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A Concurrent Kleene Algebra offers two composition operators, related by a weak version of

anexchange law:whenapplied ina tracemodel of programsemantics, oneof themstands for

sequential execution and the other for concurrent execution of program components. After

introducing this motivating concrete application, we investigate its abstract background in

terms of a primitive independence relation between the traces. On this basis, we develop

a series of richer algebras; the richest validates a proof calculus for programs similar to

that of a Jones style rely/guarantee calculus. On the basis of this abstract algebra, we finally

reconstruct the original trace model, using the notion of atoms from lattice theory.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Kleene algebra [8] has been recognised and developed [9,24,25] as an algebraic framework (or structural equivalence)

that unifies diverse theories for conventional sequential programming by axiomatising the fundamental concepts of choice,

sequential composition and finite iteration. Its many familiar models include binary relations, with operators for union,

relational composition and reflexive transitive closure, as well as formal languages, with operators for union, concatenation

and Kleene star.

This paper introduces a ‘double’ Kleenealgebra,whichaddsanoperator for concurrent composition. In fact,we summarise

a whole family of algebras under the common heading of concurrent Kleene algebra (CKA). In it, sequential composition ;
and concurrent composition ∗ are related by the law (a ∗ b) ; (c ∗ d) ≤ (a ; c) ∗ (b ; d), an inequational weakening of the

corresponding equational exchange law of two-category or bicategory theory (cf. [27]). Star-free reducts of CKAs— including

the weak exchange law — have already been studied by Gischer in the context of partially ordered multisets more than

thirty years ago [12]. His and related results are further discussed in Section 17. For elements r that satisfy special conditions

(including r ; r = r) this weak form can be strengthened to the equational law r ∗ (a ; b) = (r ∗ a) ; (r ∗ b), by which

concurrent composition distributes through sequential. The purpose of the paper is to introduce the basic operators and

their laws, and study them both in their concrete representation and in their abstract, axiomatic form.

The interest of CKAs is twofold. First, they express in their most general form the essential properties of program execu-

tion; in fact, the properties which are preserved by massively re-ordering program optimisers, by multiple threads sharing

volatile variables in mainmemory, and even by execution on concurrent architectures with weakly orderedmemory access,

and computer networks connected by unreliable communication channels [17]. Second, the modelled properties, though
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unusually weak, are strong enough to validate the main structural laws of assertional reasoning about program correctness,

both in sequential style (Hoare triples [15]) and in concurrent style (rely/guarantee calculus [23]).

In our concrete model of program semantics, a program is identified with the set of traces of all the executions it may

evoke. Each of the traces consists of the set of events that occur during a single execution. When two sub-programs are

combined, say in a sequential or a concurrent combination, each event that occurs is an event in the trace of exactly one of

the subprograms. Each trace of the combination is therefore the disjoint union of a trace of one of the sub-programs with

a trace of the other. In fact, this simple definition is exactly the general definition of concurrent execution; it permits the

concurrent operands to communicate in any way, for example, through channels or through access to shared memory (or

even both). The definitions of our other operators are only slightlymore complicated. They place restrictions onwhich traces

may be selected for combination.

An unusual feature of our model is that we treat predicates, i.e., assertions and specifications, in exactly the same way as

programs. An assertion used as a precondition is modelled as the most general, i.e., most non-deterministic, programwhich

reaches a final state satisfying the given predicate. Our operators then have dual interpretations on predicates and programs,

though of course they have the same meaning as applied to sets of traces. Union of predicates represents disjunction, but

union of programs represents non-deterministic choice, made by an implementation, either at compile time or at run time.

Implication between predicates is just implication (set inclusion); but implication between programs represents program

refinement. Implication of a specification by a program represents program correctness.

The refusal to make distinctions between sorts is a great simplification of the algebra. Important distinctions can be

introduced later, by defining subsets of elements of the algebra that satisfy particular laws, known as healthiness conditions.

For example, we can define predicates to be a Boolean algebra, whereas we do not want to apply negation to programs,

because that would violate their computability.

In addition to events, the other primitive of our model is a dependence relation between the events of a trace. This gives

to the trace the structure of a directed graph. The transitive closure of primitive dependence represents a direct or indirect

chain of dependences; it imposes time constraints on the ordering of the occurrence of events. In a sequential composition, it

is obviously not allowed for an event occurring in execution of the first operand to depend on an event occurring in execution

of the second operand. We take this as our definition of a liberal form of sequential composition.

The absence of dependence is as important as dependence, because it models execution of independent events that may

overlap in time (‘true’ concurrency). To exploit independence, we define a stronger form of disjoint concurrent composition

which requires all events of one operand to be independent of all events of the other, with no interaction or interference or

influence of one upon the other. This is an analogue of the separating conjunction [32]. However, in this paper we do not

treat ownership of variables or other resources. Thus our theory allows any or all of the variables declared in a program to

be volatile, with arbitrary interference at any time. That is a reason why our algebra has to be quite weak.

Other examples of programming operators which can be simply defined by their traces include a strong form of sequen-

tiality, in which all events of the second operand depend directly or indirectly on all events of the first operand. Another

example (defined in the next section) is a form of more or less determinate selection between operands. Selection is made

in one of two ways: by the program itself, for example by a Boolean condition in a conditional (or guarded) command; or it

can bemade by a successful interactionwith the environment, for example a communication on a channel, as in the external

choice operator of a process algebra. In this paper, we do not explore the properties of these additional operators.

This paper concentrates entirely on the control structure of programs. It completely ignores data flow, and the computer

resources which mediate it. Flow of data across time is usually mediated by computer memory, which may be private or

shared, stronglyoronlyweaklyconsistent. Flowofdataacross space isusuallymediatedbyarealor simulatedcommunication

channel, which may be buffered or synchronized, double-ended or multiplexed, reliable or lossy, and perhaps subject to

stuttering or even re-ordering ofmessages. The behaviour of variables and channels of all these kinds can also bemodeled as

sets of traces [17]. Control structure and data structure are brought together by the selection and description of the primitive

events and actions that can be performed on the data. In this paper we do not describe or even list the primitive events by

which the program evokes operations on the data.

Ourmodel and its theoremsmay lookelegant, butwhenapplied toactualprograms, theyare far tooweak toproveanything

useful. In the case of concurrency, if all variables can be volatile, hardly any interesting property is true! To construct a useful

calculus for concrete programs, our theory has to be extended. There aremanyways to do this. Newoperators can be defined,

and new algebraic laws can be proved about them; new components can be added to the model, for example, labels can be

attached to the nodes and arrows of the graph; new data types can be defined, as described in the previous paragraph; or

sort distinctions can be introduced, for example by healthiness conditions.

Fortunately, none of these developments invalidate any of our axioms, and hence their introduction does not require fresh

proofs of any of our theorems. Thus, it is our hope that the theory may be advanced by many theorists independently, and

applied to a range of well-known programming languages and calculi. Interesting directions of development are mentioned

in the conclusions of the paper.

In the last technical section, we introduce the notion of an event-based concurrent Kleene algebrawhich reconstructs the

concrete tracemodel in terms of themore abstract order-theoretic notions of atoms and irreducible elements.We show that

in such algebras the dependence relation can be recovered from the operators of sequential and concurrent composition.

This reconfirms the basic theory and the tracemodel and shows that the algebraic and the dependence-basedmathematical
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definitions are in a sense equivalent. Most of our reasoning has been checked by computer using the automated theorem

proving system Prover9/Mace4 [28]. A collection of input files and proofs can be found in the accompanying report [21].

The paper is organised as follows. Section 2 summarizes the definitions of the trace model and its essential operators.

In Section 3 we develop an abstract calculus of independence relations, which then is algebraised in Section 4. After that,

Section 5 presents idempotent semirings and quantales as fundamental algebraic structures. In Section 6 we give axioma-

tisations of various concurrent structures that offer two operators for concurrent and sequential composition, related by

the above-mentioned inequational exchange law. In Section 7 we give a more abstract view of the composition operators

used in the concrete trace model. Section 8 enriches the setting by operators for finite and infinite iteration, which leads

to concurrent Kleene and omega algebras. In Section 9 we present an algebraic view of Hoare triples, which serve as basic

ingredients of the rely/guarantee calculus of later sections. As a preparation for that, Section 10 gives a definition of in-

variants. In Section 11 we establish the equivalence of two fundamental laws with (weak) acyclicity and transitivity of the

basic dependence relation. The results are used in Section 12 to define a further class of algebras that are tailored to the

needs of the rely/guarantee calculus presented in Section 13 and, in a simplified form, in Section 14. Finally, Sections 15

and 16 develop the notion of event-based concurrent algebras and reconstruct the trace model and the dependence relation

in terms of that notion. Section 17 presents related work, while Section 18 contains conclusion and outlook. Appendix A

summarises the laws characterising themost important algebraic structures involved. Appendix B shows a sample input file

for the automated theorem prover Prover9.

2. Operators on traces and programs

This section presents a concrete model of Concurrent Kleene Algebra which serves as a motivation for the abstract

algebraic treatment in later sections.

WeassumeasetEV of events,whichareoccurrencesofprimitive actions, togetherwithadependence relation→⊆ EV×EV

between them: e → f indicates a flow of data or control from event e to event f . No particular properties of → are

presupposed.

Definition 2.1. A trace is a set of events; the set of all traces over EV is denoted by TR(EV) =df P(EV). A program is a set of

traces; the set of all programs is denoted by PR(EV) =df P(TR(EV)).

We keep the definition of traces and programs so liberal to accommodate systemswith very loose coupling of events; e.g.,

“conventional” linear traces can be obtained by including unique time stamps into the events and defining the dependence

relation such that it respects time.

Examples of very simple programs are the following. The program skip, which does nothing, is defined as {∅}, and the

program [e], which does only e ∈ EV , is {{e}}. The program false=df ∅ has no traces, and therefore cannot be executed at

all. In the context of program development by stepwise refinement, it serves the rôle of the ‘miracle’ [30] .

Following [18] we study four operators on programs P and Q :

P ∗ Q fine-grain concurrent composition, allowing dependences between P and Q ;

P ; Q weak sequential composition, forbidding dependence of P on Q ;

P ‖Q disjoint concurrent composition, with no dependence in either direction;

P []Q alternation – at most one of P or Q contributes events.

Specific interpretations of the concepts in this list in variousmodels of concurrency are discussed in Section 17. To express

the restrictions in these concepts we introduce the following notion.

Definition 2.2. A trace tp is independent of a trace tq, written tp 	← tq, if there are no dependence arrows from events of tq

to events of tp:

tp 	← tq ⇔df ¬∃ e ∈ tp, f ∈ tq : f → e .

The intention is that the events in tq do not influence or constrain the execution of the events in tp in the sense that these

do not depend in any way on any event in tq.

For each operator ◦ ∈ {∗, ;, ‖, []}we define an associated binary relation (◦) between traces such that for programs P,Q
we can generically set

P ◦ Q =df {tp ∪ tq | tp ∈ P ∧ tq ∈ Q ∧ tp (◦) tq} . (1)

Fromthis definition it is immediate that◦distributes througharbitraryunions of families of programsandhence is⊆-isotone

and false-strict, i.e., false ◦ P = false= P ◦ false. Moreover, if (◦) is symmetric then ◦ is commutative.
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Fig. 1. Composition tables.

The above informal descriptions are captured by the definitions

tp (∗) tq ⇔df tp ∩ tq = ∅ ,

tp (;) tq ⇔df tp (∗) tq ∧ tp 	← tq ,

tp (‖) tq ⇔df tp (;) tq ∧ tq 	← tp⇔ tp (; ) tq ∧ tq (; ) tp ,

tp ([]) tq ⇔df tp = ∅ ∨ tq = ∅ .

It is clear that ([]) ⊆ (‖) ⊆ (;) ⊆ (∗) and that (∗), (‖) and ([]) are symmetric. Moreover, skip is a neutral element for all

operators ◦ ∈ {∗, ;, ‖, []}, i.e.,
skip ◦ P = P = P ◦ skip . (2)

The operator [] can be explained as follows: A trace tr is in P[]Q iff tr is in P and Q contains the empty trace (as a kind of an

indication that Q will completely give way to a P-trace) or tr is in Q and P contains the empty trace.

Example 2.3. We illustrate the operators with a small example. Assume a set EV of events the actions of which are simple

assignments to program variables. We consider three particular events ax, ay, az associated with the assignments x := x +
1, y := y+ 2, z := x+ 3, respectively. There is a dependence arrow from event e to event f iff e 	= f and the variable assigned

to in e occurs in the assigned expression at the right-hand side of f . This means that for our three events we have exactly

ax → az. We form the corresponding single-event programs Px =df [ax], Py =df [ay], Pz =df [az]. To describe their

compositions we extend the notation for single-event programs and set [e1, . . . , en] =df {{e1, . . . , en}} (for uniformity we

sometimes also write [ ] for skip). Figure 1 lists the composition tables for our operators on these programs. They show that

the operator ∗ allows forming concurrent programs with race conditions in that, e.g., Px ∗ Py = Py ∗ Px allows both events

ax and az in either order or even concurrently, whereas ; and ‖ respect dependences in that one or both of the compositions

yield the empty trace. ��
It is straightforward from the definitions that ∗, ‖ and [] are commutative and that [] ⊆ ‖ ⊆ ; ⊆ ∗, where for operators

•, ◦ ∈ {∗, ; , ‖, []} the formula • ⊆ ◦ abbreviates ∀ P,Q : P • Q ⊆ P ◦ Q . In the remainder of this paper we shall mostly

concentrate on the more interesting operators ∗ and ;.
We can now also informally explain why the exchange law

(P ∗ R) ; (Q ∗ S) ⊆ (P ; Q) ∗ (R ; S)
mentioned in the introduction is valid. In both programs, dependence arrows fromQ to P and from S toRneed to be excluded.

However, in the program on the left-hand side, dependence arrows from Q to R and from S to P need to be excluded, too.

Therefore the left program may have fewer traces than the right one. This is illustrated by the diagram

P / Q��

����
��

��
��

/

R / S��

���������� ⊆
P / Q��

R / S��

In the next sectionwewill develop a simple calculus that allows a formal verification of this and related laws on a general

basis.
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Another essential operator is union, which again is ⊆-isotone and distributes through arbitrary unions. However, in

contrast to [], it is not false-strict. When P and Q both contain the empty trace then P[]Q and P ∪ Q coincide.

By the Tarski–Kleene fixpoint theorems all recursion equations involving only the operators mentioned have ⊆-least

solutions which can be approximated by the familiar fixpoint iteration starting from false. Use of union in such recursions

enables non-trivial fixpoints, as will be seen in Section 8.

3. Aggregation and independence

To derive interesting laws about our operators in a general and concise way, we take a more abstract view of systems,

such as programs, their parts and their interactions. The main concepts we study are aggregation—how systems are built

from their parts—and (in)dependence—how systems and their parts interact.

Definition 3.1. An aggregation algebra is a structure (A,+) formed by a set A and a possibly partial binary operator + :
A× A→ A.

When p+ q is defined, we interpret it as the system that is formed or aggregated from the parts p and q. For instance, A

may be the set of traces and+ disjoint trace union. For the time being, the algebra (A,+) need not satisfy any laws. Later

we will assume aggregation algebras that are (commutative) semigroups or monoids.

Definition 3.2. An independence relation on an aggregation algebra (A,+) is a binary relation R on A that is bilinear in the

following sense: whenever the aggregates involved are defined,

R(p+ q, r) ⇔ R(p, r) ∧ R(q, r),

R(p, q+ r) ⇔ R(p, q) ∧ R(p, r).

A system p is independent of a system q if R(p, q) holds.

In the sequel we will leave the qualification on definedness implicit. We use predicate rather than infix notation for

independence relations to save parentheses around aggregated arguments. The linearity conditions say that a combined

system is independent of another one if and only if both its parts are.

Example 3.3.

1. Consider the aggregation algebra (P(EV),∪) of traces. On that algebra, our first example of an independence relation

is 	← as given in Definition 2.2.

2. Consider a set A and the aggregation algebra (P(A),∪), where ∪ is set union. Then, for all X, Y ⊆ A, the relation

defined by R(X, Y) if and only if X and Y are disjoint is an independence relation. This holds since (X ∪ Y)∩ Z = ∅ iff

X ∩ Z = ∅ and Y ∩ Z = ∅.
3. Consider the set (G,∪) of digraphs under (disjoint) union. Then, for all digraphs g1, g2 ∈ G, the relation defined by

R(g1, g2) if and only if there is no arrowwith source in g1 and target in g2 is an independence relation. The same facts

hold for digraphs with respect to arrows from g2 to g1 and for undirected graphs with respect to adjacency.

4. Consider subspaces of some vector space with+ being the span. Then orthogonality is an independence relation.

5. Let t1 and t2 be subtrees of a tree t. Let them be related by R if their roots are not on a single path from the root of t

to its leaves. Let + correspond to forming the least subtree of t that has both t1 and t2 as subtrees. Then R is not an

independence relation in the above sense, because a tree t3 which is related by R to both t1 and t2 can be “captured”

as a subtree of t1 + t2.

Examples 1–4 show that some natural notions of independence are covered by the above definition, whereas Example 5

shows that some other natural notions, such as disjointness of subtrees in a tree, are not. ��
Lemma 3.4. Let (A,+) be an aggregation algebra and let R be an independence relation.

1. R((p+ q)+ r, s) ⇔ R(p+ (q+ r), s).
2. R(p, (q+ r)+ s) ⇔ R(p, q+ (r + s)).
3. R(p+ q, r) ⇔ R(q+ p, r).
4. R(p, q+ r) ⇔ R(p, r + q).
5. R(p+ p, q) ⇔ R(p, q).
6. R(p, q+ q) ⇔ R(p, q).
7. R(p+ q, r) ∧ R(p, q) ⇔ R(q, r) ∧ R(p, q+ r).
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Proof. By bilinearity and the fact that conjunction is associative, commutative and idempotent. ��
We now consider two independence relations R and S.

Lemma 3.5. Let (A,+) be an aggregation algebra. Let R and S be independence relations that satisfy R ⊆ S.

1. R(p+ q, r) ∧ S(p, q) ⇒ S(p, q+ r) ∧ R(q, r),
2. R(p, q+ r) ∧ S(q, r) ⇒ S(p+ q, r) ∧ R(p, q).

Proof. We only prove Part 1; Part 2 is similar.

R(p+ q, r) ∧ S(p, q) ⇔ R(p, r) ∧ R(q, r) ∧ S(p, q)

⇒ S(p, r) ∧ R(q, r) ∧ S(p, q)

⇔ R(q, r) ∧ S(p, q+ r). ��
Next we prove a property that will imply the crucial inequational exchange lawmentioned in the introduction. Wewrite

S˘for the relational converse of S.

Proposition 3.6. Let (A,+) be an aggregation algebra. Let R and S be two independence relations. Let R ⊆ S and S = S˘(S is

symmetric). Then

R(p+ q, r + s) ∧ S(p, q) ∧ S(r, s) ⇒ R(p, r) ∧ R(q, s) ∧ S(p+ r, q+ s).

Proof.

R(p+ q, r + s) ∧ S(p, q) ∧ S(r, s) ⇔ R(p, r) ∧ R(q, r) ∧ R(p, s) ∧ R(q, s) ∧ S(p, q) ∧ S(r, s)

⇒ R(p, r) ∧ S(q, r) ∧ S(p, s) ∧ R(q, s) ∧ S(p, q) ∧ S(r, s)

⇔ R(p, r) ∧ R(q, s) ∧ S(r, q) ∧ S(p+ r, s) ∧ S(p, q)

⇔ R(p, r) ∧ R(q, s) ∧ S(p+ r, q) ∧ S(p+ r, s)

⇔ R(p, r) ∧ R(q, s) ∧ S(p+ r, q+ s). ��
The proofs in this section are only intended to give a flavour of the approach. In fact, they have all been automated, hence

formally verified, with Prover9.

4. Algebraisation of the calculus

This section further pursues the idea of interpreting independence arrows as algebraic operators. Formally, the algebrai-

sation is achieved by lifting the aggregation algebra to power sets.

Definition 4.1. For an aggregation algebra (A,+) and an independence relation R, we define an operator©R of R-composition

(or complex product w.r.t. R) of type P(A)× P(A)→ P(A) for all a, b ⊆ A by

a©R b =df {p+ q | p ∈ a ∧ q ∈ b ∧ R(p, q)}.
Example 4.2.

1. In Section 2 we have©(◦) = ◦.
2. Let A = Σ∗ be the set of strings over the alphabet Σ . For all a, b ∈ Σ∗ let a + b be string concatenation and let R

be the universal relation which relates all elements of A. Let B, C ⊆ Σ∗ be sets of strings. Then A©R B is the usual

complex product of regular language theory.

��
In order to obtainmore interesting results, we assume the aggregation algebra to be a semigroup ormonoid, meaning that

+ is associative and, in the latter case, additionally has a unit 0 that plays the rôle of the empty system. In some cases, we

also consider independence relations that are not only bilinear, but also bistrict, i.e., they satisfy

R(p, 0) and R(0, p).

These rather natural assumptions say that the empty system depends on nothing and nothing depends on it.
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Call an equational law involving a function linear if every variable in it occurs exactly once on each side of the equation.

Such laws are inherited by the pointwise extension (see e.g. [26]). Typical examples of such laws are associativity and

commutativity. This entails the following result.

Proposition 4.3.

1. Let (A,+) be a semigroup and R be bilinear. Then (P(A),©R ) is a semigroup.

2. Let (A,+, 0) be a monoid, and R be bilinear and bistrict. Then (P(A),©R , {0}) is a monoid.

5. Semirings and quantales

In powerset algebras, next to the pointwise extensions of basic aggregation algebras, we have all the set theoretic oper-

ations available. As already mentioned in Section 2, the most interesting one for us is set union, since it allows modelling

non-determinacy. This is reflected in the following definition.

Definition 5.1.

1. An idempotent semiring is a structure (A,+, ·, 0, 1) with the following properties.
• (A,+, 0) is a commutative monoid with idempotent addition, i.e., a+ a = a for all a ∈ A.
• (A, ·, 1) is a monoid.
• Multiplication distributes over addition, i.e., for all a, b, c ∈ A,

a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c + b · c.
• 0 is a left and right annihilator for multiplication, i.e., for all a ∈ A,

a · 0 = 0 = 0 · a .

2. Every idempotent semiring is partially ordered by

a ≤ b ⇔df a+ b = b.

Then+ and · are isotone w.r.t.≤ and 0 is the least element. Moreover, a+ b is the supremum of a, b ∈ A.

3. An idempotent semiring is called a quantale [31,35] or standard Kleene algebra [8] if≤ induces a complete lattice and

multiplication distributes over arbitrary suprema. The infimum and the supremum of a subset B ⊆ A are denoted by

�B and �B, respectively. Their binary variants are a � b and a � b (the latter coinciding with a+ b).

Quantales have been used in many contexts beyond program semantics (cf. the c-semirings of [4] or the general refer-

ence [35]). They have the advantage that the general fixpoint calculus is available. A number of our proofs in Section 10 need

the principle of fixpoint fusionwhich is a second-order property; in the first-order setting of conventional Kleene and omega

algebra (see Section 8) only special cases of it, like the induction and coinduction rules, can be added as axioms. Moreover, in

every quantale, left and right residuals w.r.t. multiplication can be defined by the Galois connections x ≤ a/b ⇔df x ·b ≤ a

and x ≤ b\a ⇔df b · x ≤ a.

Let again PR(EV) denote the set of all programs over the event set EV (cf. Definition 2.1). The following fact is immediate

from the observations in Section 2.

Lemma 5.2. (PR(EV),∪, ∗, false, skip) and (PR(EV),∪, ; , false, skip) are quantales. In each of them � = PR(EV) is the

most general program over EV.

Proposition 4.3 can now be extended.

Proposition 5.3. Let (A,+, 0) be a monoid and R be bilinear and bistrict. Then (P(A),∪,©R ,∅, {0}) is a quantale.

This follows again from standard results about pointwise extension mentioned in Section 4 (cf. [26]).

6. Concurrent Algebras

The results of the previous section can be generalised to more than one independence relation. Here, we consider only

the case of two such relations, R and S, which are defined over one single aggregation algebra.
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Definition 6.1.

1. A bisemigroup is a structure (A, ∗, ; ) such that (A, ∗) and (A, ; ) are semigroups. A bimonoid is a structure (A, ∗, ; , 1)
such that (A, ∗, 1) and (A, ; , 1) are monoids.

2. An idempotent bisemiring is a structure (A,+, ∗, ; , 0, 1) such that (A,+, ∗, 0, 1) and (A,+, ; , 0, 1) are idempotent

semirings.

Bimonoids and idempotent bisemirings have already been studied by Gischer [12], who has shown that partially ordered

multisets (pomsets) under series composition, parallel composition and union form idempotent bisemirings and that the

equational theory of series-parallel pomsets is complete for these structures.We could define bimonoids, etc.more generally

with two different units 1; and 1∗, but we restrict our attention to cases where these operators share one single unit.

The following statement is immediate from the results of the previous section.

Proposition 6.2. Let (A,+, 0) be a monoid and let R and S be bilinear. Then (P(A),∪,©R ,©S ,∅, {0}) is an idempotent

bisemiring.

In the above statement the independences R and S are unrelated. We now consider the situation where one of them is

contained in theother, as inSection2. This allowsus to lift the statementsof Lemma3.5and theexchange law(Proposition3.6)

to the powerset level.

Lemma 6.3.

1. Let (A,+) be an aggregation algebra and let R and S be independence relations on A. Then R ⊆ S implies a©R b ⊆ a©S b.

2. Let (A,+)bea commutative aggregationalgebra and let R bea symmetric independence relationonA. Thena©R b = b©R a.

Proof The proof of the first statement is entirely trivial. We display the proof of the second statement to show the rôle of

commutativity.

p ∈ a©R b ⇔ ∃ q, r : (p = q+ r ∧ q ∈ a ∧ r ∈ b ∧ R(q, r))

⇔ ∃ q, r : (p = r + q ∧ q ∈ a ∧ r ∈ b ∧ R(r, q))

⇔ p ∈ b©R a. ��

Proposition 6.4. Let (A,+) be a semigroup and let R and S be bilinear independence relations such that R ⊆ S. Then

1. (a©S b)©R c ⊆ a©S (b©R c),
2. a©R (b©S c) ⊆ (a©R b)©S c.

Proof We only prove the first inequality.

p ∈(a©S b)©R c

⇔ ∃ q, r, s : (p = (q+ r)+ s ∧ q ∈ a ∧ r ∈ b ∧ s ∈ c ∧ R(q+ r, s) ∧ S(q, r))

⇒ ∃ q, r, s : (p = q+ (r + s) ∧ q ∈ a ∧ r ∈ b ∧ s ∈ c ∧ S(q, r + s) ∧ R(r, s))

⇔ p ∈ a©S (b©R c).

The second step uses associativity of+, Lemma 3.5.1 and bilinearity. ��

Proposition 6.5. Let (A,+) be a commutative semigroup. Let R and S be bilinear independence relations such that R ⊆ S and S

is symmetric. Then the following exchange law holds:

(a©S b)©R (c©S d) ⊆ (a©R c)©S (b©R d).

Proof

p ∈ (a©S b)©R (c©S d) ⇔∃ q, r, s, t : (p = (q+ r)+ (s+ t) ∧ q ∈ a ∧ r ∈ b ∧ s ∈ c ∧ t ∈ d

∧ R(q+ r, s+ t) ∧ S(q, r) ∧ S(s, t)

⇒∃ q, r, s, t : (p = (q+ s)+ (r + t) ∧ q ∈ a ∧ r ∈ b ∧ s ∈ c ∧ t ∈ d

∧ R(q, s) ∧ R(r, t) ∧ S(q+ s, r + t)

⇔ b ∈ (a©R c)©S (b©R d).
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The second step uses associativity and commutativity of the aggregation algebra and Proposition 3.6. ��
These results motivate the following definitions, abstracting©R to ; and©S to ∗.

Definition 6.6.

1. An ordered semigroup is a structure (A, ·,≤) such that (A, ·) is a semigroup,A is partially orderedby≤ and · is isotone in
both arguments. An ordered monoid is a structure (A, ·, 1,≤) such that (A, ·,≤) is an ordered semigroup and (A, ·, 1)
is a monoid.

2. An ordered bisemigroup is a structure (A, ∗, ; ≤) such that (A, ∗,≤) and (A, ; ≤) are ordered semigroups. An ordered

bimonoid is defined analogously.

3. A concurrent semigroup is an ordered bisemigroup (A, ∗, ; ,≤) that satisfies

a ; b≤ a ∗ b, (3)

a ∗ b= b ∗ a, (4)

(a ∗ b) ; c ≤ a ∗ (b ; c), (5)

a ; (b ∗ c)≤ (a ; b) ∗ c, (6)

(a ∗ b) ; (c ∗ d)≤ (a ; c) ∗ (b ; d). (7)

4. A concurrent monoid is an ordered bimonoid (A, ∗, ; , 1,≤) that satisfies

a ∗ b = b ∗ a,

(a ∗ b) ; (c ∗ d) ≤ (a ; c) ∗ (b ; d).

5. A concurrent semiring is an idempotent bisemiring (A,+, ∗, ; , 0, 1) such that (A, ∗, ; , 1,≤) is a concurrent monoid,

where≤ is the natural semiring order.

6. A concurrent semiring (A,+, ∗, ; , 0, 1) is called a concurrent quantale if (A,+, ∗, 0, 1) and (A,+, ; , 0, 1) are quan-

tales. Gischer [12] has shown that ideals of pomsets with respect to a certain subsumption relation form a model of

concurrent semirings and that the concurrent semiring axioms are complete with respect to this model.

Lemma 6.7. The above axioms for concurrent semigroups and concurrent semirings are irredundant.

Proof We have used Mace4 to find models in which all but one of the axioms are true and the remaining axiom is false, for

each combination. ��
The unit 1 allows us to replace the two concurrent monoid axioms by the single one

(a ∗ b) ; (c ∗ d) ≤ (b ; c) ∗ (a ; d) , (8)

which has its free variables in a different order than (7). Moreover, every concurrent monoid is a concurrent semigroup, as

can be shown by automated theorem proving:

Lemma 6.8. The concurrent monoid axioms entail the identities

a ; b ≤ a ∗ b,

(a ∗ b) ; c ≤ a ∗ (b ; c),
a ; (b ∗ c) ≤ (a ; b) ∗ c.

Moreover, Mace4 yields a two-element counterexample showing that these laws do not imply the exchange axiom (7).

The development so far can be summarised in the following theorem.

Theorem 6.9. Let (A,+) be a commutative semigroup and let R and S be bilinear independence relations with S ⊆ R and S

symmetric.

1. (P(A),©R ,©S ,⊆) is a concurrent semigroup.

2. (P(A),∪,©R ,©S ,∅, {0}) is a concurrent semiring.
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This theorem shows that the entire structure of concurrent algebras can be obtained from the very general assumption

of a (commutative) monoidal aggregation algebra and two (strict and) bilinear independence relations.

7. Generalised sequential and concurrent composition

We now check that independence relations for generalised variants of sequential and concurrent composition operators

from Section 2 satisfy the bistrictness and bilinearity conditions.

For these particular operators, we assume a distributive lattice (A,+,�, 0) with least element 0 as the underlying

aggregation algebra. This is compatible with all assumptions in previous statements. We also use a strict and additive

function F : A→ A, which means that it satisfies

F(0) = 0 and F(p+ q) = F(p)+ F(q).

Such a function arises, for instance, as the preimage function over a relational structure, defined as

F(p) = {a | ∃ b ∈ p : R(a, b)} or F(p) = {a | ∃ b ∈ p : R+(a, b)},
where R+ denotes the transitive closure of a relation R. In this concrete setting, p is a set.

In our original definitions Rwould be→ and F the following function dep that yields the set of events onwhich tp-events

depend.

Definition 7.1. For a trace tp, we define the set

dep(tp) =df {f | ∃ e ∈ tp : f → e} .
We then consider the following operators, where F = dep:

• fine-grain concurrent composition a ∗ bwith (∗)(p, q) ⇔ p � q = 0;
• weak sequential composition a; bwith (; )(p, q) ⇔ (∗)(p, q) ∧ F(p) � q = 0;
• disjoint concurrent composition a||bwith (||)(p, q) ⇔ (; )(p, q) ∧ p � F(q) = 0;
• alternation a[]bwith ([])(p, q) ⇔ p = 0 ∨ q = 0.

In contrast to Section 2 we use predicate notation here for the relations to emphasise the connection to Section 6.

Lemma 7.2.

1. ([]) ⊆ (||) ⊆ (; ) ⊆ (∗).
2. ([]) = ([]) ,̆ (||) = (||) ,̆ (; ) 	= (; ) ,̆ (∗) = (∗) .̆
3. ([]), (||), (; ) and (∗) are bilinear.
4. ([]), (||), (; ) and (∗) are bistrict.

Proof The proofs of (1), (2) and (4) are trivial, so we only consider case (3).

• Fine-grain concurrent composition.

(∗)(p+ q, r) ⇔ (p+ q) � r = 0 ⇔ p � r = 0 ∧ q � r = 0 ⇔ (∗)(p, r) ∧ (∗)(q, r).
The second linearity condition is similar.

• Weak sequential composition.

(; )(p+ q, r) ⇔ (∗)(p+ q, r) ∧ F(p+ q) � r = 0

⇔ (∗)(p, r) ∧ (∗)(q, r) ∧ (F(p)+ F(q)) � r = 0

⇔ (∗)(p, r) ∧ (∗)(q, r) ∧ F(p) � r = 0 ∧ F(q) � r = 0

⇔ (; )(p, r) ∧ (; )(q, r).
The second linearity condition is again similar.

• Disjoint concurrent composition. The proof is similar to the previous one.
• Alternation.

([])(p+q, r) ⇔ p+q = 0∨ r = 0 ⇔ (p = 0∧ q = 0)∨ r = 0 ⇔ ([])(p, r)∧ ([])(q, r). ��
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These lemmas together with the previous considerations show in particular that the combination of fine-grain concur-

rency and weak sequential composition leads to concurrent monoids.

8. Iteration: Kleene and Omega algebras

We now repeat the well-known axiomatisations of finite and infinite iteration a∗ and aω of an element a and work out

what they mean for our idempotent semirings of programs.

Definition 8.1.

1. A Kleene algebra [24] is a structure (A,+, ·, ∗, 0, 1) such that (A,+, ·, 0, 1) is an idempotent semiring and the star

operation ∗ satisfies the unfold and induction laws

1+ a · a∗ ≤ a∗, 1+ a∗ · a ≤ a∗, (9)

c + a · b ≤ b ⇒ a∗ · c ≤ b, c + b · a ≤ b ⇒ c · a∗ ≤ b. (10)

The Kleene star should not be confused with the separation operator ∗ above.

2. The finite non-empty iteration of a is defined as a+ =df a · a∗ = a∗ · a. Again, the plus in a+ should not be confused

with the plus of semiring addition.

3. An omega algebra [7] is a structure (A,+, ·, ∗, ω, 0, 1) such that (A,+, ·, ∗, 0, 1) is a Kleene algebra and the omega

operator ω satisfies the unfold and coinduction laws

aω ≤ a · aω, b ≤ c + a · b ⇒ b ≤ aω + a∗ · c.
The axioms of Kleene and omega algebras entail many useful laws. As examples we mention

1 ≤ a∗, a ≤ a∗, a∗ · a∗ = (a∗)∗ = a∗, (a+ b)∗ = a∗ · (b · a∗)∗, (KA)

1ω = �, (a · b)ω = a · (b · a)ω, (a+ b)ω = aω + a∗ · b · (a+ b)ω. (OA)

It is well known that in a quantale A the finite iteration a∗ exists for all a ∈ A and is given by a∗ = μx . 1+ a · x, where μ
denotes the least fixpoint operator. Since in a quantale the defining function for star is continuous, Kleene’s fixpoint theorem

shows that a∗ = ⊔
i∈IN ai. If the complete lattice (A,≤) in a quantale A is completely distributive, i.e., if+ distributes over

arbitrary infima, then also the infinite iteration aω exists for all a ∈ A and is given by aω = νx . a · x, where ν denote the

greatest fixpoint operator.

We now define concurrent versions of these types of algebras.

Definition 8.2.

1. A bi-Kleene algebra is a structure (A,+, ∗, ; ,©∗,©;, 0, 1) such that (A,+, ∗,©∗, 0, 1) and (A,+, ; ,©;, 0, 1) are Kleene
algebras.

2. A concurrent Kleene algebra (CKA) is a bi-Kleene algebra (A,+, ∗, ; ,©∗,©;, 0, 1) over a concurrent monoid

(A, ∗, ; , 1,≤).
3. Bi-omega algebras and concurrent omega algebras are defined analogously.

The above discussion entails the following result.

Theorem 8.3. Let (A,+, 0) be a commutative monoid and let R and S be bilinear and bistrict independence relations with S ⊆ R

andS symmetric. Then the structure (P(A),∪,©R ,©S ,©R,©S,∅, {0}) is a concurrentKleenealgebrawitha©T =df μx . {0}∪a©T x

for T ∈ {R, S}. An analogous property holds for omega iteration, for which the greatest-fixpoint operator ν is used.

Corollary 8.4. Let A be a bounded distributive lattice and let ∗ and ; be defined as in Section 7. Then the structure (P(A),∪, ∗,
; ,©∗,©;,∅, {0}) is a concurrent Kleene algebra with a©∗ =df μx . 1+ a ∗ x and a©; =df μx . 1+ a ; x.

We now explain the behaviour of iteration in our program quantales. For a program P, the program P©;, denoted by P∞
in [18], consists of all sequential compositions of finitely many traces in P. The program P©∗ consists of all disjoint unions of

finitely many traces in P; it may be considered as describing all finite concurrent spawnings of traces in P.

The disjointness requirement that is built into the definition of ∗ and ; does not mean that an iteration cannot repeat a

primitive action a: the iterated program just needs to supply sufficiently many (e.g., countably many) events that stand for

occurrences of a; it can then use a fresh one from these in each round of iteration.
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Example 8.5. With the notation of Example 2.3, let P =df Px∪Py∪Pz . We first look at the powers of P w.r.t. ∗ composition:

P2= P ∗ P = [ax, ay] ∪ [ax, az] ∪ [ay, az] ,
P3= P ∗ P ∗ P = [ax, ay, az] .

Hence P2 and P3 consist of all programs with exactly two and three events from {ax, ay, az}, respectively. Since none of the

traces in P is disjoint from the one in P3, we have P4 = P3 ∗ P = ∅, and hence strictness of ∗w.r.t. ∅ implies Pn = ∅ for all

n ≥ 4. Therefore P©∗ consists of all traces with at most three events from {ax, ay, az} (the empty trace is in P©∗, too, since by
definition skip is contained in every program of the form Q©∗). Hence P©∗ coincides with the set of all possible traces over

the three events; this connection will be taken up again in Section 10.

It turns out that for the powers of P w.r.t. the operator ;we obtain exactly the same expressions, since for every program

Q = [e] ∪ [f ]with e 	= f we have

Q ; Q = ([e] ∪ [f ]) ; ([e] ∪ [f ]) = [e] ; [e] ∪ [e] ; [f ] ∪ [f ] ; [e] ∪ [f ] ; [f ] = [e, f ] = Q ∗ Q ,

provided e 	← f or f 	← e, i.e., provided the trace [e, f ] is consistent with the dependence relation. Only if there were a cyclic

dependence e← f ← e we would have Q ; Q = ∅, but still Q ∗ Q = [e, f ]. ��
Since PR(EV) is a power set lattice, it is completely distributive. Hence it forms a concurrent omega algebra. The infinite

iteration Pω w.r.t. the composition operator ∗ is similar to the unbounded concurrent spawning !P of traces in P in the

π-calculus (cf. [36]).

9. Hoare calculus

Essential tools for reasoning about programs are the Hoare calculus and its variants for the concurrent setting. We now

show how to treat the Hoare calculus algebraically in our setting. In [18], Hoare triples relating programs are defined by

P {Q} R ⇔df P ; Q ⊆ R. Hence such a triple expresses that the program Q is guaranteed to extend every trace in the

“pre-history” P to a trace in R.

Again, it is beneficial to abstract from the concrete case of programs.

Definition 9.1. Given an ordered monoid (A, ·, 1,≤) we define, for elements a, b, c ∈ A, the Hoare triple a {b} c by

a {b} c ⇔df a · b ≤ c .

We show that this very general definition entails all the familiar properties of Hoare triples associated with partial

correctness.

Lemma 9.2. Assume an ordered monoid (A, ·, 1,≤).

1. a {1} c ⇔ a ≤ c; in particular, a {1} a ⇔TRUE. (skip)

2. (∀ a, c : a {b} c ⇒ a {b′} c) ⇔ b′ ≤ b. (antitony)

3. (∀ a, c : a {b} c ⇔ a {b′} c) ⇔ b = b′. (extensionality)

4. a {b · b′} c ⇔ ∃ d : a {b} d ∧ d {b′} c. (composition)

5. a ≤ d ∧ d {b} e ∧ e ≤ c ⇒ a {b} c. (weakening)

If (A, ·, 1) is the multiplicative reduct of an idempotent semiring (A,+, 0, ·, 1) and the order used in the definition of Hoare

triples is the natural semiring order, we also have

6. a {0} c ⇔TRUE, (failure)

7. a {b+ b′} c ⇔ a {b} c ∧ a {b′} c. (choice)

If that semiring is a Kleene algebra, we also have

8. a {b} a ⇔ a {b+} a ⇔ a {b∗} a. (iteration)

Proof

1. Immediate from the definitions and neutrality of 1.

2. (⇐) follows directly from isotony of composition. For (⇒) set a = 1 and c = b, and expand the definition.
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3. Immediate from Part 2 and antisymmetry of≤.

4. (⇐) By the definitions, isotony of · and transitivity of≤,

a {b} d ∧ d {b′} c ⇔ a · b ≤ d ∧ d · b′ ≤ c ⇒ a · b · b′ ≤ c ⇔ a {b · b′} c .

(⇒) Choose d = a · b.
5. By isotony and the assumptions, a · b ≤ d · b ≤ e ≤ c.

6. Immediate from the definitions and the annihilation property of 0.

7. By the definitions, distributivity and the definition of the supremum,

a {b+ b′} c ⇔ a · (b+ b′) ≤ c ⇔ a · b+ a · b′ ≤ c

⇔ a · b ≤ c ∧ a · b′ ≤ c ⇔ a {b} c ∧ a {b′} c .

8. The implication (⇐) of the first equivalence follows from Part 2 and b ≤ b+. For (⇒) we have, using the definitions,

the second star induction rule in (10) and idempotence of+,

a {b+} a ⇔ a · b · b∗ ≤ a ⇐ a · b+ a · b ≤ a ⇔ a · b ≤ a ⇔ a {b} a .

The second equivalence follows from b∗ = 1+ b+ and the skip and choice rules. ��
Lemma 9.2 can be expressed more concisely in relational notation. For b ∈ A the relation {b} ⊆ A × A between

precondition elements a and postcondition elements c is defined by

∀ a, c : a {b} c ⇔df a · b ≤ c .

Then the above properties rewrite into

1. {1} = ≤.

2. {b} ⊆ {b′} ⇔ b′ ≤ b.

3. {b} = {b′} ⇔ b = b′.
4. {b · b′} = {b} ◦ {b′}where ◦means relational composition.

5. ≤ ◦ {b} ◦ ≤ ⊆ {b}.

6. {0} = TT where TT is the universal relation.

7. {b+ b′} = {b} ∩ {b′}.
8. {b} ∩ I = {b+} ∩ I = {b∗} ∩ I, where I is the identity relation.

Properties 4 and 2 allow us to determine the weakest premise ensuring that two composable Hoare triples establish a

third one:

Lemma 9.3. Assume again an ordered monoid (A, ·, 1,≤). Then

(∀ a, d, c : a {b} d ∧ d {b′} c ⇒ a {e} c) ⇔ e ≤ b · b′ .

Nextwepresent two further rules that are validwhen the abovemonoidoperator is specialised to sequential composition:

Lemma 9.4. Let A = (A,+, 0,∗, ; ) be a concurrent semigroup and a, a′, b, b′, c, c′, d ∈ A with a {b} c interpreted as a ; b ≤ c.

1. a {b} c ∧ a′ {b′} c′ ⇒ (a ∗ a′) {b ∗ b′} (c ∗ c′). (concurrency)

2. a {b} c ⇒ (d ∗ a) {b} (d ∗ c). (frame rule)

Proof

1. a {b} c ∧ a′ {b′} c′
⇔ {[ definition ]}

a ; b ≤ c ∧ a′ ; b′ ≤ c′
⇒ {[ isotony of ∗ ]}

(a ; b) ∗ (a′ ; b′) ≤ c ∗ c′
⇒ {[ exchange (7) ]}

(a ∗ a′) ; (b ∗ b′) ≤ c ∗ c′
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⇔ {[ definition ]}
(a ∗ a′) {b ∗ b′} (c ∗ c′)

2. a {b} c

⇔ {[ definition ]}
a ; b ≤ c

⇒ {[ isotony of ∗ ]}
d ∗ (a ; b) ≤ d ∗ c

⇒ {[ by Lemma 6.8.5 ]}
(d ∗ a) ; b ≤ d ∗ c

⇔ {[ definition ]}
(d ∗ a) {b} (d ∗ c). ��

10. Invariants

We now deal with the set of events a program may use.

Definition 10.1. A power invariant is a program R of the form R = P(E) for a set E ⊆ EV of events.

It consists of all possible traces that can be formed from events in E and hence is the most general program using only

those events. The smallest power invariant is skip = P(∅) = {∅}. The term “invariant” expresses that a program often relies

on the assumption that its environment only uses events from a particular subset, i.e., preserves the invariant of staying in

that set.

Example 10.2. Consider again the event set EV from Example 2.3. Let V be a certain subset of the variables involved and let

E be the set of all events that assign to variables in V . Then the environment Q of a given program P can be constrained to

assign at most to the variables in V by requiring Q ⊆ Rwith the power invariant R =df P(E). The fact that we want P to be

executed only in such environments is expressed by working with the concurrent composition P ∗ R. ��
If E is considered to characterise the events that are admissible in a certain context, a program P can be confined to using

only admissible events by requiring P ⊆ R for R = P(E). In the rely/guarantee calculus of Section 13, invariants will be used

to express properties of the environment on which a program wants to rely (whence the identifier R).

Power invariants satisfymanyuseful laws. To state them,wewant to define a function thatmaps a program to the smallest

power invariant containing it.

Let �P� =df

⋃
P denote the set of all events occurring in traces of a program P; when convenient, �P� can also be

considered as a trace. It is straightforward to check that the function �_� distributes through arbitrary unions. Hence it has

an upper adjoint F , defined by the Galois connection

�P� ⊆ X ⇔ P ⊆ F(X) .

This entails F(X) = P(X) and �P(X)� = X . Moreover, as adjoints of a Galois connection,P(_) and �_� are⊆-isotone. Setting

X = �P� yields P ⊆ P(�P�). Thus for X, Y ⊆ EV we have P(X) ⊆ P(Y) ⇔ X ⊆ Y .

Motivated by the above remarks, we now define INV(P) =df P(�P�). Then INV(P) is the most general program that

can be formed from the events of P. As a composition of isotone functions, INV is isotone, too.

We now prepare for our abstract notion of invariant. An invariant is a program R with R = INV(R). In particular, every

invariant in our concrete quantale of programs is a power invariant. In general concurrent semirings we will replace INV
by a suitable abstract operator the properties of which will be discussed below. By definition, invariants are fixpoints of an

isotone function and hence, by Tarski’s theorem, form a complete lattice under the inclusion order.

The operator∇ from [18] and INV are interrelated. To show this, we set SINGLES(P) =df {{e} | {e} ∈ P}. Then
INV(SINGLES(Q)) = Q∇Q , Q∇R = INV(SINGLES(Q ∪ R)) .

We shall use INV since it leads to simpler and more intuitive formulations.

We give a few useful properties of INV.

Theorem 10.3. Let P and Q be programs.

1. INV(P) is the smallest invariant containing P.

2. INV(INV(P)) = INV(P); hence INV(P) is an invariant.
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3. INV is a closure operator.

4. skip ⊆ INV(P).
5. INV(P ∗ Q) ⊆ INV(P ∪ Q).
6. INV(P) ∗ INV(P) ⊆ INV(P).

Proof.

1. We have already seen above that P ⊆ INV(P). Let S be another invariant with P ⊆ S. Then, by isotony of INV and

the definition of invariants, INV(P) ⊆ INV(S) = S.

2. Since, as remarked above, �P(X)� = X , we have

INV(INV(P)) = P(�P(�P�)�) = P(�P�) = INV(P) .
3. By Part 1 we have P ⊆ INV(P). By the Galois connection INV is isotone and by Part 2 it is idempotent.

4. Immediate from the definition of INV.

5. By the definition of ∗we have �P ∗ Q� ⊆ �P ∪ Q� and the property follows by isotony of P .

6. From the definitions it is straightforward to check that �P ∗ Q� ⊆ �P� ∪ �Q�. Hence
INV(P) ∗ INV(P) ⊆ INV(INV(P) ∗ INV(P)) = P(�INV(P) ∗ INV(P)�) ⊆ P(�INV(P)� ∪ �INV(P)�)

= P(�INV(P)�) = INV(INV(P)) = INV(P)

by Parts 1 and 2. ��
Since INV is a closure operator we have the following (cf. [3]).

Corollary 10.4. For setR of power invariants,
⋂R and INV(

⋃R) are themeet and join ofR in the complete lattice of invariants,

respectively.

We now abstract again from the concrete case of programs. It turns out that the properties in Theorem 10.3.4 and 10.3.6

largely suffice for characterising invariants.

Definition 10.5. An invariant in an ordered monoid A is an element r ∈ A satisfying 1 ≤ r and r ∗ r ≤ r. In a concurrent

semiring these two axioms can equivalently be combined into 1+ r ∗ r ≤ r. The set of all invariants of A is denoted by I(A).

Wenowgive a number of algebraic properties of invariants that are useful in proving the soundness of the rely/guarantee-

calculus in Section 13.

Theorem 10.6. Assume a concurrent monoid A, an r ∈ I(A) and arbitrary a, b ∈ A.

1. a ≤ r ∗ a and a ≤ a ∗ r.

2. r ; r ≤ r.

3. r ∗ r = r = r ; r.
4. r ; (a ∗ b) ≤ (r ; a) ∗ (r ; b) and (a ∗ b) ; r ≤ (a ; r) ∗ (b ; r).
5. r ; a ; r ≤ r ∗ a.

6. If A is a CKA then r ∈ I(A) ⇔ r = r©∗.
7. If A is a CKA then the least invariant comprising a is a©∗.

Proof

1. By neutrality of 1 and isotony of ∗we have a = 1 ∗ a ≤ r ∗ a. The proof of the second inequation is symmetric.

2. This is immediate from a ; b ≤ a ∗ b (3) and transitivity of≤.

3. By Part 1 we have r ≤ r ∗ r; the converse equation holds by definition and Part 2, respectively.

4. r ; (a ∗ b)

= {[ by Part 3 ]}
(r ∗ r) ; (a ∗ b)

≤ {[ by (7) ]}
(r ; a) ∗ (r ; b) .

The proof of the second law is symmetric.

5. r ; a ; r
≤ {[ by (3) ]}

r ∗ a ∗ r



Tony Hoare et al. / Journal of Logic and Algebraic Programming 80 (2011) 266–296 281

= {[ commutativity of ∗ ]}
r ∗ r ∗ a

≤ {[ definition of invariants ]}
r ∗ a .

6. (⇒) By the definition of invariants we have 1 + r ∗ r ≤ r. Hence star induction (10) shows r©∗ ≤ r. The converse

inequation r ≤ r©∗ holds by (KA).

(⇐) follows from (9).

7. By (KA), a ≤ a©∗. Moreover, a©∗ is an invariant by Part 6 and (KA) again. Finally, if r is an invariant with a ≤ r then

a©∗ ≤ r©∗ = r by isotony of©∗ and Part 6. ��
Next we discuss the lattice structure of the set I(A) of invariants.

Theorem 10.7. Assume a CKA A.

1. If A is a complete lattice, then so is (I(A),≤). Its least and greatest elements are 1 and�, respectively.

2. For r, r′ ∈ I(A) we have r ≤ r′ ⇔ r ∗ r′ = r′. This means that ≤ coincides with the natural order induced by the

associative, commutative and idempotent operator ∗ on I(A).
3. If r, r′ ∈ I(A) have an infimum r � r′ in A then this coincides with the infimum of r and r′ in I(A).
4. r ∗ r′ is the supremum of r and r′ in I(A). In particular, r ≤ r′′ ∧ r′ ≤ r′′ ⇔ r ∗ r′ ≤ r′′.
5. Invariants are downward closed: r ∗ r′ ≤ r′′ ⇒ r ≤ r′′.
6. If A is a complete lattice then I(A) is even closed under arbitrary infima, i.e., for a subset U ⊆ I(A), the infimum� U taken

in A coincides with the infimum of U in I(A).

Proof

1. By Theorem 10.6.6 the invariants are exactly the fixpoints of the©∗ operation. Since this operation is isotone, Tarski’s

theorem shows the completeness claim. Leastness of 1 in I(A) is an axiom. Since� is the greatest element, we have

1 ≤ � and� · � ≤ � and hence� ∈ I(A).
2. First, r ≤ r′ ⇒ r ∗ r′ ≤ r′ ∗ r′ = r′ by isotony and Theorem 10.6.3. The reverse inequation r′ ≤ r ∗ r′ holds by

Theorem 10.6.1.

Second, by Theorem 10.6.1, r ≤ r ∗ r′ and hence r ∗ r′ = r′ implies r ≤ r′.
3. First, 1 ≤ r and 1 ≤ r′ imply 1 ≤ r � r′. Second, by isotony of ∗ and Theorem 10.6.3, (r � r′) ∗ (r � r′) ≤ r ∗ r = r.

Likewise, (r � r′) ∗ (r � r′) ≤ r′. Hence (r � r′) ∗ (r � r′) ≤ r � r′. This shows that r � r′ is in I(A) and therefore also

the infimum of r and r′ in I(A).
4. First, 1 = 1 ∗ 1 ≤ r ∗ r′ and (r ∗ r′) ∗ (r ∗ r′) = r ∗ r ∗ r′ ∗ r′ ≤ r ∗ r′ show that r ∗ r′ ∈ I(A) as well. The

supremum property is a well known fact about the natural order and hence follows from Part 2. The second assertion

is straightforward from that and standard lattice theory.

5. Immediate from Theorem 10.6.1 and transitivity of≤.

6. By standard Kleene algebra, the operation©∗ is a closure operation. Hence, as shown e.g. in [3] its set of fixpoints I(A)
is closed under arbitrary infima. ��

Next we state two laws about iteration.

Lemma 10.8. Assume a CKA A and let r ∈ I(A) be an invariant and a ∈ A be arbitrary.

1. (r ∗ a)©∗ ≤ r ∗ a©∗.
2. r ∗ a©∗ = r ∗ (r ∗ a)©∗.

Proof

1. We calculate

(r ∗ a)©∗ ≤ r ∗ a©∗
⇐ {[ star induction (10) ]}

1+ (r ∗ a) ∗ (r ∗ a©∗) ≤ r ∗ a©∗
⇔ {[ join ]}

1 ≤ r ∗ a©∗ ∧ (r ∗ a) ∗ (r ∗ a©∗) ≤ r ∗ a©∗ .
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The first conjunct holds by 1 ≤ r and 1 ≤ a©∗. For the second one we have, by ∗-idempotence of r, the definition of

star, isotony and associativity and commutativity of ∗,
r ∗ a©∗ = (r ∗ r) ∗ a©∗ ≥ (r ∗ r) ∗ (a ∗ a©∗) = (r ∗ a) ∗ (r ∗ a©∗) .

2. By Part 1, isotony of ∗ and idempotence of r we have

r ∗ (r ∗ a)©∗ ≤ r ∗ r ∗ a©∗ = r ∗ a©∗ .

For the reverse inequation we first conclude a ≤ r ∗ a from Theorem 10.6.1 and then use isotony of©∗ and ∗. ��
The above view of invariants is too special for some circumstances. Therefore we define amore liberal notion of invariant

based on the fact that INV is a closure and take Parts 4 and 5 of Theorem 10.3 as the characteristics of abstract invariants,

since these properties suffice to prove the results about the rely/guarantee calculus in Section 13 we are after.

Definition 10.9. A concurrent semiring with invariants is a structure (A,+, 0, ∗, ; , 1, ι ) such that (A,+, 0, ∗, ; , 1) is a

concurrent semiring and ι : A → A is a closure operator that satisfies, for all a, b ∈ A,

1 ≤ ι a , ι (a ∗ b) ≤ ι (a+ b) .

A closure invariant is an element a ∈ A with ι a = a.

Lemma 10.10. By the definition ι a =df a©∗ every CKA becomes a concurrent semiring with invariants.

Proof By standard Kleene algebra,©∗ is a closure operator with 1 ≤ a©∗. The remaining axiom is shown by star induction

(10), a, b ≤ a+ b and isotony as follows:

(a ∗ b)©∗ ≤ (a+ b)©∗ ⇐ 1+ a ∗ b ∗ (a+ b)©∗ ≤ (a+ b)∗ ⇐
1 ≤ (a+ b)©∗ ∧ (a+ b) ∗ (a+ b) ∗ (a+ b)©∗ ≤ (a+ b)©∗ ⇔TRUE . ��

Again it is clear that the closure invariants form a complete lattice with properties analogous to those of Corollary 10.4.

Moreover, one has the usual Galois connection for closures (cf. [10]):

a ≤ ι b ⇔ ι a ≤ ι b . (11)

With this definition we can give a uniform abstract proof of idempotence of operators on invariants.

Theorem 10.11. Let A be a concurrent semiring with invariants and ◦ be an isotone binary operator on A that has 1 as neutral

element and satisfies ∀ a, b : ι (a ◦ b) ⊆ ι (a+ b). Then, for closure invariant r, we have r ◦ r = r.

Proof We first show r ◦ r ≤ r. By extensivity of ι , the assumption and r + r = r as well as invariance of r we have

r ◦ r ⊆ ι (r ◦ r) ⊆ ι r = r. The converse inclusion is shown by r = r ◦ 1 ≤ r ◦ r, using neutrality of 1, the axiom 1 ≤ ι a
and isotony of ◦. ��
Example 10.12. Consider a concurrent semiring A with invariants. Setting ◦ = ; we obtain by (3) and isotony of ι that

ι (a ; b) ≤ ι (a ∗ b). Since, in turn, ι (a ∗ b) ≤ ι (a + b) by Definition 10.9, Theorem 10.11 shows r ; r = r for all closure

invariants r. ��

11. Characterising dependence

Invariants areof central importance for the rely/guaranteecalculus inSections13and14. Theirmost fundamentalproperty

is the star distribution rule, the inequational form of which has been shown in Theorem 10.6.4. We will now characterise

the dependence relations for which this rule and another related one are valid.

Theorem 11.1. Let R = P(E) be a power invariant in PR(EV) and assume that→ is transitive.

1. If→ is acyclic and e ∈ EV then

R ∗ [e] ⊆ R ; [e] ; R ,

where [e] is again the single-event program {{e}} (cf. Section 2).
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2. For all P,Q ∈ PR(EV) we have

R ∗ (P ; Q) ⊆ (R ∗ P) ; (R ∗ Q) .

This means that the two properties of Theorem 11.1 hold if→ is a strict-order.

To prove Theorem 11.1, we first show an auxiliary lemma about the dependence relation. To formulate it, we need an

additional notion.

Definition 11.2. Remember the function dep fromDefinition 7.1 that, for a trace tp yields the set of events onwhich tp-events

depend. Given traces tp, tr with tp ∩ tr = ∅, we define

tr′ =df tr ∩ dep(tp) , tr′′ =df tr − dep(tp) ,

and call the pair (tr′, tr′′) the dependence split of tr w.r.t tp. Then tr′ ∪ tr′′ = tr.

Lemma 11.3. Assume again transitivity of→ and consider arbitrary traces tp and tq.

1. The function dep is⊆-isotone and hence subdistributive over intersection, i.e., it satisfies dep(tp∩ tq) ⊆ dep(tp)∩dep(tq).
2. dep(dep(tp)) ⊆ dep(tp).

Let now tp and tr be traces with tp ∩ tr = ∅, and let (tr′, tr′′) be the dependence split of tr w.r.t tp.

3. dep(tr′) ⊆ dep(tr) ∩ dep(tp) and hence dep(tr′) ⊆ dep(tp).
4. tr′′ ∩ dep(tp) = ∅.
5. For arbitrary trace tq we have tq ∩ dep(tp) = ∅ ⇒ tq ∩ dep(tr′) = ∅.
6. tp ∩ dep(tp) = ∅ ⇒ tp ∩ dep(tr′) = ∅.
7. tr′′ ∩ dep(tr′) = ∅.
8. Assume that → is acyclic and tp = {e} for some event e ∈ EV. Then {e} ∩ dep(tr′) = ∅ and hence {tr} ∗ [e] =
{tr′} ; [e] ; {tr′′}.

Proof

1. As a general property,⊆-isotony is equivalent to subdistributivity over intersection.

2. Immediate from transitivity of→.

3. By Parts 1 and 2,

dep(tr′) = dep(tr ∩ dep(tp)) ⊆ dep(tr) ∩ dep(dep(tp)) ⊆ dep(tr) ∩ dep(tp) .

4. Immediate from the definition of tr′′ and Boolean algebra.

5. By Part 3 and the assumption about tq,

tq ∩ dep(tr′) ⊆ tq ∩ dep(tr) ∩ dep(tp) = ∅ .

6. Immediate from Parts 3 and 5.

7. Immediate from Parts 3, 4 and 5.

8. The first claim follows from Part 3 and the equivalence.

{e} ∩ dep({e}) = ∅ ⇔ e 	∈ dep({e}) ⇔ ¬(e→ e) ⇔TRUE ,

since→ is transitive and acyclic.

For the secondclaim let tr∩{e} 	= ∅. Then {tr}∗[e] = ∅, {tr}; [e] = ∅ and [e]; {tr} = ∅, hence also {tr′}; [e]; {tr′′} =
∅. Otherwise, let tr ∩ {e} = ∅. Then {tr} ∗ [e] = {tr} ∪ [e]. Since dep(tr′) ∪ {e} = ∅ and {tr′′} ∪ dep({e}) = ∅ by

Part 4, we also have {tr′}; [e]; {tr′′} = {tr′} ∪ [e] ∪ {tr′′} = {tr} ∪ [e]. ��
Proof of Theorem 11.1.We first note that power invariants R = P(E) satisfy a stronger form of downward closure than the

one stated in Theorem 10.7.5, namely tr ∈ R ∧ tr′ ⊆ tr ⇒ tr′ ∈ R. In particular, the components of any dependence split

of tr are in R again.

1. If e ∈ E then R ∗ [e] = ∅ and the claim holds trivially. Hence we calculate, assuming e 	∈ E:

R ∗ [e]
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= {[ definition of ∗ ]}
⋃

tr∈R
{tr ∗ {e}}

⊆ {[ by Lemma 11.3.8 and downward closure of R ]}
⋃

tr′∈R
⋃

tr′′∈R
{tr′ ; {e} ; tr′′}

= {[ definition of ; ]}
R ; [e] ; R .

2. We show the property for singleton programs P = {tp}, Q = {tq} with traces tp, tq; then a similar calculation as for

Part 1 extends it to arbitrary programs P,Q .

The property holds trivially if R ∗ (P ; Q) = ∅. Therefore assume R ∗ (P ; Q) 	= ∅ and consider an arbitrary trace

tr ∈ Rwith {tr} ∗ (P ;Q) 	= ∅. This implies that tp, tq, tr are pairwise disjoint and P ;Q 	= ∅, hence dep(tp)∩ tq = ∅.
Moreover, ts =df tr ∗ (tp ; tq) = tr ∪ tp ∪ tq.

Let now (tr′, tr′′) be the dependence split of tr w.r.t. tp. We show that then ts = (tr′ ∗ tp) ; (tr′′ ∗ tq) and hence

ts ∈ (R ∗ P) ; (R ∗ Q).
(a) By Lemma 11.3.7 dep(tr′) ∩ tr′′ = ∅.
(b) By Lemma 11.3.5 dep(tr′) ∩ tq = ∅.
(c) By Lemma 11.3.4 dep(tp) ∩ tr′′ = ∅.

By definition of tr′, tr′′, associativity and commutativity of union and (a),(b),(c) as well as dep(tp) ∩ tq = ∅we have

ts = tr ∪ tp ∪ tq = tr′ ∪ tr′′ ∪ tp ∪ tq = tr′ ∪ tp ∪ tr′′ ∪ tq = (tr′ ∗ tp) ; (tr′′ ∗ tq) . ��
Nextwewant to see that in a sense also the reverse implications of Theorem11.1 hold. To formulate thiswe need a further

notion.

Definition 11.4. We call→ weakly acyclic if for all events e, f ,

e→+ f →+ e ⇒ f = e ,

and weakly transitive if

e→ f → g ⇒ (e = g ∨ e→ g) .

Weak acyclicity means that→ may at most have immediate self-loops (which cannot be “detected” by the ; operator,
since it is defined in terms of distinct events only).

Theorem 11.5. Let [e] be again the single-event program {{e}}.
1. If R ∗ [e] ⊆ R ; [e] ; R is valid for all power invariants R and events e, then→ is weakly acyclic.

2. If R ∗ (P ; Q) ⊆ (R ∗ P) ; (R ∗ Q) is valid for all power invariants R and programs P,Q then→ is weakly transitive.

Proof of Part 2. Assume events e, f , g with e→ f and f → g but g 	← e. This implies e 	= f and f 	= g. Assume now e 	= g

and set P =df [g], Q =df [e] and R =df [ ] ∪ [f ]. Then P ; Q = [e, g] and R ∗ (P ; Q) = [e, g] ∪ [e, g, f ]. Moreover,

R ∗ P = [g] ∪ [g, f ] and R ∗ Q = [e] ∪ [e, f ], hence (R ∗ P) ; (R ∗ Q) = [e, g], contradicting the assumed property.

Therefore we must have e→ g. ��
We abstract this as follows.

Definition 11.6. A concurrent semiring A with invariants is ∗-distributive if all closure invariants r and all a, b ∈ A satisfy

r ∗ (a ; b) ≤ (r ∗ a) ; (r ∗ b) .

We still have to prove Part 1 of Theorem 11.5. Rather than doing this directly, we investigate a slightly more general

property which is equivalent to an interesting property of traces that are more general than single-event ones.

Definition 11.7. A trace tp is convex if for all events e, f ∈ tp and arbitrary event g we have

e→+ g →+ f ⇒ g ∈ tp .

A convex trace can be considered as “closed” under dependence.

Remember again the function dep from Definition 7.1. Then we have

Lemma 11.8. Let tp be a trace and assume that R ∗ {tp} ⊆ R ; {tp} ; R holds for all power invariants R.
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1. Dependence between a trace and any event outside occurs at most in one direction, i.e., for any event g 	∈ tpwe have

tp ∩ dep({g}) = ∅ ∨ {g} ∩ dep(tp) = ∅ .

2. As a consequence, tp is convex.

Proof.

1. Set R =df P({f }). By assumption, the trace tr = {f } ∈ R can be split as tr = tr′ ; tr′′ such that tr ∗ tp = tr′ ; tp ; tr′′.
Case 1: tr′ = {f } ∧ tr′′ = ∅. Hence tr ∗ tp = {f } ; tp. This implies {f } ∩ dep(tp) = ∅.
Case 2: tr′ = ∅ ∧ tr′′ = {f }. Hence tr ∗ tp = tp ; {f }. This implies tp ∩ dep({f }) = ∅.

2. Suppose g 	∈ tp. The premise e→+ g implies e ∈ tp∩dep({g})while g →+ f implies g ∈ {g}∩dep(tp). In particular,

both sets are non-empty, contradicting Part 1. ��
We now establish a first connection between convexity and weak acyclicity.

Lemma 11.9. The relation→ is weakly acyclic iff all singleton traces {e} are convex.
Proof (⇒ ) Assume g →+ f →+ h for g, h ∈ {e}, i.e., e →+ f →+ e. Then, by the assumed weak acyclicity, we obtain

f = e, i.e., f ∈ {e}.
(⇐ ) Assume e→+ f →+ e. Then, by the assumed convexity of {e}, we get f ∈ {e}, i.e., f = e. ��

We now want to show that also the reverse of Lemma 11.8 holds.

Lemma 11.10. Let tp be convex. Then for all power invariants R the formula R ∗ {tp} ⊆ R ; {tp} ; R is valid.

Proof Consider some tr ∈ R. We need to show {tr} ∗ {tp} ⊆ R ; {tp} ; R. The claim holds vacuously if tp ∩ tr 	= ∅. Hence
assume that tp ∩ tr = ∅ and set

tr′ =df tr ∩ dep(tp) , tr′′ =df tr − dep(tp) .

In particular, tp ∩ tr′ = ∅. From Lemma 11.3 we know

tr′′ ∩ dep(tp) = tr′′ ∩ dep(tr′) = ∅ .

If we can show that also tp ∩ dep(tr′) = ∅ we have {tr} ∗ {tp} = {tr′} ; {tp} ; {tr′′} and are done. Therefore, suppose

e ∈ tp ∩ dep(tr′), say e →+ g for some g ∈ tr′. By definition of tr′ there is an f ∈ tp with g →+ f . Since tp is assumed to

be convex, this implies g ∈ tp, a contradiction to g ∈ tr′ and tp ∩ tr′ = ∅. ��
Next, we consider general programs.

Definition 11.11. A program is convex if all its traces are.

Lemma 11.12. P is convex iff it satisfies for all power invariants R

R ∗ P ⊆ R ; P ; R .

Proof (⇒ ) Immediate from the definition and Lemma 11.10.

(⇐ ) Consider traces tp ∈ P and tr ∈ R. We need to show {tr} ∗ {tp} ⊆ R ; {tp} ; R. The claim holds vacuously if tp∩ tr 	= ∅.
Hence let tp∩ tr = ∅. By the assumption, there are traces tp′ ∈ P and tr′, tr′′ ∈ tr with tp′ ∩ tr′ = tp′ ∩ tr′′ = tr′ ∩ tr′′ = ∅
and tr′ 	← tp′ ∧ tp′ 	← tr′′ ∧ tr′ 	← tr′′ such that tp ∪ tr = tr′ ∪ tp′ ∪ tr′′. But, by disjointness, this implies tp′ = tp and

we are done. ��
These results motivate the following abstraction.

Definition 11.13. An element a of a concurrent semiring with invariants is called convex iff for all invariants r we have

r ∗ a ≤ r ; a ; r.
By b ; c ≤ b ∗ c, commutativity of ∗ and idempotence of invariants (Theorem 10.11) this inequation strengthens to an

equality. This means that convex elements behave like “atoms” w.r.t. sequentialisation. Convexity will be important for one

of the rules presented in the next section.
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12. Rely/guarantee algebras

As before, we abstract the results of the previous section into general algebraic terms. The terminology stems from the

applications in the following section.

Definition 12.1. A rely/guarantee semiring is a pair (A, I) such that A is a concurrent semiring with invariants and I ⊆ ι (A)
is a sublattice of closure invariants. In particular, for all r, r′ ∈ I their meet r � r′ ∈ I is assumed to exist. Moreover, we

assume 1 ∈ I and r ∗ r′ ∈ I whenever r, r′ ∈ I. Finally, all r ∈ I and a, b ∈ A have to satisfy r ∗ (a ; b) ≤ (r ∗ a) ; (r ∗ b).
A rely/guarantee CKA (quantale) is a rely/guarantee semiring that is a CKA (quantale).

The restriction that I be a sublattice of I(A) is motivated by the rely/guarantee-calculus in Section 13. UsingMace4 it can

be shown that the axiomatisation is irredundant.

Together with the exchange law (7), ∗-idempotence of r and commutativity of ∗ the definition implies

r ∗ (b ◦ c) = (r ∗ b) ◦ (r ∗ c) (∗-distributivity)
for all invariants r ∈ I and operators ◦ ∈ {∗, ; }.

Using Theorem 11.1 we can prove

Lemma 12.2. Let I =df {P(E) | E ⊆ EV} be the set of all power invariants over EV. Then (PR(EV), I) is a rely-guarantee

semiring.

Proof We only need to establish closure of P(P(EV)) under ∗ and ∩. But straightforward calculations show that P(E) ∗
P(F) = P(E ∪ F) and P(E) ∩ P(F) = P(E ∩ F) for E, F ⊆ EV . ��

We can now explain why it was necessary to introduce the subset I of closure invariants in a rely/guarantee semiring.

Our proof of ∗-distributivity used downward closure of power invariants. Other invariants in PR(EV) need not be downward

closed and hence ∗-distributivity need not hold for them.

Example 12.3. Assume an event set EV with three different events e, f , g ∈ EV and a transitive dependence → with

e → g → f . Set P =df [e, f ]. Then P ∗ P = ∅ and hence Pi = ∅ for all i > 1. This means that the invariant R =df P∗ =
skip∪ P = []∪ [e, f ] is not downward closed. Indeed, ∗-distributivity does not hold for it: we have R ∗ [r] = [r] ∪ [e, f , g],
but R ; [g] ; R = [g]. ��

The property of ∗-distributivity implies further iteration laws.

Lemma 12.4. Assume a rely/guarantee quantale (A, I), an invariant r ∈ I, an arbitrary a ∈ A, and ◦ ∈ {; , ∗}.

1. r ∗ a©◦ = (r ∗ a)©◦ ◦ r = r ◦ (r ∗ a)©◦.
2. (r ∗ a)+ = r ∗ a+, where a+ =df a ◦ a©◦.
For the proof we use the following fusion rule for least fixpoints that is valid in quantales (cf. [1]). Let f , g, h : A → A be

isotone functions. Then

f continuous and strict

∀ x : f (g(x)) = h(f (x))

f (μg) = μh

(12)

Proof of Lemma 12.4.

1. For the first equation we use the fusion law (12) with the functions f (x) =df r ∗ x, g(x) =df 1 + a ◦ x and

h(x) =df r + (r ∗ a) ◦ x. First, by the quantale assumptions, f is strict and continuous. Second,

f (g(x))

= {[ definitions ]}
r ∗ (1+ a ◦ x)

= {[ distributivity of ∗ over+ ]}
r ∗ 1+ r ∗ (a ◦ x)
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= {[ neutrality of 1 and ∗-distributivity ]}
r + (r ∗ a) ◦ (r ∗ x)

= {[ definitions ]}
h(f (x)) .

For the equation r ∗ a∗ = r ◦ (r ∗ a)∗ we choose symmetrically g′(x) =df 1+ x ◦ a and h′(x) =df r + x ◦ (r ∗ a).
2. Analogously, with g(x) =df a+ a ◦ x and h(x) =df r ∗ a+ (r ∗ a) ◦ x. ��

13. Jones’s rely/guarantee-calculus

In [23] Jones has presented a calculus that considers properties of the environment onwhich a programwants to rely and

the ones it does, in turn, guarantee for the environment. We now provide an abstract algebraic treatment of this calculus.

The originalmotivation for discussing invariantswas that they should allowguaranteeing that a programonly uses events

froma given admissible set. To this endwebase our treatment on a concurrentmonoidwith invariants and define a guarantee

relation, slightly more liberally than [18], by

a guar b ⇔df ι a ≤ ι b ,

meaning that a guarantees the closure invariant of b. Since ι as a closure is extensive, isotone and idempotent, the right hand

side is equivalent to a ≤ ι b. If b is an invariant, i.e., b = ι b, we obtain by (11)

a guar b ⇔ ι a ≤ ι b ⇔ a ≤ ι b ⇔ a ≤ b .

Example 13.1. With the notation Pu =df [au] for u ∈ {x, y, z} of Example 2.3 we have Pu guar Gu where Gu =df

Pu ∪ skip = [au] ∪ []. ��
We have the following properties.

Theorem 13.2. Assume a rely/guarantee semiring (A, I).

1. 1 guar g.

2. If g, g′ are closure invariants and ◦ is an isotone binary operator satisfying ∀ a, b : ι (a ◦ b) ≤ ι (a+ b) then

b guar g ∧ b′ guar g′ ⇒ (b ◦ b′) guar (g + g′) .

3. If A is a rely/guarantee CKA then for ◦ ∈ {∗, ;} we have a guar g ⇔ a©◦ guar g.

4. For the concrete case of programs, [e] guar G ⇔ e ∈ �G�.
Proof.

1. Immediate from the axioms and the above remark on guar.
2. b guar g ∧ b′ guar g′

⇔ {[ above remark on guar ]}
ι b ≤ g ∧ ι b′ ≤ g′

⇒ {[ isotony of+ ]}
ι b+ ι b′ ≤ g + g′

⇒ {[ subdistributivity of ι ]}
ι (b+ b′) ≤ g + g′

⇒ {[ assumption about ◦ ]}
ι (b ◦ b′) ≤ g + g′

⇔ {[ extensivity of ι ]}
ι (b ◦ b′) ≤ ι (g + g′)

⇔ {[ definition ]}
(b ◦ b′) guar (g + g′) .
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3. Using the assumption, invariance of g and star induction, we calculate

a ≤ g ⇒ a ◦ g ≤ g ◦ g = g ⇒ 1+ a ◦ g ≤ g ⇒ a©◦ ≤ g .

The reverse implication follows by a ≤ a©◦.
4. By the definitions and the Galois connection for �_�,

[e] guar G ⇔ INV([e]) ⊆ INV(G) ⇔ {e} ⊆ INV(G) ⇔ e ∈ �G� . ��
Using the guarantee relation, Jones quintuples can be defined as in [18]:

Definition 13.3.

a r {b} s g ⇔df a {r ∗ b} s ∧ b guar g ,

where r and g are invariants, and Hoare triples are again interpreted in terms of sequential composition ;.
The first rule of the rely/guarantee calculus concerns concurrent composition.

Theorem 13.4. Consider a rely/guarantee semiring (A, I). For invariants r, r′, g, g′ ∈ I and elements a, a′, b, b′, c, c′ ∈ A such

that the meets a � a′ and c � c′ exist,

a r {b} c g ∧ a′ r′ {b′} c′ g′ ∧ g′ guar r ∧ g guar r′ ⇒
(a � a′) (r � r′) {b ∗ b′} (c � c′) (g ∗ g′) .

Proof The guarantee part is covered by Theorem 13.2.2. For the remainder we note that the assumptions b′ guar g′ guar r

and b guar g guar r′ imply, by transitivity of guar, that b′ guar r ∧ b guar r′, and calculate

(a � a′) ; ((r � r′) ∗ (b ∗ b′)) ≤ c � c′
⇔ {[ characterisation of intersection ]}

(a � a′) ; ((r � r′) ∗ (b ∗ b′)) ≤ c ∧ (a � a′) ; ((r � r′) ∗ (b ∗ b′)) ≤ c′
⇐ {[ intersection, isotony ]}

a ; (r ∗ (b ∗ b′)) ≤ c ∧ a′ ; (r′ ∗ (b ∗ b′)) ≤ c′
⇐ {[ b′ guar r ∧ b guar r′ and isotony ]}

a ; (r ∗ (b ∗ r)) ≤ c ∧ a′ ; (r′ ∗ (r′ ∗ b′)) ≤ c′
⇐ {[ associativity and commutativity of ∗ ]}

a ; ((r ∗ r) ∗ b) ≤ c ∧ a′ ; ((r′ ∗ r′) ∗ b′) ≤ c′
⇔ {[ idempotence of ∗ on invariants (Theorem 10.6.3) ]}

a ; (r ∗ b) ≤ c ∧ a′ ; (r′ ∗ b) ≤ c′
⇐ {[ definition of quadruples and assumption ]}

TRUE . ��

Note that r � r′ and g ∗ g′ are again invariants by Definition 12.1. For sequential composition we have

Theorem 13.5. Assume a rely/guarantee semiring (A, I). Then for invariants r, r′, g, g′ ∈ I and arbitrary a, b, b′, c, c′,
a r {b} c g ∧ c r′ {b′} c′ g′ ⇒ a (r � r′) {b ; b′} c′ (g ∗ g′)

Proof The guarantee part is again covered by Theorem 13.2.2. Specialising b, d, b′, c, e in Lemma 9.3 to (r ∗ b), c, (r′ ∗
b′), c′, ((r � r′) ∗ (b ; b′)), respectively, we obtain that the weakest condition implying the remainder of the claim is

(r � r′) ∗ (b ; b′) ≤ (r ∗ b) ; (r′ ∗ b′) .

Since Definition 12.1 implies r � r′ ∈ I again, this follows by ∗-distributivity and isotony of ∗ and ;. ��

Next we give rules for 1, union and convex programs.
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Theorem 13.6. Assume a rely/guarantee semiring (A, I). Then for invariants r, g ∈ I and arbitrary s ∈ A,

1. a r {1} s g ⇔ a {r} s.

2. a r {b+ b′} s g ⇔ a r {b} s g ∧ a r {b′} s g.
3. If b is convex then a r {b} s g ⇔ a {r ; b ; r} s ∧ b guar g.

Proof

1. The guarantee part 1 guar g holds by the definition of invariants. For the remainder of the claim we have by the

definition and neutrality of 1,

a ; (r ∗ 1) ≤ s ⇔ a ; r ≤ s ⇔ a {r} s.

2. By the definitions, distributivity and lattice algebra we have

a r {b+ b′} s g ⇔ a ; (r ∗ (b+ b′)) ≤ s ∧ b+ b′ ≤ g ⇔
a ; (r ∗ b)+ a ; (r ∗ b′) ≤ s ∧ b ≤ g ∧ b′ ≤ g ⇔ a r {b} s g ∧ a r {b′} s g.

3. This is immediate from Definition 11.13 and the remark following it. ��
Finally we give rely/guarantee rules for iteration.

Theorem 13.7. Assume a rely/guarantee CKA (A, I) and let©◦ be finite iteration w.r.t. ◦ ∈ {∗, ;}. Then for invariants r, g ∈ I and

arbitrary elements a, b ∈ A,

a r {b} a g ⇒ a r {b+} a g ,

a {r} a ∧ a r {b} a g ⇒ a r {b©◦} a g .

Proof Recall from Definition 8.1 that in any Kleene algebra b+ = b ◦ b∗ and hence b∗ = 1 + b+. Thus the first law is

immediate from Lemma 12.4.2, Lemma 9.2.8 and Theorem 13.2.3. The second one follows from the first one by b∗ = 1+ b+
and the choice and skip rules. ��

We conclude this section with a small example of the use of our rules.

Example 13.8. We consider again the programs Pu = [au] and invariants Gu = Pu ∪ skip (u ∈ {x, y}) from Example 13.1.

Moreover, we assume an event av with v 	= x, y, ax 	→ av and ay 	→ av and set Pv =df [av]. We will show that

Pv skip {Px ∗ Py} [av, ax, ay] (Gx ∗ Gy)

holds. In particular, the concurrent execution of the assignments x := x + 1 and y := y + 2 guarantees that at most x and y

are changed. We set Rx =df Gy and Ry =df Gx . Then

(a) Px guar Gx guar Ry, (b) Py guar Gy guar Rx .

Define the postconditions

Sx =df [av, ax] ∪ [av, ax, ay] and Sy =df [av, ay] ∪ [av, ax, ay] .
Then

(c) Sx ∩ Sy = [av, ax, ay], (d) Rx ∩ Ry = skip .

From the definition of Hoare triples we calculate

Pv {Rx} ([av] ∪ [av, ay]) ([av] ∪ [av, ay]) {Px} Sx Sx {Rx} Sx ,

since [av, ax, ay] ∗ [ay] = ∅. Combining the three clauses by Lemma 9.2.4 we obtain

Pv {Rx ; Px ; Rx} Sx .

By Theorem 13.6.3 we obtain Pv Ry {Px} Sx Gx and, similarly, Pv Rx {Py} Sy Gy. Now the claim follows from the clauses

(a),(b),(c),(d) and Theorem 13.4. ��
In a practical application of the theory of Kleene algebras to program correctness, the model of a program trace will be

much richer than ours. It will certainly include labels on each event, indicating which atomic command of the program is

responsible for execution of the event. It will include labels on each data flow arrow, indicating the value which is ‘passed

along’ the arrow, and the identity of the variable or communication channel which mediated the flow.
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14. A simplified rely/guarantee-calculus

For certain purposes, the following type of quadruples with an invariant r works just as well as the Jones quintuples:

a r {b} s ⇔df a {r ∗ b} s .

If information about the events of a program b is needed (the rôle of g in the original quintuples of the Jones calculus is, to

a certain extent, to carry this information), one can use the smallest invariant containing b.

Note that the quadruples can be retrieved as special cases of quintuples:

a r {b} s ⇔ a r {b} s b . (13)

We give the simplified versions of the original rely/guarantee-properties; the proofs result in a straightforwardway from

the ones above by embedding (13). Throughout this section we assume a rely/guarantee semiring (A, I).
For concurrent composition we obtain

Theorem 14.1. For invariants r, r′ and elements a, a′, b, b′, c, c′ ∈ A such that the meets a � a′ and c � c′ exist,

a r {b} s ∧ a′ r′ {b′} s′ ∧ b′ ≤ r ∧ b ≤ r′ ⇒ (a � a′) (r � r′) {b ∗ b′} (s � s′) .

For sequential composition one has

Theorem 14.2. For invariants r, r′,
a r {b} s ∧ s r′ {b′} s′ ⇒ a (r � r′) {b ; b′} s′ .

Next we give rules for 1, union and convex programs.

Theorem 14.3.

1. a r {1} s ⇔ a {r} s.

2. a r {b+ b′} s ⇔ a r {b} s ∧ a r {b′} s.
3. If b is convex then a r {b} s ⇔ a {r ; b ; r} s.
Part 3 has only been given for concrete single-event programs in [19]; therefore we give a quick proof for the abstract

form here:

a r {b} s ⇔ a ; (r ∗ b) ⊆ s ⇔ a ; (r ; b ; r) ⊆ s ⇔ a {r ; b ; r} s . ��

15. Event-based algebras

The definition of a concurrent semiring does not mention the dependence relation any more. In this section we show

that in particular concurrent algebras it can be recovered from the ; and ∗ operators. To this end, we now give algebraic

characterisations of traces and events.

Throughout this section we assume a concurrent semiring A with 1 	= 0. A subatom is an element a such that b ≤ a ⇒
b = 0 ∨ b = a. A subatom different from 0 is called an atom (e.g. [3]).

Definition 15.1. An element t ∈ A is called a trace if it is a subatom and join-prime, i.e., if

∀ a ∈ A : a ≤ t ⇒ a = 0 ∨ a = t ,

∀ T ⊆ A : T 	= ∅ ∧ t ≤ � T ⇒ ∃ a ∈ T : t ≤ a .

The set of all traces is denoted by TR(A). For b in A, the set of traces of b is

TR(b) =df {a ∈ TR(A) | a ≤ b} .
By this definition, 0 is a trace,which saves a number of case distinctions. It is immediate that every trace a is+-irreducible,

i.e.,

a = b+ c ⇒ a = b ∨ a = c .

Moreover, if a is a trace and b ≤ a then b is a trace, too. In particular, if a ∗ b is a trace then by (3) also a ; b is a trace.
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In our concrete model the abstract traces different from 0 correspond to singleton programs.

Definition 15.2. In a concurrent bimomoid A we define a relation by

a  b ⇔df ∃ c : b = a ∗ c .

To investigate its properties we need

Definition 15.3. A subset E ⊆ A is well behaved if the following conditions hold (for a, b, c ∈ E):

(a) 1 ∈ E.

(b) E ∗ E ⊆ E.

(c) ∗ is cancellative on E, i.e., a ∗ b 	= 0 ∧ a ∗ b = a ∗ c ⇒ b = c.

(d) 1 is ∗-irreducible in E, i.e., 1 = a ∗ b ⇒ a = 1 ∨ b = 1.

Lemma 15.4.

1.  is a preorder, i.e., reflexive and transitive.

Assume now that E ⊆ A is well behaved. Then we have the following additional properties.

2.  is antisymmetric on E.

3. 1 is the -least element of E.

4. If 0 ∈ E then it is the -greatest element of E.

Proof.

1. Reflexivity follows by choosing c = 1 in the definition of .

For transitivity assume a  b and b  c, say b = a ∗ d and c = b ∗ e. Then c = (a ∗ d) ∗ e = a ∗ (d ∗ e).
2. Assume a  b and b  a. If a = 0 then b = 0 follows from the definition of a  b, since 0 is an annihilator for ∗ .

Otherwise suppose b = a ∗ c and a = b ∗ d. Then a ∗ 1 = a = b ∗ d = a ∗ c ∗ d, hence 1 = c ∗ d by cancellativity.

Now irreducibility of 1 implies c = 1 ∨ d = 1 and hence c = 1 = d, showing a = b.

3. and (4) are straightforward from the definition of , neutrality of 1 and annihilation of 0. ��
In our concrete model, the set E of singleton programs is well behaved and the relation  is isomorphic to the subset

relation on concrete traces.

Assume now that E is well behaved and hence  is a partial order on E. The supremum of a subset D ⊆ E w.r.t.  , if

existent, is denoted by
⊔∗ D.

Lemma 15.5. If 0 ∈ D ⊆ E then 0 = ⊔∗ D.

This is immediate from the definition of and suprema.

Definition 15.6. Assume that E is well behaved. Then e ∈ E is called an E-event if it is subatomic and join-prime w.r.t.  ,

i.e., if

∀ d ∈ E : d  e ⇒ d = 1 ∨ d = e ,

∀D ⊆ E : D 	= ∅ ∧ ⊔∗ D exists ⇒ (t  ⊔∗ D ⇒ ∃ d ∈ D : t  d) .

By this definition, 1 is an E-event, as is 0 if 0 ∈ E. The E-events different from 0, 1 are atoms w.r.t. in E. Clearly, every

E-event a is ∗-irreducible in E:

a = b ∗ c ⇒ b = a ∨ c = a .

To put things into perspective, we note that the order corresponds to the well-known divisibility order on the natural

numbers and E-events play the same rôle as the prime numbers.

Definition 15.7. A concurrent semiring A is event-based if the following properties hold:

(a) 1 is a trace.

(b) Every element is the supremum of its traces, i.e., for all a ∈ A we have a =� TR(a).
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(c) The set TR(A) of traces is well behaved. By EV(A) we denote the set of TR(A)-events and call them the events of A. The

set of events of trace t is

EV(t) =df {e ∈ EV(A) | e  t} .
(d) The set TR(A) of traces is a complete lattice w.r.t. and every trace is the supremum of its events, i.e., for all t ∈ TR(A)

we have t = ⊔∗ EV(t).
(e) For all events e we have e ∗ e = 0 and hence e ; e = 0.

For an arbitrary a ∈ Awe then set EV(a) =df

⋃
t∈TR(a) EV(t).

Hence our concrete model of programs forms an event-based concurrent semiring. Event-based concurrent semirings

are quite similar to the feature algebras developed in [22] for the description of product families.

The definition of an event-based concurrent semiring A immediately yields

Lemma 15.8.

1. EV(0) = EV(A).
2. EV(1) = {1}.
3. For traces a, b with a ∗ b 	= 0 we have EV(a ∗ b) = EV(a) ∪ EV(b) and hence a ∗ b = ⊔∗ {a, b}.

16. Abstract dependence

In this section we define an abstract counterpart to the dependence relation used in our concrete trace model.

Definition 16.1. We call element a sequentially independent of element b, in signs a 	← b, if a ∗ b ≤ a ; b.
The following properties are shown by straightforward calculation and, in the last case, by Theorem 10.11:

Lemma 16.2.

1. 0 	← a and a 	← 0.

2. 1 	← a and a 	← 1.

3. a 	← c ∧ b 	← c ⇒ (a+ b) 	← c.

4. a 	← b ∧ a 	← c ⇒ a 	← (b+ c).
5. If r is an invariant then r 	← r.

Part 5 shows that for general programs this notion behaves in an unexpected way. However, in our concrete model it

works fine for singleton programs:

{tp} 	← {tq} ⇔ ∀ e ∈ tp, f ∈ tq : ¬(e← f ) .

In particular, [e] 	← [f ] ⇔ ¬(e← f ). This motivates the following

Definition 16.3. In an event-based concurrent semiring we define the dependence relation between events e, f by

e→ f ⇔df ¬(f 	← e) ⇔ f ; e 	= f ∗ e .

We denote the converse of→ by← . We say that the algebra respects dependence if e← f ⇒ e ; f = 0.

Lemma 16.4. Consider traces tp, tq of an event-based concurrent semiring that respects dependence.

1. If e→ f for some e ∈ EV(tp) and f ∈ EV(tq) then tp ; tq = 0.

2. If tp ∗ tq 	= 0 then

tp 	← tq ⇔ ∀ e ∈ EV(tp), f ∈ EV(tq) : e 	← f .

Proof.

1. By additivity of ;we have tp ; tq = ⊔∗ {u ; v | u ∈ EV(tp), v ∈ EV(tq)} and the claim follows from Lemma 15.5.

2. (⇐ ) Immediate from event-basedness and additivity of ∗ and ; .
(⇒ ) By Part 1 we have e ; f 	= 0 for all e ∈ EV(tp) and f ∈ EV(tq). Since TR(A) is assumed to be well behaved, also

e ∗ f is a trace, and from e ; f ≤ e ∗ f it follows that e ; f = e ∗ f . ��
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With these prerequisites it is now possible to completely replay the proof of Theorem 11.1 in the abstract setting of

event-based concurrent semirings; we omit the details.

17. Related work

Although our basic model and its algebraic abstraction reflect a non-interleaving view of concurrency, we try to set up a

connection with familiar process algebras such as ACP [2], CCS [29], CSP [16], mCRL2 [14] and the π-calculus [36]. It is not

easy to relate their operators to those of CKA. The closest analogies seem to be the following ones.

CKA operator corresponding operator

+ non-deterministic choice in CSP

∗ concurrent composition | in ACP, π-calculus and CCS, and !! in CSP

‖ interleaving |‖ in CSP

; sequential composition ; in CSP and · in ACP

[] choice+ in CCS and internal choice � in CSP

1 SKIP in CSP

0 this is the miracle and cannot be represented

in any implementable calculus

However, there are a number of laws which show the inaccuracy of this table. For instance, in CSP we have SKIP � P 	= P,

whereasCKAsatisfies1[]P = P. A similarlydifferentbehaviour arises inCCS,ACPand theπ-calculus concerningdistributivity

of composition over choice. In ACP, for instance, we only have the law (a+ b).c = a.c + b.c but not a.(b+ c) = a.b+ a.c.
As the observation after Theorem 11.1 shows, our basic model falls into the class of partial-order models for true con-

currency. Of the numerous works in that area we discuss some approaches that have explicit operators for composition

related to our ∗ and ; . Whereas we assume that our dependence relation is fixed a priori, in the pomset approach [11,13,34]

it is constructed by the composition operators. The operators there are sequential and concurrent composition; there are

no choice and iteration, though. Moreover, no laws are given for the operators. In Winskel’s event structures [37] there are

choice (sum) and concurrent composition, but no sequential composition and iteration. Again, there are no interrelating

laws. Another difference to our approach is that the “traces” are required to observe certain closure conditions.

Among the axiomatic approaches to partial order semantics we mention the following ones. Gischer [12] has shown

that ideals of pomsets form a model of concurrent semirings and that the concurrent semiring axioms are complete for

that model. Boudol and Castellani [5] present the notion of trioids, which are algebras offering the operators of choice,

sequential and concurrent composition. However, there are no interrelating laws and no iteration. Chothia and Kleijn07 [6]

use a double semiring with choice, sequential and concurrent composition, but again no interrelating laws and no iteration.

The application is to model quality of service, not program semantics.

The approach closest in spirit to ours is that of Prisacariu’s synchronous Kleene algebras (SKA) [33]. The main differences

are the following. SKAs are restricted to a finite alphabet of actions and hence have a complete and even decidable equational

theory. There is only a restricted formof concurrent composition, and theexchange law is equational rather than inequational.

Iteration is present but not used in an essential way. Nevertheless, Prisacariu’s paper is the only of the mentioned ones that

explicitly deals with Hoare logic. It does so using the approach of Kleene algebras with tests [25]. This is not feasible in our

basic model, since tests are required to be below the element 1, and 0 and 1 are the only such elements. Note, however, that

Mace4 [28] quickly shows that this is not a consequence of the CKA axioms but holds only for the particular model.

18. Conclusion and outlook

The study in this paper has shown that even with the extremely weak assumptions of our trace model many of the

important programming laws can be shown, mostly by very concise and simple algebraic calculations. Indeed, the rôle of

the axiomatisation was precisely to facilitate these calculations: rather than verifying the laws laboriously in the concrete

trace model, we can do so much more easily in the algebraic setting of Concurrent Kleene Algebras. This way many new

properties of the trace model have been shown in the present paper. Some other interesting models of CKA than the trace

model have been developed; they will be presented in other papers.

Further work is also needed to see how far the trace model and its algebra can be applied to other familiar process

algebras andprogrammingparadigms.Wesuspect that theeasiest candidateswill be theπ-calculus andDijkstra’s imperative

language ofweakest preconditions; and this could show a convenientway of combining the two calculi. The connectionwith

separation logic and separation algebra could be fruitful. Other challenges will be a treatment of external choice, atomicity

refinement, transactions, and exceptions. We hope that these extensions can be made incrementally, and then combined

automatically, without invalidating earlier developments or conflicting with each other.
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Appendix A. Axiom systems

For ease of reference we summarise the most important algebraic structures employed in the paper.

1. An idempotent semiring is a structure (A,+, ·, 0, 1) such that (A,+, 0) is a commutative monoid with idempotent

addition, i.e., a+a = a for all a ∈ A, (A, ·, 1) is amonoid,multiplicationdistributes over addition, i.e., for all a, b, c ∈ A,

a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c + b · c,
and 0 is a left and right annihilator for multiplication, i.e., for all a ∈ A,

a · 0 = 0 = 0 · a .

2. Every idempotent semiring is partially ordered by

a ≤ b ⇔df a+ b = b.

Then+ and · are isotone w.r.t.≤ and 0 is the least element. Moreover, a+ b is the supremum of a, b ∈ A.

3. A idempotent semiring is called a quantale [31] or standard Kleene algebra [8] if ≤ induces a complete lattice and

multiplication distributes over arbitrary suprema. The infimum and the supremum of a subset B ⊆ A are denoted by

�B and �B, respectively. Their binary variants are a � b and a � b (the latter coinciding with a+ b).

4. An ordered monoid is a structure (A, ·, 1,≤) such that (A, ·, 1) is a monoid, A is partially ordered by≤ and · is isotone
in both arguments.

5. A concurrent monoid is a structure (A, ∗, ; , 1,≤) such that (A, ∗, 1,≤) and (A, ; 1,≤) are ordered monoids and the

following axioms hold:

a ∗ b = b ∗ a,

(a ∗ b) ; (c ∗ d) ≤ (a ; c) ∗ (b ; d).

6. A concurrent semiring is a structure (A,+, ∗, ; , 0, 1) such that (A,+, ∗, 0, 1) and (A,+, ; , 0, 1) are idempotent

semirings and (A, ∗, ; ,≤) is a concurrent semigroup, where≤ is the natural semiring order.

7. A concurrent semiring (A,+, ∗, ; , 0, 1) is called a concurrent quantale if (A,+, ∗, 0, 1) and (A,+, ; , 0, 1) are quan-

tales.

8. A Kleene algebra [24] is a structure (A,+, ·, ∗, 0, 1) such that (A,+, ·, 0, 1) is an idempotent semiring and the star

operator ∗ satisfies the unfold and induction laws

1+ a · a∗ ≤ a∗, 1+ a∗ · a ≤ a∗, (A.1)

c + a · b ≤ b ⇒ a∗ · c ≤ b, c + b · a ≤ b ⇒ c · a∗ ≤ b. (A.2)

9. A concurrent Kleene algebra (CKA) is a structure (A,+, ∗, ; ,©∗,©;, 0, 1) such that (A,+, ∗, ; , 0, 1) is a concurrent

semiring and (A,+, ∗,©∗, 0, 1) and (A,+, ; ,©;, 0, 1) are Kleene algebras.

10. An invariant in a concurrent semiring A is an element r satisfying 1 ≤ r and r ∗ r ≤ r, equivalently, 1+ r ∗ r ≤ r. The

set of all invariants of A is denoted by I(A).
11. A concurrent semiring with invariants is a structure (A,+, 0, ∗, ; , 1, ι ) such that (A,+, 0, ∗, ; , 1) is a concurrent

semiring and ι : A → A is a closure operator that satisfies, for all a, b ∈ A,

1 ≤ ι a , ι (a ∗ b) ≤ ι (a+ b) .

A closure invariant is an element a ∈ A with ι a = a.

12. A concurrent semiring A with invariants is ∗-distributive if all closure invariants r and all a, b ∈ A satisfy

r ∗ (a ; b) ≤ (r ∗ a) ; (r ∗ b) .
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13. A rely/guarantee semiring is a pair (A, I) such thatA is a concurrent semiringwith invariants and I ⊆ ι (A) is a sublattice
of closure invariants with 1 ∈ I and r ∗ r′ ∈ I. In particular, for all r, r′ ∈ I their meet r � r′ ∈ I is assumed to exist.

Moreover, all r ∈ I and a, b ∈ A have to satisfy r ∗ (a ; b) ≤ (r ∗ a) ; (r ∗ b). A rely/guarantee CKA (quantale) is a

rely/guarantee semiring that is a CKA (quantale).

Appendix B. Sample input file for automated theorem proving

As a sample input file for Prover9 we show the one for proving some of the laws about Hoare triples from Section 9.

One sees that the axioms and the proof goals can be stated almost in the same syntax as we have used in our definitions.

Since Prover9 allows no more than one goal in form of a Horn formula, most of the goals are commented out. A collection

of further input files and proofs can be found under http://www.dcs.shef.ac.uk/˜georg/ka/.
op(500, infix, "+").
op(450, infix, "*").
op(450, infix, ";").
formulas(assumptions). % concurrent semiring

x+(y+z)=(x+y)+z.
x+y=y+x.
x+0=x.
x+x=x.
x<=y <-> x+y=y.
x*(y*z)=(x*y)*z.
x*y=y*x.
x*1=x.
x*(y+z)=x*y+x*z.
x*0=0.
x;(y;z)=(x;y);z.
x;1=x.
1;x=x.
x;(y+z)=x;y+x;z.
(x+y);z=x;z+y;z.
0;x=0.
x;0=0.
(w*x);(y*z)<= (w;y)*(x;z).

% concurrent Kleene algebra
1+x*s1(x)=s1(x).
1+s1(x)*x=s1(x).
z+x*y<=y -> s1(x)*z<=y.
z+y*x<=y -> z*s1(x)<=y.
1+x;s2(x)=s2(x).
1+s2(x);x=s2(x).
z+x;y<=y -> s2(x);z<=y.
z+y;x<=y -> z;s2(x)<=y.

end_of_list.

formulas(goals).
% s1(x)=x -> y<=x;y & y<= y;x & y<=x*y & y<=x*y.
% s1(x)=x -> x;x<=x.
% s1(x)=x -> x*x=x & x;x=x.
% s1(x)=x -> x*x=x;x.
% s1(x)=x -> x;(y*z)<=(x;y)*(x;z).
% s1(x)=x -> x;(y;x)<=x*y.
% s1(x)=x -> x;(y;x)=x*y. % 4-element counterexample
% s1(x)=x -> s1(x)=s2(x).
% s2(x)=x -> s1(x)=s2(x). % 4-element counterexample
% x<=s1(y) -> s1(x)<=s1(y). % 10.6.7
% x<=s1(y) -> s2(x)<=s1(y). % 10.6.7
end_of_list.

http://www.dcs.shef.ac.uk/~{}georg/ka/
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