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a  b  s  t  r  a  c  t

This  study  provides  an exact  solution  method  to solve  a  mixed-integer  linear  programming  model  that
prescribes  an  optimal  design  of  a cellulosic  biofuel  supply  chain.  An  embedded  structure  can  be  trans-
formed  to a  generalized  minimum  cost flow  problem,  which  is  used  as  a sub-problem  in  a  column
generation  approach,  to solve  the  linear  relaxation  of  the  mixed-integer  program.  This  study  proposes
a  dynamic  programming  algorithm  to solve  the  sub-problem  in  O(m)  time,  generating  improving  path-
eywords:
iomass/biofuel supply chain
mbedded generalized flow problem
olumn generation

flows.  It proposes  an  inequality,  called  the  partial  objective  constraint,  which  is  based  on the  portion  of
the  objective  function  associated  with binary  variables,  to underlie  a branch-and-cut  approach.  Computa-
tional  tests  show  that  the  proposed  solution  approach  solves  most  instances  faster  than  a state-of-the-art
commercial  solver  (CPLEX).

ublis
artial objective constraint
ynamic programming

©  2014  The  Authors.  P

. Introduction

This paper proposes an exact method to prescribe cellulosic
iofuel supply chain design (BSCD), which involves determin-

ng facility locations, capacities, and technology types as well as
 strategic plan for material flows related to production, trans-
ortation, and storage, allowing use of various types of cellulosic
iomass. This work is motivated by the fact that cellulosic biomass,
he feedstock for second-generation biofuels, offers promise to
meliorate concerns about food-price increases that may  have
esulted from use of first-generation feed stocks, which are edi-
le crops (e.g., corn, sugar cane) and provide sustainable supply
f energy, reducing greenhouse gas (GHG) emissions. However,
uch feedstock faces unique challenges: it has low energy density
nd high moisture content, is geographically dispersed, is har-
ested in specific seasons but must fulfill year-round demand, and
oses dry-matter mass in storage. A method that can accommodate
hese challenges in designing the most profitable biofuel supply
hain is vital to the economic viability of this emerging industry.
he research objectives of this paper are a BSCD model that deals
ith the unique features of cellulosic biomass; an effective, exact
olution method to solve large-scale instances; and a computa-
ional evaluation to benchmark our solution approach with the

∗ Corresponding author. Tel.: +966 3 860 1086; fax: +966 3 860 2965.
E-mail addresses: hjan@kfupm.edu.sa, Heungjo.an@gmail.com (H. An).

ttp://dx.doi.org/10.1016/j.compchemeng.2014.07.011
098-1354/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article un
hed  by  Elsevier  Ltd. This  is an  open  access  article  under  the CC  BY-NC-ND
license  (http://creativecommons.org/licenses/by-nc-nd/3.0/).

state-of-the-art, mixed-integer programming commercial solver
CPLEX 12.1.

Fig. 1 depicts alternative locations in each of the five echelons
of the biofuel supply chain, including feedstock supply, prepro-
cessing, conversion in refineries, distribution, and consumption
in customer zones. The term upstream refers to echelons that
deal with biomass from suppliers to conversion plants; and down-
stream, to echelons that deal with biofuel from conversion plants
to customers. Conversion plants themselves are included in both
upstream and downstream. Fig. 1 also depicts possible upstream
storage locations. An appropriate technology must be prescribed
for each facility, depending upon its echelon. For more detail, we
refer the reader to our recent studies (An et al., 2011b; An and
Searcy, 2012).

BSCD has begun to attract considerable attention. Huang et al.
(2010) proposed a multi-period model and applied it in a case study
involving the use of waste biomass in California. Their model pre-
scribes locations and capacities of new refineries and material flows
from farms to end users over a year-long planning horizon. Ekş ioğlu
et al. (2010) formulated a multi-period mixed-integer program
(MIP) for BSCD, using corn and corn stover biomass, to optimize
the network design, modes of transportation, and material flows
from feedstock suppliers to end users. Zhu et al. (2010) proposed
a MIP  to transport switch grass from farms to refineries, prescrib-

ing locations of biomass storage and conversion facilities, modes of
transportation from farms to refineries, and flows of biomass over
multiple time periods. For more detail, we  refer the reader to our
recent review (An et al., 2011a).

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. The biofuel supply chain depicting alternative locations in each echelon.

In particular, this paper presents a BSCD modeling alternative to
n et al. (2011b), which formulated a deterministic, time-staged,
ulti-commodity flow model and demonstrated managerial use

n application to a region in Central Texas. Their formulation
ddressed several unique features of cellulosic feed stocks (e.g.,
igh moisture content, dry matter loss in storage facilities, and sin-
le destination for feedstock supply), dealing with commodity-type
hanges (e.g., biomass with moisture before preprocessing to dry
atter afterwards and dry biomass conversion to biofuel) in multi-

ommodity flow. Their model, as well as the new one we propose,
an be used by managers to design profitable supply chains and by
overnment officials to evaluate policies. In contrast to this paper,
n et al. (2011b) did not propose any solution methodology; they
imply applied CPLEX in their case study.

We solve our BSCD model using a column-generation (CG)
ecomposition approach to solve its linear relaxation at the root
ode by exploiting an embedded generalized network flow prob-

em (GFP). In this CG context, we propose a backward-reaching,
ynamic programming algorithm (BRA) to solve an uncapaci-
ated, embedded GFP as a sub-problem, generating improving
ath-flows (i.e., columns) effectively in O(m); the master prob-

em prescribes optimal flow quantities, imposing flow bounds and
ther side constraints. In addition to the embedded GFP, our BSCD
odel involves many binary variables. To reduce runtime, we

ropose an inequality, a partial objective constraint (POC), based
n the portion of the objective function associated with binary
ariables.

This paper is organized in four sections. Section 2 describes our
SCD model, an alternative to the multi-commodity flow model

roposed by An et al. (2011b). Section 3 explains our solution
ethods, CG and POCs. Section 4 evaluates the performance of our

olution approach through computational tests. Finally, Section 5
ives conclusions and recommendations for future research.
mical Engineering 71 (2014) 11–23

2. Mathematical modeling

Our earlier BSCD formulation (An et al., 2011b) deals with
multi-commodity material flows, defining each commodity in the
upstream as the combination of biomass type and moisture con-
tent, which depends on location and time period. In comparison,
the present paper deals with a single commodity, downsizing the
An et al. model and, therefore, enhancing solvability (i.e., improving
the ability to be solved or, more commonly, allowing reduced run
time). This section describes a two-step procedure to define each
commodity and the network that represents flows, then presents
our model.

We employ two devices that allow all flows to be modeled as
a single commodity. The first device eliminates moisture content
from biomass flows. To describe this device, let T denote the ton-
nage of a particular type of biomass that is harvested in a given time
period and C denote the cost to transport a ton of biomass, so the
total cost of transporting the harvest is CT.  If the moisture content
(portion by weight) of this harvest is �, the dry-matter tonnage is
(1 − �)T. We  model the flow of only dry matter, because it provides
all of the biomass energy content. To compensate for transporting a
lesser tonnage, we adjust transport cost per ton to C/(1 − �). These
two viewpoints are equivalent because they result in the same total
transportation cost: [C/(1 − �)][(1 − �)T] = CT.

The second device models the flow of energy content. Each type
of (dry-matter) biomass may  provide unique energy content, and
tonnages can be converted appropriately into units of energy. A
unit of energy that is harvested travels through the supply chain
but is reduced by the amount of dry matter loss in storage and by
the efficiency of the conversion technology employed. For example,
if a harvested unit of energy is subject to a loss of portion (1 − h1) in
storage and the efficiency of the conversion process is h2, the unit
of flow that leaves the field provides a supply of less than a unit of
energy at the gas pump: h1h2. Notice that h1 and h2 depend upon
technologies used for storage and conversion, respectively.

We  can now model the flow through the biofuel supply chain
as a GFP on an acyclic graph as depicted in Fig. 2. Because the
upstream flow structure for each type of biomass can be treated
the same logically (An et al., 2011b), our modeling alternative forms
the upstream flow network for each additional type of biomass by
duplicating the nodes and arcs in the original network. Each of these
flow networks is unique, however, because each type of biomass is
associated with unique parameters that define moisture content,
dry matter loss, and conversion efficiency. Please note that the sum
of transportation capacities of arcs duplicated from an original arc
is the same as that of the original arc. Fig. 2 illustrates two  upstream
substructures, one for each of two types of biomass. The structure
of the downstream network depends upon the type of biofuel pro-
duced by the conversion technology and could represent new forms
of transportation, storage and customer service for ETOH or use
of existing infrastructure for drop-in fuel. Nodes i0 and in̄ and the
arcs incident to them are needed to form the GFP structure and
are discussed later. Each other node represents an (facility, tech-
nology type, location) alternative; and each downward-pointing
arc, a transport. BSCD involves selecting, from alternative nodes
provided, an optimal set of (facility, technology type, location) com-
binations, including selections we  model in echelon 1 to represent
(biomass type, moisture content and harvest season, and source
location).

Like the pages of a book, each time period is represented by a
layer in the graph. For example, the foreground of Fig. 2 depicts
flows in time period t; and the background, period t + 1. A dashed

arc that is incident from a node in period t to the corresponding
node in period t + 1 allows for inventory to be carried (i.e., stored)
and dry matter loss could occur on such arcs. The path at the far left
of Fig. 2 represents flow (i.e., transport) through the five-echelon
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Fig. 2. Flow network.

upply chain, including (1) feedstock supply (harvest at farm F1
nd field storage F2 there); (2) preprocessing, where, we assume,
ny moisture is removed by drying (storage at P1 beforehand, pre-
rocessing at P2, and storage at P3 afterwards); (3) conversion,
here inefficiency causes a “loss” of flow (storage of biomass at
1 beforehand, inefficient conversion at R2, storage of biofuel at R3
fterwards); and then distribution of the biofuel through (4) distri-
ution center DC and then to (5) consumption in customer zone CZ.
e  define index sets of alternative facilities/locations using corre-

ponding designations: FF1, FF2, FP1, FP2, FP3, FR1, FR2, FR3, FDC and
CZ.

The graph includes “dummy” start and end nodes (i.e., i0 and in̄,
espectively, where n̄ = n + 1), along with directed arcs that con-
ect node i0 to each supply node and each CZ demand node to in̄.
he cost associated with each arc emanating from i0 is the negative
ost of biomass at the supply point; the lower bound for flow out
f i0 is zero; and its upper bound is the capacity of the supply node
o produce biomass in each time period. Similarly, the cost of each
ew arc incident to in̄ is the biofuel selling price; the lower bound

or flow into in̄ is zero; and its upper bound is the demand of the CZ
emand node in each time period. Following Ahuja et al. (1993) self

oops (i0, i0) and (in̄, in̄) allow a feasible flow balance at i0 and in̄;
.e., the flow amount on arc (i0, i0) (in̄, in̄) must equal the amount
f flow-out of (flow-in to) node i0 (in̄). This network models gener-
lized flow in the form of flow-circulation (Wayne, 2002). Finally,
he two cycle paths shown in Fig. 2 are described in Section 3.1.5.

We now introduce our BSCD model, which involves determin-
ng facility locations, capacities, and technology types as well as

 strategic plan for material flows related to production, trans-
ortation, and storage, allowing use of various types of cellulosic
iomass. Table A1, which appears in the Appendix, defines all nota-

ion for reader convenience. To clarify our notation, we use a to
enote an arc in the original network; and s, in the duplicate net-
ork. We use f to denote a facility as well as its location and, for

onvenience, treat farms and CZs as facilities (for which technology
ical Engineering 71 (2014) 11–23 13

types are irrelevant). Our model incorporates two  types of binary
decision variables:

xfr: 1 if facility f, which uses technology type r, is opened, 0 otherwisef ∈ FOP , r ∈ Rf

ya: 1 if arc a is used, 0 otherwise a ∈ A

and two  types of continuous decision variables:

qfr: Capacity of facility f, which uses technology type r, f ∈ FOP , r ∈ Rf

zs: Flow amount on duplicate arc s s ∈ Ad .

We now present model 1 and define notation in the discussion
that interprets the model, which follows immediately. For reader
convenience, we itemize all notation in Table A1 of the Appendix.

Model 1:

Z∗ = Max
∑
s∈Ad

Cszs −
∑
a∈A

CT
a ya −

∑
f ∈FOP

∑
r∈Rf

(CO
frxfr + Vfrqfr) (1)

s.t.∑
r∈Rf

xfr ≤ 1 f ∈ FOP (2)

−Q F
f xfr + qfr ≤ 0 f ∈ FOP, r ∈ Rf (3)

∑
a∈A+

frt

ya ≤ 1 f ∈ FP1 ∪ FR1, r ∈ Rf , t ∈ T (4)

−Q T
a ya +

∑
s∈Ad

a

zs ≤ 0 a ∈ AT (5a)

−qfr +
∑
k∈K

∑
s∈AdI

kfrt

zs ≤ 0 f ∈ FWH, r ∈ Rf , t ∈ T (5b)

−qfr +
∑
k∈K

∑

s∈Ad+
kfrt

zs ≤ 0 f ∈ FPR, r ∈ Rf , t ∈ T (5c)

zs ≤ Qs s ∈ Ad−
kfrt

, k ∈ K1, f ∈ FF1, r ∈ Rf , t ∈ T (6a)

zs ≤ Ds s ∈ Ad+
kfrt

, k ∈ K2, f ∈ FCZ, r ∈ Rf , t ∈ T (6b)

∑
s∈A+

i

zs −
∑
s∈A−

i

hszs = 0 i ∈ Nd (6c)

xfr ∈ {0, 1} f ∈ FOP, r ∈ Rf (7a)

ya ∈ {0, 1} a ∈ AD (7b)

qfr ≥ 0 f ∈ FOP, r ∈ Rf (7c)

zs ≥ 0 s ∈ Ad. (7d)

Objective (1) is to maximize the present worth of total system
profit: the first term gives the revenue Cs for each unit of flow Zs

summed on all arcs s ∈ A; the second term gives the total fixed cost
CT

a associated with arc selections CT
a ya summed on arcs a ∈ A; the

third term gives the fixed cost CO
fr

of opening facilities CO
fr

xfr summed
on facility f ∈ FOP and technology r ∈ Rf alternatives; and the fourth
gives the variable cost Vfr associated with the capacity of facilities
opened Vfrqfr summed on f ∈ FOP and r ∈ Rf. Constraint (2) allows
each facility f ∈ FOP to employ, at most, one technology type r ∈ Rf.
Constraint (3) limits the capacity of facility f ∈ FOP, qfr, to be at most
Q F

f
, if it is opened; otherwise, it allows no flow from facility f. Con-
straint (4) requires that each field storage (preprocessing) facility
f ∈ FF2(FP3) use one transport link to a single preprocessing (conver-
sion) facility f ∈ FP1(FR1) to facilitate management in the upstream.
Constraints (5) impose flow capacity: (5a) Q T

a for arc a ∈ A, (5b) qfr
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or storage facility f ∈ FWH, and (5c) qfr for processing facility f ∈ FPR.
onstraints (6) formulate the embedded GFP: (6a) imposes capac-

ty Qs (i.e., supply limit) to restrict flow on arc s, which is associated
ith farm f ∈ FF1 and technology r ∈ Rf in period t ∈ T; (6b) invokes
pper bound Ds (i.e., demand) for flow on arc s, which is associ-
ted with customer zone f ∈ FCZ and technology type r ∈ Rf in period

 ∈ T; and (6c) balances flow at each node i in the network, where
s indicates gain (hs > 1), loss (hs < 1) or unchanged flow (hs = 1)
cross arc s, which is incident from node i. Due to the nature of
he processes we model, BSC flow networks are acyclic hs ≤ 1 and
or all s ∈ Ad (i.e., there are no ‘gainy’ arcs). Constraints (7a) and (7b)
nvoke binary restrictions on decision variables xfr and ya, respec-
ively. Constraints (7c) and (7d) restrict decision variables qfr and
s, respectively, to be non-negative.

. Solution methods

Model 1 involves two features that make solving practical,
arge-scale instances challenging. The first is the embedded GFP
ubstructure, which includes a huge number of continuous vari-
bles. Section 3.1 proposes our CG approach, which incorporates
ur BRA to generate flow-paths in the un-capacitated version of
he embedded GFP. The second is that the model incorporates a
arge number of binary variables to prescribe facility opening and
ssociated technology types as well as arc selection. Section 3.2
escribes our POC, which holds the goal of accelerating branch and
ound (B&B).

.1. Column generation for an embedded GFP

Many problems in areas such as energy, chemical processing,
ining, water resources, and finance involve large, embedded
FPs (see Ahuja et al., 1993). GFP has been researched exten-
ively (Vaidya, 1989; Kamath and Palmon, 1995; Wayne, 2002);
ut, to our knowledge, only a few studies have proposed solution
pproaches for an embedded GFP. Hultz and Klingman (1978) stud-
ed a GFP with a single side constraint. McBride’s (1985) solver
ptimizes linear programs with network substructures, such as
n embedded GFP. This paper devises a CG approach, treating the
mbedded GFP (constraints (6)) as a sub-problem, to solve the lin-
ar relaxation of model 1.

.1.1. Forest- vs. path-flow in CG
If the flow upper bound of each arc is not considered, an opti-

al  solution to the embedded GFP can be viewed as an augmented
ath-flow. Alternatively, an optimal solution can be considered an
ugmented forest flow, which is comprised of a set of augmented
ree-flows, each of which can be represented as an aggregated set of
ugmented path-flows. Jones et al. (1993) analyzed the impact of
he number of sub-problem extreme points on the performance
f CG in a multi-commodity flow problem. They reported that
sing path-flow solutions in multi-commodity flow sub-problems

s computationally superior to using tree flows, because a network
dmits fewer paths than trees, so that using path-flow solutions
an result in substantially fewer master-problem iterations.

Following Jones et al. (1993), we generate columns based on
ath-flows, imposing the upper bound constraint on each arc flow

n the master problem rather than in the sub-problem. Note that,
ince such an un-capacitated, embedded GFP is a linear program,
he master problem of our decomposition provides the same bound
t each B&B node as does the linear relaxation of model 1.
.1.2. Path-based formulation
To implement CG, generating columns from an un-capacitated,

mbedded GFP, we now transform the arc-based form of model 1 to
he path-based form of model 2, the linear relaxation of which is the
mical Engineering 71 (2014) 11–23

master problem in our CG decomposition. For reader convenience,
Table A2 of the Appendix summarizes the additional notation we
use to formulate model 2.

Model 2:

Z∗ = Max
∑
p∈P

Cp�p −
∑
a∈A

CT
a ya −

∑
f ∈FOP

∑
r∈Rf

(CO
frxfr + Vfrqfr) (8)

s.t. (2)–(4), and (7a–c)

−Q T
a ya +

∑
p∈P

⎛
⎝∑

s∈Ad
a

Hp
s

⎞
⎠�p ≤ 0 a ∈ AT (9a)

−qfr +
∑
p∈P

⎛
⎜⎝

∑
k∈K

∑
s∈AdI

kfrt

Hp
s

⎞
⎟⎠�p ≤ 0 f ∈ FWH, r ∈ Rf , t ∈ T (9b)

−qfr +
∑
p∈P

⎛
⎜⎝

∑
k∈K

∑

s∈Ad+
kfrt

Hp
s

⎞
⎟⎠�p ≤ 0 f ∈ FPR, r ∈ Rf , t ∈ T (9c)

∑
p∈P

(Hp
s )�p ≤ Qs s ∈ Ad+

i0
(10a)

∑
p∈P

(Hp
s )�p ≤ Ds s ∈ Ad−

in̄
(10b)

�p ≥ 0. p ∈ P (11)

Objective (8) is the same as (1) except that the first term is
expressed relative to the revenue Cp associated with path p instead
of arc s. Constraints (9a)–(9c) and (10a) and (10b), which cor-
respond to constraints (5a)–(5c) and (6a) and (6b), respectively,
replace flow variable zs and relevant technological coefficients with
variable �p and the appropriate coefficient based on path p using
the relationship zs =

∑
p∈PHp

s �p;
∑

s∈Ad
a
zs =

∑
s∈Ad

a

∑
p∈PHp

s �p; and
∑

s∈Ad
a
zs =

∑
p∈P

(∑
s∈Ad

a
Hp

s

)
�p.

Thus, the sum of flow amount on arc s can be represented by
the sum of flow amount on paths p that are associated with arc s.
Constraints (11) require decision variables �p to be non-negative.
Note that flows on path p ∈ P in model 2 satisfy constraints (6c)
of model 1. The coefficient Hp

s of �p implies that each unit of flow
prescribed by the value of �p induces flow Hp

s on arc s in path p.
Coefficient Hp

s :=
∏

j∈Ā1
ps

hj represents the product of hj parameters

for each arc j on path p from i0 through s.
The linear relaxation of model 2 is the master problem of our

CG decomposition; it uses an un-capacitated, embedded GFP sub-
problem with constraints (6) to identify improving columns. Model
2 can be recast to apply Dantzig–Wolfe decomposition by adjus-
ting the coefficient of �p on each arc s ∈ Āp from Hp

s to Hp
s �p, where

�p is an extreme-point flow amount on path p, and by incorpo-
rating convexity constraint,

∑
p∈P�p = 1. However, our preliminary

computational tests have shown that using the CG formulation we
describe here gives better results for BSCP, so this paper reports
only its use. Our strategy is to solve the sub-problem to determine
an optimal path from i0 to in̄, for one unit of flow released from
i0, which is decreased along ‘losy’ arcs, generating a column that
enters the restricted master problem (RMP), which induces a set
of path-flows to determine optimal, profitable flow quantities to
solve the linear relaxation of model 2.
3.1.3. Sub-problem to generate paths
Table A3 of the Appendix defines additional notation that we

use to formulate the sub-problem. Path-based model 2 includes a
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ow variable (�p) for each of many paths. The simplex optimality
riterion indicates that entering path p as a column in the master
roblem basis will improve the current solution if (wap − Cp) < 0
nd that, if (wap − Cp) ≥ 0 for all paths p ∈ P, the current master
roblem solution is optimal, where w is a vector of duals variables
ssociated with the constraints of model 2; ap is a column vector in
he constraint matrix of model 1 that is associated with variable �p;

nd Cp is the objective function coefficient associated with variable

p. By using Âu
p , which denotes a set of arcs in path p with non-zero

ntries in row u of the constraint matrix of model 1, each non-zero
lement of ap can be expressed in the generalized form

∑
s∈Âu

p
Hp

s :

p =

⎛
⎜⎝0, . . .,

∑
s∈Âu

p

Hp
s , . . .,

∑

s∈Â|U|
p

Hp
s

⎞
⎟⎠

T

(12)

Let X:=
{

X ∈ {0, 1}|P| :
∑

p∈PXp = 1, p ∈ P
}

. Given the vector of

ual variable values at iteration k, wk, the sub-problem in our CG
rocedure may  be stated as follows:

SUB:

sub(wk) = min{(wkap − Cp)Xp : Xp ∈ X} = min

⎧⎪⎨
⎪⎩

⎡
⎢⎣(wk

1, . . .,  wk
|U|)

⎛
⎜⎝

= min

⎧⎨
⎩

⎡
⎣∑

s∈Āp

Hp
s

⎛
⎝∑

u∈R̂s

wk
u − Cs

⎞
⎠

⎤
⎦Xp : Xp ∈ X

⎫⎬
⎭ = min

here the second equality substitutes (12) for ap, the third re-
xpresses in terms of coefficients of Hp

s , and the last defines
p
s :=Hp

s C ′
s with C ′

s:=
∑

u∈R̂s
wk

u − Cs. The final form of the sub-
roblem is similar to the shortest path problem but with the cost
f arc s, Cp

s , dependent upon path p. The conventional shortest path
roblem has been researched extensively (Ahuja et al., 1993), but
e cannot employ existing algorithms to solve sub-problem (13)

ecause arc cost Cp
s is a function of p, and an arc may  have a different

ost in association with each possible path. Therefore, we  propose
RA to solve sub-problem (13), an unconventional shortest path
roblem.

.1.4. BRA to solve the sub-problem
This section presents a definition of the shortest distance from

ach node to end node in̄, based on arc cost Cp
s , and describes BRA

o solve the sub-problem. This sub-section analyzes sub-problem
tructure, specifies the BRA algorithm, and proposes acceleration
echniques.

.1.4.1. Problem structure. Proposition 1. The shortest distance
rom node ij to end node in̄, f[ij], can be defined recursively using

 [i ]:=

⎧⎨ 0 if ij = in̄

′ (14)

Zsub(wk) = min

⎧⎪⎨
⎪⎩

⎡
⎢⎣C ′

i0i1
+ hi0i1 C ′

i1i
j ⎩ min
(ij,ij+1)∈Ad+

ij

{Cijij+1
+ hijij+1

f [ij+1]} if ij ∈ N\{in̄},

here C ′
ij ij+1

=
∑

u∈R̂ij ij+1
wu − cijij+1

.
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,
∑
s∈Âu

p

Hp
s , . . .,

∑

s∈Â|U|
p

Hp
s

⎞
⎟⎠

T

−
∑
s∈Āp

Hp
s Cs

⎤
⎥⎦Xp : Xp ∈ X

⎫⎪⎬
⎪⎭

∑
s∈Āp

Cp
s

⎞
⎠Xp : Xp ∈ X

⎫⎬
⎭ , (13)

Proof. Given that the series n(p) of nodes on path p is i0 − i1 −
i2. . . − in(p)−1 − in̄, and denoting arc s using its start and end nodes
(e.g., s = (i1, i2)), model SUB can be re-expressed:

Zsub(wk) = min{(Cp
i0i1

+ Cp
i1i2

+ . . . + Cp
in(p)−1in̄

)Xp : Xp ∈ X} (15)

By expanding cost parameters, Cp
s , using the definition Cp

s =
C ′

s

∏
j∈Ā1

ps
hj , we  obtain

 . . +

⎛
⎜⎝

∏
j∈Ā2

p,in(p)−1

hj

⎞
⎟⎠C ′

in(p)−1in̄

⎤
⎥⎦Xp : Xp ∈ X

⎫⎪⎬
⎪⎭

(16)

Then, we  can rearrange terms, collecting coefficients of arc mul-
tipliers to form a nested expression:

Zsub(wk) = min{[C ′
i0i1

+ hi0i1 {C ′
i1i2

+ · · · +

hin(p)−2in(p)−1
{C ′

in(p)−1in̄
}. . .}]Xp : Xp ∈ X}. (17)

To establish the dynamic programming recursion, let f [in̄] : 0;
f [in(p)−1] : C ′

in(p)−1in̄
; f [in(p)−2] : C ′

in(p)−2in(p)−1
+ hin(p)−2in(p)−1

C ′
in(p)−1in̄

=
C ′

in(p)−2in(p)−1
+ hin(p)−2in(p)−1

f [in(p)−1]; in general, f [ij] : C ′
ij ij+1

+
hijij+1

f [ij+1], so that f [i0] : C ′
i0i1

+ hi0i1 f [i1].

We can now simplify Eq. (17):

Zsub(wk) = min{[C ′
i0i1

+ hi0i1 {C ′
i1i2

+ · · · + hin(p)−2in(p)−1
{f [in(p)−1]}. . .}]

Xp : Xp ∈ X} = min{f [i0]Xp : Xp ∈ X} (18)

By using Eq. (18), we  can define the shortest distance from each
node j to the end node in̄. �

Corollary 2 follows from recursion (14) and the dynamic pro-
gramming principle of optimality:

Corollary 2. If P[ij] = ij − ij+1 − · · · − in̄ is a shortest path from node
ij to in̄, sub-path P[ij+1] = ij+1 − · · · − in̄ is a shortest path from node
ij+1 to in̄.

3.1.4.2. Computing algorithm. We  now describe BRA, which is
based on Proposition 1 and Corollary 2, to find the shortest path
from each node to end node in̄. Recall that this shortest path prob-
lem is not the same as the conventional shortest path problem
because of the way  arc costs are defined. Let G = (Nd, Ad), where
Nd is the set of nodes and Ad is the set of directed arcs, denote the
acyclic network on which GFP is defined. BRA orders nodes topo-
logically (Step 1); initializes f [in̄] = 0 (Step 2); and sets f[i] = M for

each i ∈ Nd (Step 3), where M is a big number; and updates the dis-
tance label of each predecessor of node in̄ (Step 4). Then, it processes
nodes in decreasing topological order, updating the distance label
of each predecessor i of node j (Step 5). For each node j, it scans
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ncoming arcs. For each arc (i, j) ∈ Ad−
j

, if f [i] > C ′
ij

+ hijf [j], it sets
 [i] = C ′

ij
+ hijf [j]. Fig. 3 gives a formal description.

Next, we establish the correctness of BRA by showing that,
henever it processes node j in Step 5, the optimal distance label

f node j has already been determined so that BRA is a label-setting
lgorithm.

roposition 3. BRA is correct.

roof. See Appendix A.1.

Now, we analyze the worst case complexity of BRA.

roposition 4. The worst case complexity of BRA is O(m), where m
s the number of arcs.

roof. See Appendix A.2.

Based on the shortest path solution found by BRA, we  can con-
truct a column representing path p, on which a unit flow emanates
rom start node i0, flows as Hp

s =
∏

j∈Ā1
ps

hj units on each arc s in path

, and ends as
∏

j∈Ā2
pin̄

hj units at node in̄. The coefficient associated

ith variable �p in each row of model 2 represents this flow amount
i.e., Hp

s ) on each arc s in path p.

.1.5. Acceleration techniques
We employ two techniques to accelerate CG convergence. First,

e incorporate extra dual cuts. Liang and Wilhelm (2010) gener-
lized extra dual cuts, noting that inserting a polynomial number
f extra dual cuts into RMP  upon initialization restricts the dual
pace, potentially accelerating CG convergence. Alvelos and Valerio
e Carvalho (2007) incorporated cycle paths as extra dual cuts to
enerate several additional, feasible flow paths by forming a linear
ombination of the cycle and flow paths generated by the sub-
roblem. Similarly, this study uses two portions of the supply chain
etwork, an upper part of upstream and a lower part of down-
tream, to generate cycle paths as extra dual cuts. Fig. 2 depicts two
uch cycles: the first, at the northeast corner of the figure, forms a
ycle with nodes (counterclockwise) (i0 – a farm in period t – its
eld storage in period t – the same field storage in period t + 1 – the
arm period t+1 – i0); the second, at the southwest part of the figure,
ontains nodes (counterclockwise) (in̄ – customer zone i1 – distri-
ution center i2 – biofuel storage facility i3 – distribution center i4

 customer zone i5 – in̄). While generating cycles, we disregard arc
A.

direction so that some ‘losy’ arcs become ‘gainy’ arcs in some cycles
generated.

The second technique is based on the conjecture that incorporat-
ing multiple columns found to be improving at each of CG iteration
may  lead to faster CG convergence. After solving the sub-problem
once, we incorporate several improving paths (i.e., each with posi-
tive reduced cost) rather than incorporating only the best (i.e., most
improving) column. However, we control the number of improving
paths (columns) that are made available to RMP  at each iteration to
better manage runtime. Especially in early iterations, dual variable
values may  be far from optimal so that “good” columns may not be
generated. We  incorporate only a small portion (1%) of improving
paths in initial iterations and, based on preliminary testing, increase
that portion to 100% at a preselected iteration number.

3.2. Partial objective constraint

This section introduces POC, an inequality based on a portion
of objective function (1) associated with binary variables. A few
studies have proposed use of an inequality based on the entire
objective function. For example, early papers (Woolsey, 1974;
Austin and Hanna, 1983) employed such an inequality to accel-
erate the Gomory fractional algorithm. To our knowledge, Woolsey
(1974) described the first use of such an inequality, and Austin and
Hanna (1983) developed the bounded dual integer programming
algorithm based on an objective cut, which they used to restrict the
upper bound on each integer variable. Joseph et al. (1997) incor-
porated such an inequality in a heuristic to find a good integral
solution. Gao (2007) presented another heuristic, which defines a
bound on each integer variable based on the optimal solution value
to the linear relaxation of the integer program. Recently, a few stud-
ies (Hartman et al., 2010; Lin, 2010) have proposed inequalities,
which are not necessarily valid, based on a portion of the objec-
tive function. Hartman et al. (2010) used dynamic programming
to identify inequalities for capacitated lot-sizing, and Lin (2010)
devised inequalities based on the objective functions of decom-
posed sub-problems.

We emphasize that, unlike most inequalities used in integer pro-

gramming, POC is not necessarily valid; the goal of a POC is to speed
B&B solution by cutting off a portion of the (binary) search tree, not
to define facets of the convex hull of feasible integer solutions. The
following three subsections define POC; relate certain properties
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ncluding that POC does not cut off all optimal integral solutions;,
nd give a method to obtain right-hand-side values.

.2.1. Definition of POC
Let J = {(f, r) : f ∈ FOP, r ∈ Rf} and select indices of binary variables

x ⊆ J and Iy ⊆ A to construct a POC. Objective function (1) can be
xpressed as:

∗ = Max{R − B} (19)

here R = −
∑

(f,r)∈J\Ix
CO

fr
xfr −

∑
(f,r)∈JVfrqfr −

∑
a∈AD\Iy

CT
a ya +

s∈Ad Cszs; and B =
∑

(f,r)∈Ix
CO

fr
xfr +

∑
a∈Iy

CT
a ya.

At an optimal solution of model 1, ( q*, x*, y*, z*), the optimal
bjective function value Z* is

∗ = R∗
(20) − B∗, (20)

here R∗
(20) = −

∑
(f,r)∈J\Ix

CO
fr

x∗
fr

−
∑

(f,r)∈JVfrq∗
fr

−
∑

a∈AD\Iy
CT

a y∗
a +

s∈Ad Csz∗
s and B∗ =

∑
(f,r)∈Ix

CO
fr

x∗
fr

+
∑

a∈Iy
CT

a y∗
a.

Letting Zinc denote the objective function value of the current
ncumbent MIP  solution,

∗
(20) − B∗ = Z∗ ≥ Zinc;

e-expressing and incorporating upper bound UB POC,

∗ ≤ R∗
(20) − Zinc ≤ UB POC. (21)

By using relationship B* ≤ UB POC from (21), we  define POC
ased on B in (19) and UB POC in (21):

 =
∑

(f,r)∈Ix

CO
frxfr +

∑
a∈Iy

CT
a ya ≤ UB POC, (22)

Note that different POCs can be defined by selecting different
ubsets Ix and Iy of binary variables.

.2.2. POC properties
Here, we describe several properties of POC.

roposition 5. POC may cut off some portion of the B&B tree but not
ll optimal integral solutions.

roof (.).  See Appendix A.3.

In addition, POC may  tighten the bound provided by the linear
elaxation of model 1 because it can cut off an optimal solution
f this linear relaxation. However, even though POC offers these
avorable properties, an appropriate value of UB POC must be deter-

ined to effectively tighten bounds without cutting off all optimal
ntegral solutions. The following section presents a method to
etermine an appropriate value of UB POC.

.2.3. A method to obtain UB POC

We consider upper bound R* ≤ UB R* :

∑
f,r)∈Ix

CO
frxfr +

∑
a∈Iy

CT
a ya ≤ R∗

(20) − Zinc ≤ UB R∗ − Zinc (23)
alculate Z∗
UB lp

.

Upper bound UB R* can be calculated by solving problem PUB,
which is the same as model 1, except the objective function is
changed from max  {R − B} to max {R}:

PUB : Z∗
UB = max{R(24)|s.t.(1) − (7)} (24)

Proposition 6. R∗
(20) ≤ Z∗

UB, where R∗
(20), defined following Eq. (20),

is a portion of the optimal objective function value of model 1 and Z∗
UB

is the optimal objective function value of PUB.

Proof. See Appendix A.4.

Let Z∗
UB lp

be the optimal objective function value of PUB lp, the
linear relaxation of PUB, so that Z∗

UB lp
≥ Z∗

UB. To determine the value
of Z∗

UB, problem PUB, a MIP, must be solved. Therefore, even though
Z∗

UB lp
≥ Z∗

UB and it is just one possible value for UB POC, it is attrac-

tive to use Z∗
UB lp

as an upper bound on R*, because we can obtain it
easily by solving a linear program as described in Fig. 4.

We now re-express POC:
∑

(f,r)∈Ix

CO
frxfr +

∑
a∈Iy

CT
a ya ≤ Z∗

UB lp − Zinc. (25)

Because a model 1 solution in which all decision variables
are zero is feasible, Zinc ≥ 0. In addition, whenever a new integral
incumbent solution is found during the B&B search, the right-hand
side of inequality (25), in principal, can be reduced, tightening POC.
It may  be possible to determine tighter UB POC values, but we  leave
such fine improvement for future research to investigate.

3.2.4. Selection of Ix and Iy
This paper generates two types of POCs, each based on a partic-

ular selection of subsets Ix and Iy:

POC1 :
∑

(f,r)∈H

CO
frxfr +

∑
a∈A

CT
a ya ≤ UB POC1,

which includes all binary variables (i.e., Ix = H and Iy = A) to provide
as strong a cut as possible; and

POC2 :
∑

(f,r)∈H

CO
frxfr ≤ UB POC2,

which includes only binary variables xfr (i.e., Ix = H and Iy =∅) to focus
on the variables that have the largest objective function coefficients
(i.e., in comparison with those of the ya variables) because CPLEX
is likely to branch on them early, influencing the trajectory of the
search.

In addition, we use POC1&2 to denote application of both POC1
and POC2 inequalities.

4. Results and discussion
The objectives of our computational tests are to evaluate the
efficacy of our solution approach and benchmark against state-of-
the-art commercial solver CPLEX 12.1. We employ C++ with CPLEX
Callable Library under the Windows 7 64-bit operating system with
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Table 1
Test instances.

No
1

Name
2

# Farms
3

# Periods
4

# Rows
5

Variables Embedded GFP network

Bin. X
6

Bin. Y
7

Bin. Total
8

Continuous
9

# Nodes
10

# Arcs
11

1 F9T4 9 4 2813 81 648 729 5150 902 5067
2  F9T6 9 6 4205 81 972 1053 7760 1352 7677
3  F9T12 9 12 8381 81 1944 2025 15,590 2702 15,507
4  F12T4 12 4 4178 108 1152 1260 8594 1202 8484
5  F12T6 12 6 6248 108 1728 1836 12,938 1802 12,828
6  F12T12 12 12 12,458 108 3456 3564 25,970 3602 25,860
7  F15T4 15 4 5760 135 1800 1935 12,902 1502 12,765
8  F15T6 15 6 8615 135 2700 2835 19,412 2252 19,275
9  F15T12 15 12 17,183 135 5400 5535 38,942 4502 38,805

10  F25T4 25 4 12,589 225 5000 5225 33,502 2502 33,275
11  F25T6 25 6 18,845 225 7500 7725 50,352 3752 50,125
12  F25T12 25 12 37,613 225 15,000 15,225 100,902 7502 100,675

6 

6 

6 

a
8

r
t
r
e
a
s

o
i
l
o
t
T
(
t
(

r
r
e

4

m
s
C

13  F34T4 34 4 20,788 30
14  F34T6 34 6 31,130 30
15  F34T12 34 12 62,156 30

n Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00 GHz and a RAM of
 GB.

We base all parameters in our experiments on the case study
eported by An et al. (2011b), which involves nine counties in
he Central Texas region. We  selected this test bed because it
epresents the size and scope of the typical BSCD problem. An
t al. (2011b) discussed practical issues and conducted a sensitivity
nalysis with respect to relevant factors. In contrast, we  focus on
olution methodology.

Table 1 describes our 15 test instances, which we  generate based
n two factors: the numbers of farms and time periods. Our tests
nvolve five levels (9, 12, 15, 25 and 34) of the former, and three
evels (4, 6 and 12 representing quarters, bi-months and months)
f the latter. The instances with 34 farms deal with the entire Cen-
ral Texas region, which comprises thirty-four counties. Columns in
able 1 give (1) case number; (2) case name; numbers of (3) farms,
4) time periods, (6) binary X variables, (7) binary Y variables, (8)
otal binary variables, (9) continuous variables, and (10) nodes and
11) arcs in the embedded GFP.

Section 4.1 describes the design of our experiments. Section 4.2
eports the runtime to solve the linear relaxation of model 2 at the
oot node of the B&B search tree. Section 4.3 presents our overall
valuation based on the 15 test instances described in Table 1.

.1. Test procedure
Our solution approach uses CG to solve the linear relaxation of
odel 2 at the root node and then augments POCs during the B&B

earch, which is conducted under CPLEX defaults without using
PLEX cuts. Note that CPLEX uses its strong branching rule by

Fig. 5. Solution p
9248 9554 60,250 3402 59,942
13,872 14,178 90,510 5102 90,202
27,744 28,050 181,290 10,202 180,982

default during B&B search. We  use CPLEX to determine bounds at
nodes other than the root because preliminary tests showed that
it can do so faster than our CG approach. We  conjecture that this
is due, at least in part, to CPLEX’s dual simplex algorithm employ-
ing an early termination criterion and to the CPLEX code having
been refined by professionals over a lengthy period of time, for
example, by advanced programming techniques and incorporation
of sophisticated algorithms, efficient data structures, and mem-
ory management techniques (Bixby, 1994, 2002; Bixby et al., 2000;
Bixby and Rothberg, 2007).

Fig. 5 structures our solution procedure, elements of which are
discussed in Sections 3 and 4.

4.2. Solving the linear relaxation of model 2 using CG

Table 2 compares runtimes required to solve the linear relax-
ation of model 2 at the root node using both CPLEX and our CG
approach. Column 1 gives the names of test instances; Columns
2 and 3 (4 and 5) give CPLEX (CG) results (i.e., CPU run-
time and number of simplex iterations). Column 6 reports time
reduction = 100*(Column 4)/(Column 2), the percentage of CPLEX
runtime required by our CG approach. Column 7 gives the CG iter-
ation number at which we incorporate all improving columns at
each iteration (see Section 3.1.5), and column 8 reports the total
number of CG iterations required to obtain an optimal solution.

In all test instances, our CG approach solves the linear relax-

ation of model 2 faster than CPLEX solves model 1. As the instance
size increases, the ratio of CG runtime to that of CPLEX decreases
(note that the ratio is less than 1.0 on all instances); that is, the
runtime advantage of CG increases with instance size. In addition,

rocedure.
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Table  2
Comparison of CPLEX and CG for the linear relaxation of model 2.

Name1 CPLEX CG Time Reduction CG iteration number

Time (s)
2

# Simplex Iter.
3

Time (s)
4

# Simplex Iter.
5

100*Col 4/Col 2 (%)
6

100% criterion
7

Total
8

F9T4 0.22 2000 0.16 2410 71.4% 3 23
F9T6  1.03 7861 0.55 5249 53.0% 3 37
F9T12  4.29 22,256 2.48 19,333 57.8% 1 49
F12T4  0.90 7130 0.44 4513 48.4% 3 26
F12T6  2.43 13,923 1.23 8379 50.7% 9 48
F12T12 8.53 30,950 5.49 6377 64.4% 1 90
F15T4  1.12 7519 0.28 2846 25.0% 3 22
F15T6  3.09 14,875 1.00 4959 32.3% 1 44
F15T12 28.55 69,378 22.33 87,803 78.2% 21 113
F25T4  4.04 13,784 0.69 4411 17.0% 3 30
F25T6  14.24 32,384 3.32 15,249 23.3% 3 55
F25T12 124.38 60,410 32.01 86,287 25.7% 1 95

6537 11.3% 2 23
49,942 24.2% 3 56
13,732 20.3% 1 111
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F34T4  10.73 21,208 1.21 

F34T6  64.60 72,608 15.62 

F34T12 328.28 187,251 66.74 

ven though CG requires more simplex iterations to solve some
nstances (i.e., F9T4, F15T12 and F25T12), it is faster than CPLEX.
his implies that our decomposition scheme is appropriate and can
eal effectively with practical, large-scale BSCD instances.

In many OR models including the proposed BSCD model, as the
nstance size increases, the constraint matrix becomes sparser (i.e.,
he portion of non-zero coefficients in the matrix becomes smaller).

hile CPLEX needs to deal with a large matrix regardless of zero or
on-zero elements, a decomposition approach such as CG effec-
ively uses only the non-zero part of the matrix. This principle
xplains the computational advantage of our CG approach com-
ared to CPLEX as instance size increases. Note that the CG iteration
umber at which we began to enter all improving columns (column
) is generally less than 20% of the total number of CG iterations.

.3. Solving BSCD using CG and POC(s)

Using the trivial incumbent solution Zinc = 0 and the incumbent
olution value prescribed by CPLEX heuristics, we determine the
HS values of POC1 and POC2. Table 3 benchmarks the runtime
equired by our approach to solve each instance against the default
etting of CPLEX B&B without CPLEX cuts. The first column gives the
ames of test instances. The next seven columns give CPU runtimes
o prescribe an optimal, MIP  solution using CPLEX, POC1, POC2,
OC1&2 (i.e., both POC1 and POC2), POC1′, POC2′, and POC1′&2′,
here the last three strengthen POC1, POC2 and POC1&2, respec-

ively, by strengthening UB POC, as described in Section 4.1 (i.e.,
ig. 5). Note that our preliminary computational tests showed that
PLEX was much slower when it used its cuts to solve our test

nstances than when it did not, so none of the runs we report use
PLEX cuts. Our solution approach is faster than CPLEX with just

 few exceptions: two  instances (F12T12 and F34T6) for POC1;
our instances (F9T4, F9T6, F25T4 and F34T6) for POC2; and three
nstances (F9T4, F15T6 and F25T4) for POC1&2.

Fig. 6 graphs CPU runtime ratios for POC1, POC2, and POC1&2
elative to CPLEX for each test instance without using CPLEX cuts.

 ratio less than 1.0 indicates that the method is faster than CPLEX.
OC1 is less effective than POC2 and POC1&2 in our tests. It is inter-
sting to note that the runtime of POC1&2 is between or better than
hose of POC1 and POC2, with the exception of F12T4. Average run-
ime ratios relative to CPLEX, expressed in percentages, are 90% for
OC1, 91% for POC2, 76% for POC1&2, respectively, implying that

OC1&2 outperforms, on average, CPLEX, POC1, and POC2.

The strengthened POC2′ is faster than POC2 for most instances,
ith the exceptions of F15T12 and F34T6. In contrast, the strength-

ned POC1′ and POC1′&2′ do not reduce runtimes in our tests.
Fig. 6. Comparison of four solution methods.

We  conjecture that the RHS values of the strengthened POC1′ and
POC1′&2′ may  not be tight enough to reduce runtimes.

To understand the sensitivity of runtime to the RHS value of
POC1, we  solve instances using successively strengthened RHS val-
ues and here describe the results for F9T6, which is one typical
example of the test instances that we investigate. Table 4 gives test
results; column 1 gives the test number; and column 2, the POC
used. Column 3 gives the RHS value used and column 4 records
associated gaps. Columns 5–7 provide performance measures (i.e.,
CPU runtime, simplex iterations and nodes examined).

Row 1 gives results using CPLEX defaults (without CPLEX cuts)
without POC1. Row 2 applies our approach with POC1; and row 3,
with POC1′, which uses CPLEX heuristics to strengthen RHS value
(see Section 4.3). Rows 4–6 report results for successively strength-
ened RHS values of POC1. Row 7 strengthens the RHS using the
integer optimal solution value. As the RHS of POC1 decreases to
the optimal solution value, the runtime, simplex iterations, and
nodes examined decrease as well. This result implies that the per-
formance of POC(s) depends on the quality of the RHS value and
that strengthened inequalities may  serve to accelerate B&B.

4.4. Performance of POC(s)

This section analyzes and compares the performances of POC1,
POC2, and POC1&2 in solving instance F12T12 which is a typical
example of the test instances that we  investigate. Fig. 7 compares
best bound, best integer, and the number of iterations for each of

four solution methods. In terms of runtime, POC1&2 is the best
method; POC2 is second; CPLEX, third; and POC1, the worst. The
best bound of CPLEX decreases more slowly than others and the gap
provided by CPLEX decreases more slowly than others. By default,
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Table 3
Comparison of runtimes.

Name
1

CPLEX
2

POC1
3

POC2
4

POC1&2
5

POC1′

6
POC2′

7
POC1′&2′

8

F9T4 4.1 4.0 4.2 4.2 4.0 3.9 4.0
F9T6  10.5 8.9 10.7 9.2 9.1 10.0 8.5
F9T12  46.6 37.5 25.9 26.8 39.8 22.6 23.7
F12T4  60.8 28.9 30.6 34.4 28.9 29.9 33.9
F12T6  47.7 29.9 45.8 32.3 30.7 44.2 30.8
F12T12  205.0 337.3 106.9 91.2 337.6 105.8 91.4
F15T4  14.9 12.2 12.1 10.1 12.2 12.1 10.1
F15T6  37.4 39.7 25.6 38.6 38.9 24.1 40.3
F15T12  724.2 716.1 714.3 464.3 716.3 718.2 465.5
F25T4  142.9 98.3 263.9 162.4 96.6 228.4 239.8
F25T6  651.7 478.1 580.2 553.3 473.7 580.2 555.1
F25T12 2199.7 1189.0 2129.4 1176.7 1277.4 2138.3 1141.0
F34T4  1184.1 526.2 642.3 581.1 526.2 581.1 526.2
F34T6 2589.8 4907.5 3397.1 2164.0 4936.2 5893.0 2891.9
F34T12 >7200.0a >7200.0 >7200.0 >7200.0 >7200.0 >7200.0 >7200.0

a >7200.0: optimal solution was not found within the time limit of 7200 s.

Table 4
Comparison of various strengthened right-hand-side values of POC1 for instance F9T6.

No
1

POC
2

RHS of POC1
3

GAP RHSa

4
Runtime (s)
5

Iteration
6

Nodes
7

1 – – – 10.5 62,935 1781
2  POC1 19,864,300 315% 8.9 55,641 1126
3  POC1′ 13,984,993 192% 8.9 55,641 1126
4  POC1 a 10,000,000 109% 7.5 49,333 1018
5  POC1 b 8,000,000 67% 6.3 40,349 884
6  POC1 c 6,000,000 25% 6.3 40,349 884
7  POC1 *b 4,788,056 0% 6.2 39,839 725

C
1
t

g
1
w
l
a

a GAP RHS = 100*(RHS − optimal RHS)/optimal RHS.
b Optimal.

PLEX has a relative MIP  gap of 10−4 and an absolute MIP  gap of
0−6. The number of simplex iterations we report does not include
he iterations required by CPLEX strong branching.

One interesting observation is that all methods show very small
aps between best bound and best integer solution after about the

500th node. In the early phase of the B&B search, an xfr variable,
hich is associated with opening a facility and has a relatively

arge objective coefficient, may  be selected as a branching vari-
ble, because the CPLEX branching rule may  tend to branch on a

Fig. 7. Comparison of best bound, best integer, and # iterations based on fo
variable that has a large impact on the objective function value.
Later, a ya variable, which selects an arc and has a relatively small
objective coefficient, may  be selected as a branching variable. Even
though fixing ya to zero may  have some impact on material flows,
the impact of fixing it to one may  be very small. In addition, there

are many more ya variables (e.g., 3564 for F12T12) than xfr variables
(e.g., 108 for F12T12).

The box in the upper part of Fig. 7 enlarges the chart for the range
between 1st and 1000th node in the B&B search. POC1&2 results

ur solution methods (instance: F12T12, scope: the entire B&B search).
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n the smallest best bound in the early phase of the B&B search.
ven though the sequence of integer incumbents found by POC1&2
ncreases more slowly than other methods, the gap between best
ound and best integer decreases faster than others. This earlier
onvergence of POC1&2 leads to a faster run time. However, even
hough the gap between best bound and best integer solution value
ecreases faster for POC1 than for CPLEX, POC1 searched more
odes and made more simplex iterations than CPLEX, resulting in

onger runtime for this particular instance. This might be a result
f the particular sequence of branching decisions in combination
ith the large search space associated with ya variables.

Although POC1&2 performs better than POC1 or POC2 on aver-
ge, it is not possible to accurately predict how well it will perform
n any particular instance. For example, its performance is between
he performances of POC1 and POC2 on F12T6 and somewhat
orse on F12T4. This would be partly because it is difficult to pre-
etermine which variable CPLEX strong branching will select to
ranch. If two methods branch differently in the early phase of
heir searches, performances may  differ dramatically, perhaps for
he better, perhaps not. Linderoth and Savelsbergh (1999) noted
hat the performance of strong branching is quite sensitive to the
ubset of variables for which dual simplex iterations are performed.

. Conclusions and future work

This paper presents a new approach to prescribe an optimal
olution for BSCD. We  show how to model material flows as
ingle-commodity, generalized flows, an alternative to the multi-
ommodity flow model of An et al. (2011b). Our CG approach solves
he linear relaxation our model at the root node of the B&B search
ree faster than CPLEX. For example, its runtime is just 11.3% of that
f CPLEX on one instance (F34T4). In this CG context, our BRA solves
he sub-problem, an uncapacitated, embedded generalized mini-

um cost circulation problem, generating improving flow-paths
i.e., columns) effectively in O(m). Our approach can be applied to

any other important problems that involve an embedded GFP.
We devise POCs, inequalities based on a portion of the objec-

ive function, and augment them to the linear relaxation of BSCD
o cut off some portion of the B&B search tree with the goal of
acilitating solution. Average ratios of runtime of each of our meth-
ds to that of CPLEX are 90% for POC1, 91% for POC2, 76% for
OC1&2, respectively, implying that POC1&2 outperforms, on aver-
ge, CPLEX, POC1, and POC2. POC1&2 tends to find an integral
olution earlier than POC1 and POC2, so that it may  contribute to
aster convergence. We  expect that POCs could be used effectively
o solve other MIPs that involve an objective function structure
imilar to ours.

This research identifies several fertile topics for future research.
he embedded GFP sub-problem, a linear program, can be solved
fficiently, but it may  be helpful to define a second type of sub-
roblem that is an integer problem to facilitate solution by allowing
ounds at B&B nodes to be tightened. Second, our CG approach can
nter all improving columns but it does not identify all alterna-
ive optimal shortest paths. Thus, it would be interesting to study
he impact of making alternative optimal shortest paths available
o the master problem. Third, future research could investigate
venues to improve our column-management techniques with the
oal of enhancing solution capability. Fourth, POC may  be an attrac-
ive candidate for further study that would assess the range of
roblem types for which it is most effective. Finally, our solu-
ion approach offers promise in application to other problems that

nvolve an embedded generalized flow problem. In particular, our
G approach holds potential for solving non-linear problems, espe-
ially in the petrochemical industry. Several commercial solvers
e.g., GRTMPS, PIMS, and RPMS) solve non-linear problems by
ical Engineering 71 (2014) 11–23 21

solving a sequence of linear programs (Zhang et al., 1985; Mouret
et al., 2011) and our CG approach may  be able to solve non-linear
problems that embed GFP faster than other successive linear pro-
gramming algorithms.
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Appendix.

See Tables A1–A3.

A.1. Proof of proposition 3

Suppose that BRA has processed nodes in̄, in, . . .,  ik and their
distance labels are optimal. Next, BRA processes node ik−1. Let
a shortest path from node ik−1 to the node in̄ be ik−1 − ih −
· · · − in̄ where ih > ik−1. By Property 2, path ih − · · · − in̄ must be a
shortest path from node ih to in̄. Since BRA processes nodes in
decreasing topological order and (ik−1, ih) ∈ Ad−

ih
, node ih is included

in {ik, . . .,  in̄} and the distance label of node ih, f[ih], is equal to the
shortest distance of the path from node ih to in̄ by hypothesis. While
processing node ih, arc (ik−1, ih) must be scanned and the distance
label of node ik−1, f[ik−1], set equal to C ′

ik−1,ih
+ hik−1ih

f [ih], identify-

ing the shortest distance from ik−1 to in̄ (i.e., path ik−1 − ih − · · · − in̄).
Therefore, when BRA processes node ik−1, its distance label is
already optimal. Even if alternative optima exist, the optimal dis-
tance label of node ik−1, f[ik−1], is not affected because the shortest
distance associated with each alternative shortest path is the same
as f[ik−1]. �

A.2. Proof of proposition 4

Step 1, ordering nodes topologically can be done in O(m) (Ahuja
et al., 1993). Step 2 runs in O(1). Steps 3 and 4 run in O(n) and O(m),
respectively, where n is the number of nodes. Step 5 examines each
arc just once (lines 7 and 8) and each line (i.e., lines 9–11 and 13)
within step 5 runs in O(1) so that total runtime of step 5 is O(m).
Since m ≥ n according to the network structure of the embedded
GFP, the worst-case complexity of BRA is O(m). �

A.3. Proof of proposition 5

If the value of UB POC were greater than B* and it were
decreased, POC would tighten restriction (22) on binary variables
in sets Ix and Iy so that some feasible integral solutions of model 1
can be rendered infeasible to POC and, thus, cut off by POC.

To prove the second part of Property 5, we  show that,
after optimizing model 1 then incorporating a POC and re-
optimizing, the original optimal solution to model 1 remains
optimal. Let ( q*, x*, y*, z*) be an optimal solution of
model 1 with objective function value Z(q∗, x∗, y∗, z∗) = R∗ − B∗ =
R∗ −

(∑
(f,r)∈Ix

CO
fr

x∗
fr

+
∑

a∈Iy
CT

a y∗
a

)
. POC restricts

∑
(f,r)∈Ix

CO
fr

xfr +∑
a∈Iy

CT
a ya by UB POC, which is an upper bound of

∑
(f,r)∈Ix

CO
fr

x∗
fr

+∑
a∈Iy

CT
a y∗

a. Therefore, optimal solution values of binary variables

of model 1 in sets Ix and Iy, (i.e., x∗
fr

, (f, r) ∈ Ix; and y∗
a, a ∈ Iy) are still

feasible with respect to POC. In addition, optimal solution values of

binary variables of model 1 not in sets Ix and Iy as well as continuous
variables of model 1 (i.e., q* and z*), are feasible with respect to
POC, because POC does not restrict any those variables. This implies
that ( q*, x*, y*, z*) is feasible with respect to POC.
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Table A1
Notation for model 1.

Indices
a: Arc a ∈ A
b: Biomass type b ∈ B
e: Biofuel type e ∈ E
f: Facility f ∈ F
i: Duplicate node i ∈ Nd

k: Commodity k ∈ K
l: Layer (echelon) l ∈ L
r: Technology type r ∈ Rf

s: Duplicate arc s ∈ Ad

t: Time t ∈ T
Sets
A: Directed arcs :=A+

frt
∪ AI

frt

Ad: Duplicate directed arcs :=Ad+
kfrt

∪ AdI
kfrt

Ad
a: Arcs that are duplicate from original arc a

A+
frt

(A−
frt

): Directed arcs in period t that start or end at node frt

AI
frt

: Arc for which flow represents inventory held at facility f of type r from
period t to period t+1
Ad+

kfrt
(Ad−

kfrt
): Duplicate arcs in period t that start (end) at duplicate node kfrt

AdI
kfrt

: Duplicate arc that represents inventory held at facility f of type r from
period t to period t + 1
AT: Directed arcs associated with
transportation

:=A+
frt

, f ∈ FF2 ∪ FP3 ∪ FR3 ∪
FDC , r ∈ Rf , t ∈ T

B:  Feedstock (biomass) types supplied by
facility (e.g., farm)

f ∈ FF1

Fl: Candidate locations for facilities in echelon l, feedstock supply site (FF1,
FF2), or CZ (FCZ), l ∈ L
FWH0: Warehouses where biomass is held
before preprocessing

:=FF2 ∪ FP1

FWH1: Warehouses where biomass is held :=FWH0 ∪ FP3 ∪ FR1

FWH2: Warehouses (i.e., storage tanks)
where biofuel is held

:=FR3 ∪ FDC

FWH: Warehouses :=FWH1 ∪ FWH2

FPR: Process facilities (preprocessing,
conversion refinery)

:=FP2 ∪ FR2

FOP: Facilities :=F \ (FF1 ∪ FCZ)
FUP: Upstream facilities :=FF1 ∪ FF2 ∪ FP1 ∪ FP2 ∪ FP3 ∪ FR1

FDOWN: Downstream facilities :=FR2 ∪ FR3 ∪ FDC ∪ FCZ

F: All facilities :=FUP ∪ FDOWN

K1: Feedstock types (i.e., commodities) := {(f, t, b)} , f ∈ F, t ∈ T, b ∈ B
K2: Biofuel commodity := {e} , e ∈ E
K:  Commodities :=K1 ∪ K2

L: Echelons, {F1, F2, P1, P2, P3, R1, R2, R3, DC,  CZ}
Nd: Duplicate nodes
Rf: Types of technologies at facility f, f ∈ Fl

T: Time periods
Parameters
CT

a : Fixed cost of selecting arc a
CO

fr
: Fixed cost of opening facility f of technology type r

Cs: Revenue (>0) or cost (<0) for a unit flow on arc s
Ds: Upper bound on flow on arc s, which is associated with demand of the
starting node kfrt of arc s
hs: Multiplier associated with arc s
Q T

a : Upper bound on flow on arc a
Q F

f
: Capacity limit of facility f (biomass storage, preprocessing, refinery, or

biofuel storage)
Qs: Upper bound on flow on arc s, which is associated with supply capacity
of  the end node kfrt of arc s
Vfr: Variable cost per unit of capacity of opening facility f of technology
type r
VT

s : Variable cost for a unit of flow on arc s (variable transportation cost on
transportation arc, variable holding cost on inventory arc)
Decision variables
qfr: Capacity of facility f of technology type
r

f ∈ FOP , r ∈ Rf

xfr: 1 if facility f of type r is opened, 0 f ∈ FOP , r ∈ Rf

s
x
o
s

Table A2
Notation for model 2.

Indices
p: path p ∈ P
Sets
P: Paths from i0 to in̄ that satisfy flow balances (6c)
Ā1

ps: Duplicate arcs from i0 to the one immediately preceding arc s on path p
Ā2

pi
: Duplicate arcs from i0 to node i on path p

Āp: Duplicate arcs on path p
N̄p: Duplicate nodes on path p
Parameters

Cp: Variable cost of a unit flow on path p:=
∑
s∈Āp

Hp
s Cs p ∈ P

Hp
s :=

∏
j∈Ā1

ps

hj p ∈ P fors ∈ Āp, 0 otherwise

Decision variables
�p: Flow amount on path p p ∈ P

Table A3
Notation for sub-problem.

Indices
u: row u ∈ U
Sets
Âu

p: Arcs in path p with non-zero entries in row u of the constraint matrix
of  model 1
R̂s: Rows with non-zero entries in the column associated with arc s of the
constraint matrix of model 1
U: Rows of the constraint matrix of models 1 and 2
Parameters
ap: Column vector of coefficients associated with variable
�p in the constraint matrix of model 2

p ∈ P

wu: Dual variable associated with row u in model 2 u ∈ U
otherwise
ya: 1 if arc a is used, 0 otherwise a ∈ A
zs: Flow amount on duplicate arc s s ∈ Ad

By way of contradiction, suppose that there exists an optimal
olution ( q′, x′, y′, z′) of model 1 with POC such that Z(POC)( q′,

′, y′, z′) > Z(POC)( q*, x*, y*, z*), where Z(POC)( q′, x′, y′, z′) is the
bjective function value of model 1 with POC evaluated at optimal
olution ( q′, x′, y′, z′) and Z(POC)( q*, x*, y*, z*), at ( q*, x*, y*,
Decision variables
Xp: 1 if path p is used, 0 otherwise p ∈ P

z*). Since ( q′, x′, y′, z′) is also a feasible solution to model 1, Z( q′,
x′, y′, z′) ≤ Z( q*, x*, y*, z*). The feasibility of both ( q*, x*, y*,
z*) and ( q′, x′, y′, z′) to model 1 and POC implies that Z(POC)( q*,
x*, y*, z*) = Z( q*, x*, y*, z*) and Z(POC)( q′, x′, y′, z′) = Z( q′, x′,
y′, z′). Therefore, Z(POC)( q′, x′, y′, z′) ≤ Z(POC)( q*, x*, y*, z*). This
contradicts the assumption that Z(POC)( q′, x′, y′, z′) > Z(POC)( q*, x*,
y*, z*), establishing the proposition. �

A.4. Proof of proposition 6

By way of contradiction, suppose that there exist optimal solu-
tions u* of model PUB and v∗ of model 1, respectively, such that
R(20)(v∗) = R∗

(20) > Z∗
UB = R(24)(u∗), where R(20)(v∗) is the portion

(defined as R∗
(20)) of the objective solution value of model 1 associ-

ated with optimal solution v∗, and Z∗
UB = R(24)(u∗) is the objective

function value of model PUB evaluated at optimal solution u*.
Because the constraints of model 1 constitute model PUB, v∗ is also
a feasible solution with respect to model PUB. This implies that
R∗

(20) = R(20)(v∗) = R(24)(v∗) ≤ R(24)(u∗) = Z∗
UB, where R(24)(v∗) is the

objective function value of PUB associated with feasible solution v∗.
The inequality follows from the fact that v∗ is a feasible solution
to PUB, a maximizing problem, and u* is an optimal solution. This
contradicts the assumption that R∗

(20) > Z∗
UB. �
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