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the class for k + 1 input heads from that for k is actually obtained by the 
diagonalization argument. Our proof also shows that the hierarchy results on two- 
way automata are useful to derive some hierarchy results on one-way automata 
without endmarkers. 

The hardest languages [6]. have received attentions since they are hardest in the 
sense of time and space complexity and they are useful for the representations of 
language families. It is known that context-free languages, nondeterministic and deter- 
ministic context-sensitive languages, and recursively enumerable languages have the 
hardest languages [4,6]. On the other hand, there are no hardest languages for deter- 
ministic context-free languages [7], linear context-free languages [2], one counter 
languages [l] and regular languages [4]. It was shown in [ 171 that the class of two- 
way nondeterministic pushdown automaton languages has a language G, which is of 
the form G, = ‘fi = {w [ w” is in L for some n 2 I} for some context-free language 
L and is hardest in the sense of time and space complexity. This result is espcially 
interesting because of the relationship between one-way automata and two-way 
automata. 

In Section 3 we describe a hardest language for two-way k-head pushdown (resp. 
k-head stack, (k + 1)-head finite) automata for k > 1. Then we show that the class of 
two-way k-head pushdown (resp. stack) automaton languages has a language with the 
hardest time and space complexity which can be written as ‘@ for some one-way k- 
head pushdown (resp. stack) automaton language. We also give a representation 
theorem for recursively enumerable languages by means of the root closure operation 
$‘- and the two-way deterministic pushdown automaton languages. 

2. HIERARCHY RESULTS 

We assume that one-way multihead pushdown (resp. stack) automata do not have 
endmarkers on the input tape and they accept an input by entering a final state with 
at least one input head at the right end of the input. We omit the formal definitions of 
these devices. 

We denote the class of languages recognized by one-way nondeterministic (resp. 
deterministic) k-head pushdown automata by lNPDA(k) (resp. lDPDA(k)). The 
class of languages recognized by one-way nondeterministic (resp. deterministic) k- 
head stack automata is denoted by lNSA(k) (resp. lDSA(k)). Two-way multihead 
pushdown (resp. stack, finite) automata have the right and left endmarkers on the 
input tape and they accept by final state with all input heads on the right endmarker. 
We denote by 2NSA(k) (resp. 2DSA(k)) the class of two-way nondeterministic (resp. 
deterministic) k-head stack automaton languages. Similarly, 2NPDA(k) (resp. 
ZDPDA(k)) and 2NFA(k) (resp. 2DFA(k)) describe the class of two-way nondeter- 
ministic (resp. deterministic) k-head pushdown automaton languages and the class of 
two-way nondeterministic (resp. deterministic) k-head finite automaton languages, 
respectively. We abbreviate ZNSA( l), 2DSA( l), 2NPDA(l), ZDPDA(1) as 2NSA, 
2DSA, 2NPDA, 2DPDA, respectively. 
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The following hierarchy results will be proved by using the hierarchy results on the 
corresponding two-way input head automata. 

THEOREM 2.1. (1) lNSA(k + 1) # lNSA(k)fir k > 1. 

(2) lDSA(k + 1) # lDSA(k)for k > 1. 

(3) lNSA(k) # lDSA(k)fir k > 1. 

(4) lNPDA(k + 1) # lNPDA(k)fir k > 1. 
(5) lDPDA(k + 1) # lDPDA(k)for k > 1. 

LEMMA 2.2. For each two-way k-head stack (resp. pushdown) automaton M, 
there is a two-way k-head stack (resp. pushdown) automaton M’ which reverses its 
input heads on the right and left endmarkers and recognizes the same language as M. 
Furthermore, lyM is deterministic, then M’ can be chosen to be deterministic. 

Proof. Lemma is easily shown for two-way k-head pushdown automata. For two- 
way k-head stack automata, a technical idea is required. Let M be a two-way k-head 
stack automaton and let r be the set of stack symbols ofM. We use two new distinct 
symbols a and b not in ZY For each stack symbol A in r, M’ on input w = a, a, . . . a, 
of length n uses the string a’b”-‘A for some i. M’ simulates M on w in the following 
way: 

(1) Pushdown operation: M is pushing down a symbol A on the top of the 
stack with the first input head on ai. If the first input head of M’ is sweeping from 
left to right (resp. right to left), then M’ performs the following steps: 

1. M’ moves the first input head to the right (resp. left) endmarker and puts 
the string a”-’ (resp. a’) on‘the stack. 

2. M’ enters the stack search mode. By using the string a”-’ (resp. a’) stored 
in the stack, M’ moves the first input head to the position of a,. M’ moves the stack 
pointer to the top of the stack. 

3. M’ moves the first input head to the left (resp. right) endmarker and puts 
the string biA (resp. b”-iA) on the stack. 

4. M’ enters the stack search mode, M’ moves the first input head to the 
position of ai by using the string b’ (resp. b”-’ ) and returns the stack pointer to the 
top of the stack. 

(2) Input head move: If M moves thejth input head left (resp. right) while the 
jth input head of M’ is sweeping from left to right (resp. right to left), then two cases 
arise according to the mode of the stack. Assume that the jth input head of M is 
on ai. If M is in the stack search mode, M’ performs the following steps: 

1. M’ moves the jth input head to the right (resp. left) endmarker and 
simultaneously moves down the stack pointer to the position Xi (resp. X,-J of 
x, a.. xnA, where x, a-. x,A is the string stored instead of the stack symbol A. 
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2. M’ moves the stack pointer to the position of x, and puts thejth input head 
on a,_ 1 (resp. Ui+ 1). 

3. M’ returns the stack pointer to the position of A. 

If M is in the push-pop mode, M’ performs the following steps: 

1. M’ moves the jth input head to the right (resp. left) endmarker and puts the 
string a”-‘+’ (resp. aitl) on the stack. 

2. M’ pops up the string a”-‘+ ’ (resp. ait ’ ) and simultaneously moves the j th 
input head to the position of ui_, (resp. ai+ ,). 

The remaining operations can be directly simulated. By definition, it is obvious 
that if M is deterministic, so is M’. I 

Proof of Theorem 2.1. (1) Since 2NSA(k + 1) z 2NSA(k) 191, there exists a 
language L E ,?Y* in 2NSA(k + 1) - 2NSA(k). By Lemma 2.2, L is recognized by a 
two-way nondeterministic (k + 1)-head stack automaton M, that reverses its input 
heads only on the endmarkers. It is easy to construct from M, a one-way nondeter- 
ministic (k + 1)-head stack automaton M, which satisfies (i) and (ii). 

(i) M, accepts w if and only if M, accepts (w$w”$)~ w$ for some n > 0, 
where $ is a symbol not occurring in the input alphabet Z of M,. 

(ii) Every string accepted by M, has the form w, $ . a. w,, $w,, + , $ for some 
n > 0, where wi is in C* for i = l,..., 2n + 1. 

Suppose that lNSA(k + 1) = lNSA(k). Then let M, be a one-way nondeter- 
ministic k-head stack automaton which recognizes the same language as M,. 
Consider a two-way nondeterministic k-head stack automaton M, which moves as 
follows: Given an input w, M, on w simulates M, on (~96~~96)” w$ for some n >, 0 
by reversing its input heads on the endmarkers. If M, enters a final state, then M, 
moves all input heads to the right endmarker and accept w by entering the final state 
of M,. By (ii), if M, enters a final state, then it accepts (~96~~96)” w$ for some n > 0. 
Therefore by (i), w is in L. Conversely, if w is in L, then by (i) M, accepts 
(w$wR$)” w$ for some n > 0. Therefore M, accepts w. Hence L is in 2NSA(k), a 
contradiction. Thus INSA(k + 1) # INSA( 

Conditions (2~(5) can be proved in the same way by using the hierarchy results 
2DSA(k + 1) # 2DSA(k) 191, 2NSA(k) # 2DSA(k) [3,9], 2NPDA(k f 1) # 
2NPDA(k) [lo], 2DPDA(k + 1) # 2DPDA(k) [lo], respectively. 1 

Remark. It should be noted that the technique used in this section is also 
applicable to other hierarchy results. For instance, from the fact 2NSA(k) # 
ZNPDA(k) [9] we can derive lNSA(k)# lNPDA(k). This is already known since 
the one-way multihead pushdown automaton languages have the semilinear property 
[ 81, but on the other hand there is a nonsemilinear one-way stack automaton 
language. We can also observe an implication that if 2NPDA(k) # 2DPDA(k), then 
lNPDA(k)# lDPDA(k). However, it seems more difficult to prove 2NPDA(k) # 
2DPDA(k). 
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3. HARDEST LANGUAGES 

DEFINITION (61. A language L, s ,?Y$ is said to be hardest for a class C of 
languages if L, is in C and for every language L s Z* in C there is a homomorphism 
h,: C* + Zt such that for each nonempty string w in Z’w is in L if and only if 
AL(w) is in&. 

For a language L E Z*, the root closure of L is defined by fl = (w 1 w” is in L 
for some n > I}. It was proved in [ 171 that ZNPDA has a language with the lardest 
time and space complexity which is written as the root closure of some context-free 
language. The proof depends on the existence of hardest context-free language and 
therefore it does not work for 2DPDA since there is no hardest deterministic context- 
free language. 

Theorem 3.1 shows that hardest languages exist for various two-way multihead 
automaton language classes and its corollary extends the result in [ 171 for multihead 
nondeterministic and deterministic pushdown and stack automata. 

THEOREM 3.1. A hardest language exists for each of the classes ZNSA(k), 
2DSA(k), 2NPDA(k), ZDPDA(k), 2NFA(k + 1) and ZDFA(k + 1) for k > 1. 

Proof: First, we describe hardest languages L[ZNSA] and L[2DSA] for 2NSA 
and ZDSA, respectively. Let M be a two-way stack automaton with the stack 
alphabet {A, B). A move of M is a quintuple (JJ, x, d, p, q), where p and q are states 
of M, x is an input symbol, d is an input head direction and v, is an operation for the 
stack. It means that if M in state p reads the input symbol x and the operation v, is 
executable, then M moves its input head according to d, operates 9 on the stack and 
changes its state to q. For an input symbol x, we denote by M(x) the conventional 
tuple by tuple encoding of the collection of the moves of M when M reads the 
symbol x. We assume that the first state p, is the initial state and the ith state pi is 
encoded as O’-‘lOme’1 ifp, is a final state else Oi-llOm-‘t ‘, where M is the number 
of states in 44. The language L[ZNSA] is defined as the collection of the strings 
satisfying the following conditions: For each w in L[ZNSA], there is a two-way stack 
automaton M with the stack alphabet {A, B) and an input a, *.. a, of M such that M 
accepts a, ... a, and w is of the form w = [M(g) M(a,) M(B)] a-+ [M($) M(u,) M(e)], 
where $ and 4 are the left and right endmarkers, respectively. The language L[ZDSA] 
is defined by restricting M to be deterministic in the above definition. For each 
L c ,?I* in 2NSA (resp. 2DSA), we can take a two-way nondeterministic (resp. deter- 
ministic) stack automaton M with the stack alphabet {A, B} which recognizes L. 
Then we deline a homomorphism h,: Z* + Z,* by hL(x) = [M($) M(x) M(4)] for x in 
C, where ,Z, is the alphabet of L[2iVSA] (resp. L[ZDSA]). Notice that for each 
nonempty string w in Z+, w is in L if and only if h,(w) is in L[2NSA] (resp. 
L [ZDSA I). 

We now see that L[ZNSA] is in 2NSA. We describe the moves of a two-way stack 
automaton M, which recognizes L[2NSA]. Given an input w, MO first checks 
whether w is in the right form. Assume that w = [M(S) M(a,) M(e)] -.. 
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[M($) M(u,) M(4)] for some M and Q, -me a,. M, simulates M on a, a.. a, in the 
following way: If M is in state pi with the input head on uk and performing a move 
(P,, uk, d, cp, p/), then M, puts its input head on the move (pr , ak, d, fp, pj) in the kth 
block [M(S) M(U,) M(B)]. Th e moves of it4 on the endmarkers are simulated only 
when the input head of M, is in [M($) M(u,) M(e)] and [M(g) M(u,) M(e)]. M, 
executes the operation cp for the stack. Then according to the input head direction d, 
M, moves its input head to the right or left block or remains in the same block while 
M, have to keep the next state p, in some way. If M is in the push-pop mode, then 
M, can keep the state p, on the top of the stack. Coping with the case that M is in the 
stack search mode, M, uses the string u”‘X instead of a stack symbol X, where a is a 
symbol not in (A, B} and m is the number of states in M. Then by the stack pointer 
position in the string a”X, M, can keep the state pj. Using the state kept in the stack, 
M, can search the next move in the appropriate block. In this way M, simulates M’s 
state transitions. Thus L[ZNSA] is in 2NSA. Since a two-way deterministic stack 
automaton can check whether an encoding of a two-way stack automaton is deter- 
ministic or not, we also see that L[2DSA] is in 2DSA. 

For two-way pushdown automata, we can define in a similar manner the languages 
L[ZNpDA] and L(ZDPDA]. These languages can be shown to be hardest in the same 
way as in the case of two-way stack automata except that we need not use the string 
u”X representing a pushdown symbol X. For k > 2, we can define the hardest 
languages L [ZNSA(k)], L [2DSA(k)], L[ZNPDA(k)], L [2DPDA(k)], L[ZNFA(k)], 
and L [ZDFA(k)] in the same way. In these cases, no difficulty arises in the 
simulation of state transitions since other input head can be used to keep the next 
state pj. fl 

COROLLARY 3.2. There exists a language L, c_ Ef in 2NSA(k) (resp. 2DSA(k), 
2NPDA(k), 2DPDA(k)) with the following properries: 

(1) L,= ‘fi for some L, in lNSA(k) (resp. lDSA(k), lNPDA(k), 
lDPDA(k)). 

(2) For every language L E C* in ZNSA(k) (resp. ZDSA(k), ZNPDA(k), 
2DPDA(k)), there is a homomorphism h,: .?Y -+ ZT such that for each nonempty 
string w, w is in L if and only if h,(w)$ is in L, , where $ is a symbol in C, . 

Proof. It is not hard to modify Lemma 2.2 so that M’ in Lemma 2.2 reverses its 
input head on the endmarkers and in each right to left sweep it does not change its 
state and no stack (resp. pushdown) operation is applied to the stack (resp. pushdown 
store). We consider the case of ZNSA(k). Other cases can be shown in the same way. 
Let L, E Zf be a hardest language for 2NSA(k). Let $ be a symbol not in Z,,. Then 
we can define a language L, E (I=, U {$})* in lNSA(k) with the following 
properties: 

(i) w is in L, if and only if (w$)” is in L, for some n > 1. 

(ii) Each string in L, is of the form w,$w,$ .a. w,$ for some n > 1, where wi 
is in Z$ for i = l,..., n. 
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Let L, = ‘fi. It is easy to see that L, is in 2NSA(k). Since L, is hardest for 
2NSA(k), for each lahguage L c Z* in 2NSA(k) there is a homomorphism h,: 
Z* --) Z,* such that w is in L if and only if hL(w) is in L, for each r-v in Lt. By (i), we 
see that w is in L if and only if h,(w)$ is in L, . fl 

We remark that since hL(w) is computable from w by a deterministic Turing 
machine in linear time without using any worktape, the language described in 
Corollary 3.2 has the hardest time and space complexity. 

The question whether ZDPDA is closed under root closure is posed in [ 171. The 
following theorem shows that if ZDPDA is closed under root closure, then all recur- 
sively enumerable languages are in 2DPDA. Hence 2DPDA is not closed under root 
closure. 

THEOREM 3.3. For each recursively enumerable language L E Z”, there is a 
language L’ c (ZU {$})* in 2DPDA (resp. 2DFA(2)) such that L% = ‘p nZ*$, 
where $ is a symbol not in Z. 

ProoJ: Since L is recursively enumerable, there exists a one-way deterministic 
two-counter machine M which recognizes L. We firstly describe the moves of a two- 
way deterministic pushdown automaton M’ by means ofM. The strings accepted by 
M’ have the form (w$)~ for some n > 1, where w is in C*. Assume that M’ is given 
an input (w$)“. The string w$ is called a block. M’ simulates M on w. The first 
counter of M is simulated by the pushdown store ofM’. The second counter is 
simulated by the block position where the input head of M’ stays. The input head 
position of M is simulated by the input head position of M’ in the block. When M 
increases or decreases the content of the second counter by one, M’ moves its input 
head to the right or left block while M’ keeps the input head position of M on the top 
of the pushdown store. If the second counter becomes greater than the number of 
blocks in the input, then M’ stops and rejects the input. If M accepts w, then M’ 
accepts the given input. Notice that if w is accepted by M, then M’ accepts (wS>” for 
sufficiently large n and vice versa. Similarly, a two-way two-head deterministic finite 
automaton on the input (w$)” for sufficiently large n can simulates M on w by using 
the block positions of the input heads as the counters ofM. 1 

4. CONCLUSION 

By using the results on two-way input head automata, we showed several hierarchy 
results on one-way input head automata without endmarkers. Unfortunately, the idea 
presented in this paper does not seem to work for one-way multihead automata with 
endmarkers except the case of single input head nondeterministic automata. For one- 
way multihead alternating finite automata with endmarkers, the question whether an 
additional input head increases the power of automata is posed as an open question 
in [ 121. For this question, if the input tape does not have endmarkers, we can give a 
partial solution that I AFA(k + 2) # 1 AFA(k) for k > 1, where lAFA(K) denotes the 
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class of languages recognized by one-way k-head alternating finite automata without 
endmarkers. For the proof of this fact, firstly notice that for every two-way k-head 
alternating finite automaton, there exists a two-way (k + I)-head alternating finite 
automaton which reverses its input heads on the endmarkers and recognizes the same 
language. It should be also noticed that the argument in the proof of Theorem 2.1 
works for alternating multihead finite automata. By combining this observation with 
the result that two-way (k + 1)-head alternating finite automata are more powerful 
than those with k heads [ 121, we can prove that lAFA(k + 2) # lAFA(k) for k > 1. 
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