to (1.1.1) and

(1.1.2): the subcategory 〈S+, S−〉 is the derived category of two points, which we can

view as the double cover M of a point L in the space of quadrics. Even Bĕılinson’s

description [3] of the derived category of P2n−1

D(P2n−1) = 〈OP2n−1(−2n+ 1), . . . ,OP2n−1(−1),OP2n−1〉

fits into the sequence, viewing P2n−1 as the complete intersection of zero quadrics.

For more than three quadrics there is a problem: the hypersurface ∆ ⊂ P(
2n+1

2 )−1 of

singular quadrics is singular in codimension 2, so the linear space L must now meet its

singular locus, so L ∩∆ and M are singular. In particular the derived category of M

is unpleasant to work with, so to describe D(X) one can either ignore M or resolve its

singularities.

Kapranov [28] described D(X) as a quotient of the derived category of modules over

a generalized Clifford algebra, analogous to Bers̆tĕın–Gelfan’d–Gelfan’d’s description of

D(P2n−1) as a quotient of the derived category of modules over an exterior algebra.



5

Bondal and Orlov [7] equipped M with a related sheaf of algebas B, viewed (M,B) as

a non-commutative resolution of singularities of M, and stated that

D(X) = 〈OX(−2n+ 2m+ 1), . . . ,OX(−1),OX , D(B-mod)〉

when n ≥ m, where m is the number of quadrics. Kuznetsov [31] proved this and

more using his homological projective duality. For three quadrics, B is just an Azumaya

algebra, so this is equivalent to (1.1.2), but in general B is less tame.

We will take a more geometric approach to the complete intersection of four quadrics:

rather than taking a non-commutative resolution of M, we take a non-Kähler one M̂ →

M. Our resolution is modular; that is, the points of M̂ parametrize sheaves on X . The

smooth points of M parametrize stable sheaves on X , and its singular points, which

are ordinary double points, parametrize S-equivalence classes of properly semi-stable

sheaves. The points of M̂ over smooth points of M will parametrize the same stable

sheaves, and an exceptional line over an ODP of M will parametrize semi-stable sheaves

in the corresponding S-equivalence class. Again there is a twisted pseudo-universal

bundle, and

Theorem. D(X) = 〈OX(−2n + 9), . . . ,OX(−1),OX , D(M̂, α−1)〉.

Our construction will be guided by the geometry of linear spaces on the quadrics Q ∈ L;

indeed, this result can be viewed as making explicit the geometry underlying Kuznetsov’s

result. But our approach does not work for more than four quadrics.
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1.2 String Theory

Taking n = 4 in the theorem above, we get a twisted derived equivalence between

Calabi–Yau 3-folds.∗ Such derived equivalences are related to string theory.

In string theory, spacetime is modeled not as R4, as it is in earlier physical theories,

but as R
4 × X for some compact complex 3-fold X equipped with a Ricci-flat Kähler

metric. The number and types of particles and the strengths of their interactions depend

on the topology of X and the geometry of its complex and symplectic structures.

There are several competing models of string theory: type I, type IIA, type IIB, and

two “heterotic” string theories. Mirror symmetry is a relationship, somewhat mysteri-

ous to mathematicians, between Ricci-flat complex 3-folds X and X̌ (or more properly

between families of these) in which type IIA string theory on X isomorphic to type IIB

string theory on X̌ and vice versa. Each of the five string theories mentioned above has

two simplifications, confusingly called the A-twist and the B-twist, which are also in-

terchanged by mirror symmetry. The A-twist depends only on the symplectic structure

of X and the B-twist only on the complex structure. Homological mirror symmetry is

a conjecture of Kontsevich [30] that attempts to make this mathematically precise: the

B-twist is encoded in the derived category D(X) and the A-twist in the Fukaya category

Fuk(X̌), and the conjecture is that for mirror pairs X and X̌ , D(X) ∼= Fuk(X̌) and

D(X̌) ∼= Fuk(X). It may be that two Calabi–Yaus X and Y have the same mirror,

and so D(X) ∼= D(Y ). All derived equivalences are expected to arise from such “double

mirror” relationships.

∗A complex geometer might object to calling M̂ Calabi–Yau, since Yau’s proof of the Calabi con-
jecture applies only to Kähler manifolds. What we mean is that it is simply-connected and ω

M̂
∼= O

M̂
;

perhaps we should just call it Calabi. In physics, non-Kählerness is remedied by something called
H-flux.
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The fact that our example involves twisted sheaves on M̂ is related to the fact that

M is singular. According to Vafa and Witten [50], “what in classical geometry is a

singularity may in string theory simply be a region in which stringy effects are large.”

They constructed examples of string theory models that appeared to be smooth despite

being compactified on singular spaces and posed the question of how to understand

them. Aspinwall, Morrison, and Gross [1] observed that all these examples involved a

non-trivial Brauer class, which in physics corresponds to something called the B-field.

Lastly we mention gauged linear sigma models. A GLSM is a family of string the-

ories, some of which can be described via Calabi–Yau 3-folds, or their twisted or non-

commutative cousins, and for some of which the relationship to geometry is more obscure.

Căldăraru, Distler, Hellerman, Pantev, and Sharpe [12] conjectured that homologically

projectively dual varieties are connected by GLSMs, and in particular they studied the

example of our X and Kuznetsov’s (M,B) was studied. From this perspective, our

example suggests that there may be a GLSM connecting the smooth, projective X and

the twisted, non-Kähler M̂.
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1.3 Matrix Factorizations

If X ⊂ P
m is a hypersurface of degree d ≤ m+ 1, Orlov [44] has shown that

D(X) = 〈OX(−m+ 1 + d), . . . ,OX(−1),OX ,DMFgr(X)〉 (1.3.1)

where DMFgr(X) is the derived category of graded matrix factorizations, which we will

discuss in §2.6. This agrees with Kapranov’s semi-orthogonal decomposition (1.1.3): a

smooth, even-dimensional quadric has essentially only two matrix factorizations, which

we will eventually see correspond to the spinor bundles.

But (1.3.1) also casts an interesting light on (1.1.1), (1.1.2), and our main theorem.

The matrix factorizations of a smoothQ2n−2 just mentioned were of size 2n−1. A corank 1

dimensional quadric has only one matrix factorization of size 2n−1, so for the intersection

of two or three quadrics, the fiber of M → L over a quadric Q ∈ L parametrizes matrix

factorizations of Q; that is, M is a relative moduli space of matrix factorizations. A

corank 2 quadric has two families of matrix factorizations of size 2n−1, each parametrized

by P1, so M̂ also parametrizes matrix factorizations—the two lines correspond to the

two small resolutions of each ODP of M.

These matrix factorizations of Q are parametrized by Pn−1s on Q, but quite redun-

dantly. The map

Y = {pairs (Q ∈ L,Pn−1 ⊂ Q)}

L
❄

factors through M, and for the intersection of at most three quadrics, two points of Y

parametrize the same matrix factorization if and only if they map to the same point of

M. For two quadrics, there is always a section M → Y . For three quadrics there is not
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typically a section, but when there is, the Brauer class α in (1.1.2) is trivial. For one

quadric, M is just two points, so of course there is a section.

My hope is that for a higher-degree hypersurface or complete intersection X ,

DMFgr(X) is equivalent to the derived category of a variety or something close to one,

such as twisted sheaves on a variety or complex manifold; that how far one has to stray

from plain varieties is related to the rationality ofX ; and it can be studied using varieties

of linear spaces on hypersurfaces.

Kuznetsov [32] has shown that for a cubic fourfold X containing a plane, there is

a K3 surface S and a Brauer class α ∈ Br(S), whose construction is very similar to

our construction for the intersection of three quadrics, such that DMFgr(X) ∼= D(S, α).

When X is rational, α is trivial. More generally, he has shown that for any cubic

fourfold X , DMFgr(X) looks a lot like the derived category of a K3; that in cases where

X is known to be rational, it actually is the derived category of an algebraic K3; and

that it is close to being a birational invariant—that is, it is easy to understand how it

changes under birational transformations. He conjectures that X is rational if and only

if DMFgr(X) is the derived category of an algebraic K3.

I speculate that this might be realized as follows. Let F be the Fano variety of lines

on a cubic fourfold X . F is 4-dimensional. For each line ℓ ⊂ X , somehow produce

a matrix factorization of X . This introduces an equivalence relation on lines: ℓ ∼ ℓ′

if the corresponding matrix factorizations are isomorphic. The quotient F/∼ is a K3,

and the map F → F/∼ has a section if and only if X is rational. There is a universal

matrix factorization on X × F , and the pullback via this section gives an equivalence

D(F/∼) ∼= DMFgr.
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More generally, I would hope that for hypersurfaces of higher degree and dimension,

F/∼ is a variety and F → F/∼ has a section if and only if X is rational. If this approach

with linear spaces proves unworkable, one could approach the moduli space of matrix

factorizations as a GIT problem, and see if fineness of the moduli space is related to

rationality of the hypersurface. For complete intersections of hypersurfaces of the same

degree, one could consider the linear system they span and the relative moduli space of

matrix factorizations over it, as we did above for quadrics. For complete intersections

of hypersurfaces of different degrees, it is less clear what to do.

Some recent papers of Macr̀ı and Stellari lend a little weight to this speculation: in

[4], they, Bernadara, and Mehrotra recover the Fano surface of lines on a cubic threefold

as a moduli space of stable objects in DMFgr(X), and [37] they do the same for cubic

fourfolds containing a plane.
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Chapter 2

Techniques

2.1 Quadrics

Our references in this section are Harris [21, Lecture 22].

2.1.1 Linear Spaces on Smooth Quadrics

Over C, any two smooth quadrics of the same dimension are isomorphic. A smooth

quadric Q contains P
ks when k ≤ 1

2
dimQ. Let the variety of P

ks on Q be called

OG(k + 1, Q), for orthogonal Grassmannian. It is smooth. It is connected when k <

1
2
dimQ and has two connected components when k = 1

2
dimQ (so in particular Q is

even-dimensional). In low dimensions, OG is fun to describe:

Via the Segre embedding, P1 × P1 is a quadric in P3. The two families of lines are

those of the form {point} × P1 and those of the form P1 × {point}. Thus we see that

each point is contained in exactly one line from each family, and lines of the same family

do not meet while lines of opposite families meet in a point. I imagine a hyperboloid of

one sheet with its two rulings:

.

Via the Plücker embedding, the Grassmannian G(2, 4) is a quadric in P5. Its points
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correspond to lines in P3. Planes of one family on G(2, 4) correspond to points in P3:

for a fixed point, the lines through it form a plane on G(2, 4). Planes of the other family

on G(2, 4) correspond to planes in P
3: for a fixed plane, the lines on it form a plane

on G(2, 4). Lines on G(2, 4) correspond to flags {point ∈ plane} in P3: for a fixed flag,

the lines passing through the point and lying on the plane form a line on G(2, 4). Thus

we see that each line is contained in exactly one plane from each family, and planes of

the same family meet in a point or are equal while planes of opposite families meet in

a line or not at all. (This behavior is general: on a smooth Q2n, each Pn−1 is contained

in exactly one P
n of each family, and P

ns of the same family meet in even codimension

while Pns of opposite families meet in odd codimension.) If we fix a non-degenerate

bilinear form on C4, the Hodge star gives an automorphism of G(2, 4) that exchanges

the two families of planes. All this reflects the fact that the Dynkin diagrams A3 and

D3 are isomorphic [19, §23.3]:

∼=

.

From left to right, the dots of A3 correspond to points, lines, and planes in P3. The

middle dot of D3 corresponds to points in Q4, the upper dot to planes of one family, and

the lower dot to planes of the other family.

Each component of the variety of P3s on Q6 is isomorphic it Q6. This reflects the

extra symmetry of D4 [19, §20.3]:

.
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The left dot corresponds to points, the upper dot to P3s of one family, and the lower dot

to P3s of the other family, but there are automorphisms permuting these three dots, so

the varieties of each are isomorphic. This symmetry is called triality and is related to

the octonions.

2.1.2 Linear Spaces on Singular Quadrics

A singular quadric Q is a cone from a linear space, which is its singular locus, to a

smooth quadric Q′ of lower dimension. To understand OG(k + 1, Q), we begin with an

example:

.

This quadric surface is a cone from a line to a smooth quadric 0-fold Q′ (that is, two

points). It contains planes as well as lines, so we do not have k ≤ 1
2
dimQ. For the

variety of lines, consider the incidence correspondence

{flags line ⊂ plane ⊂ Q}

ւ ց

{lines on Q} {planes on Q} = {points on Q′}.

The space at the top is two disjoint planes and the southwest map glues them together

at a point, namely the cone line. Thus the variety of lines is connected but not smooth.

In general, a Pk on Q must meet Qsing if k > 1
2
dimQ′. Let Λ be a Pk that meets

Qsing minimally (that is, in the least possible dimension), and let l = dim(Λ∩Qsing) and
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m = dim(span of Λ and Qsing). Consider the incidence correspondence

{flags Pk ⊂ Pm ⊂ Q with Pm ⊃ Qsing}

ւ ց

OG(k + 1, Q) {Pms on Q containing Qsing} = OG(k − l, Q′).

(2.1.1)

If k is not maximal then OG(k + 1, Q) is connected but not smooth; the smooth locus

consists of the Pks that meet Qsing minimally, and the southwest map in (2.1.1) is a

resolution of singularities. It has two irreducible components if a Pk that meets Qsing

minimally projects, via the projection from Qsing to Q′, to a linear space of dimesion

1
2
dimQ′, and is irreducible if such a Pk projects to a linear space of smaller dimension.

2.1.3 Invariant Description

It will sometimes be more convenient to work with a quadratic form q on a vector space

V than with its zero set Q ⊂ PV . Quadratic forms q are in bijection with symmetric

bilinear forms b : V ⊗ V → C via

b(v, v′) =
q(v + v′)− q(v − v′)

4
q(v) = b(v, v).

Taking the adjoint b̃ : V → V ∗ we see that bilinear forms are in bijection with symmetric

matrices. To be quite concrete, if

q =
∑

1≤i≤j≤dimV

aijxixj

then the corresponding symmetric matrix is

b̃ =





















a11
1
2
a12

1
2
a13 . . .

1
2
a12 a22

1
2
a23 . . .

1
2
a13

1
2
a23 a33 . . .

...
...

...
. . .





















.
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We define the kernel K of q or b to be the kernel of the matrix b̃. We say that q is

non-degenerate if K = 0. We define the rank of Q or q or b to be the rank of b̃, and the

corank as the dimension of the kernel. Over C, two quadratic forms of the same rank

are isomorphic.

A degenerate quadratic form q induces a non-degenerate one on V/K, which cor-

responds to what we said above about a singular quadric being a cone over a smooth

quadric—the singular locus of Q is PK ⊂ PV , and the smooth quadric Q′ ⊂ P(V/K)

is the zero locus of the induced form. An isotropic subspace W ⊂ V , that is, one with

q|W = 0, corresponds to a linear space PW ⊂ Q. The orthogonal of W is

W⊥ = {v ∈ V : b(v, w) = 0 for all w ∈ W}.

Since W is isotropic, W ⊂ W⊥. If q is non-degenerate then dimW + dimW⊥ = dimV ,

and in general dimW+dimW⊥ = dimV +dim(W∩ker q). The set of isotropic subspaces

containing W is the set of subspaces ofW⊥/W isotropic for the induced quadratic form.

This generalizes what we said above about a Pn−1 on a smooth Q2n being contained in

exactly two Pns.

Let T be the tautological bundle on the Grassmannian G(k, V ). Then q determines

a section s of Sym2 T ∗: if W ∈ G(m, V ) then s(W ) = q|W ∈ Sym2W ∗. The zero locus

of s is OG(k, q).

Proposition 2.1.1. The section s just described is transverse to the zero section at

W ∈ OG(k, q) if and only if W ∩K = 0

Proof. If q is non-degenerate this is well-known. If q is degenerate andW∩K = 0, choose

a subspace U ⊂ V complementary to K with U ⊃ W . Then q|U is non-degenerate, so

the restriction of s to G(k, U) ⊂ G(k, V ) is transverse to the zero section. Conversely,
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if W ∩K 6= 0 then from (2.1.1) we see that either W is a singular point of OG(k, q) or

the dimension of OG(k, q) is too big.

2.1.4 The Space of Quadrics

The space of quadratic forms on V is Sym2 V ∗, and the space of quadrics in PV is

the projective space Φ := P Sym2 V ∗. The singular quadrics form a hypersurface ∆ of

degree dimV , given by the vanishing of the determinant of the matrix b̃ above. This

hypersurface is not smooth; its singular locus ∆′ consists of quadrics of corank 2 or more,

which is codimension 3 in Φ and degree
(

dimV+1
3

)

. This too is singular; its singular locus

∆′′ consists of quadrics of corank 3 or more, which is codimension 6 in Φ. In general,

the locus of quadrics of corank k or more is codimension
(

k+1
2

)

in Φ, and its singular

locus consists of quadrics of corank k + 1 or more.

I imagine the whole situation as looking like this:

generically

∆:

∆′:

but note that ∆′ is really codimension 3 and ∆′′ is not pictured.

In §4.1 we will have occasion to consider the relative Grassmannian of isotropic k-

dimensional spaces:

Φ′ := {(W,Q) ∈ G(k, V )× Φ : PW ⊂ Q}.
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This is a projective bundle over G(k, V ), hence is smooth and connected. Consider the

map of vector bundles on G(k, V )× Φ

OG ⊠OΦ(−1)

1⊠ q

→

7→

Sym2 T ∗
⊠OΦ

q|W ⊠ 1.

Then Φ′ is the zero locus of the corresponding section s of Sym2 T ∗
⊠ OΦ(1), which is

transverse to the zero section.

2.2 Spinor Bundles

Our reference in this section is Ottaviani [45].

2.2.1 Definition

On smooth quadrics there exist certain vector bundles called spinor bundles. On a

(2n − 1)-dimensional quadric there is one, of rank 2n−1. On a 2n-dimensional quadric

there are two, both of rank 2n−1. In low dimensions they coincide with other well-known

bundles: On Q1 ∼= P1 it is O(1). On Q2 ∼= P1 × P1 they are O(1, 0) and O(0, 1). On

Q3, which is the Lagrangian Grassmannian LG(2, 4), it is the quotient bundle. On

Q4 ∼= G(2, 4) they are the quotient bundle and the dual of the tautological bundle.

Ottaviani defined the spinor bundles as follows. For a (2n− 1)-dimensional quadric

Q, consider the incidence correspondence

{flags point ∈ P
n−1 ⊂ Q}

Q

p
✛

OG(n,Q)

q ✲
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where as in the previous section OG(n,Q) is the space of Pn−1s on Q. The Picard

group of OG is Z. The square of its ample generator is the Plücker line bundle, i.e.

the determinant of the quotient bundle, so the ample generator is called the Pfaffian

line bundle [47, §12.3] and denoted Pf. Then the spinor bundle is S := p∗q
∗ Pf.∗ For

a 2n-dimensional quadric Q, OG(n + 1, Q) has two connected components which we

label arbitrarily as OG+ and OG−. Each has a Pfaffian line bundle, and by the same

construction these give rise to two spinor bundles S+ and S−.

These bundles are called “spinor bundles” not because they admit a spin structure

(although they do), but because they are intimately connected with the spin represen-

tations. When dimQ = 2n− 1, Spin2n+1C acts on Q and thus on OG. The line bundle

Pf and thus the vector bundle S are equivariant for this action, and Γ(S) = Γ(Pf) is the

dual of the spin representation. In the space of spinors Γ(Pf)∗, the spinors in the affine

cone of OG are called pure spinors [13]. When dimQ = 2n, the two components OG±

and the two vector bundles S± correspond to the two spin representations of Spin2n+2C,

and pure spinors are related to almost-complex structures.

2.2.2 Properties

Ottaviani showed that spinor bundles have the following properties:

• Cohomology. Let S be a spinor bundle on Q2n−1 or Q2n. Then H0(S(t)) = 0 for

t < 0, dimH0(S(1)) = 2n, and H i(S(t)) = 0 for 0 < i < dimQ and all t ∈ Z. This

last property is called being arithmetically Cohen-Macaulay (ACM).

∗In fact Ottaviani works with the dual of this bundle. Following Kapranov, we will not take the
dual.
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• Short exact sequences. On Q2n−1 there is a short exact sequence

0 → S(−1) → O2n

Q → S → 0.

On Q2n there are short exact sequences

0 → S−(−1) → O2n

Q → S+ → 0

0 → S+(−1) → O2n

Q → S− → 0.

Recalling our low-dimensional coincidences, on Q1 ∼= P1 this is

0 → O(−1) → O2 → O(1) → 0;

on Q2 ∼= P1 × P1

0 → O(−1, 0) → O2 → O(1, 0) → 0

0 → O(0,−1) → O2 → O(0, 1) → 0;

and on Q4 ∼= G(2, 4)

0 → T → O4 → Q→ 0

0 → Q∗ → O4 → T ∗ → 0

where T is the tautological bundle and Q the quotient bundle.

• Dual. S∗ = S(−1). If n is even then S∗
+ = S+(−1) and S∗

− = S−(−1). If n is odd

then S∗
+ = S−(−1) and S∗

− = S+(−1).

• Hyperplane sections. If H is a hyperplane meeting Q2n transversely then S±|H is

the spinor bundle S on Q2n−1 = Q2n ∩H , and conversely any vector bundle E on

Q2n with E|H = S for all H meeting Q2n transversely must be S+ or S−. If H
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is a hyperplane meeting Q2n+1 transversely then S|H = S+ ⊕ S−, and a similar

converse holds.

• Horrocks’ criterion. It is a celebrated theorem of Grothendieck that every vector

bundle on P1 splits as a direct sum of line bundles. Horrocks’ criterion is a gen-

eralization to Pn: every ACM vector bundle on Pn splits as a direct sum of line

bundles.

Ottaviani [46] generalized this to smooth quadrics: if E is a vector bundle on Q2n−1

such that both E and E ⊗ S are ACM, or a vector bundle on Q2n such that E,

E ⊗ S+, and E ⊗ S− are ACM, then E splits as a direct sum of line bundles.

Ballico [2] generalized this to singular quadrics: let Q be a singular linear section

of Q2n−1 (or Q2n) with Qsing at least codimension 3 in Q; if E is a vector bundle

on Q such that E and E ⊗ S|Q (or E ⊗ S±|Q) are ACM then E splits as a direct

sum of line bundles.

• Stability. Spinor bundles are stable.

2.2.3 Resolution on the Ambient Projective Space

If F is a sheaf on Pm then one of the Bĕılinson spectral sequences [23, Prop. 8.28] is:

Ep,q
1 = Hq(F(p))⊗ Ω−p(−p) ⇒















F if p+ q = 0

0 otherwise

Note that Ep,q
1 = 0 unless −m ≤ p ≤ 0 and 0 ≤ q ≤ m.

If S is the spinor bundle on Q2n−1, we will use this to resolve S on the ambient P2n.

As we find the terms Ep,q
1 , the reader may want to refer to (2.2.1) below, where they are
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assembled.

From Ottaviani’s calculation of the cohomology of S and its twists,

E0,0
1 = O2n

Ep,0
1 = 0 for p < 0

Ep,q
1 = 0 for 0 < p < 2n− 1 and all q.

Since dimQ = 2n− 1,

E−2n,q
1 = 0 for all q.

By Serre duality on Q2n−1 and the fact that S∗ = S(−1),

H2n−1(S(p)) = H0(S∗(−p− 2n+ 1))∗ = H0(S(−p− 2n))∗

so

E−2n,2n−1
1 = Ω2n(2n)2

n

= O(−1)2
n

Ep,2n−1
1 = 0 for p > −2n.

Thus the E1 page looks like

0 ✲ 0 ✲ 0 ✲ . . . ✲ 0 ✲ 0

O(−1)2
n

✲ 0 ✲ 0 ✲ . . . ✲ 0 ✲ 0

0 ✲ 0 ✲ 0 ✲ . . . ✲ 0 ✲ 0

...
...

...
. . .

...
...

0 ✲ 0 ✲ 0 ✲ . . . ✲ 0 ✲ 0

0 ✲ 0 ✲ 0 ✲ . . . ✲ 0 ✲ O2n

(2.2.1)
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and all the differentials are necessarily zero until the E2n page

0 0 0 . . . 0 0

O(−1)2
n

0 0 . . . 0 0

0 0 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 0
✲

0 0 0 . . . 0 O2n ,

ϕ

✲

after which the E2n+1 page and all subsequent pages look like

0 0 0 . . . 0 0

kerϕ 0 0 . . . 0 0

0 0 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 0

0 0 0 . . . 0 cokerϕ

so kerϕ = 0 and cokerϕ = S. So we get a very nice resolution:

0 → O2n

P2n(−1)
ϕ
−→ O2n

P2n → S → 0. (2.2.2)

From this resolution it is easy to get back the cohomology of S: dimH0(S(t)) =

dimH2n−1(S(−2n− t)) = 2n
(

2n−1+t
2n−1

)

for t ≥ 0, and H i(S(t)) = 0 for all other i and t.

Similarly, for S± on Q2n we get

0 → O2n

P2n+1(−1) → O2n

P2n+1 → S± → 0.

2.2.4 Alternate Definitions

Besides Ottaviani’s geometric construction of spinor bundles, we mention two others.

Kapranov [27] constructed spinor bundles via Clifford algebras and used them to show
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that the derived category of a smooth quadric is generated by an exceptional collection

D(Q2n−1) = 〈O(−2n+ 2), . . . ,O(−1),O, S〉

D(Q2n) = 〈O(−2n+ 1), . . . ,O(−1),O, S+, S−〉

as we mentioned earlier (1.1.3).

Langer [33] constructed spinor bundles via an explicit matrix factorization of

x1x2 + · · ·+ x2n−1x2n

in even dimensions and

x1x2 + · · ·+ x2n−1x2n + x22n+1

in odd dimensions, as we will discuss in §2.6.

We will generalize these constructions in Chapter 3.

2.3 Stable Sheaves

Our reference in this section is Huybrechts and Lehn [24]. We will define a notion

called slope stability or Mumford–Takemoto stability. Mumford introduced this to study

moduli spaces of vector bundles on curves. Takemoto found that to extend Mumford’s

work to variety of dimension n ≥ 2, one should consider not only vector bundles but also

torsion-free sheaves. (On a smooth curve, every torsion-free sheaf is a vector bundle.)

At the end of the section we will mention Gieseker stability, which is better-suited to

studying torsion sheaves.

The degree of a line bundle L on an n-dimensional variety X ⊂ Pm is the degree of

the corresponding divisor D, that is, the number of points in which D meets a general
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Pm−n+1 ⊂ Pn. By Poincaré duality,

degL =

∫

X

c1(L) ∧ ω
n−1

where ω is the restriction to X of the Fubini–Study Kähler form on Pn. We define the

degree of a vector bundle by the same formula. If

0 → E ′ → E → E ′′ → 0

is a short exact sequence of vector bundles then c1(E) = c1(E
′) + c1(E

′′), so degree is

additive on short exact sequences. If X is smooth then a sheaf F can be resolved by a

finite sequence of vector bundles

0 → Ek → · · · → E1 → E0 → F → 0

so we can define deg E = deg E0 − deg E1 + · · · ± deg Ek, which is the correct definition

when E is torsion-free. But this definition is impractical to use, and is not valid if X is

singular.

The degree of a vector bundle can also be read off its Hilbert polynomial. If the

Hilbert polynomial of X is

χ(OX(t)) = degX ·
tn

n!
+ C ·

tn−1

(n− 1)!
+ · · · .

then that of a vector bundle E is

χ(E(t)) = degX · rank E ·
tn

n!
+ (C rank E + deg E) ·

tn−1

(n− 1)!
+ · · · . (2.3.1)

If E is a torsion-free sheaf then its Hilbert polynomial has the same leading term, so we

can define its rank and degree by the same formula.
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Since we are considering only torsion-free sheaves E we should consider only saturated

subsheaves F ⊂ E , that is, ones where the quotient F/E is torsion-free.

The slope of a torsion-free sheaf E is

µ(E) =
deg E

rank E
.

If F ⊂ E is a proper saturated subsheaf then 0 < rank E < rankF , so rank(E/F) is

positive, so µ(F) and µ(E/F) are defined. Since rank and degree are additive on short

exact sequences, µ(E) is a weighted average of µ(F) and µ(E/F), so there are three

possiblities:

µ(F) < µ(E) < µ(E/F), or

µ(F) = µ(E) = µ(E/F), or

µ(F) > µ(E) > µ(E/F).

Now we say that E is stable if µ(F) < µ(E) for all such F , and semi-stable if µ(F) ≤ µ(E).

This definition is natural because the first Chern class, and hence the slope, is related to

curvature, which decreases in sub-bundles and increases in quotient bundles [20, p. 79].

Every torsion-free sheaf has a unique Harder–Narasimhan filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = E

where the quotients Fi/Fi−1 are semi-stable and µ(Fi/Fi−1) < µ(Fi+1/Fi). Every semi-

stable sheaf has a Jordan–Hölder filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = E

where the quotients Fi/Fi−1 are stable and µ(Fi/Fi−1) = µ(E). This filtration not

unique, but the associated graded object
⊕

i=1Fi/Fi−1 is. Two semi-stable sheaves
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whose Jordan–Hölder filtrations have the same associated graded object are called S-

equivalent. A sheaf is called polystable if it is a direct sum of stable sheaves of the same

slope; every semi-stable sheaf is S-equivalent to a unique polystable sheaf. Every semi-

stable sheaf contains a unique maximal polystable subsheaf called its socle. In both

filtrations the Fi are necessarily saturated, and the socle is constructed from the first

terms of Jordan–Hölder filtrations, so it too is saturated.

As an example, let us compute the slope of a spinor bundle. From (2.2.2) we can

compute its Hilbert polynomial:

χ(S(t)) = 2 rankS ·

(

t + n

n

)

= 2 rankS ·
tn

n!
+ rankS · (n+ 1) ·

tn−1

(n− 1)!
+ · · · .

Comparing this to the Hilbert polynomial of Q

χ(OQ(t)) =

(

t+ n

n

)

+

(

t + n− 1

n

)

= 2 ·
tn

n!
+ n ·

tn−1

(n− 1)!
+ · · ·

we see that µ(S) = 1. We can also compute its degree directly from the first Chern

class, as follows. A general plane section of Q is a smooth conic Q1, and by our remarks

in §2.2.2 the restriction of S to this plane section is the direct sum of rank(S) copies of

the spinor bundle on Q1. But Q1 ∼= P1, and its spinor sheaf is OP1(1), whose degree is

1. Thus deg S = rankS, so again µ(S) = 1.

We remark here that a stable sheaf E is simple, that is, Hom(E , E) = C, as follows.

Let ϕ : E → E be an endomorphism. If imϕ 6= 0 and imϕ 6= E then µ(imϕ) < µ(E),

but this contradicts the fact that imϕ = E/ ker E and µ(ker E) < µ(E). Thus ϕ was

either zero or an isomorphism, so by Schur’s lemma, Hom(E , E) = C.

If E is a torsion sheaf then rank E = 0, so µ(E) is undefined. To remedy this, we

introduce the reduced Hilbert polynomial p(E), which is the Hilbert polynomial made
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monic, i.e. divided by its leading coefficient. For an n-dimensional sheaf E we have

p(E)(t) = tn +
1

degX
(C + µ(E)) · ntn−1 + · · · ,

so the reduced Hilbert polynomial is a refinement of the slope. We say that p(F) < p(E)

if the leading coefficient of p(E)− p(F) is positive, or equivalently if p(F)(t) < p(E)(t)

for t ≫ 0. We say that a pure∗ sheaf E is Gieseker stable if pF < pE for all proper

subsheaves F ⊂ E , and semi-stable if pF ≤ pE . For Gieseker stability there is also a

Harder–Narasimhan filtration, a Jordan–Hölder filtration, and so on. It is not hard to

see that slope stable implies Giesker stable, which implies Gieseker semi-stable, which

implies slope semi-stable.

In a moduli space of sheaves, smooth points parametrize stable sheaves, while singular

points parametrize S-equivalence classes of properly semi-stable sheaves.

2.4 Fourier–Mukai Transforms

Our reference in this section and the next is Huybrechts [23].

Let X and Y be compact complex manifolds and S a complex of sheaves on X × Y .

X × Y

X

πX

✛

Y

πY
✲

Then the Fourier–Mukai transform from Y to X with kernel S is the map

F Y→X
S : D(Y ) → D(X)

F 7→ πX∗(π
∗
YF ⊗ S)

∗This is a generalization of torsion-free: it means that if F ⊂ E then dim(suppF) = dim(supp E).
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where the pushforward and tensor are, of course, derived. Some authors prefer to call this

an integral transform and reserve Fourier–Mukai transform for the case where F Y→X
S is

an equivalence of categories, but we will follow Huybrechts and call them all Fourier–

Mukai transforms.

The analogy is with the integral transforms of classical analysis, such as the Fourier

transform

f(y) 7→ Ff(x) =

∫ ∞

−∞

f(y) e−2πixy dy

or the Laplace transform

f(y) 7→ Lf(x) =

∫ ∞

0

f(y) e−xy dy

or the Hilbert transform

f(y) 7→ Hf(x) =
1

π

∫ ∞

−∞

f(y)

x− y
dy.

The pullback π∗
Y corresponds to regarding f(y) as a function of x and y. Tensoring

with the kernel S, which lives on X × Y , corresponds to multiplying by one of the

kernels e−2πixy, e−xy, or 1/π(x − y), which are functions of x and y. The pushforward

πX∗ corresponds to integrating out y; recall that in de Rham cohomology, pushforward

is integration along the fiber [8]. Fourier–Mukai transforms can also be viewed as a

refinement of correspondences from the theory of motives.

In many of the most interesting examples, Y is a fine moduli space of sheaves on

X and S is the universal sheaf. But more mundane functors are also Fourier–Mukai

transforms: for example, if f : Y → X is a holomorphic map, let Γ ⊂ X × Y be

its graph; then f∗ is F Y→X
OΓ

and f ∗ is FX→Y
OΓ

. It has long been suspected, and looks

increasingly likely [49, 36], that every exact functor between derived categories is a

Fourier–Mukai transform.
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If F = F Y→X
S is an embedding (that is, fully faithful) then for any points p, q ∈ Y

and any i ∈ Z we have

HomD(X)(FOp, FOq[i]) = HomD(Y )(Op,Oq[i]) =















0 if p 6= q

∧iTpY if p = q.

Surprisingly, this is sufficient to guarantee that F is an embedding. In fact, we need

even less:

Theorem (Bondal–Orlov [6]). A Fourier–Mukai transform F = F Y→X
S is an embedding

if an only if for any points p, q ∈ Y and any i ∈ Z one has

Hom(FOp, FOq[i]) =















C if p = q and i = 0

0 if p 6= q or i < 0 or i > dim Y .

Observe that if Y is a moduli space of sheaves on X and S the universal bundle then

FOp is the sheaf that p parametizes.

If F is an equivalence then X and Y have the same dimension and F preserves

the Serre functors: F ◦ SY = SX ◦ F . Thus for any point p ∈ Y , FOp ⊗ ωX ∼=

F (Op⊗ωY ) = FOp. Surprisingly again, this is sufficient to guarantee that an embedding

is an equivalence:

Theorem (Bridgeland [9]). A Fourier–Mukai embedding F = F Y→X
S is an equivalence

if and only if for any point p ∈ Y one has

FOp ⊗ ωX ∼= FOp.

Observe that if X is Calabi–Yau, the hypothesis is automatically satisfied.
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2.5 Semi-Orthogonal Decompositions

A full triangulated subcategory A ⊂ D(X) is called admissible if the inclusion functor

A →֒ D(X) has left and right adjoints. For example, the image of a Fourier–Mukai

embedding is an admissible subcategory, for

FX→Y
S∗ ◦ SX ⊣ F Y→X

S ⊣ SY ◦ FX→Y
S∗

where SX and SY are again the Serre functors.

A key feature of an admissible subcategory is that if its left or right orthogonal is

zero, the inclusion is an equivalence. The left orthogonal of A is the full subcategory

⊥A := {E ∈ D(X) : Hom(E, F [i]) = 0 for all F ∈ A and i ∈ Z}

and the right orthogonal A⊥ is defined similarly; they are again admissible. If an object

E ∈ D(X) is left orthogonal to all the skyscraper sheaves Op, p ∈ X , then E ∼= 0. If X

is projective and F is right orthogonal to all the line bundles OX(t), t ≪ 0 then again

F ∼= 0 by the famous but poorly-named Theorem B. Thus to show that an admissible

subcategory A is equivalent to D(X), it suffices to show that it contains the skyscraper

sheaves or, if X is projective, the negative line bundles.

This provides an example of an inadmissible subcategory: the triangulated subcat-

egory generated by skyscraper sheaves (by taking shifts and cones of morphisms). Its

left orthogonal is zero, but it does not contain OX .

If A1 and A2 are admissible subcategories of D(X) with A1 ⊂ A⊥
2 then the triangu-

lated subcategory they generate is again admissible. A semi-orthogonal decomposition

of D(X) is a sequence A1, A2, . . . , Ak of admissible subcategories with Ai ⊂ A⊥
j when
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i < j (that is, there are no Homs from right to left) that generates D(X). We write

D(X) = 〈A1, A2, . . . , Ak〉.

Sometimes an individual object E ∈ D(X) appears in a semi-orthogonal decompo-

sition. This indicates that E is exceptional ; that is,

Hom(E,E[i]) =















C if i = 0

0 otherwise,∗

or equivalently, if we view E as an object of D(point × X) then the Fourier–Mukai

transform D(point) → D(X) is an embedding. Thus the subcategory generated by E,

which just consists of objects of the form
⊕

E[i]ni , is an admissible subcategory, so it

is reasonable for an exceptional object to appear in a semi-orthogonal decomposition.

A sequence E1, E2, . . . , Ek of exceptional objects is an exceptional collection if there are

no Homs or Exts from right to left.

For example, let X ⊂ Pn be a complete intersection of hypersurfaces of degrees

d1, . . . , dk with d1 + · · ·+ dk ≤ n, so X is Fano. Then

OX(−n+ d1 + · · ·+ dk), . . . ,OX(−1),OX (2.5.1)

is an exceptional collection, as follows. We know that OPn(t) has no cohomology for

−n ≤ t ≤ −1 and that H∗(OPn) = H∗(point). From the Koszul complex of X

0 → OPn(−d1 − · · · − dk) →

· · · →
⊕

i<j

OPn(−di − dj) →
⊕

i

OPn(−di) → OPn → OX → 0

∗In particular, exceptional objects are simple and rigid.
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we find that OX(t) has no cohomology for −n+ d1 + · · ·+ dk ≤ t ≤ −1 and H∗(OX) =

H∗(point). Thus Ext∗(OX(s),OX(t)) = H∗(OX(t− s)) is as required for an exceptional

collection. Observe that the most negative line bundle in (2.5.1) is ωX(1), so we couldn’t

have gone any further: Extn−k(OX , ωX) = H0(OX) = C.

We conclude with an easy proof of Bĕılinson’s theorem

D(Pn) = 〈O(−n), . . . ,O(−1),O〉,

which we mentioned in §1.1. We just saw that this is an exceptional collection. To show

that it generates D(Pn), we could observe that it generates the skyscraper sheaves, via

the Koszul complex of a point

0 → O(−n) → · · · → O(−3)(
n
3) → O(−2)(

n
2) → O(−1)n → O → Opoint → 0,

or we could observe that it generates the negative line bundles, via the Koszul complex

of the complete intersection of n+ 1 hyperplanes (which is empty)

0 → O(−n− 1) → · · · → O(−2)(
n+1

2 ) → O(−1)n+1 → O → 0

and its twists

0 → O(−n− 2) → · · · → O(−3)(
n+1

2 ) → O(−2)n+1 → O(−1) → 0

0 → O(−n− 3) → · · · → O(−4)(
n+1

2 ) → O(−3)n+1 → O(−2) → 0

· · · .

Observe that this theorem implies that every complex of sheaves on Pn is quasi-

isomorphic to a complex of those n+ 1 line bundles.
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2.6 Matrix Factorizations

An irreducible polynomial w ∈ R := C[x0, . . . , xn] cannot be factored as the product of

two polynomials. But it may be possible to give a matrix factorization of w: a pair of

N×N matrices ϕ and ψ of polynomials such that ϕ ·ψ = ψ ·ϕ = w ·1N×N . For example,

(

x2 x4 x6 0
−x3 x1 0 x6
−x5 0 x1 −x4
0 −x5 x3 x2

)(

x1 −x4 −x6 0
x3 x2 0 −x6
x5 0 x2 x4
0 x5 −x3 x1

)

= (x1x2 + x3x4 + x5x6)

(

1
1
1
1

)

(2.6.1)

is one of Langer’s matrix factorizations mentioned in §2.2.4. The number N is called

the size of the matrix factorization.

We can view a matrix factorization as a sequence of maps of free modules

· · · → RN ϕ
−→ RN ψ

−→ RN ϕ
−→ RN ψ

−→ RN → · · ·

which is like a complex except that we have d2 = w rather than d2 = 0, or as a sequence

of maps of vector bundles on An+1

· · · → ON ϕ
−→ ON ψ

−→ ON ϕ
−→ ON ψ

−→ ON → · · ·

where again d2 = w.

If w is homogeneous of degree d, a graded matrix factorization is one where we require

the free modules and maps to be graded:

· · · →

N
⊕

i=1

R(mi)
ϕ
−→

N
⊕

i=1

R(ni)
ψ
−→

N
⊕

i=1

R(mi + d)
ϕ(d)
−−→

N
⊕

i=1

R(ni + d) → · · · ,

or on Pn,

· · · →
⊕

O(mi)
ϕ
−→

⊕

O(ni)
ψ
−→

⊕

O(mi + d)
ϕ(d)
−−→

⊕

O(ni + d) → · · · .

The example (2.6.1) above was in fact graded, with mi = −1 and ni = 0. We are

interested in hypersurfaces in Pn, so we will confine our interest to graded matrix fac-

torizations.
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Following Orlov [44] and Kontsevich, we can form a category MFgr(w) of graded

matrix factorizations and chain maps between them. If X ⊂ Pn is the hypersurface

defined by w, we will sometimes call this category MFgr(X). It is not an abelian category,

because the kernel and cokernel of a map of vector bundles of the form
⊕

O(mi) may not

be of the same form, but it is an exact category, which means essentially that we can say

what a short exact sequence is. There is an exact functor coker : MFgr(X) → Coh(X),

sending a matrix factorization

· · · →
⊕

O(mi)
ϕ
−→

⊕

O(ni)
ψ
−→

⊕

O(mi + d)
ϕ(d)
−−→

⊕

O(ni + d) → · · · .

to the sheaf cokerϕ. This sheaf has many nice properties:

Proposition 2.6.1.

1. cokerϕ is supported on X.

2. It has a two-term resolution on Pn

0 →
⊕

OPn(mi)
ϕ
−→

⊕

OPn(ni) → cokerϕ→ 0.

Taking cohomology of this, we see immediately that cokerϕ is arithmetically Cohen-

Macaulay.

3. It has a resolution on X to the left

· · · →
⊕

OX(ni − d)
ψ(−d)
−−−→

⊕

OX(mi)
ϕ
−→

⊕

OX(ni) → cokerϕ→ 0

and one to the right:

0 → cokerϕ→
⊕

OX(mi+d)
ϕ(d)
−−→

⊕

OX(ni+d)
ψ(d)
−−→

⊕

OX(mi+2d) → · · · .
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4. Its dual on X is coker(ϕ∗(−d)), where

ϕ∗ : OPn(−ni) → OPn(−mi)

is the transpose. This is the dual both in the ordinary and the derived senses; that

is, Hom(cokerϕ,OX) = coker(ϕ∗(−d)), and ExtiX(cokerϕ,OX) = 0 for i > 0.

5. It is reflexive.

Proof.

1. Restrict
⊕

O(mi)
ϕ
−→

⊕

O(ni) → cokerϕ→ 0

to U := Pn \X to get

⊕

OU(mi)
ϕ|U
−−→

⊕

OU(ni) → cokerϕ|U → 0.

But ϕ · ψ = w · 1, and w does not vanish on U , so ϕ|U is an isomorphism, so

cokerϕ|U = 0. Thus the support of cokerϕ is contained in X , and property 4 will

show that it is all of X .

2. ψ ◦ ϕ = w · 1 is injective, so ϕ is injective.

3. We will show that the complex

· · · →
⊕

OX(mi)
ϕ
−→

⊕

OX(ni)
ψ
−→

⊕

OX(mi + d) → · · ·

is exact by showing that the corresponding complex of free (R/w)-modules is exact.

It is enough to check exactness in one place. Let x ∈
⊕

R(ni) and let x̄ be its

residue class in
⊕

(R/w)(ni), which corresponds to the middle vector bundle above.

If ψx̄ = 0 then ψx = wy for some y ∈
⊕

R(mi + d), so wx = ϕψx = ϕwy = wϕy,

so x = ϕy, so x̄ = ϕȳ.
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4. We just saw that cokerϕ is quasi-isomorphic to the complex of vector bundles

· · · →
⊕

OX(ni − d)
ψ(−d)
−−−→

⊕

OX(mi)
ϕ
−→

⊕

OX(ni) → 0,

whose dual is

0 →
⊕

OX(−ni)
ϕ∗

−→
⊕

OX(−mi)
ψ∗(d)
−−−→

⊕

OX(ni − d) → · · · .

Since ϕ∗ · ψ∗ is again a graded matrix factorization of w, this is quasi-isomorphic

to ker(ϕ∗) = coker(ϕ∗(−d)).

5. Because ϕ∗ · ψ∗ is a graded matrix factorization of w, we have (cokerϕ)∗∗ =

(coker(ϕ∗)(−d))∗ = coker(ϕ∗∗)(−d)(d) = cokerϕ.

In our example (2.6.1), cokerϕ and cokerψ are the two spinor bundles on Q4, and

property 2 above is (2.2.2).

We form the derived category DMFgr(X) from MFgr(X) by modding out chain ho-

motopies.∗ It is a triangulated category. When d ≤ n+ 1, so X is Fano or Calabi–Yau,

Orlov shows that

D(X) = 〈OX(−n + d), . . . ,OX(−1),OX ,DMFgr(X)〉.

Notice that if d = n + 1, so X is Calabi–Yau, the list of line bundles is empty, so in

fact D(X) = DMFgr(X). Unfortunately the embedding DMFgr(X) → D(X) is more

complicated than the functor coker above.

Matrix factorizations were introduced by Eisenbud [18] in commutative algebra in

1980, but in recent years they have re-emerged in homological mirror symmetry. Indeed,

∗The reader may wonder why we don’t invert quasi-isomorphisms. It is because they don’t make any
sense for matrix factorizations: since d2 6= 0, we can’t talk about cohomology, much less chain maps
that induce isomorphisms on cohomology.
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Orlov does not use the phrase “matrix factorization”, instead calling DMFgr the category

of “graded D-branes of type B in Landau–Ginzburg models”.

2.7 Twisted Sheaves

Our reference in this section is Căldăraru’s thesis [11].

If E is a holomorphic vector bundle on a complex manifold X , we can form its

projectivization PE . Locally in the analytic topology, every projective bundle is the

projectivization of a vector bundle, but globally this is not so.∗ To see the obstruction,

consider the short exact sequence of groups

1 → C
∗ → GLrC → PGLrC → 1

which gives rise the long exact sequence

· · · → H1(X,C∗) → H1(X,GLrC) → H1(X,PGLrC) → H2(X,C∗).

What we mean here is cohomology of the sheaves of holomorphic functions with values

in those groups,∗ so it would be better to call the first and last terms H i(X,O∗).

From the map of short exact sequences

1 ✲ Z/r ✲ SLrC ✲ PSLrC ✲ 1

1 ✲ C
∗
❄

✲ GLrC
❄

✲ PGLrC

w

w

w

w

w

✲ 1

we see that the obstruction for a rank r − 1 projective bundle lies in the image of

H2(X,Z/r) → H2(X,O∗), hence is torsion. It is an old theorem of Serre that topolog-

ically, every torsion element of H2(X,O∗) occurs as the obstruction of some projective

∗Surprisingly, if X is projective, a projective bundle that is locally trivial in the Zariski topology is
the projectivization of a vector bundle, by Hartshorne’s exercise II.7.10(c).

∗For sheaves of non-abelian groups only H0 and H1 are defined, and the latter is only a pointed set,
not a group. The long exact sequence extends as far as we have given it only for central extensions.
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bundle, and a recent theorem of de Jong that this is also true holomorphically. But

a class of order r need not be the obstruction of a bundle of rank r − 1. The torsion

subgroup of H2(X,O∗) is called the Brauer group and denoted Br(X).

From the short exact sequence

0 → Z
2πi
−−→ C

exp
−−→ C

∗ → 1

we see that topologically, and holomorphically if H2,0(X) = 0, Br(X) is the torsion

subgroup of H3(X,Z), which is where a K-theorist would be more accustomed to finding

the twisting.

So a general projective bundle is the projectivization of an α-twisted vector bundle,

α ∈ Br(X), which means the following (up to a suitable notion of isomorphism): an open

cover {Ui} of X , vector bundles Ei on Ui, and isomorphisms on the pairwise intersections

ϕij : Ei|Ui∩Uj
→ Ej |Ui∩Uj

that “don’t quite match up” on the triple intersections—that

is, ϕki ◦ ϕjk ◦ ϕij ∈ Aut(Ei|Ui∩Uj∩Uk
) is not the identity, but rather multiplication by a

non-vanishing function αijk, and the resulting cocycle represents α ∈ H2(X,O∗).

We define α-twisted sheaves similarly. We can take the direct sum of two α-twisted

sheaves. We can take the tensor product of an α- and a β-twisted sheaf to get an (α∪β)-

twisted sheaf. If F is α-twisted and G is β-twisted then Hom(F ,G) is (α−1∪β)-twisted.

If f : Y → X , we can pull back an α-twisted sheaf to get an f ∗α-twisted sheaf and

push forward an f ∗α-twisted sheaf to get an α-twisted sheaf. The category of α-twisted

sheaves has enough injectives, and we can form its derived category. If α ∈ Br(X) and

β ∈ Br(Y ) then a complex S of (α⊠β)-twisted sheaves on X×Y gives a Fourier–Mukai

transform

F Y→X
S : D(Y, β−1) → D(X,α)
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and the embedding and equivalence criteria of §2.4 are still valid.

Twisted sheaves arise naturally in moduli problems. A moduli space M of stable

sheaves on X is called fine if there is a universal sheaf on X ×M: that is, one whose

restriction to each slice X × [F ] ∼= X is F . But a moduli space of stable sheaves is

not typically fine—locally analytically on M, a universal sheaf always exists, and on

pairwise intersections we can glue, but on triple intersections, there is no reason to

expect the gluings to match up. A priori, over a slice X × [F ], the cocycle ϕki ◦ϕjk ◦ϕij

could take values in Aut(F), but since F is stable, it is simple, so in fact it only takes

values in C
∗. Thus we get a (1⊠ α)-twisted pseudo-universal bundle on X ×M, where

α ∈ H2(M,O∗).

For a second perspective on twisted sheaves, let us make a short foray into non-

commutative varieties. If X is a Noetherian scheme and A a bundle of commutative

OX -algebras then one can construct a scheme SpecA over X , whose fiber over a point

x ∈ X is Spec of the fiber A|x. The category of coherent sheaves on SpecA is equivalent

to the category of finitely generated A-modules. If A is not commutative then SpecA

does not exist, but we know what its category of coherent sheaves would be if it did:

the category of finitely generated A-modules. Thus we regard the pair (X,A) as a

“non-commutative scheme”. Many properties of honest schemes can be translated into

this context: for example, we say that (X,A) is smooth if A has finite homological

dimension.

By Morita theory, a ring R and a matrix algebra Mr(R) over it have equivalent

categories of modules. Similarly, if X is a scheme or complex manifold and E a vector
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bundle on X then OX and the bundle of OX -algebras Hom(E , E) have equivalent cat-

egories of modules. An Azumaya algebra is a bundle of OX -algebras that is locally (in

the étale or analytic topology) isomorphic to a bundle of matrix algebras. A scheme or

complex manifold equipped with an Azumaya algebra should be viewed as the mildest

non-commutative cousin of X .

Since every automorphism of a matrix algebra is inner,

Aut(MrC) = GLrC/{its center} = PGLrC,

so Azumaya algebras are bundles with structure group PGLrC, just as projective bun-

dles were. In fact, if E is an α-twisted vector bundle then A := Hom(E , E), which is

untwisted, is an Azumaya algebra, and the category of α-twisted sheaves is equivalent

to the category of A-modules.

As we mentioned in §1.2, twisted sheaves are related to the B-field in string theory.

2.8 Ordinary Double Points

An ordinary double point (ODP) or node is a singularity of an algebraic variety that

looks locally analytically like the affine cone on a smooth quadric. In a curve or a surface,

the only way to resolve an ODP is to blow it up, but in a 3-fold we have more choices.

A 3-fold ODP looks locally analytically like

{xz = yw} ⊂ C
4,

the affine cone on Q2 = P1×P1. We can blow up the singular point to produce the “big

resolution” X̃ → X , which introduces an exceptional divisor P1×P
1 with normal bundle
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O(−1,−1). Or we can blow up one of the planes on {xy = zw}, such as x = z = 0 or

x = w = 0, to produce a “small resolution”, which introduces an exceptional curve P1

with normal bundle O(−1)2. The two families of planes give different small resolutions,

which we call X+ → X and X− → X . If we blow up the exceptional line in a small

resolution we obtain the big resolution:

X̃

X+

✛

X−

✲

X.
✛

✲

Any smooth 3-fold containing a P1 with normal bundle O(−1)2 can play the role of

X+ in this diagram: we can contract the P1 to give a space X with an ODP, of which one

small resolution is the original X+ and the other is a different space X−. This process

of turning X+ into X− is an example of a flop. Bondal and Orlov [6] showed that such

flops leave the derived category unchanged: D(X+) ∼= D(X−). Bridgeland [10] showed

that this is true of all 3-fold flops. Two smooth Calabi–Yau 3-folds (or more generally

two minimal models) that are birational can be connected by a sequence of flops, hence

are derived equivalent.

An advantage of the small resolutions π : X± → X is that they preserve the canonical

class: KX±
= π∗KX . By contrast, the big resolution π : X̃ → X has XX̃ = π∗KX + 2E

where E is the exceptional divisor. This difference in the canonical classes is called the

discrepancy ; a crepant resolution∗ is one with no discrepancy, such as a small resolution.

One is especially keen to preserve the canoncial class when working with Calabi–Yau

3-folds, i.e. those with zero canonical class.

∗This coinage is one of Miles Reid’s characteristic groaners.
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We should mention Kawamata’s conjecture on K-equivalence and derived equivalence

[29]. Two varieties X and Y are called K-equivalent if there is a smooth variety Z and

maps

Z

X

f

✛

Y

g
✲

such that f and g are birational and f ∗KX = g∗KY . He conjectures that birational

varieties X and Y are K-equivalent if and only if D(X) ∼= D(Y ). Bridgeland’s result on

flops gives evidence for this conjecture.

A disadvantage of small resolutions is that we might start with a projective variety

X and end up with a small resolution of its ODPs X̂ that is not projective, or even

Kähler.∗ To produce the small resolution, we worked locally analytically, blowing up a

divisor that passed through the ODP. We can analytically continue this divisor to all of

X and blow that up to get a projective variety, but if the analytically continued divisor

wraps around and meets the ODP again, this blow-up is not the small resolution.

An obstruction to X̂ being Kähler is a number called the defect, which arises as

follows. If it is Kähler, the integral of a Kähler form ω over any exceptional line ℓ is

positive, so the class [ℓ] ∈ H2(X̂,C) pairs positively with [ω] ∈ H2(X̂,C), hence is not

zero. Let n be the number of ODPs, and consider the long exact sequence of the pair

(X̂, exceptional lines), which includes the following:

0 → H3(X̂,C) → H3(X,C) → C
n → H2(X̂,C) → H2(X,C) → 0.

∗Since X̂ is birational to a projective variety, it is Moishezon—that is, its function field has the
expected transcendence degree, namely 3—and for Moishezon manifolds, the notions of Kähler and
projective are equivalent.
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From this we see that b2(X̂) = b2(X)+ δ and b3(X̂) = b3(X)−n+ δ for some 0 ≤ δ ≤ n.

This δ is the defect. If X̂ is Kähler, we have argued that the map Cn → H2(X̂,C) is

non-zero, so δ > 0. For hypersurfaces and double solids, δ is well-understood.

A double solid is a double cover of P3 branched over a surface of degree 2d. Clemens

[14] showed that when the branching surface has only ODPs, the defect can be calculated

as follows. In the space of polynomials of degree 3d − 4, or indeed any degree, those

that vanish at a point p ∈ P3 form a codimension 1 subspace. Thus one would expect

that the codimension of the subspace of those that vanish on the ODPs of the branching

surface would be the number n of ODPs, but in fact it is n− δ. Taking cohomology of

0 → IODPs(3d− 4) → OP3(3d− 4) → OODPs(3d− 4) → 0,

we find that δ = H1(IODPs(3d− 4)).

Werner [52] showed that the defect of a hypersurface of degree d in P4 is the analogous

number for polynomials of degree 2d− 5, and made a thorough study of the Kählerness

of small resolutions of both hypersurfaces and double solids.
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Chapter 3

Spinor Sheaves

In this chapter we will define spinor sheaves on singular quadrics, generalizing the spinor

bundles on smooth quadrics that we discussed in §2.2.

Given a linear space Λ on a quadric Q defined by a polynomial q, we will construct

a module over the Clifford algebra of q, and from this a matrix factorization of q,

and from this two reflexive sheaves S and T on Q, which we will call spinor sheaves.

None of these steps is new, but the composition is new. We treat smooth and singular

quadrics uniformly, but even on smooth quadrics our construction has advantages over

Ottaviani’s, with which it is difficult to do homological algebra (as we saw in §2.2.3),

Kapranov’s, with which it is difficult to do geometry, and Langer’s, with which it is

difficult to vary the quadric in a family.

In §3.1 we give the details of the construction and see how close S and T are to being

vector bundles. In §3.2 we describe how they depend on Λ. In §3.3 we study their dual

sheaves. In §3.4 we study how they restrict to a hyperplane section of Q and pull back

to a cone on Q, and prove an analogue of Horrocks’ criterion. In §3.5 we show that they

are stable when Λ is maximal and properly semi-stable otherwise.
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3.1 The Construction

Let V be a complex vector space equipped with a quadratic form q of rank at least 2,

so the corresponding quadric hypersuface Q ⊂ PV is reduced. Let Cℓ be the Clifford

algebra of q, which can be defined either as a quotient of the tensor algebra

Cℓ = T (V )/〈v2 = q(v)〉

= T (V )/〈vv′ + v′v = 2b(v, v′)〉

or as a deformation of the exterior algebra

Cℓ =
∧

V vξ = v ∧ ξ + v y ξ.∗ (3.1.1)

In this chapter we will prefer the former description, and in the next the latter. If

{v1, . . . , vn} is a basis for V then

{vi1 · · · vik : 1 ≤ i1 < · · · < ik ≤ n}

is a basis for Cℓ.

Given an isotropic subspace W ⊂ V , choose a basis w1, . . . , wm and let I be the left

ideal I = Cℓ ·w1 · · ·wm. Since W is isotropic, choosing a different basis just rescales the

generator w1 · · ·wm by the determinant of the change-of-basis matrix, so I is independent

of this choice. Since Cℓ is Z/2-graded, we can write I = Iev ⊕ Iodd. We will always

consider I in the category of graded Cℓ-modules and maps that respect the grading.

From the module I, define a map of vector bundles

OPV (−1)⊗ Iev

v ⊗ ξ

ϕ
−→

7→

OPV ⊗ Iodd

1⊗ vξ;

∗Here vy :
∧

i
V →

∧

i−1
V is the anti-derivation determined by v y v′ = b(v, v′).
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here we are regarding OPV (−1) as the tautological line bundle, that is, as a sub-bundle

of OPV ⊗ V .∗ Define ψ : OPV (−1)⊗ Iodd → OPV ⊗ Iev similarly. Then the compositions

OPV ⊗ Iev

OPV ⊗ Iodd

ϕ(1)
−−→

ψ(1)
−−→

OPV (1)⊗ Iodd

OPV (1)⊗ Iev

ψ(2)
−−→

ϕ(2)
−−→

OPV (2)⊗ Iev

OPV (2)⊗ Iodd

are just multiplication by q, so we have a matrix factorization of q.

Finally, let S = cokerϕ and T = cokerψ, which we understand fairly well from §2.6:

They are reflexive sheaves on Q. They have resolutions on PV

0 → ON
PV (−1)

ϕ
−→ ON

PV → S → 0

0 → ON
PV (−1)

ψ
−→ ON

PV → T → 0,

(3.1.2)

where N = dim Iev = dim Iodd = 2codimW−1, from which it is easy to compute their

cohomology. There are short exact sequences on Q

0 → T (−1) →ON
Q → S → 0

0 → S(−1) →ON
Q → T → 0.

We ask how far S and T are from being vector bundles. Let K ⊂ V be the kernel of

q and recall that the singular locus of Q is PK.

Proposition 3.1.1. The restriction of S to PK ∩ PW is trivial of rank 2codimW−1. If

codimW > 1 then elsewhere on Q, S is locally free of rank 2codimW−2. In particular, if

Q is smooth then S is a vector bundle. The same is true of T .

Proof. In the next section we will see that S and T are equivariant for the action of

a group Gev on Q that acts transitively on Qsm when rankQ > 2 and on the two

∗It is interesting to note ϕ’s resemblance to the Thom class in K-theory [35, Appendix C].
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components of Qsm when rankQ = 2; so S and T are vector bundles there. Thus for

all v ∈ K and one v in each component of Qsm, we want to know the rank of the linear

maps Iev
v·
−→ Iodd and Iodd

v·
−→ Iev given by left multiplication by v.

If v ∈ W ∩K then both maps are zero: any v ∈ K commutes with elements of Cℓev

and anti-commutes with elements of Cℓodd, and any v ∈ W annihilates the generator

w1 · · ·wm of I, so any v ∈ W ∩K annihiliates I.

If v /∈ W , choose a basis for V starting with v and ending with w1, . . . , wm. Then

any element of I can be written uniquely as (vξ + η)w1 · · ·wm where v and w1, . . . , wm

do not appear in ξ and η. Now

v · (vξ + η)w1 · · ·wm = vηw1 · · ·wm,

which is zero if and only if η = 0, so both maps have rank 2codimW−2.

If codimW = 1 then Q = PW ∪PW ′, whereW ′ is the other maximal isotropic subspace,

and it is easy to check that S = OPW and T = OPW ′ when dim V is odd and vice versa

when dimV is even.

3.2 Dependence on the Subspace

In this section we will first summarize how S and T depend on W and are how they are

related for W s of various dimensions, then prove the corresponding statements about

graded Cℓ-modules, and finally show that the functor from modules to sheaves is fully

faithful.

If q is non-degenerate then S and T are rigid, so varyingW continuously leaves them

unchanged. If dimW < 1
2
dimV , so W belongs to a connected family, then S ∼= T . If
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dimW = 1
2
dimV , so W belongs to one of two families, then S 6∼= T , and switching W

to the other family interchanges S and T . If W is maximal then when dimV is odd,

S ∼= T is the spinor bundle discussed in §2.2, and when dimV is even, S and T are the

two spinor bundles. If W ′ is codimension 1 in a maximal W then S ′ ∼= T ′ ∼= S ⊕ T , if

codimension 2 then S ′ ∼= T ′ ∼= (S ⊕ T )⊕2, and in general S ′ ∼= T ′ ∼= (S ⊕ T )⊕2dimW/W ′
−1

.

In short then, on smooth quadrics, maximal linear spaces give the old spinor bundles,

and non-maximal ones give direct sums of them.

If q is degenerate then S and T are not rigid in general, since by Proposition 3.1.1

we can recover W ∩K from them; but varying W continuously while keeping W ∩ K

fixed leaves them unchanged. Let π : V → V/K be the projection, and recall that q

descends to a non-degenerate form on V/K. If dim π(W ) < 1
2
dimV/K then S ∼= T .

If dim π(W ) = 1
2
dimV/K then S 6∼= T , and switching π(W ) to the other family (still

keeping W ∩K fixed) interchanges them. For example, consider a line PW on a corank

2 quadric surface:

.

If PW is not the cone line, it lies on one plane or the other and meets the cone line in

a point, and these data determine the isomorphism classes of S and T : varying the line

while keeping the point fixed leaves S and T unchanged, switching to the other plane

interchanges them, and varying the point deforms them.

Our earlier comments on direct sums are generalized as follows: if W ′ is codimension

1 in W then there are exact sequences

0 → S → S ′ → T → 0 0 → T → T ′ → S → 0 (3.2.1)
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which is split if and only if W ′ ∩ K = W ∩ K. That is, if W ∩ K shrinks we get

interesting extensions, but if π(W ) shrinks we just get direct sums. So while on smooth

quadrics only maximal W s were interesting, on singular quadrics non-maximal W s may

be interesting, but only if π(W ) is maximal.

To prove all this, we introduce the following group action: Let G be the subgroup

of the group of units Cℓ× generated by the unit vectors, that is, by those u ∈ V with

q(u) = 1, and let G act on V by reflections:

u · v = −uvu−1 = v − 2b(v, u)u.

This preserves q, for

q(−uvu−1) = (−uvu−1)2 = uv2u−1 = uq(v)u−1 = q(v).

The spinor sheaves S and T can be made equivariant for the action of Gev := G ∩ Cℓev

on Q, as we see from the commutative diagram

OPV (−1)⊗ Iev
ϕ

✲ OPV ⊗ Iodd

v ⊗ ξ 1⊗ ξ

gvg−1 ⊗ gξ
❄

1⊗ gξ
❄

OPV (−1)⊗ Iev
❄ ϕ

✲ OPV ⊗ Iodd.
❄

(3.2.2)

If q is non-degenerate then G is Pin(V, q), the central extension of the orthogonal

group O(V, q) by Z/2 [35, §I.2], and Gev is Spin(V, q). When m < 1
2
dimV , Gev acts

transitively on the variety ofm-dimensional isotropic subspaces, and when m = 1
2
dimV ,

Gev acts transitively on each of its connected components and Godd interchanges them.
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If q is degenerate, the natural map G → O(V, q) is not surjective, since O(V, q)

acts transitively on K while G acts as the identity on K. If U ⊂ V is a subspace

complementary to K then q|U is non-degenerate, and G contains Pin(U, q|U). From this

it is not hard to see that G can take W to W ′ if W ∩K = W ′ ∩K, and that Gev can if

in addition π(W ) and π(W ′) lie in the same family.

Now if g ∈ G takes an isotropic subspace W ⊂ V to another one W ′ = gWg−1, then

right multiplication by g−1 takes I to I ′:

Cℓ · w1 · · ·wm · g−1 = Cℓ · (±gw1g
−1) · · · (±gwmg

−1)

so if g ∈ Gev then I ∼= I ′, and if g ∈ Godd then I ∼= I ′[1].∗ Thus we have proved:

Proposition 3.2.1.

• If dim π(W ) < 1
2
dimV/K then I ∼= I[1].

• Suppose that W ∩K = W ′ ∩K. If π(W ) and π(W ′) lie in the same family then

I ∼= I ′. If they lie in opposite families then I ∼= I ′[1].

Inversely,

Proposition 3.2.2.

• If dim π(W ) = 1
2
dimV/K then I 6∼= I[1].

• If W ∩K 6= W ′ ∩K then I is not isomorphic to I ′ or I ′[1].

Proof. For the first statement, let dimV/K = 2k. Then there is a basis e1, . . . , en of V

in which

q = x1xk+1 + · · ·+ xkx2k

∗I ′[1] is just I ′ with the grading shifted by one, that is, with the odd and even pieces interchanged.
In particular, I ′[2] = I ′.
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and W = span(ek+1, . . . , e2k, e2k+1, . . . , e2k+l), where l = dim(W ∩ K). Observe

that ξ := e1 · · · ek annihilates every element of the associated basis of I except

ek+1 · · · e2ke2k+1 · · · e2k+l. Thus if dimW is even then ξ annihilates Iodd but not Iev,

and vice versa if dimW is odd. For the second statement, we saw in the proof of

Proposition 3.1.1 that W ∩K = V ∩Ann I, where the latter intersection takes place in

Cℓ.

Proposition 3.2.3. Suppose that W ′ ⊂W is codimension 1. Then for any w ∈ W \W ′

the sequence

0 → I → I ′
·w
−→ I[1] → 0

is exact; it is split if and only if W ∩K = W ′ ∩K.

Proof. To see that the sequence is exact, choose a basis w1, . . . , wm for W ′, and extend

this to a basis for V ending with w,w1, . . . , wm; then just as we argued in the proof of

Proposition 3.1.1, an element of I ′ can be written as (ξ + ηw)w1 · · ·wm where w and

w1, . . . , wm do not appear in ξ and η, and if this times w equals zero then ξ = 0.

If W ∩K =W ′∩K then π(w) /∈ π(W ′), so there is a v ⊥W ′ with b(v, w) = 1
2
. Since

v ⊥ W ′, we have I · v ⊂ I ′. Since b(v, w) = 1
2
, the map I[1]

·v
−→ I ′ splits I ′

·w
−→ I[1]:

ξww1 · · ·wm · vw = ξww1 · · ·wm(1− wv) = ξww1 · · ·wm.

Inversely, if W ∩K 6= W ′ ∩K then I ′ and I ⊕ I[1] have different annihilators, hence are

not isomorphic.

To see that what we have proved about modules implies what we have claimed about

spinor sheaves, we study the functor that sends a graded Cℓ-module M to a sheaf S on
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Q. It is indeed a functor, for a homogeneous map f : M → M ′ induces a commutative

diagram

OPV (−1)⊗Mev
✲ OPV ⊗Modd

OPV (−1)⊗M ′
ev

1⊗ fev
❄

✲ OPV ⊗M ′
odd

1⊗ fodd
❄

and hence a map on cokernels. It is exact. In fact, it is fully faithful:

Proposition 3.2.4. The natural map HomCℓ(M,M ′) → HomQ(S, S
′) is an isomor-

phism.

Proof. The inverse is essentially the map HomQ(S, S
′) → HomC(Modd,M

′
odd), where the

second object is vector space homomorphisms, given by taking global sections. This is

injective because S is generated by global sections. The composition HomCℓ(M,M ′) →

HomC(Modd,M
′
odd) sends f to fodd. This too is injective: a map f of graded Cℓ-modules

is determined by fodd, for if m ∈ Mev and v ∈ V has q(v) = 1 then f(m) = v2f(m) =

vf(vm).

It remains to check that a linear map Modd →M ′
odd induced by a sheaf map S → S ′

is induced by a module map M → M ′. Applying HomQ(−, S
′) to (3.1.2), we have

0 → HomQ(S, S
′) →M∗

odd ⊗ Γ(S ′)
ϕ∗

−→M∗
ev ⊗ Γ(S ′(1)).
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Taking global sections of (3.1.2) and its twist by O(1), we can augment this to

0

M∗
ev ⊗M ′

ev

❄

M∗
odd ⊗M ′

odd

ϕ∗
✲ M∗

ev ⊗M ′
odd ⊗ V ∗

ϕ′
∗

❄

0 ✲ HomQ(S, S
′) ✲ M∗

odd ⊗ Γ(S ′)

w

w

w

w

w

ϕ∗
✲ M∗

ev ⊗ Γ(S ′(1))
❄

0
❄

where the bottom row and the right column are exact. Thus HomQ(S, S
′) is the set of

A ∈ HomC(Modd,M
′
odd) for which there is a B ∈ HomC(Mev,M

′
ev) with Aϕ = ϕ′B; here

we are thinking of A and B as matrices of complex numbers and ϕ and ϕ′ as matrices

of linear forms. Since ϕ′
∗ is injective, such a B is unique. Multiplying Aϕ = ϕ′B by ψ

on the right and ψ′ on the left, we have ψ′Aq = qBψ, so ψ′A = Bψ. Thus







B

A













ψ

ϕ






=







ψ′

ϕ′













B

A






.

Now
(

ψ
ϕ

)

is a matrix of linear forms, and plugging in any v ∈ V we get the map

M → M given by left multiplication by v. The vs generate Cℓ, so ( B A ) is in fact

a homomorphism of Cℓ-modules, not just of vector spaces. Since the matrix is block

diagonal, it respects the grading.
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3.3 The Dual

From §2.6, we know that the dual of S is cokerϕ∗(−2), so

0 → OPV (−1)⊗ I∗odd
ϕ∗(−1)
−−−−→ OPV ⊗ I∗ev → S∗(1) → 0 (3.3.1)

where I∗odd and I∗ev are the dual vector spaces. This resolution makes us suspect that

S∗(1) is a spinor sheaf. In fact it is:

Proposition 3.3.1. If codimW is odd then S∗ ∼= S(−1) as Gev-equivariant sheaves. If

codimW is even then S∗ ∼= T (−1).

Proof. Let ⊤ be the anti-automorphism of Cℓ determined by (v1 · · · vk)
⊤ = vk · · · v1.

Then I⊤ is the right ideal w1 · · ·wm ·Cℓ. The dual vector space I∗ is a right Cℓ-module

via the action (f · ξ)(−) = f(ξ−). We will compare these two right modules.

The natural filtration of the tensor algebra descends to Cℓ

0 = F0 ⊂ F1 ⊂ · · · ⊂ FdimV = Cℓ

and the associated graded pieces are Fi/Fi−1 =
∧iV . In particular Cℓ/FdimV−1 is 1-

dimensional, so by choosing a generator we get a linear form tr : Cℓ → C. The pairing

Cℓ ⊗ Cℓ → C given by ξ ⊗ η 7→ tr(ξη) is non-degenerate. If v ∈ V and ξ ∈ Cℓ then

tr(vξ) = ± tr(ξv).

I claim that I∗ is generated by tr |I and is isomorphic as an ungraded module to I⊤.

Since dim I∗ = dim I⊤, it suffices to check that w1 · · ·wm and tr |I have the same annihi-

lator. If tr |I ·ξ = 0, that is, if tr(ξηw1 · · ·wm) = 0 for all η ∈ Cℓ, then tr(w1 · · ·wmξη) = 0

for all η, so w1 · · ·wmξ = 0; and conversely.

Now tr |I has degree dimV (mod 2), and w1 · · ·wm has degree dimW (mod 2), so

I∗ is isomorphic to I⊤ or I⊤[1] according as codimW is even or odd. So if codimW is
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even then (3.3.1) becomes

OPV (−1)⊗ I⊤odd

v ⊗ ξ

→

7→

OPV ⊗ I⊤ev

1⊗ ξv,

so from the isomorphism

OPV (−1)⊗ Iodd ✲ OPV ⊗ Iev

OPV (−1)⊗ I⊤odd

1⊗ ⊤

❄

✲ OPV ⊗ I⊤ev

1⊗ ⊤

❄

we see that S∗(1) ∼= T . Similarly, if codimW is odd then S∗(1) ∼= S.

These isomorphisms are equivariant, as follows. In (3.2.2), an element g ∈ Gev acts

on I by left multiplication by g, so it acts on I∗ by right multiplication by g−1 and on

I⊤ by right multiplication by g⊤. But from the definition of G we see that g⊤g = 1.

3.4 Linear Sections and Cones

In this section we are interested in restricting spinor sheaves to linear sections of Q and

pulling them back to cones over Q, but in order to give the clearest proof, we begin with

a too-general statement:

Lemma 3.4.1. Suppose that a linear map f : U → V is transverse to W (that is,

W + im f = V ). Let Q′ ⊂ PU be the quadric cut out by f ∗q, and let f also denote the

rational map Q′ − − → Q, which is regular away from P(ker f). Let S ′ be the spinor

sheaf on Q′ corresponding to f−1W ; then

S ′|(Q′\P(ker f))
∼=















f ∗S if dimU − dimV is even

f ∗T if dimU − dimV is odd.
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Proof. Note that transversality is equivalent to the condition codim f−1W = codimW ,

which is clearly necessary. Since W can be moved without changing S, it is not much

restriction.

Let I ′ be the Cℓ(U)-module corresponding to f−1W , and as usual I the Cℓ(V )-

module corresponding to W . Since f induces a map Cℓ(U) → Cℓ(V ), I is also a

Cℓ(U)-module. Since pullback is right exact, we have

OPU(−1)⊗ Iev

u⊗ ξ

→

7→

OPU ⊗ Iodd

1⊗ f(u)ξ

→ f ∗S → 0

so it suffices to show that I is isomorphic as a Cℓ(U)-module to I ′[dimU − dimV ].

First suppose that f is injective. Choose a basis u1, . . . , ul for f
−1W and extend

their images to a basis f(u1), . . . f(ul), wl+1, . . . , wm of W . Then the map

I ′ = Cℓ(U) · f(u1) · · · f(ul)
·wl+1···wm
−−−−−−→ Cℓ(V ) · f(u1) · · · f(ul) · wl+1 · · ·wm = I[m− l]

is injective, and dim I = dim I ′, so it is an isomorphism.

Next suppose that f is surjective. Any splitting s : V → U of f is compatible with the

quadratic form, so by our previous argument I ∼= I ′[dimV − dimU ] as Cℓ(V )-modules,

and thus as Cℓ(U)-modules.

In a general, f can be decomposed as a surjection followed by an injection.

If we wanted to generalize spinor bundles to singular quadrics knowing only that

every singular quadric Q′ is a cone over a smooth quadric Q, we would pull the spinor

bundles from Q back to Q′
sm and then try to extend them across the singular locus; this

lemma says that there is a unique extension, which is one of our spinor sheaves. Or if

we knew only that every singular quadric Q is a linear section of a smooth quadric Q′,
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we would restrict a spinor bundle on Q to Q′; this is another of our spinor sheaves. In

particular, from our discussion of hyperplane sections in §2.2.2 we find that when q is

non-degenerate and W is maximal, our S and T are indeed the usual spinor bundles.

Also, we can generalize Ballico’s Horrocks’ criterion [2]:

Theorem. Suppose that the singular locus Qsing is at least codimension 3 in Q. Let W

be any isotropic subspace and S and T the corresponding spinor sheaves. Then a vector

bundle E on Q is a direct sum of line bundles if and only if E, E ⊗ S, and E ⊗ T are

ACM. (Recall that S ∼= T if rankQ is odd.)

Proof. The “only if” statement is immediate from (3.1.2). For the “if” statement, ob-

serve that if W ∩K = 0 and π(W ) is maximal then by the previous proposition, S and

T are exactly Ballico’s vector bundles. If W ∩K = 0 and π(W ) is not maximal then S

and T are direct sums of Ballico’s bundles. Now induct on dim(W ∩K): if W ∩K 6= 0,

choose a codimension 1 subspace W ′ ⊂ W with π(W ′) = π(W ); then from the sequences

(3.2.1) we see that if E⊗S and E⊗T are ACM then E⊗S ′ and E⊗T ′ are as well.

3.5 Stability

In §2.3 we saw that any two spinor sheaves on Q have the same slope, and indeed the

same reduced Hilbert polynomial. If W is maximal then we will show in a moment that

S and T are stable. If W ′ is codimension 1 in W then (3.2.1) gives a Jordan–Hölder

filtration 0 ⊂ S ⊂ S ′ with S/0 = S and S ′/S = T , so S ′ is properly semi-stable and

S-equivalent to the polystable sheaf S ⊕ T , as is T ′. If W ′′ is codimension 1 in W ′ the

Jordan–Hölder filtration is slightly more complicated, but S ′′ and T ′′ are S-equivalent
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to S ⊕ S ⊕ T ⊕ T . In general the S-equivalence class of a spinor sheaf depends only on

the dimension of the isotropic space.

To show that S and T are stable when W is maximal, we will need to know that

they are simple:

Lemma 3.5.1. If W is maximal then I is irreducible.

Proof. If dimV/K = 2k is even, there is a basis e1, . . . , en of V in which

q = x1xk+1 + · · ·+ xkx2k

and W = span(ek+1, . . . , en). Let ξ = ek+1 · · · en be the generator of I. Then any ξ′ ∈ I

different from zero is of the form

ξ′ = αei1 · · · eilξ + terms of the same or shorter length,

where α ∈ C is not zero and 1 ≤ i1 < · · · < il ≤ k. I claim that eil+k · · · ei1+kξ
′ = αξ.

To see this, observe that if 1 ≤ i, j ≤ k then ei anti-commutes with ej+k when i 6= j and

that ei+kξ = 0, so left multiplication by eil+k · · · ei1+k annihilates any basis vector not

containing ei1 · · · eil ; and ei+keiξ = (1 − eiei+k)ξ = ξ. Thus any non-zero element of I

generates I, so I is irreducible.

If dimV/K = 2k + 1 is odd, there is a basis e0, . . . , en of V in which

q = x20 + x1xk+1 + · · ·+ xkx2k

and W = span(ek+1, . . . , en). Let ξ = ek+1 · · · en be the generator of I. Let J ⊆ I be

a graded submodule. By an argument similar to the one given above, for any non-zero

ξ′ ∈ J there are 1 ≤ i1 < · · · < il ≤ k such that eil · · · ei1ξ
′ = (α+βe0)ξ, where α, β ∈ C
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are not both zero. Since J is graded, it contains both αξ and βe0ξ. If α 6= 0 then ξ ∈ J ;

if β 6= 0 then e0 · βe0ξ = βξ, so again ξ ∈ J , so J = I.

Proposition 3.5.2. If W is maximal then S is simple, that is, HomQ(S, S) = C. If

dimV/K is even, π(W ) is maximal in V/K, and W ∩K is codimension 1 in K, then

again S is simple. Otherwise S is not simple.

Proof. The first statement is immediate from the previous lemma, Schur’s lemma, and

Proposition 3.2.4.

For the second statement, let W ′ =W +K. Let J be a proper submodule of I, and

consider the short exact sequence

0 → I ′ → I
·v
−→ I ′[1] → 0

where v ∈ K \W . Since I ′ is irreducible, either J ∩ I ′ = 0 or J ⊃ I ′. If J ∩ I ′ = 0 then

Jv is isomorphic to J ; since I ′[1] is irreducible, either Jv = 0, so J = 0, or Jv = I ′[1],

so I = I ′⊕J = I ′⊕ I ′[1], which we know is not true. If J ⊃ I ′ then again either Jv = 0,

so J = I ′, or Jv = I ′[1], so J = I. Thus the only proper submodule of I is I ′, and the

only proper quotient is I ′[1]. Since these are not isomorphic, any homomorphism I → I

is an isomorphism or zero, so again by Schur’s lemma HomCℓ(I, I) = C.

For the third statement, if π(W ) is not maximal in V/K then S is a direct sum,

hence is not simple. If W ∩K is codimension 2 or more in K, choose W ′′ ⊃ W ′ ⊃ W

with π(W ′′) = π(W ′) = π(W ); then the composition S ։ T ′
։ S ′′ →֒ S ′ →֒ S is

neither zero nor an isomorphism. If W ∩ K is codimension 1 in K and dim V/K is

odd, let W ′ = W +K; then the composition S ։ T ′ ∼= S ′ →֒ S is neither zero nor an

isomorphism.
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Theorem. Suppose that rankQ > 2. If W is maximal then S is stable.

Proof. Suppose that a subsheaf F ⊂ S is invariant under the action of Gev introduced

in §3.2. If rankQ > 2 then Gev acts transitively on the smooth locus Qsm, so F is a

vector bundle there. Let p ∈ Qsm and H ⊂ Gev be the stabilizer of p; then according

to Ottaviani [45], the representation of H on the fiber S|p is irreducible (recall that Gev

contains Spin(U, q|U) for any U complementary to K). Thus either rankF = 0, so F = 0

since S is reflexive and hence pure, or rankF = rankS.

Thus S has no invariant proper saturated subsheaves. The Harder–Narasimhan

filtration is unique, hence invariant, so S is semi-stable. Similarly, the socle of S is

unique, hence invariant, hence is S; that is, S is a direct sum of stable sheaves. But S

is simple, hence indecomposable, so S is stable.

If rankQ = 2 then Q is a union of hyperplanes H and H ′ and S is either OH or

OH′ , which are torsion and thus not eligible for Mumford–Takemoto stability. But they

have no proper saturated subsheaves and thus are Gieseker stable. We excluded from

the beginning the non-reduced case rankQ = 1.
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Chapter 4

Intersections of Quadrics

In this chapter we will work with the following objects: V is a 2n-dimensional complex

vector space, Φ = P Sym2 V ∗ is the space of quarics in PV , ∆ ⊂ Φ is the hypersurface of

singular quarics, and ∆′ ⊂ ∆ is the locus of quadrics of corank at least 2. Recall from

§2.1.4 that ∆ is degree 2n, ∆′ is codimension 3 in Φ, and ∆sing = ∆′.

Next, X is a complete intersection of two, three, or four quadrics in PV , L is the

line, plane, or 3-plane that those quadrics span in Φ, and M is the double cover of L

branched L∩∆. In §1.1 we said that X was “generic”, but now we will be more precise:

we require that L be transverse to ∆sm and ∆′, and that the linear space L⊥ ⊂ P Sym2 V

of codimension two, three, or four be transverse to the Veronese embedding ν : PV →֒

P Sym2 V .∗

For two and three quadrics, L avoids ∆′, so L ∩∆ is smooth, so M is smooth. For

four quadrics, L meets ∆′ in finitely many points.

Proposition 4.0.3. A point Q0 ∈ L ∩∆′ is an ordinary double point of L ∩∆.

Proof. Since Q0 is a smooth point of ∆′, it is corank 2, so let ℓ be its cone line. Harris

[21, Theorem 22.33] shows that the tangent cone to ∆ at Q0 is

TCQ0
∆ = {Q ∈ Φ : Q is tangent to ℓ}.

∗Since ∆ is projectively dual to the image of ν, these requirements can probably be simplified.
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Being tangent to ℓ, that is, having Q ∩ ℓ be a degenerate quadric in ℓ, is a codimension

1 condition and is degree 2. Thus TCQ0
∆ is a quadric in Φ. Its singular locus is

{Q ∈ Φ : Q ⊃ ℓ}

which is the tangent space to ∆′ at Q0. Since L is transverse to ∆′, TCQ0
∆ ∩ L is a

quadric cone in L with vertex Q0, so indeed Q0 is an ODP.

Thus M has ordinary double points, so we may consider small resolutions M̂ of M.

Proposition 4.0.4. No small resolution M̂ of M is Kähler.

Proof. By our discussion in §2.8, it suffices to show that H1(IL∩∆′(3n−4)) = 0. Józefiak

[26] gives a very nice resolution of the structure sheaf of ∆′, related to the Eagon–

Northcott complex:

0 → OΦ(−2n− 1)(
2n
2 ) → OΦ(−2n)4n

2−1 → OΦ(−2n+ 1)(
2n+1

2 ) → OΦ → O∆′ → 0.

Since L meets ∆′ transversely, this remains exact when restricted to L, so

0 → OL(n− 5)(
2n
2 ) → OL(n− 4)4n

2−1 → OL(n− 3)(
2n+1

2 ) → IL∩∆′(3n− 4) → 0

is exact. If X is not empty then n ≥ 3, so we find that H1(I∆′∩L(3n − 4)) = 0 as

desired.

In §4.1 we construct these small resolutions M̂ → M and an α-twisted pseudo-

universal sheaf S on each. In §4.2 we show that S gives an embedding of D(M̂, α−1) in

D(X). In §4.3 we will finish the proof of our main theorem

D(X) = 〈OX(−2n + 9), . . . ,OX(−1),OX , D(M̂, α−1)〉.
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4.1 Construction of the Pseudo-Universal Bundle

and Small Resolution

4.1.1 Varying the Quadric and Isotropic Subspace

Having defined spinor sheaves on one quadric and understood how they depend on a

choice of isotropic space, we wish to study what happens in a family of quadrics.

First we vary the Clifford algebra. Define a bundle A of graded algebras on the space

Φ of quadrics:

A0 = OΦ ⊗
∧0V

A1 = OΦ ⊗
∧1V

A2 = OΦ ⊗
∧2V ⊕ OΦ(1)⊗

∧0V

A3 = OΦ ⊗
∧3V ⊕ OΦ(1)⊗

∧1V

A4 = OΦ ⊗
∧4V ⊕ OΦ(1)⊗

∧2V ⊕ OΦ(2)⊗
∧0V

. . .

The multiplication A1 ⊗A1 → A2 is like (3.1.1) above, determined by

V ⊗ V →
∧2V OΦ(−1)⊗ V ⊗ V → OΦ

v ⊗ v′ 7→ v ∧ v′ q ⊗ v ⊗ v′ 7→ q(v, v′).

Observe that rankA0 = 1, rankA1 = 2n, and the ranks of the graded pieces grow for a

while but eventually stabilize: for k ≥ 2n−1 we have rankAk = 22n−1 andAk+2 = Ak(1).

The fiber of A over a point Q ∈ Φ is not the Clifford algebra but the Z-graded Clifford



64

algebra that Kapranov considers in [27]:

A|Q = T (V )[h]/〈v2 = q(v)h〉 deg h = 2.

This algebra is Koszul dual to the coordinate ring of Q. When k ≥ 2n − 1, its kth

graded piece is isomorphic to the odd or even piece of the usual Clifford algebra. More

generally, if X is a complete intersection of quadrics Q1, . . . , Qm and L ⊂ Φ is the linear

space they span then Γ(A|L) is the generalized Z-graded Clifford algebra that Kapranov

considers in [28]:

Γ(A|L) = T (V )[h1, . . . , hm]/〈v
2 = q1(v)h1 + · · ·+ qm(v)hm〉.

This is Koszul dual to the coordinate ring of X .

Next we vary the ideal. Let Φ′ = {(W,Q) ∈ G(n, V )× Φ : PW ⊂ Q} be the relative

Grassmannian of isotropic Pn−1s, which we discussed in §2.1.4, and p : Φ′ → Φ be the

projection. Let I ⊂ p∗A be the bundle of left ideals which, over a point (W,Q) ∈ Φ′, is

generated by the line
∧nW ⊂

∧nV ⊂ An|Q. If k ≥ 2n− 1, the fiber of Ik over a point

(W,Q) is Iodd or Iev from the previous chapter, and Ik+2 = Ik ⊗ p∗OΦ(1).

Last we vary the spinor sheaf: on PV × Φ′, let S be the cokernel of the map

OPV (−1)⊠ I2n−1 → OPV ⊠ I2n

given by v ⊗ ξ 7→ vξ. Its restriction to a slice PV × (W,Q) is the spinor sheaf from the

previous chapter.

4.1.2 Restriction to the linear system L

Since L⊥ is transverse to ν, X avoids the singularities of each Q ∈ L, so the restriction

of S to X × p−1L ⊂ PV × Φ′ is a vector bundle. We would like it to be the universal



65

bundle for our moduli problem, but many points of p−1L parametrize the same bundle

on X .

The branched cover M of L is the Stein factorization of p−1L→ L:

p−1L ⊂ ✲ Φ′

M
✛

L
❄

⊂ ✲

✲

Φ.

p

❄

If L is a line or a plane, the points in a fiber of p−1L → M all parametrize the same

spinor sheaf, and points of different fibers parametrize different spinor sheaves, so what

we want is a section of p−1L → M. When L is a line there is a section; when L is a

plane there are only local sections; when L is a 3-plane, these local sections will let us

resolve the singularities of M.

4.1.3 Two Quadrics

If L is a line, Reid [48] shows that X contains Pn−2s; let Π be one of them. On a smooth

Q ∈ L, there are two Pn−1s containing Π, one from each family. On a singular Q there

is only one, namely the span of Π and the cone point. Thus from Π we get a section

of p−1L → M. We obtain the desired universal bundle on X × M by pulling back S

from PV × Φ′. Different choices of Π give us different universal bundles on X × M,

but different universal bundles can only differ by the pullback of a line bundle from M,

which reflects Reid’s result that the space of Pn−2s on X is isomorphic to Pic0(M).
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4.1.4 Three Quadrics

If L is a plane then X does not generally contain a Pn−2,∗ so we will not be able to

produce a global section of p−1L→ M as we did above, but we will be able to produce

local sections, as follows. What was important about Π above was that it lay on every

Q ∈ L and that it avoided the cone points of the singular Qs. Now we will let Π(Q)

vary with Q. To be precise,

Lemma 4.1.1. L can be covered by analytic open sets U on which there are maps

Π : U → G(n− 1, V ) with Π(Q) ⊂ Qsm for each Q ∈ U .

Proof. Let

Φ′′ = {(W,Q) ∈ G(n− 1, V )× Φ : PW ⊂ Q}

be the relative Grassmanian of isotropic Pn−2s and p′ : Φ′′ → Φ. I claim that p′ is a

submersion at a point (W,Q) if PW ⊂ Qsm.

In §2.1.4 we saw that Φ′′ ⊂ G × Φ is the zero set of a transverse section s of the

vector bundle Sym2 T ∗
⊠OΦ(1), where T is the tautological bundle on G. Thus there is

an exact sequence

0 → T(W,Q)Φ
′′ → TWG⊕ TQΦ

ds
−→ Sym2W ∗ → 0.

By applying the snake lemma to

0 ✲ 0 ✲ TW,QΦ
′ ===== TW,QΦ

′ ✲ 0

0 ✲ TWG
❄

✲ TWG⊕ TQΦ
❄

∩

✲ TQΦ

dp
❄

✲ 0

∗The case where n = 3 and X contains a line is much studied [38, 15, 25]; in that case the K3
surfaces X and M are birational and M is fine. For the four quadrics in P7, the Calabi–Yau 3-folds X
and M are not birational in general but are so when X contains a plane [40].
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we get an exact sequence

0 → ker dp→ TWG
ds
−→ Sym2W ∗ → coker dp→ 0

and see that dp is surjective if and only if ds : TWG → Sym2W ∗ is surjective. But by

Proposition 2.1.1 this is true if and only if PW ⊂ Qsm.

Now let Φ′′
0 ⊂ Φ′′ be the open subset on which p′ is a submersion. By the implicit

function theorem, Φ′′
0 → Φ has local sections. The promised map Π is gotten by re-

stricting such a local section to L and composing with the projection Φ′′ → G(n−1, V ).

(While in this proof it was convenient to talk about the subspace W ⊂ V , outside we

will prefer to think projectively and talk about Π(Q) = PW ⊂ Q.)

Now on a smooth Q ∈ L there are two Pn−1s containing Π(Q), and on a singular Q

there is only one, so we get local sections of p−1L→ M. If we pull back Ik, k ≥ 2n− 1,

from PV × Φ′ to U ×M via these local sections, §3.2 tells us how to glue together the

resulting local bundles on a pairwise intersection Ui ∩ Uj , perhaps after shrinking the

Us. In fact §3.2 glues Ik to Ik+2l for some l > 0, but these are just twists of each other,

hence are locally isomorphic. But we could not have glued for k < 2n− 1.

We cannot expect these gluings to match up on a triple intersection Ui ∩Uj ∩Uk′, so

we do not get an honest bundle on M but only a twisted bundle. The spinor sheaves in

question are simple by Proposition 3.5.2, so as we argued in §2.7, the twisting class α

lies in H2(M,O∗
M).

No confusion should result if this twisted bundle on M is also called Ik. The map

OX(−1)⊠ I2n−1 → OX ⊠ I2n → S → 0,

is compatible with the gluing, so we also get a (1⊠ α)-twisted bundle S on X ×M.
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The order of α is at most two, as follows. In the proof of Proposition 3.3.1, the maps

Cℓ։ I Cℓ։ I∗

ξ 7→ ξw1 · · ·wm ξ 7→ (η 7→ tr(ξη))

had the same kernel, so I⊤ ∼= I∗ or I∗[1]. When we work with A and I, these become

A2n ⊗OG(n,V )(1) ։ I3n A2n ։ Hom(I2n,
∧2nV ⊗OΦ(n))

so I∗
2n is isomorphic to I3n twisted by a line bundle. The former is α−1-twisted while

the latter is α-twisted, so α = α−1.

4.1.5 Four Quadrics

If L is a 3-plane then M has ODPs, and the points in the fiber of p−1L → M over a

singular point of M do not all parametrize the same bundle on X , but our construction

from the previous subsection will resolve both problems. Lemma 4.1.1 is still valid. On

a smooth Q ∈ L there are two P
n−1s containing Π(Q), on a corank 1 Q there is one, and

on a corank 2 Q there is a whole line of them: for each point in the cone line of Q, we

can take its span with Π(Q).

Thus we have local rational sections of p−1L → M that are regular away from the

singular points of M.

Proposition 4.1.2. The graph

Γ = {(W,Q) ∈ G(n− 1, V )× U : Π(Q) ⊂ PW ⊂ Q}

of such a rational section is smooth.
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Proof. The map Π : U → G(n, V ) determines a sub-bundle E ⊂ OU ⊗ V . Let E⊥ ⊂

OU ⊗ V the fiberwise orthogonal. Because Π(Q) avoids Qsing, E
⊥ is a vector bundle.

Because Π(Q) ⊂ Q, E ⊂ E⊥. Let P be the P
1-bundle P(E/E⊥) and π : P → U .

The universal quadric in PV ×Φ is the zero set of a transverse section s of OPV (2)⊠

OΦ(1). Because L is transverse to the strata of ∆ ⊂ Φ, s remains transverse when

restricted to PV × L, and thence to PV × U . We will show that s remains transverse

when restricted to PE⊥ \ PE ⊂ U × PV , and from there it descends to a section of

OP (2)⊗ π∗OU(1) on P , again transverse, with zero set Γ.

At a point (l, Q) ∈ PE⊥ \ PE ⊂ PV × U there are exact sequences of tangent spaces

0 ✲ TlΠ(Q)
⊥ ✲ T(l,Q)PE

⊥ ✲ TQU ✲ 0

0 ✲ TlPV
❄

∩

✲ TlPV ⊕ TQU
❄

∩

✲ TQU

w

w

w

w

w

✲ 0.

Let f be the fiber of OPV (2) ⊠ OU (1) over (l, Q). The map ds : TlPV ⊕ TQU → f is

surjective. Suppose that the composition TlΠ(Q)
⊥ → f is zero. Then l ⊂ ker q|Π(Q)⊥ =

ker q+Π(Q), but we assumed that l∩Π(Q) = 0, so l ⊂ ker q, so the map TlPV → f was

also zero. Thus ds descends to a map TQU → f that is still surjective, so T(l,Q)PE
⊥ → f

is surjective.

The projection PE⊥ \ PE → P gives

0 ✲ TlΠ(Q)
⊥ ✲ T(l,Q)PE

⊥ ✲ TQU ✲ 0

0 ✲ Tl(Π(Q)
⊥/Π(Q))

❄
❄

✲ T(l̄,Q)P

❄
❄

✲ TQU

w

w

w

w

w

✲ 0

Now the section s over PE⊥ descends to one over P , so ds descends to T(l̄,Q)P → f ,

which is surjective since the composite T(l,Q)PE
⊥ → T(l̄,Q)P → f is.

As we have said, Γ → M contracts some lines over the singular points of M, which

are isolated, and is an isomorphism elsewhere. Thus we can cut out the ODPs of M
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and glue in Γ to produce a small resolution M̂ → M. The two small resolutions of

each ODP are again visible here: if Φ′′
0 ⊂ Φ′′ is as in the proof of Lemma 4.1.1, the fiber

of Φ′′ → Φ over a corank 2 quadric has two irreducible components, and the fiber of

Φ′′
0 → Φ (the map of which we took local sections) has two connected components.

Now the points of M̂ are in one-to-one correspondence with the isomorphism classes

of spinor sheaves on X . As in the previous subsection we get twisted bundles Ik on M̂

for k ≥ 2n− 1, and S on X × M̂.

Since twisted bundles can also be represented as modules over Azumaya algebras, it

is natural to ask: if we take an Azumaya algebra on M̂ corresponding to our twisting α,

is its pushforward to L the same as Kuznetsov’s sheaf of algebras mentioned in §1.1?∗

The lemma below will satisfy our curiosity now, and will be indispensable in §4.3. Since

Ik, k ≥ 2n − 1, is α-twisted, HomM̂(Ik, Ik) is a corresponding Azumaya algebra. It

equals HomM̂(Ik, Ik+2n)(−n), whose pushforward to L we will see is A2n(−n)|L, which

is Kuznetsov’s sheaf of algebras.

Lemma 4.1.3. For k, j ≥ 2n− 1, let H = HomM̂(Ik, Ik+j). Let π : M̂ → L and con-

sider the natural map π∗(Aj|L) → H. The adjunct map Aj|L → π∗H is an isomorphism,

and Riπ∗H = 0 for i > 0.

Proof. We will assume that k and j are even; the proof is entirely similar if one or both

is odd. Over a smooth Q ∈ L the result is clear, since ifW andW ′ are maximal isotropic

subspaces of opposite families, it is well-known that Cℓev = EndC(Iev)⊕ EndC(I
′
ev); but

to show it in general will take some work.

∗In that section I lied a little by saying that Kuznetsov worked with a sheaf of algebras on M; in
fact he worked with its pushforward to L.
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First we show that π∗H is a vector bundle and that there is no higher pushforward.

Let Q ∈ L be corank 2 and ℓ = π−1Q, which is naturally identified with the cone line of

Q. Let J be the ideal of the Pn spanned by Π(Q) and the cone line. Then Oℓ⊗Jev ⊂ Ik|ℓ.

The map

Oℓ(−1)⊗ Ik|ℓ → Oℓ ⊗ Jodd

given by v ⊗ ξ 7→ vξ is surjective, and the kernel is Oℓ(−1) ⊗ Jev. Since there are no

extensions of Oℓ by Oℓ(−1), we have

Ik|ℓ = Oℓ ⊗ Jev ⊕ Oℓ(1)⊗ Jodd.

Since Ik+j|ℓ = Ik|ℓ and dim Jev = dim Jodd = 2n−2, we have H|ℓ = (Oℓ(−1) ⊕ O2
ℓ ⊕

Oℓ(1))
22n−4

. Since dimH0(H|ℓ) = 22n−2 = rankH and H1(H|ℓ) = 0, the pushforward of

H from M̂ to M is a vector bundle and there is no higher pushforward. Since M → L

is flat and finite, the conclusion follows.

The question is local on L, so rather than working with π : M̂ → L we work with

π : P → U as in the proof of the previous proposition, and with Γ ⊂ P , which was

the zero set of a transverse section s of OP (2) ⊗ π∗OU(1), and with the vector bundle

E ⊂ OU ⊗ V .

Let J ⊂ A|U be the ideal generated by
∧n−1E ⊂ An−1|U . Then Ik ⊂ π∗Jk. Dualiz-

ing, π∗J ∗
k ։ I∗

k . In this paragraph we will show that the adjunct map J ∗
k → π∗I

∗
k is an

isomorphism. The sequence maps on P

· · · → OP (−1)⊗ π∗Jk−1 → OP ⊗ π∗Jk → OP (1)⊗ π∗Jk+1 → · · ·

determined by v ⊗ ξ 7→ vξ is a matrix factorization of s, so its restriction to Γ is exact.

The image in π∗Jk is Ik, so by the yoga of matrix factorizations there is an exact
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sequence

0 → OP (−1)⊗ π∗J ∗
k+1 → OP ⊗ π∗J ∗

k → I∗
k → 0.

Pushing this down to U , we find that J ∗
k = π∗I

∗
k , as claimed.

On Γ we have a diagram of vector bundles

π∗(Aj|U) ✲ I∗
k ⊗ Ik+j

π∗(J ∗
k ⊗Jk+j)

❄

✲ I∗
k ⊗ π∗Jk+j.

❄

On U , we have the adjunct

Aj|U ✲ π∗(I
∗
k ⊗ Ik+j)

J ∗
k ⊗Jk+j

❄

✲ π∗I
∗
k ⊗Jk+j.

❄

The right vertical map is injective on each fiber, and we have just seen that the bottom

map is an isomorphism, so the top map is injective on each fiber. Since Aj |U and

π∗(I
∗
k ⊗ Ik+j) have the same rank, it is an isomorphism, as claimed.

4.1.6 Five or More Quadrics

If L is a 4-plane, the singular locus of M is a curve C, which we can identify with its

image in L. To construct a small resolution as above, for each corank 2 Q ∈ C we would

have to choose (continuously) one of the two families of Pn−2s on Qsm, or equivalently

one of the two families of Pns on Q. But this is impossible; the associated double cover

of C has no section, as follows. Consider {(Λ, Q) ∈ G(n + 1, V ) × Φ : Λ ⊂ Q}, the

relative Grassmannian of isotropic P
ns, which is smooth and connected. The image of

the projection to Φ is the locus ∆′ of quadrics of corank at least 2, since a corank 1

quadric contains only Pn−1s. Since ∆′ is codimension 3, the preimage of a general 4-plane

L ⊂ Φ is irreducible by Bertini’s theorem.
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Not only does our construction of a small resolution of M fail, but M has no small

resolution whatsoever, as follows. Let Q ∈ C be any corank 2 quadric, and choose a

general 3-plane L′ ⊂ L through Q. The preimage of this in M is a 3-fold with ODPs;

the two small resolutions of each are in natural bijection with the two families of Pns on

Q. Thus a small resolution of M would give a continuous choice of a family of Pns on

each Q ∈ C, which we just saw is impossible.

A small resolution of M when dimL ≥ 5 would give one when dimL = 4, so this too

is impossible. Note that when dimL ≥ 7 the singular locus of M is no longer smooth.

4.2 Embedding of D(M̂, α−1)

In this section we will show that the Fourier–Mukai transform

FS : D(M̂, α−1) → D(X)

is an embedding when n ≥ 4, where S is the α-twisted sheaf on X × M̂ constructed in

the §4.1.5. By our discussion in §2.4, it suffices to show that:

• If S1 and S2 are distinct spinor sheaves on quadrics Q1, Q2 ∈ L then

ExtiX(S1|X , S2|X) = 0 for all i.

• If S is a spinor sheaf on a quadric Q ∈ L then HomX(S|X , S|X) = C and

ExtiX(S|X , S|X) = 0 for i < 0 and i > 3.
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4.2.1 Hom and Ext between spinor sheaves from different

quadrics

First suppose that S1 and S2 are spinor sheaves on different quadrics Q1 and Q2. We

have resolutions

0 → ON
PV (−2) → ON

PV (−1) → S∗
1 → 0

0 → ON
PV (−1) → ON

PV → S2 → 0.

Choose Q3, Q4 ∈ L transverse to each other and to Q1 and Q2. Since Q1∩· · ·∩Q4 = X ,

Q3 ∩Q4 avoids the points where S1 and S2 fail to be vector bundles. Restrict one of the

resolutions above to Q3 ∩Q4 and tensor it with the other to get a resolution

0 → ON2

Q3∩Q4
(−3) → O2N2

Q3∩Q4
(−2) → ON2

Q3∩Q4
(−1) → (S∗

1 ⊗ S2)|X → 0.

We required n ≥ 4, so from our discussion around (2.5.1) we know that OQ3∩Q4
(t) has

no cohomology for −3 ≤ t ≤ −1, so Ext∗X(S1|X , S2|X) = H∗((S∗
1 ⊗ S2)|X) = 0.

4.2.2 Hom between spinor sheaves from the same quadric

Next suppose that S and S ′ are two spinor bundles on the same quadric Q1. From the

resolution

0 → ON
PV (−1) → ON

PV → S ′ → 0.

we see that

0 = H∗(S ′(−1)) = H∗(S ′(−2)) = · · · = H∗(S ′(−2n + 2)). (4.2.1)

Applying HomQ1
(−, S ′) to the exact sequence

0 → S(−2) → ON
Q (−1) → ON

Q → S → 0
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and its twists we see that

ExtiQ1
(S, S ′) = Exti+2

Q1
(S, S ′(−2)) = · · · = Exti+2n−2

Q1
(S, S ′(−2n + 2)). (4.2.2)

In particular,

0 = Ext<2
Q1
(S, S ′(−2)) = Ext<4

Q1
(S, S ′(−4)) = Ext<6

Q1
(S, S ′(−6)).

Choose Q2, Q3, Q4 ∈ L transverse to each other and to Q1. Tensor S
′ with the Koszul

complex of Q2 ∩Q3 ∩Q4 to get

0 → S ′(−6) → S ′(−4)3 → S ′(−2)3 → S ′ → S ′|X → 0.

Applying Hom(S,−) and using the facts above, we find that Hom(S, S ′|X) = Hom(S, S ′).

The spinor sheaves considered here have Hom(S, S) = C by Proposition 3.5.2, and from

its proof it is immediate that Hom(S, S ′) = 0 if S 6= S ′. Of course Hom(S|X , S
′|X) =

Hom(S, S ′|X).

4.2.3 Ext between different spinor sheaves from the same

quadric

If S and S ′ are distinct spinor bundles on Q1 then either they are both vector bundles

or they fail to be so at distinct points, so we can let E = S∗ ⊗ S ′ and rewrite (4.2.2) as

H i(E) = H i+2(E(−2)) = · · · = H i+2n−2(E(−2n + 2)).

Above we saw that H0(E) = 0, and since dimQ1 = 2n − 2, we see that E,E(−2), . . . ,

E(−2n + 2) have no cohomology. Thus

0 → E(−6) → E(−4)3 → E(−2)3 → E → E|X → 0
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is a resolution of E|X by sheaves with no cohomology, so Ext∗X(S|X , S
′|X) = H∗(E|X) =

0.

4.2.4 Ext of a spinor sheaf with itself

If S on Q1 fails to be a vector bundle at some point, choose a Q2 ∈ L that is transverse

to Q1 and avoids that point. If we now let E = (S∗ ⊗ S ′)|Q1∩Q2
, we only get

H i(E) = H i+2(E(−2)) = · · · = H i+2n−4(E(−2n + 4)).

Since dimQ1 ∩Q2 = 2n− 3, we have

H>1(E) = H>3(E(−2)) = H>5(E(−4)) = 0.

Thus from

0 → E(−4) → E2(−2) → E → E|X → 0

we find that ExtiX(S|X , S|X) = H i(E|X) = 0 for i > 3.

4.3 Semi-Orthogonal Decomposition of D(X)

Recall that our goal is to prove that

D(X) = 〈OX(−2n+ 9), . . . ,OX(−1),OX , FSD(M̂, α−1)〉.

If we were only interested in the Calabi–Yau case n = 4 then by the equivalence criterion

discussed in §2.4 we would be done, but in the Fano case n > 4 there is a little more

work to do.
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4.3.1 Semi-Orthogonality

From our discussion around (2.5.1), we know that OX(−2n+9), . . . ,OX is an exceptional

collection.

Let S be a spinor sheaf on a quadric Q1 ⊃ X and choose Q2, Q3, Q4 ∈ L transverse

to each other and to Q1. We know that OQ2∩Q3∩Q4
(t) has no cohomology for −2n+7 ≤

t ≤ −1. From the resolution

0 → ON
Q2∩Q3∩Q4

(−2) → ON
Q2∩Q3∩Q4

(−1) → S∗|X → 0,

we see that S∗(t)|X has no cohomology for −2n + 9 ≤ t ≤ 0.

Now FSD(M̂, α−1) ⊥ OX(t) for −2n + 9 ≤ t ≤ 0, as follows. Let G be the right

adjoint to FS . If p ∈ M̂ then FSOp is a spinor sheaf S restricted to X , so

0 = H i(S∗(t)|X) = Hom(FSOp,OX(t)[i]) = Hom(Op, GOX(t)[i]).

Since GOX(t) is right orthogonal to all the skyscraper sheaves, by Serre duality it

is left orthogonal to them, hence is 0. Thus for any object B ∈ D(M̂, α) we have

Hom(FSB,OX(t)) = Hom(B,GOX(t)) = 0.

4.3.2 Generation

By §2.5, it suffices to show that OX(−2n + 9), . . . ,OX , D(M̂, α−1) generate OX(t) for

all t < −2n + 9.
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Recall that Ik, k ≥ 2n − 1 are α-twisted sheaves on M̂. We will take the Fourier–

Mukai transform of I∗
2n(n− 4). We will want to have this diagram visible:

X × M̂

X × L
✛

M̂

✲

X
✛

L.
✛

✲

The kernel S on X × M̂ is quasi-isomorphic to the complex

0 → OX(1)⊠ I2n+1 → OX(2)⊠ I2n+2 → OX(3)⊠ I2n+3 → · · · .

If k ≥ 2n− 1 and l ≥ 0 then Ik(l) = Ik+2l, so tensoring with the pullback of I∗
2n(n− 4)

gives

0 → OX(1)⊠HomM̂(I2n, I4n−1)(−3) → OX(2)⊠HomM̂(I2n, I4n)(−3) → · · · .

By Lemma 4.1.3, pushing down to X × L gives

0 → OX(1)⊠A2n−1(−3)|L → OX(2)⊠A2n(−3)|L → · · · . (4.3.1)

Now on X × Φ, the complex of vector bundles

0 → OX ⊠A0 → OX(1)⊠A1 → OX(2)⊠A2 → · · ·

is exact, as can be seen fiberwise. Thus (4.3.1) is quasi-isomorphic to

0 → OX(−2n+ 2)⊠A0(−3)|L → · · · → OX ⊠A2n−2(−3)|L → 0.

Recall that each Ai is a sum of line bundles OΦ(t) with t ≥ 0, so Ai(−3)|L is Γ-acyclic,

so pushing this complex down to X gives

0 → OX(−2n+ 2)⊗ Γ(A0(−3)|L) → · · · → OX ⊗ Γ(A2n−2(−3)|L) → 0.
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But Γ(Ai(−3)|L) = 0 for i < 6 and Γ(A6(−3)|L) = C, so in fact FS(I
∗
2n(n − 4)) is

quasi-isomorphic to

0 → OX(−2n+8) → OX(−2n+9)⊗Γ(A7(−3)|L) → · · · → OX ⊗Γ(A2n−2(−3)|L) → 0.

Thus from FS(I
∗
2n(n − 4)) and OX(−2n + 9), . . . ,OX we can generate OX(−2n + 8).

Similarly, from FS(I
∗
2n+1(n − 4)) we can generate OX(−2n + 7), and similarly all the

negative line bundles, so we are done.



80

Bibliography

[1] P. S. Aspinwall and D. R. Morrison. Stable singularities in string theory, with

an appendix by Mark Gross. Comm. Math. Phys., 178:115–134, 1996. Also

arXiv:hep-th/9503208.

[2] E. Ballico. Splitting criteria for vector bundles on singular quadrics. Int. J. Con-

temp. Math. Sciences, 2(31):1549–1551, 2007.
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[34] Y. Laszlo. Théorème de Torelli générique pour les intersections complètes de trois
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