
salwlrdas 4314~ aih3Gh3~ aq~ ‘sqnsal Aq3Jwafq Jno u;r %ojaJaqJ wwuo3ne I(em-au0
0~ [OI ‘61 slw.uolne pt3aqyfnw ABM-OM~ uo sqnsal dqmxay atp 8ui3npa-r kq paAoJd

s! IlnsaJ Jno L~s~~~uo~ UI *w?uIoane hwauo 01 pagdde s! wauu%a Ouguno3 aql pue
Jamod uop!u%oc3a.I aql sask?aKXI! ptFaq yndu! p~~og!ppe ue v3ql allold 01 ew.uouIe LT?M
-0~1 JOJ pasn s! luaun&E uoy~z~~auo%e~p aq1 ‘Qt3nsn wtrurow yws peaq!ynw put?

e$wuo]ntr umopqsnd paaqplnru AeM-au0 ~oj y ueql InjDMOd alow aJB speaq 1 + y
lt?ql 2 uo!paS u! aaold [QM aM ‘suoyduxnsse asaq] .Iapun way.Iaurpua aql jo aXraP!

-xauou LJ! KIUO [g] u! auo aql uro~j slaj_gp uoggap s!qL vtdu! aql JO pua lq%!J aql
~‘t! psaq Indu! auo wtral ~a ql!m awls [eq bq lndu! ua IdaDcc? LayI pw paMollt! IOU ala
suo!palap peaq Indu!)tzqJ awnssa aM *adw Indu! aql uo wayleurpua Inoqym [8 ‘g]
vleulolna (bases *dsal) UMOpqSnd p”aqppnu h?M-auo Jap!suoD a& ‘ladad s!q$ LJI

aql MOUSE 01 InjlaMod 0s lou a.w ICay1 putFq Jaqlo aq3 uo lnq Warun%.n2

%uyno:, aql dq pazAlwt! aq 01 xaldwo3 001 ale swuowt! asaql asnwaq lC~uy.u

s! s!qL ~~eu~o~ne yews peaq!~[nuI pue WXuolne UMOpqSUd poaq!ynLu I(t?M-WO

.IOJ spvaq lndu! JO Jaqwnu aq? 01 padsaJ q$!m dq~.wa!q I? s! alaql v?qJ paAo.rd uaaq

IOU seq I! ‘nnaMoH -[E I] ewuovw Jawno psaqypuu &M-au0 put! ewuovw Jawno

-y313ls pl3aqy~ntu Atom-au0 ‘[61 wurovw yws ptraqg1t-w kM-0~3 ‘/or] ewuow

UMOpqSnd peaq!ynuI AEM-~M~ ‘[87 ‘s [-*I ‘~1 ‘011 tzwuolnt! ayug pltaqg[ntu At?~-o~l

7 oz-61 ‘91 ‘1 I] ew.uow al!ug peaqp~ntu AaM-au0 fawuow paaqglnuI jo spuy

IwaAas .~oj passncwp uaaq saq y ueql JaUaq an? speaq 1 + y JaqlaqM uogsanb aqJ

NoIwnao~~NI ‘I

.ua.@ osle s! sa%en%uk?[alqeJalunua I(laysJn3aJ JOJ uIaJoaq] uoy]uasaJdaJ v .(1 Q u akuos

Jo_4 7 u! s! .MIMt =7 +

ii‘

aJaqM ‘7 a%ntausl uoletuolnt? (~3~1s .dSaJ) umopysnd peaq!llnm
kt?M-atI0 XUOS JOJ 7 + se uall!JM aq ue3 qJ!qM Qxaldmoz aDeds pue arug)sapJeq aq]
q]!M a%tXd?LK?~ e s! aJaq1 e~EuIolne (y3lS .dsaJ) UMopqSnd pI?aq!llnm k?M-OM, JOJ leql UMoqs
osle s! 11 .paq!JDsap aJe _sa%nhq IsapJsq,, ‘8181003nE (y38ls ‘dSaJ) UMopqsnd pEaq!lfnLu
I(EM-OM) JOJ ‘uoyppe III ‘~u!J$S mdu! aql JO pua Iq%!J aql la pr?aq ,ndu! au0 wual P qi!M
CJIB~S lsul~ dq Idacw puw adel indu! aql uo sJayJumpua aAeq IOU op LayI J! wewow (qws
.dsaJ) uMopqsnd peaq!l[nuI km-au0 JOJ y ueq] Jallaq ale speaq [+ y IEql u~oqs s! $1

2861 ‘L Jaqura3aa pas!haJ :zg61 ‘fz wChv pad!asax

ONVAI~ nllO.LVS

(@fj[) PZI-911 ‘LZ S33N313S WBISAS (INV WlLOdh’03 d0 IVNl120f

REMARKSONMULTIHEADAUTOMATA 117

the class for k + 1 input heads from that for k is actually obtained by the
diagonalization argument. Our proof also shows that the hierarchy results on two-
way automata are useful to derive some hierarchy results on one-way automata
without endmarkers.

The hardest languages [6]. have received attentions since they are hardest in the
sense of time and space complexity and they are useful for the representations of
language families. It is known that context-free languages, nondeterministic and deter-
ministic context-sensitive languages, and recursively enumerable languages have the
hardest languages [4,6]. On the other hand, there are no hardest languages for deter-
ministic context-free languages [7], linear context-free languages [2], one counter
languages [l] and regular languages [4]. It was shown in [171 that the class of two-
way nondeterministic pushdown automaton languages has a language G, which is of
the form G, = ‘fi = {w [w” is in L for some n 2 I} for some context-free language
L and is hardest in the sense of time and space complexity. This result is espcially
interesting because of the relationship between one-way automata and two-way
automata.

In Section 3 we describe a hardest language for two-way k-head pushdown (resp.
k-head stack, (k + 1)-head finite) automata for k > 1. Then we show that the class of
two-way k-head pushdown (resp. stack) automaton languages has a language with the
hardest time and space complexity which can be written as ‘@ for some one-way k-
head pushdown (resp. stack) automaton language. We also give a representation
theorem for recursively enumerable languages by means of the root closure operation
$‘- and the two-way deterministic pushdown automaton languages.

2. HIERARCHY RESULTS

We assume that one-way multihead pushdown (resp. stack) automata do not have
endmarkers on the input tape and they accept an input by entering a final state with
at least one input head at the right end of the input. We omit the formal definitions of
these devices.

We denote the class of languages recognized by one-way nondeterministic (resp.
deterministic) k-head pushdown automata by lNPDA(k) (resp. lDPDA(k)). The
class of languages recognized by one-way nondeterministic (resp. deterministic) k-
head stack automata is denoted by lNSA(k) (resp. lDSA(k)). Two-way multihead
pushdown (resp. stack, finite) automata have the right and left endmarkers on the
input tape and they accept by final state with all input heads on the right endmarker.
We denote by 2NSA(k) (resp. 2DSA(k)) the class of two-way nondeterministic (resp.
deterministic) k-head stack automaton languages. Similarly, 2NPDA(k) (resp.
ZDPDA(k)) and 2NFA(k) (resp. 2DFA(k)) describe the class of two-way nondeter-
ministic (resp. deterministic) k-head pushdown automaton languages and the class of
two-way nondeterministic (resp. deterministic) k-head finite automaton languages,
respectively. We abbreviate ZNSA(l), 2DSA(l), 2NPDA(l), ZDPDA(1) as 2NSA,
2DSA, 2NPDA, 2DPDA, respectively.

118 SATORU MIYANO

The following hierarchy results will be proved by using the hierarchy results on the
corresponding two-way input head automata.

THEOREM 2.1. (1) lNSA(k + 1) # lNSA(k)fir k > 1.

(2) lDSA(k + 1) # lDSA(k)for k > 1.

(3) lNSA(k) # lDSA(k)fir k > 1.

(4) lNPDA(k + 1) # lNPDA(k)fir k > 1.
(5) lDPDA(k + 1) # lDPDA(k)for k > 1.

LEMMA 2.2. For each two-way k-head stack (resp. pushdown) automaton M,
there is a two-way k-head stack (resp. pushdown) automaton M’ which reverses its
input heads on the right and left endmarkers and recognizes the same language as M.
Furthermore, lyM is deterministic, then M’ can be chosen to be deterministic.

Proof. Lemma is easily shown for two-way k-head pushdown automata. For two-
way k-head stack automata, a technical idea is required. Let M be a two-way k-head
stack automaton and let r be the set of stack symbols ofM. We use two new distinct
symbols a and b not in ZY For each stack symbol A in r, M’ on input w = a, a, . . . a,
of length n uses the string a’b”-‘A for some i. M’ simulates M on w in the following
way:

(1) Pushdown operation: M is pushing down a symbol A on the top of the
stack with the first input head on ai. If the first input head of M’ is sweeping from
left to right (resp. right to left), then M’ performs the following steps:

1. M’ moves the first input head to the right (resp. left) endmarker and puts
the string a”-’ (resp. a’) on‘the stack.

2. M’ enters the stack search mode. By using the string a”-’ (resp. a’) stored
in the stack, M’ moves the first input head to the position of a,. M’ moves the stack
pointer to the top of the stack.

3. M’ moves the first input head to the left (resp. right) endmarker and puts
the string biA (resp. b”-iA) on the stack.

4. M’ enters the stack search mode, M’ moves the first input head to the
position of ai by using the string b’ (resp. b”-’) and returns the stack pointer to the
top of the stack.

(2) Input head move: If M moves thejth input head left (resp. right) while the
jth input head of M’ is sweeping from left to right (resp. right to left), then two cases
arise according to the mode of the stack. Assume that the jth input head of M is
on ai. If M is in the stack search mode, M’ performs the following steps:

1. M’ moves the jth input head to the right (resp. left) endmarker and
simultaneously moves down the stack pointer to the position Xi (resp. X,-J of
x, a.. xnA, where x, a-. x,A is the string stored instead of the stack symbol A.

REMARKS ON MULTIHEAD AUTOMATA 119

2. M’ moves the stack pointer to the position of x, and puts thejth input head
on a,_ 1 (resp. Ui+ 1).

3. M’ returns the stack pointer to the position of A.

If M is in the push-pop mode, M’ performs the following steps:

1. M’ moves the jth input head to the right (resp. left) endmarker and puts the
string a”-‘+’ (resp. aitl) on the stack.

2. M’ pops up the string a”-‘+ ’ (resp. ait ’) and simultaneously moves the j th
input head to the position of ui_, (resp. ai+ ,).

The remaining operations can be directly simulated. By definition, it is obvious
that if M is deterministic, so is M’. I

Proof of Theorem 2.1. (1) Since 2NSA(k + 1) z 2NSA(k) 191, there exists a
language L E ,?Y* in 2NSA(k + 1) - 2NSA(k). By Lemma 2.2, L is recognized by a
two-way nondeterministic (k + 1)-head stack automaton M, that reverses its input
heads only on the endmarkers. It is easy to construct from M, a one-way nondeter-
ministic (k + 1)-head stack automaton M, which satisfies (i) and (ii).

(i) M, accepts w if and only if M, accepts (w$w”$)~ w$ for some n > 0,
where $ is a symbol not occurring in the input alphabet Z of M,.

(ii) Every string accepted by M, has the form w, $. a. w,, $w,, + , $ for some
n > 0, where wi is in C* for i = l,..., 2n + 1.

Suppose that lNSA(k + 1) = lNSA(k). Then let M, be a one-way nondeter-
ministic k-head stack automaton which recognizes the same language as M,.
Consider a two-way nondeterministic k-head stack automaton M, which moves as
follows: Given an input w, M, on w simulates M, on (~96~~96)” w$ for some n >, 0
by reversing its input heads on the endmarkers. If M, enters a final state, then M,
moves all input heads to the right endmarker and accept w by entering the final state
of M,. By (ii), if M, enters a final state, then it accepts (~96~~96)” w$ for some n > 0.
Therefore by (i), w is in L. Conversely, if w is in L, then by (i) M, accepts
(wwR)” w$ for some n > 0. Therefore M, accepts w. Hence L is in 2NSA(k), a
contradiction. Thus INSA(k + 1) # INSA(

Conditions (2~(5) can be proved in the same way by using the hierarchy results
2DSA(k + 1) # 2DSA(k) 191, 2NSA(k) # 2DSA(k) [3,9], 2NPDA(k f 1) #
2NPDA(k) [lo], 2DPDA(k + 1) # 2DPDA(k) [lo], respectively. 1

Remark. It should be noted that the technique used in this section is also
applicable to other hierarchy results. For instance, from the fact 2NSA(k) #
ZNPDA(k) [9] we can derive lNSA(k)# lNPDA(k). This is already known since
the one-way multihead pushdown automaton languages have the semilinear property
[81, but on the other hand there is a nonsemilinear one-way stack automaton
language. We can also observe an implication that if 2NPDA(k) # 2DPDA(k), then
lNPDA(k)# lDPDA(k). However, it seems more difficult to prove 2NPDA(k) #
2DPDA(k).

120 SATORU MIYANO

3. HARDEST LANGUAGES

DEFINITION (61. A language L, s ,?Y$ is said to be hardest for a class C of
languages if L, is in C and for every language L s Z* in C there is a homomorphism
h,: C* + Zt such that for each nonempty string w in Z’w is in L if and only if
AL(w) is in&.

For a language L E Z*, the root closure of L is defined by fl = (w 1 w” is in L
for some n > I}. It was proved in [171 that ZNPDA has a language with the lardest
time and space complexity which is written as the root closure of some context-free
language. The proof depends on the existence of hardest context-free language and
therefore it does not work for 2DPDA since there is no hardest deterministic context-
free language.

Theorem 3.1 shows that hardest languages exist for various two-way multihead
automaton language classes and its corollary extends the result in [171 for multihead
nondeterministic and deterministic pushdown and stack automata.

THEOREM 3.1. A hardest language exists for each of the classes ZNSA(k),
2DSA(k), 2NPDA(k), ZDPDA(k), 2NFA(k + 1) and ZDFA(k + 1) for k > 1.

Proof: First, we describe hardest languages L[ZNSA] and L[2DSA] for 2NSA
and ZDSA, respectively. Let M be a two-way stack automaton with the stack
alphabet {A, B). A move of M is a quintuple (JJ, x, d, p, q), where p and q are states
of M, x is an input symbol, d is an input head direction and v, is an operation for the
stack. It means that if M in state p reads the input symbol x and the operation v, is
executable, then M moves its input head according to d, operates 9 on the stack and
changes its state to q. For an input symbol x, we denote by M(x) the conventional
tuple by tuple encoding of the collection of the moves of M when M reads the
symbol x. We assume that the first state p, is the initial state and the ith state pi is
encoded as O’-‘lOme’1 ifp, is a final state else Oi-llOm-‘t ‘, where M is the number
of states in 44. The language L[ZNSA] is defined as the collection of the strings
satisfying the following conditions: For each w in L[ZNSA], there is a two-way stack
automaton M with the stack alphabet {A, B) and an input a, *.. a, of M such that M
accepts a, ... a, and w is of the form w = [M(g) M(a,) M(B)] a-+ [M($) M(u,) M(e)],
where $ and 4 are the left and right endmarkers, respectively. The language L[ZDSA]
is defined by restricting M to be deterministic in the above definition. For each
L c ,?I* in 2NSA (resp. 2DSA), we can take a two-way nondeterministic (resp. deter-
ministic) stack automaton M with the stack alphabet {A, B} which recognizes L.
Then we deline a homomorphism h,: Z* + Z,* by hL(x) = [M($) M(x) M(4)] for x in
C, where ,Z, is the alphabet of L[2iVSA] (resp. L[ZDSA]). Notice that for each
nonempty string w in Z+, w is in L if and only if h,(w) is in L[2NSA] (resp.
L [ZDSA I).

We now see that L[ZNSA] is in 2NSA. We describe the moves of a two-way stack
automaton M, which recognizes L[2NSA]. Given an input w, MO first checks
whether w is in the right form. Assume that w = [M(S) M(a,) M(e)] -..

REMARKSONMULTIHEADAUTOMATA I21

[M($) M(u,) M(4)] for some M and Q, -me a,. M, simulates M on a, a.. a, in the
following way: If M is in state pi with the input head on uk and performing a move
(P,, uk, d, cp, p/), then M, puts its input head on the move (pr , ak, d, fp, pj) in the kth
block [M(S) M(U,) M(B)]. Th e moves of it4 on the endmarkers are simulated only
when the input head of M, is in [M($) M(u,) M(e)] and [M(g) M(u,) M(e)]. M,
executes the operation cp for the stack. Then according to the input head direction d,
M, moves its input head to the right or left block or remains in the same block while
M, have to keep the next state p, in some way. If M is in the push-pop mode, then
M, can keep the state p, on the top of the stack. Coping with the case that M is in the
stack search mode, M, uses the string u”‘X instead of a stack symbol X, where a is a
symbol not in (A, B} and m is the number of states in M. Then by the stack pointer
position in the string a”X, M, can keep the state pj. Using the state kept in the stack,
M, can search the next move in the appropriate block. In this way M, simulates M’s
state transitions. Thus L[ZNSA] is in 2NSA. Since a two-way deterministic stack
automaton can check whether an encoding of a two-way stack automaton is deter-
ministic or not, we also see that L[2DSA] is in 2DSA.

For two-way pushdown automata, we can define in a similar manner the languages
L[ZNpDA] and L(ZDPDA]. These languages can be shown to be hardest in the same
way as in the case of two-way stack automata except that we need not use the string
u”X representing a pushdown symbol X. For k > 2, we can define the hardest
languages L [ZNSA(k)], L [2DSA(k)], L[ZNPDA(k)], L [2DPDA(k)], L[ZNFA(k)],
and L [ZDFA(k)] in the same way. In these cases, no difficulty arises in the
simulation of state transitions since other input head can be used to keep the next
state pj. fl

COROLLARY 3.2. There exists a language L, c_ Ef in 2NSA(k) (resp. 2DSA(k),
2NPDA(k), 2DPDA(k)) with the following properries:

(1) L,= ‘fi for some L, in lNSA(k) (resp. lDSA(k), lNPDA(k),
lDPDA(k)).

(2) For every language L E C* in ZNSA(k) (resp. ZDSA(k), ZNPDA(k),
2DPDA(k)), there is a homomorphism h,: .?Y -+ ZT such that for each nonempty
string w, w is in L if and only if h,(w)$ is in L, , where $ is a symbol in C, .

Proof. It is not hard to modify Lemma 2.2 so that M’ in Lemma 2.2 reverses its
input head on the endmarkers and in each right to left sweep it does not change its
state and no stack (resp. pushdown) operation is applied to the stack (resp. pushdown
store). We consider the case of ZNSA(k). Other cases can be shown in the same way.
Let L, E Zf be a hardest language for 2NSA(k). Let $ be a symbol not in Z,,. Then
we can define a language L, E (I=, U {$})* in lNSA(k) with the following
properties:

(i) w is in L, if and only if (w$)” is in L, for some n > 1.

(ii) Each string in L, is of the form w,$w,$.a. w,$ for some n > 1, where wi
is in Z$ for i = l,..., n.

122 SATORUMIYANO

Let L, = ‘fi. It is easy to see that L, is in 2NSA(k). Since L, is hardest for
2NSA(k), for each lahguage L c Z* in 2NSA(k) there is a homomorphism h,:
Z* --) Z,* such that w is in L if and only if hL(w) is in L, for each r-v in Lt. By (i), we
see that w is in L if and only if h,(w)$ is in L, . fl

We remark that since hL(w) is computable from w by a deterministic Turing
machine in linear time without using any worktape, the language described in
Corollary 3.2 has the hardest time and space complexity.

The question whether ZDPDA is closed under root closure is posed in [171. The
following theorem shows that if ZDPDA is closed under root closure, then all recur-
sively enumerable languages are in 2DPDA. Hence 2DPDA is not closed under root
closure.

THEOREM 3.3. For each recursively enumerable language L E Z”, there is a
language L’ c (ZU {$})* in 2DPDA (resp. 2DFA(2)) such that L% = ‘p nZ*$,
where $ is a symbol not in Z.

ProoJ: Since L is recursively enumerable, there exists a one-way deterministic
two-counter machine M which recognizes L. We firstly describe the moves of a two-
way deterministic pushdown automaton M’ by means ofM. The strings accepted by
M’ have the form (w$)~ for some n > 1, where w is in C*. Assume that M’ is given
an input (w$)“. The string w$ is called a block. M’ simulates M on w. The first
counter of M is simulated by the pushdown store ofM’. The second counter is
simulated by the block position where the input head of M’ stays. The input head
position of M is simulated by the input head position of M’ in the block. When M
increases or decreases the content of the second counter by one, M’ moves its input
head to the right or left block while M’ keeps the input head position of M on the top
of the pushdown store. If the second counter becomes greater than the number of
blocks in the input, then M’ stops and rejects the input. If M accepts w, then M’
accepts the given input. Notice that if w is accepted by M, then M’ accepts (wS>” for
sufficiently large n and vice versa. Similarly, a two-way two-head deterministic finite
automaton on the input (w$)” for sufficiently large n can simulates M on w by using
the block positions of the input heads as the counters ofM. 1

4. CONCLUSION

By using the results on two-way input head automata, we showed several hierarchy
results on one-way input head automata without endmarkers. Unfortunately, the idea
presented in this paper does not seem to work for one-way multihead automata with
endmarkers except the case of single input head nondeterministic automata. For one-
way multihead alternating finite automata with endmarkers, the question whether an
additional input head increases the power of automata is posed as an open question
in [121. For this question, if the input tape does not have endmarkers, we can give a
partial solution that I AFA(k + 2) # 1 AFA(k) for k > 1, where lAFA(K) denotes the

REMARKS ON MULTIHEAD AUTOMATA 123

class of languages recognized by one-way k-head alternating finite automata without
endmarkers. For the proof of this fact, firstly notice that for every two-way k-head
alternating finite automaton, there exists a two-way (k + I)-head alternating finite
automaton which reverses its input heads on the endmarkers and recognizes the same
language. It should be also noticed that the argument in the proof of Theorem 2.1
works for alternating multihead finite automata. By combining this observation with
the result that two-way (k + 1)-head alternating finite automata are more powerful
than those with k heads [121, we can prove that lAFA(k + 2) # lAFA(k) for k > 1.

ACKNOWLEDGMENTS

The author is grateful to Setsuo Arikawa and Takeshi Hayashi for many inspiring conversations
about hardest languages and to an anonymous referee for his suggestions on the proof of Theorem 2.1.

REFERENCES

1. J.-M. AUTEBERT, Non-principalite du cylindre des languages a compteur, Math. Systems Theory I I
(1977), 157-167.

2. L. BOASSON AND M. NIVAT, Le cylindre des languages lineaires, Math. Systems Theory I1 (1977).
147-155.

3. 8. A. COOK, Characterizations of pushdown machines in terms of time bounded computers, J.
Assoc. Comput. Mach. 18 (1971), 4-18.

4. K. CULIK II AND H. A. MAURER, On simple representations of language families, RAIRO Inform.
Theor. 13 (1979), 241-250.

5. S. GINSBURG, S. A. GREIBACH AND M. A. HARRISON, One-way stack automata, J. Assoc. Comput.
Mach. 14 (1967), 389-418.

6. S. A. GREIBACH, The hardest context-free language, SIAM J. Comput. 2 (1973), 304-310.
7. S. A. GREIBACH, Jump PDAs and hierarchies of deterministic context-free languages, SIAM J.

Comput. 3 (1974), 111-127.
8. M. A. HARRISON AND 0. H. IBARRA, Multi-tape and multi-head pushdown automata, Inform.

Control 13 (1968), 433-470.
9. 0. H. IBARRA, Characterizations of some tape and time complexity classes of Turing machines in

terms of multihead and auxiliary stack automata, J. Comput. System Sci. 5 (1971), 88-l 17.
10. 0. H. IBARRA, On two-way multihead automata, J. Comput. System Sci. 7 (1973), 28-37.
11. 0. H. IBARRA AND C. E. KIM, On 3-head versus 2-head finite automata, Acta Inform. 4 (1975),

193-200.
12. K. N. KING, Alternating multihead finite automata, in “Automata, Languages, and Programming”

(S. Even and 0. Kariv, Eds.), Lecture Notes in Computer Science, No. 115, pp. 506-520, Springer-
Verlag, Berlin, 1981.

13. S. MIYANO, A hierarchy theorem for multihead stack-counter automata, Acta Inform. 17 (1982),
63-67.

14. B. MONIEN, Transformational methods and their application to complexity problems, Acta Inform. 6
(1976), 95-108.

15. B. MONIEN, Two-way multihead automata over a one-letter alphabet, RAIRO Inform. Theor. 14
(1980), 67-80.

16. A. L. ROSENBERG, On multihead finite automata, IBM J. Res. Develop. 10 (1966), 388-394.
17. W. RY~TER, A hardest language recognized by two-way nondeterministic pushdown automata,

Inform. Process. Lett. 13 (1981), 145-146.

124 SATORU MIYANO

IS. J. I. SEIFERAS, Relating refined space complexity classes, J. Compur. System Sci. 14 (1977).
loQ_129.

19. I. H. SUDBOROUGH, One-way multihead writing finite automata, Inform. Confrol 25 (1976), I-20.
20. A. C. YAO AND R. L. RIVEST, k + 1 heads are better than k, J. Assoc. Cotnpur. Much. 25 (1980).

337-340.

