
Discrete Applied Mathematics 121 (2002) 155–180

On claw-free asteroidal triple-free graphs�

Harald Hempel ∗, Dieter Kratsch 1

Fakult�at f�ur Mathematik und Informatik, Friedrich-Schiller-Universit�at Jena, D-07740 Jena, Germany

Received 17 May 1999; received in revised form 12 March 2001; accepted 2 April 2001

Abstract

We present an O(n2:376) algorithm for recognizing claw-free AT-free graphs and a linear-time
algorithm for computing the set of all central vertices of a claw-free AT-free graph. In addition,
we give e0cient algorithms that solve the problems INDEPENDENT SET, DOMINATING SET, and
COLORING. We argue that all running times achieved are optimal unless better algorithms for a
number of famous graph problems such as triangle recognition and bipartite matching have been
found. Our algorithms exploit the structure of 2LexBFS schemes of claw-free AT-free graphs.
? 2002 Elsevier Science B.V. All rights reserved.

Keywords: Graphs; Algorithms; NP-complete; Recognition; Claw-free; AT-free

1. Introduction

In this paper we study claw-free AT-free graphs and show that a large number of
combinatorial problems can be e0ciently solved. Moreover, we give strong arguments
that the algorithms we present are optimal. In particular, we consider the following:

1. RECOGNITION: We present an O(n2:376) recognition algorithm for claw-free
AT-free graphs. We show that this is optimal unless one >nds an algorithm for triangle
recognition that runs faster than O(n2:376).

2. RADIUS: We prove that there exists a linear-time algorithm for computing the
radius of a claw-free AT-free graph.

3. ALL CENTRAL VERTICES: Though no linear-time algorithm for >nding just
one central vertex for AT-free graphs is known we give a linear-time algorithm that
computes the set of all central vertices of a claw-free AT-free graph.

� An extended abstract of this paper was presented at the 25th Workshop on Graph-Theoretic Concepts in
Computer Science (WG’99) [16].

∗ Corresponding author.
E-mail addresses: hempel@minet.uni-jena.de (H. Hempel), kratsch@minet.uni-jena.de,

kratsch@lita.univ-metz.fr (D. Kratsch).
1 Current address: UniversitFe de Metz, Laboratoire d’ Informatique ThFeorique et AppliquFe, Île du Saulcy,

57045 Metz Cedex 01, France.

0166-218X/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
PII: S0 1 6 6 -218X(01)00208 -6

156 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

4. INDEPENDENT SET: We give a linear-time algorithm for claw-free AT-free
graphs.

5. DOMINATING SET: We show that claw-free AT-free graphs admit a linear-time
algorithm.

6. COLORING: We prove that computing an optimal coloring for claw-free AT-free
graphs is closely related to both computing a maximum matching on bipartite graphs
and on general graphs. We present an O(

√
nm) coloring algorithm for claw-free AT-free

graphs. Any improvement of this time bound implies the existence of an algorithm
for computing a maximum matching for bipartite graphs that runs in time less than
O(n2 +

√
nm).

Claw-free AT-free graphs, the class of all graphs neither containing a claw as an
induced subgraph nor an asteroidal triple, form a subclass of AT-free graphs and contain
all complements of bipartite graphs. A claw is a graph on four vertices such that one of
them is adjacent to the other three vertices which themselves are pairwise non-adjacent.
An asteroidal triple is a triple of vertices such that for every pair of two of those
vertices there exists a path joining them that does not contain any vertex of the closed
neighborhood of the third vertex.

With respect to the combinatorial problems listed above the following is known
for AT-free graphs. The straightforward and currently the best known upper bound
for recognizing (dense) AT-free graphs is O(n3). We mention that O(nm + n2:82) and
O(m1:5 +n2) 2 algorithms2 can be obtained [20], that are faster than the straightforward
algorithm for sparse graphs and complements of sparse graphs, respectively. The best
(conditional) lower bound for recognizing AT-free graphs is closely related to the upper
bound of triangle recognition which is currently O(n�) [27], where O(n�) is the time
to multiply two binary n× n matrices. (At present � = 2:376 ... [9].)

It has been shown that the diameter of AT-free graphs can be computed in linear
time with an absolute error of 1 by 2LexBFS (see [10]). However, for both computing
the diameter and the radius no linear-time algorithm is known for AT-free graphs.
To the best of our knowledge there exists no linear-time algorithm computing even
one central vertex of an AT-free graph. COLORING is one of the most interesting open
problems for AT-free graphs, still waiting for a polynomial-time algorithm or a proof
of NP-completeness. The best algorithms for INDEPENDENT SET and DOMINATING SET for
AT-free graphs have running times of O(n4) [6] and O(n6) [21], respectively.

Claw-free AT-free graphs have been considered in the literature before [18,24]. As
a consequence of a theorem in [10], the diameter of a claw-free AT-free graph can be
computed in linear time. HAMILTON PATH and HAMILTON CIRCUIT can be solved in linear
time on (claw,net)-free graphs [5], an interesting superclass of the claw-free AT-free
graphs. Kloks et al. have given a characterization of claw-free AT-free graphs. For
each connected graph G holds: G is claw-free AT-free if and only if either �(G)6 2

2 As is standard in graph theory, n and m denote the number of vertices and edges of the input graph,
respectively. Similarly, m denotes the number of edges in the complement of the input graph.

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 157

or G is a claw-free cocomparability graph [18]. Though that characterization does give
some insight into what makes graphs claw-free AT-free it does not oOer a general tool
for solving many of the combinatorial problems we address.

Our approach is mainly based on structural properties of 2LexBFS schemes for
claw-free AT-free graphs. 2LexBFS schemes have played a major role in showing that
a dominating pair for AT-free graphs can be computed in linear time [12]. We show that
almost all levels of a 2LexBFS scheme of a claw-free AT-free graph are cliques, and
that the union of any two consecutive levels does not contain three vertices forming an
independent set. These and other observations allow us to exploit the 2LexBFS scheme
for our purposes.

2. Preliminaries

We consider only >nite, undirected, simple, and connected graphs. For a graph
G = (V; E) and W ⊆ V , G[W] denotes the subgraph of G induced by vertices of W .
For a vertex x of G = (V; E), N (x) = {y∈V : {x; y}∈E} is the neighborhood of x and
N [x] =N (x) ∪ {x} is the closed neighborhood of x. For W ⊆ V , N [W] =

⋃
x∈W N [x].

Let G = (V; E) be a graph. An independent set is a set of pairwise non-adjacent
vertices of G. A clique is a set of pairwise adjacent vertices. A vertex set D ⊆ V
is a dominating set of G if every vertex u∈V \ D is adjacent to a vertex v∈D,
i.e., N [D] =V . An independent dominating set is a vertex set that is dominating and
independent. A matching is a set of pairwise non-adjacent edges. A (proper) vertex
coloring assigns a color to each vertex such that diOerent colors are assigned to adja-
cent vertices. These concepts lead to natural decision and optimization problems. The
corresponding graph parameters are �(G), !(G), and m(G) to denote the maximum
cardinality of an independent set, clique, and matching of G, respectively, and �(G),
�i(G), and �(G) to denote the minimum cardinality of a dominating set, independent
dominating set, and the minimum number of colors in a coloring of G, respectively.

For standard graph theory notation we refer to [29]. For de>nitions and properties
of special graph classes we refer to [4,15].

De�nition. A claw is a graph on four vertices such that one of them, called the center,
is adjacent to the other three vertices which themselves are pairwise non-adjacent. A
graph G is called claw-free if it has no claw as an induced subgraph.

A triple {x; y; z} of vertices of a graph G is an asteroidal triple (AT) if for every
two of these vertices there is a path between them avoiding the closed neighborhood
of the third. A graph G is called asteroidal triple-free (AT-free) if it has no asteroidal
triple. An AT-free graph is claw-free AT-free if it does not contain a claw as an
induced subgraph.

It is easy to see that complements of triangle-free graphs (i.e., graphs G with
�(G)6 2) form a subclass of claw-free graphs. It is well known that line graphs
also form a subclass of claw-free graphs [29].

158 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

Corneil et al. initiated and contributed substantially to an extensive research on
structural and algorithmic properties of AT-free graphs [11,12]. One of their major
discoveries is the relation between an old graph search procedure, called LEXICOGRAPHIC

BREADTH-FIRST SEARCH (LexBFS), and so-called dominating pairs [12].

De�nition. A pair (x; y) of vertices of a graph G is a dominating pair (short DP) if
for every path P between x and y, the vertex set of P is a dominating set of G.

Theorem 1 (Corneil et al. [11]). Every connected AT-free graph has a dominating
pair.

In [12] a linear-time algorithm for computing a dominating pair of a given connected
AT-free graph was established. The main idea of this algorithm is the use of LexBFS.
LexBFS is a variant of BREADTH-FIRST SEARCH that has been introduced by Rose et al. in
1976 [25]. It has been used as a subroutine in a variety of e0cient (often linear-time)
graph algorithms. We reproduce the details of the linear-time algorithms LexBFS and
2LexBFS from [25,12].

Procedure LEXBFS(G; x);
Input: a connected graph G = (V; E) and a distinguished vertex x of G
Output: a numbering � of the vertices of G
begin

label(x) := |V |;
for each vertex v in V \ {x} do
label(v) :=�;
for i := |V | downto 1 do
begin

pick an unnumbered vertex v with (lexicographically) largest label;
�(v) := i; {assign number i to v}
for each unnumbered vertex u in N (v) do

append i to label(u)
end

return �
end; {LexBFS}
Procedure 2LEXBFS(G);
Input: a connected graph G = (V; E)
Output: a numbering �2 of the vertices of G
begin

choose a vertex w of G;
LexBFS(G;w);
let �1 be the output of LexBFS(G;w) and let x be the vertex with �1(x) = 1;
LexBFS(G; x);
let �2 be the output of LexBFS(G; x);

return �2

end; {2LexBFS}

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 159

Fig. 1. A claw-free AT-free graph G and one of its 2LexBFS schemes.

A vertex ordering xn; xn−1; : : : ; x1 is called a 2LexBFS ordering of G if some
2LEXBFS(G) returns �2 such that �2(xj) = j for all j. A 2LexBFS ordering and the
levels L0 = {xn}; L1 =N (xn); : : : ; Li = {xj: d(xj; xn) = i}; : : : ; Lr are called a 2LexBFS
scheme of G. Observe that for all 06 i6 r; Li = {xt ; xt−1; : : : ; xt′} for suitable t¿ t′.
In other words, a 2LexBFS ordering induces an ordering of the vertices of each of its
levels. Throughout the paper, whenever we refer to an ordering of the vertices of a
level of a 2LexBFS scheme we refer to the ordering of the vertices of that level that is
induced by the 2LexBFS ordering, that is the vertices of each level are ordered from
highest to lowest assigned number (see Fig. 1).

Theorem 2 (Corneil et al. [12]). Every 2LexBFS ordering xn; xn−1; : : : ; x1 of a con-
nected AT-free graph has the dominating pair-property (DP-property); i.e.; for all i∈
{1; 2; : : : ; n}, (xn; xi) is a dominating pair of G[{xi; xi+1; : : : ; xn}].

Consequently, for each 2LexBFS ordering xn; xn−1; : : : ; x1 of an AT-free graph G,
(x1; xn) is a DP. Thus, a DP can be computed in linear time by 2LexBFS [12]. A
2LexBFS scheme of an AT-free graph and its DP-property has also been used in [18]
to establish a bandwidth approximation algorithm for AT-free graphs. The following
characterization of claw-free AT-free graphs is given in the same paper.

Theorem 3 (Kloks et al. [18]). Let G = (V; E) be a connected graph. Then G is claw-
free AT-free if and only if G is a claw-free cocomparability graph or �(G)6 2.

Note that cocomparability graphs (complements of comparability graphs) can be
de>ned as those graphs that admit a cocomparability ordering, i.e., a vertex ordering
x1; x2; : : : ; xn such that for all i¡ j¡k: {xi; xk}∈E implies {xi; xj}∈E or {xj; xk}∈E
(see [4]).

160 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

3. Recognizing claw-free asteroidal triple-free graphs

The work of Corneil et al. on AT-free graphs led to a variety of interesting ques-
tions. A challenging one asks for an e0cient recognition algorithm for AT-free graphs
and it seemed natural to expect a dramatic improvement over the O(n3) running time
of the straightforward algorithm [11]. However, recently Spinrad revealed a surprising
connection to triangle recognition [27]. Triangle recognition is a well-studied funda-
mental graph algorithms problem and thus is sometimes even used as a lower bound
for the complexity of other graph problems.

Theorem 4 (Spinrad [27]). If there is an O(nc) algorithm for recognizing AT-free
graphs then there is an O(nmax(2; c)) algorithm for recognizing triangle-free graphs.

The best known algorithm for recognizing a triangle in dense graphs, TRIANGLE(G),
uses matrix multiplication and has running time O(n�) (see [2]). Thus, any O(nc) algo-
rithm for recognizing AT-free graphs with c¡� would not only signi>cantly improve
the best known running time of a recognition algorithm for AT-free graphs, it would
also improve the best known time bound for triangle recognition.

The reduction of Spinrad can also be used to establish a (conditional) lower bound
for the time to recognize claw-free AT-free graphs.

Corollary 5. If there is an O(nc) algorithm for recognizing claw-free AT-free graphs
(of diameter 2) then there is an O(nmax(2; c)) algorithm for recognizing triangle-free
graphs.

Proof. We take the opportunity to present the nice construction of Spinrad [27].
Let G = (V; E) be any graph. Assume V = {v1; v2; : : : ; vn}. A new graph HG is con-

structed as follows: Take the graph G, add vertices v′1; v
′
2; : : : ; v

′
n, and edges {v′i ; v′j} for

all 16 i; j6 n and {v′k ; v‘} for all 16 k; ‘6 n such that k
= ‘. Note that {v′1; v′2; : : : ; v′n}
is a clique in HG and that the diameter of HG is 2.

Claim. G has three pairwise non-adjacent vertices; called an independent triple,
if and only if HG has a claw or an AT.

Suppose {vi; vj; vk} is an independent triple in G. Then {vi; vj; vk} is an AT in
HG which can be seen by inspecting the paths (vi; v′k ; vj), (vi; v′j ; vk), and (vj; v′i ; vk)
in HG. For the inverse direction of the claim to be shown suppose HG has an
AT {x; y; z} or a claw {c; x; y; z} with center vertex c. In each case {x; y; z} is an
independent triple in HG and by the construction of HG it follows immediately
that {x; y; z} is also an independent triple in G. This completes the proof of the
claim.

Now suppose that we have a t(n) algorithm for recognizing claw-free AT-free graphs.
The following algorithm then recognizes triangle-free graphs in time O(n2)+ t(2n): On

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 161

input G compute G and HG in time O(n2). Then test whether HG is claw-free AT-free.
By assumption this can be done in time t(2n). The correctness of the algorithm follows
immediately from the above proven claim.

In the following we present an O(n�) algorithm for recognizing claw-free AT-free
graphs. According to Corollary 5 this is the best possible time for recognizing claw-free
AT-free graphs without strong consequences, i.e., without an improvement over the best
known running time for triangle recognition.

Lemma 6. Let G = (V; E) be a claw-free AT-free graph. Let L0 = {x}; L1 =N (x);
L2; : : : ; Li = {w∈V : d(w; x) = i}; : : : ; Lr be the levels of a 2LexBFS scheme of G. Then
the following statements hold:
1. Li is a clique for all i = 0; 2; 3; : : : ; r. (L1 might not be a clique.)
2. �(G[L1])6 2.

Proof. Clearly L0 is a clique. Consider Li with i¿ 2. Suppose u; v∈Li and {u; v}
∈
E. Then u and v have a common neighbor w in Li−1 due to the DP-property of any
2LexBFS ordering of an AT-free graph. Clearly, w has a neighbor z ∈Li−2 and hence
{w; u; v; z} induces a claw in G, a contradiction.

Suppose �(G[L1])¿ 3. Let {a; b; c} be an independent set of G[L1]. Then {x; a; b; c}
induces a claw in G, a contradiction.

Our recognition algorithm for claw-free AT-free graphs works as follows.

Algorithm RECOGNITION

1. Let G = (V; E) be the input graph and let V = {v1; v2; : : : ; vn}. Compute the binary
adjacency matrix A= (aij)i; j=1; :::; n of G (i.e., aij = 1 if {vi; vj}∈E and aij = 0 if
{vi; vj}
∈ E, thus aii = 0 for all i∈{1; 2; : : : ; n}). Compute A2.

2. If all oO diagonal entries of A2 are equal to 1 (i.e., if diam(G)6 2) call
TRIANGLE(G). If the subroutine reports a triangle then reject G. Otherwise accept
G. {This completes the test of input graphs G with diam(G)6 2:}

3. Let a2
ij = 0 for some i and j, i
= j, so diam(G)¿ 3: Call 2LEXBFS(G) such

that >rst LEXBFS(G; vi) is performed. Let S be the resulting 2LexBFS scheme,
xn; xn−1; : : : ; x1 be the 2LexBFS ordering, and L0; L1; : : : ; Lr be the levels of S.

4. Compute another 2LexBFS scheme S′ by calling LEXBFS(G; x1). Let x1 =yn;
yn−1; : : : ; y1 be the resulting 2LexBFS ordering and L′

0; L
′
1; : : : ; L

′
r′ be the corre-

sponding levels. {Note r; r′¿ 3:}
5. If some level Li or L′

i , i
= 1, is not a clique then reject G.
6. If either TRIANGLE(G[L1]) or TRIANGLE(G[L′

1]) reports a triangle then reject G.
7. Compute the gentle squares GS and GS′

of G with respect to S and S′ in
the following way. Make L1 (respectively, L′

1) a clique and add all those edges
{u; w}∈E(G2) \ E(G) to G for which u∈Li and w∈Li+2 (respectively, u∈L′

i

and w∈L′
i+2) for some i.

162 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

8. If xn; xn−1; : : : ; x1 is not a cocomparability ordering of GS or yn; yn−1; : : : ; y1 is
not a cocomparability ordering of GS′

then reject G. Otherwise accept G.

Theorem 7. RECOGNITION recognizes claw-free AT-free graphs in time O(n�).

Proof. First consider the correctness. Let G = (V; E) be a graph. Suppose diam(G)6 2.
We will argue that then G has an independent triple if and only if G has an AT or
a claw. Since both AT and claw contain independent triples one direction of that
claim is trivial. For the other direction let {a; b; c} be an independent set of G. If
N (a) ∩ N (b) ∩ N (c)
= ∅ then for each vertex w∈N (a) ∩ N (b) ∩ N (c), {w; a; b; c}
induces a claw. Otherwise, i.e., if N (a) ∩N (b) ∩N (c) = ∅, there are pairwise diOerent
vertices u, v, w such that u∈N (a)∩N (b), v∈N (a)∩N (c), and w∈N (b)∩N (c) since
G has diameter 2. Thus, {a; b; c} is an AT of G. This proves the correctness of step
2 of our algorithm.

Assume diam(G)¿ 3. Consider the two 2LexBFS schemes S and S′ computed
by the algorithm. Assume both have the properties of Lemma 6. (Note that Lemma
6 establishes the correctness of steps 5 and 6.) We claim that then G is AT-free and
any claw in G is a standard claw in S and S′. A standard claw in S (respec-
tively, S′) is a claw {w; a; b; c} with center w such that w; b∈Li; a∈Li−1; c∈Li+1

(respectively, w; b∈L′
i ; a∈L′

i−1; c∈L′
i+1) for some i∈{2; 3; : : : ; r − 1} (respectively,

i∈{2; 3; : : : ; r′ − 1}).
Suppose {a; b; c} is an AT in G. Then the construction of S and S′, in particular, r,

r′¿ 3, guarantees that either |L1 ∩{a; b; c}|6 1 or |L′
1 ∩{a; b; c}|6 1. Without loss of

generality assume |L1∩{a; b; c}|6 1. Thus, no two vertices of {a; b; c} are in one level
of S. Hence if a∈Li, b∈Lj and c∈Lk with i¡ j¡k then there is no path between
vertices a and c avoiding N (b) ⊇ Lj. Thus, {a; b; c} is no AT. Consequently, G is
AT-free. Now assume that {w; x; y; z} induces a claw with center w in G. Notice that the
construction of S and S′ guarantees that either |L1∩{x; y; z}|6 1 or |L′

1∩{x; y; z}|6 1.
Without loss of generality assume |L1 ∩ {x; y; z}|6 1. Then {w; x; y; z} is a standard
claw in S since every Li, i
= 1, is a clique.

The standard claw test is done in steps 7 and 8. A standard claw {w; a; b; c} in S

(respectively, S′) with w; b∈Li, a∈Li−1 and c∈Li+1 having all properties required by
the algorithm implies that in the gentle square of G we have the following con>gura-
tion: {a; c} is an edge, {a; b} and {b; c} are non-edges, and b is between a and c in the
2LexBFS ordering. Consequently, the 2LexBFS ordering of G is not a cocomparability
ordering of the gentle square of G. On the other hand, if the 2LexBFS ordering is not
a cocomparability ordering of the gentle square then there exists a triple {a; b; c} of
vertices violating the cocomparability ordering condition; say {a; c} is an edge, {a; b}
and {b; c} are non-edges in the gentle square of G, and b is between a and c in the
2LexBFS ordering of G. Clearly the vertices a, b and c must be from pairwise diOerent
levels, since all levels of the gentle square are cliques. We may assume without loss of
generality that a∈Li−1, b∈Li, and c∈Li+1 for some i∈{2; 3; : : : ; r − 1}. Since {a; c}
is an edge of the gentle square there is a common neighbor w of a and c in Li. Since

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 163

i¿ 2 we have that {w; b}∈E and hence {w; a; b; c} induces a standard claw in G. This
completes the proof of correctness of the steps 7 and 8.

Finally, consider the running time. All parts of the algorithm can obviously be done
in time O(n�) using triangle recognition or matrix multiplication, except the test for
standard claws. The gentle square of G can be computed in time O(n�) by using A2.
The test whether a 2LexBFS ordering is a cocomparability ordering for the gentle
square can be done in O(n�) by checking whether the digraph obtained by orienting
the edges of the gentle square according to the 2LexBFS ordering (i.e., orient the
edges from the smaller to the larger vertex) is transitive. Notice that testing whether a
digraph is transitive is equivalent to matrix multiplication [13].

Corollary 8. There is an O(n�) time algorithm that recognizes whether a given AT-
free graph is claw-free.

Our algorithm also improves the running time of the O(n3) algorithm for computing
the asteroidal number of a claw-free graph presented in [19], when used for recognizing
asteroidal triples.

Corollary 9. There is an O(n�) time algorithm that recognizes whether a given claw-
free graph is AT-free.

4. All central vertices

In this section we consider distance properties of claw-free AT-free graphs. Distances
in graphs and related graph theoretic parameters such as diameter and radius play
an important role in the design and analysis of networks in a variety of networking
environments like communication networks, electric power networks, and transportation
networks. Until now no fast algorithms for computing the diameter of an arbitrary
graph, avoiding the computation of the whole distance matrix, have been designed.
There is a collection of work on distance problems for graphs of some special graph
classes. We refer to [7,8] for additional references.

We will start by de>ning the main concepts. Let G = (V; E) be a graph. The dis-
tance d(u; v) between vertices u and v is the length (i.e., the number of edges) of a
shortest path from u to v. The eccentricity e(v) of a vertex v is e(v) := maxu∈V d(u; v).
The radius r(G) and the diameter diam(G) are de>ned as r(G) := minv∈V e(v) and
diam(G) := max{d(u; v): u; v∈V}, respectively. Thus, diam(G) = maxv∈V e(v). Finally,
a vertex v is a central vertex of G if e(v) = r(G). Our goal is to show how to compute
all these parameters and the set of all central vertices in linear time. Consequently, our
algorithms do not compute the distance matrix of the input graph.

Our >rst lemma establishes another property of 2LexBFS schemes of claw-free
AT-free graphs.

164 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

Lemma 10. Let L0 = {x}; L1 =N (x); : : : ; Lr be the levels of a 2LexBFS scheme of a
claw-free AT-free graph G. Then �(G[Li∪Li+1])6 2 for all i¿ 0. Each vertex v∈L1

has a neighbor in L2 unless L1 ⊆ N [v].

Proof. By Lemma 6, each level Li; i
= 1, is a clique of G and �(G[L1])6 2. Thus,
we obtain �(G[Li ∪ Li+1])6 2 for all i
= 1 and �(G[L1 ∪ L2])6 3.

Suppose that G[L1∪L2] contains an independent set {a; b; c}. Since L2 is a clique we
get |L2 ∩{a; b; c}|= 1. Hence we may assume, without loss of generality, a; b∈L1 and
c∈L2. Clearly c has a neighbor y∈L1. Thus, �(G[L1])6 2 implies either {y; a}∈E
or {y; b}∈E but not both, since otherwise {y; a; b; c} would induce a claw. Suppose
both a and b have a neighbor in L2, called a′ and b′ (possibly a′ = b′), respectively.
Since L2 is a clique we obtain that G[{a; b; c; x; y; a′; b′}] is a graph of diameter 2.
But graphs of diameter 2 containing an independent triple, {a; b; c} in our case, always
contain either a claw or an AT (as shown in the proof of Theorem 7), a contradic-
tion.

Hence the only remaining case to consider is, without loss of generality, that a has
no neighbor in L2. Thus, a∈L1; N [a] ⊂ L1 ∪ {x} and b∈L1 \ N [a]. Consequently,
N [a] ⊂ N [x]. We claim that there is no vertex w of G for which x will be numbered
last by LexBFS(G;w). To see this, assume that for some vertex w of G an execution of
LexBFS(G;w) numbers vertex x last. Clearly, N [a] ⊆ N [x]\{b} implies that whenever
LexBFS(G;w) appends a number to label(a) it also appends this number to label(x). If
LexBFS(G;w) assigns a number to a vertex z ∈N [x] \ N [a] before it assigns numbers
to x or a then label(x) becomes lexicographically larger than label(a) and consequently
x will be numbered before a, a contradiction. Therefore, LexBFS(G;w) has to assign
a number to a before it assigns a number to b. This implies that, during the run of
LexBFS(G;w), before LexBFS(G;w) chooses a to be numbered next label(a) = label(x)
holds. Consequently, LexBFS(G;w) appends the number assigned to a to label(x) but
not to label(b). Thus, from that point on, label(x) is lexicographically larger than
label(b) and x cannot be numbered last by LexBFS(G;w), a contradiction. It follows
that there is no vertex w of G such that x can be numbered last by an execution of
LexBFS(G;w). Thus, no 2LexBFS ordering �2 of G yields �2(x) = n, a contradiction.
Consequently, �(G[L1 ∪ L2])6 2.

In a similar way it can be shown that, if a vertex v∈L1 has no neighbor in L2 then
v is adjacent to all vertices of L1.

A few new concepts will turn out to be quite useful. From now on let G be a
connected claw-free AT-free graph. Let L0 = {x}; L1 =N (x); : : : ; Lr be the levels of a
2LexBFS scheme of G.

De�nition. We call v a predecessor of w if there is a path v= ui; ui+1; : : : ; uk =w
such that uj ∈Lj for j = i; i + l; : : : ; k and i¡ k. For every vertex w∈Li, 16 i6 r,
we de>ne N ↑(w) =N (w) ∩ Li−1. Similarly, for every vertex w∈Li; 06 i6 r − 1, we
de>ne N↓(w) =N (w)∩Li+1. Consequently, d↑(w) = |N ↑(w)| and d↓(w) = |N↓(w)|. We

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 165

call v∈Li; 06 i6 r, a plummet if d(v; u) = r− i for all u∈Lr . Note in particular, that
x is a plummet.

De>ne A= {u∈Lr−1: d↓(u) = |Lr|} and B =Lr−1 \A. Let Bmax be the set of vertices
v from B that have a maximal down-neighborhood N↓(v) (with respect to set inclusion)
among all vertices in B.

It is known that an AT-free graph having a 2LexBFS scheme with levels L0; L1; : : : ; Lr

has either diam(G) = r or diam(G) = r + 1 (see [10]). Furthermore, a theorem on
AT-free graphs without h-ladder and h∗-ladder given in [10] implies that the diameter
of claw-free AT-free graphs can be computed by 2LexBFS in linear time.

Lemma 11. Let L0; L1; : : : ; Lr be the levels of a 2LexBFS scheme of a claw-free
AT-free graph G. Let u∈Li and v∈Lj with i; j∈{0; 1; : : : ; r} and i
= j. Then d(u; v)∈
{|i − j|; |i − j| + 1}. Furthermore, diam(G) = r.

Proof. Let u∈Li; v∈Lj, and without loss of generality assume that i¡ j. The proper-
ties of LexBFS imply both d(u; v)¿ j−i and the existence of a path x = v0; v1; : : : ; vj = v
in G with vk ∈Lk for all k = 0; 1; : : : ; j.

If i = 0 the claim is trivial, since for all j¿ 1 and all vertices v∈Lj it holds that
d(x; v) = j. If i¿ 1 then {u; vi}∈E according to Lemma 6. Hence u; vi; vi+1; : : : ; vj = v is
a path in G implying that d(u; v)6 j−i+1. If i = 1 then according to Lemma 10 either
v1 ∈N [u] or u has a neighbor z ∈L2. Hence either u; v1; v2; : : : ; vj = v or u; z; v2; : : : ; vj = v
are paths in G. Thus, d(u; v)6 j−i+1 if i = 1. This completes the proof for the distance
claim.

Note that d(x; v) = r for all v∈Lr by de>nition of Lr . Hence together with the above
proven claim we have d(u; v)6 r for all u∈Li and v∈Lj where i
= j. In order to
prove diam(G) = r it remains to show that d(u; v)6 r for all u; v∈Li; i¿ 1. Clearly,
if r¿ 2 this is trivial since all vertices in L1 are neighbors of the vertex in L0 and all
Li; i¿ 2, are cliques. If r = 1, then Lemma 10 implies d(u; v) = 1 for all u; v∈L1 =Lr .
Consequently, G is complete and diam(G) = 1. This shows that diam(G) = r.

We will now turn to the plummet vertices in a 2LexBFS scheme. The notion of a
plummet will be a useful tool to characterize the central vertices in a claw-free AT-free
graph. First we state some helpful lemmas. Recall that A= {u∈Lr−1: d↓(u) = |Lr|},
B =Lr−1 \ A and that Bmax is the set of all those vertices v∈B that have a maximal
down-neighborhood N↓(v) among all vertices in B.

Lemma 12. 1. Let u; v∈Li; i∈{1; : : : ; r − 1} such that N↓(u) and N↓(v) are incom-
parable (with respect to set inclusion). Then N ↑(u) =N ↑(v).

2. If
⋃

u∈Bmax
N↓(u) =Lr then N ↑(u) =N ↑(u′) for all vertices u; u′ ∈Bmax.

Proof. Regarding part 1, note that the claim is trivial for i = 1. Let u; v∈Li; i¿ 2,
such that N↓(u) and N↓(v) are incomparable and suppose that N ↑(u)
=N ↑(v). Without

166 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

loss of generality assume that there exists a vertex a∈Li−1 such that a∈N ↑(u)\N ↑(v).
Since N↓(u) and N↓(v) are incomparable there also exists a vertex b∈Li+1 such that
b∈N↓(u) \N↓(v). But clearly {u; a; v; b} induces a claw with center u, a contradiction.

Regarding part 2, note that under our assumption, namely,
⋃

u∈Bmax
N↓(u) =Lr , the

already proven claim of part 1 gives N ↑(u) =N ↑(u′) for vertices u; u′ ∈Bmax such that
N↓(u) and N↓(u′) are incomparable. Due to the de>nition of Bmax it remains to show
that N ↑(u) =N ↑(u′) also holds for vertices u; u′ ∈Bmax such that N↓(u) =N↓(u′). This
can be seen as follows: Let u; u′ ∈Bmax such that N↓(u) =N↓(u′). Since Bmax ⊆ Lr−1\A
and

⋃
u∈Bmax

N↓(u) =Lr there exists a vertex v∈Bmax such that N↓(u) and N↓(v) are
incompatible, and thus also N↓(u′) and N↓(v), are incomparable. It follows from part
1, that N ↑(u) =N ↑(v) =N ↑(u′).

Lemma 13. Let r¿ 2; u∈Bmax; and a∈Lr−2 such that a
∈ N ↑(u) and a
∈ N ↑(v) for
all v∈A. Then a is not a plummet.

Proof. Let r¿ 2 and u∈Bmax. Clearly, Lr
=N↓(u) and hence there exists a vertex
b∈Lr such that b
∈ N↓(u).

Let a∈Lr−2 such that a
∈ N ↑(u) and a
∈ N ↑(v) for all v∈A. Suppose that a is a
plummet. Hence d(a; b) = 2. This implies that there exists a vertex w∈Lr−1 such that
{a; w}∈E and {w; b}∈E. According to our assumptions w
∈ A and w
= u. But this
implies that {w; a; u; b} induces a claw with center vertex w, a contradiction.

The next theorem gives a characterization of all plummet vertices of a 2LexBFS
scheme of G. We will later show that essentially only the plummets from certain
levels of a 2LexBFS scheme of a claw-free AT-free graph are central vertices. Also,
it follows from the characterization of the plummets we give below that the radius of
a claw-free AT-free graph is indeed roughly half the diameter.

Theorem 14. A vertex v∈Li; 06 i6 r; is plummet if and only if one of the following
holds:

1. i = r and Lr = {v}.
2. i = r − 1 and d↓(v) = |Lr|.
3. i = r − 2;

⋃
u∈Bmax

N↓(u) =Lr; and v∈N ↑(u) for a vertex u∈Bmax.
4. i6 r − 2 and v is predecessor of a plummet u∈Lr−2 ∪ Lr−1.

Proof. Let v∈Li; i¿ 0. The claim is immediate for i∈{r − 1; r}.
Suppose i = r−2. It is obvious that every v∈N ↑(u) for a vertex u∈A is a plummet.

Let
⋃

u∈Bmax
N↓(u) =Lr and let v∈N ↑(u) for a vertex u∈Bmax. It follows from Lemma

12 that for all vertices u; u′ ∈Bmax; N ↑(u) =N ↑(u′). Thus, v is not only a predecessor
of u but of all u′ ∈Bmax. Thus, v is a plummet, since

⋃
u∈Bmax

N↓(u) =Lr . It remains
to show that no other plummets exist in Lr−2. So suppose that a∈Lr−2 is a plummet

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 167

and a
∈ N ↑(u) for all u∈A∪Bmax. Hence a satis>es the assumption of Lemma 13 and
thus cannot be a plummet, a contradiction.

Suppose i6 r− 3. Clearly, each predecessor of a plummet from Lr−2 is a plummet.
It remains to show that there are no other plummets in Li. Suppose that a is a plummet
in Li; i6 r − 3. We distinguish two cases. The >rst case is that

⋃
u∈Bmax

N↓(u)
=Lr

holds, i.e., the only plummets in Lr−2 are predecessors of vertices in A. In that case
there exists a vertex b∈Lr satisfying N ↑(b) =A. But then a being a plummet implies
d(a; b) = r − i which in turn implies a must be a predecessor of a vertex u∈A. The
second case is that

⋃
u∈Bmax

N↓(u) =Lr holds, i.e., there are plummets in Lr−2 not being
predecessors of vertices in A. We have already shown that those plummets in Lr−2

have to be predecessors of some vertex (and thus also of all vertices) u∈Bmax. Let
u∈Bmax. Since Bmax ⊆ B =Lr−1 \ A there exists a vertex b∈Lr such that b
∈ N↓(u).
Now suppose that a though being a plummet is not a predecessor of any v∈A∪Bmax.
Hence a is not a predecessor of u, but since a is a plummet, d(a; b) = r− i. It follows
that there have to exist vertices a′ ∈Lr−2 and a′′ ∈Lr−1 such that (i) d(a; a′) = r− i−2
and (ii) {a′; a′′}; {a′′; b}∈E and (iii) neither a′ nor a′′ are plummets (since otherwise
a would be a predecessor of a plummet from Lr−2). In particular, {a′; u}
∈ E. Hence
{a′′; a′; u; b} induces a claw with center vertex a′′, a contradiction.

This completes the proof of our theorem.

An immediate consequence of the above theorem is that the radius of a claw-free
AT-free graph can be computed in linear time.

Corollary 15. Let G be a connected claw-free AT-free graph. Then either r(G) =
�diam(G)=2� or r(G) = diam(G) = 2. Furthermore; the radius of a claw-free AT-free
graph can be computed in linear time by 2LexBFS.

Proof. Let L0 = {x}; L1; : : : ; Lr be the levels of a 2LexBFS scheme of a connected
claw-free AT-free graph G. Then Lemma 11 implies r = diam(G). By Theorem 14
each level Li contains a plummet vertex if 06 i6 r − 2.

Suppose r = diam(G)¿ 3. Observe that for all v∈V; e(v)¿ �r=2�. So we show
r(G) = �diam(G)=2� by proving that every plummet z ∈L�r=2� satis>es e(z) = �r=2�. To
see this consider a plummet z ∈L�r=2�. By Lemma 11, for every v∈Lj with 16 j6
r−1; d(z; v)6 |�r=2�−j|+16 �r=2�. Also, d(z; x) = �r=2� since z ∈L�r=2�, and d(z; w)
= r − �r=2�= �r=2� for all w∈Lr since z is a plummet. Hence e(z) = �r=2�.

Finally if diam(G) = 2 then either G has a vertex adjacent to all other vertices of
G, and thus r(G) = 1, or r(G) = 2. The case diam(G)6 1 is trivial.

From the above case analysis it is not hard to see that the radius of a claw-free
AT-free graph can be computed in linear time.

Theorem 16. There exists a linear-time algorithm that given a 2LexBFS scheme of
a claw-free AT-free graph computes all plummet vertices.

168 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

Proof. Let G be a claw-free AT-free graph. Let L0 = {x}; L1 =N (x); : : : ; Lr be the
levels of a 2LexBFS scheme. The algorithm given below computes a function g : V →
{0; 1} such that a vertex v of G is a plummet if and only if g(v) = 1.

Procedure PLUMMET

1. Initialize g(v) = 0 for all v∈V .
2. Set g(x) = 1. If Lr = {v} then set g(v) = 1.
3. If r = 2 then set g(v) = 1 for all v∈L1 such that d↓(v) = |Lr|.
4. If r ¿ 2 then for i = r − 1 downto 0 do

(a) If i = r − 1 set g(v) = 1 for all v∈Li such that d↓(v) = |Lr|. Let n̂ be the
number of such vertices.

(b) If i = r − 2
i. Set g(v) = 1 for all v∈Li such that v∈N ↑(u) for some vertex u∈Lr−1

such that g(u) = 1.
ii. Compute B and determine a vertex with highest down-degree among

all vertices in B, call it umax. Note that umax ∈Bmax. It follows from
Theorem 14 that all predecessors of umax are plummets if and only if⋃

u∈Bmax
N↓(u) =Lr . The latter condition can be checked by simply veri-

fying that every vertex in Lr has up-degree greater than n̂.
iii. If, for all u∈Lr; d↑(u)¿n̂ then set g(v) = 1 for all vertices v∈Lr−2 such

that v∈N ↑(umax).
(c) If i6 r−3 then set g(v) = 1 for all v∈Li such that v∈N ↑(u) for some vertex

u∈Li+1 satisfying g(u) = 1.

It is not hard to verify that our algorithm runs in linear time. The correctness
of the algorithm follows directly from Theorem 14. Regarding step 4.b note that, if⋃

u∈Bmax
N↓(u) =Lr , then N ↑(u) =N ↑(u′) for all vertices u; u′ ∈Bmax (see Lemma 12)

and hence computing the predecessors of a particular vertex umax ∈Bmax is as good as
computing the predecessors of all vertices from Bmax.

Now we are prepared to state the main theorem of this section, a characterization
of all central vertices in a claw-free AT-free graph.

Theorem 17. Let L0 = {x}; L1 =N (x); : : : ; Lr be the levels of a 2LexBFS scheme of
a claw-free AT-free graph G. Then a vertex v of G is a central vertex of G if and
only if one of the following holds:
1. r = 0 or r = 1.
2. r = 2 and d(v) = n− 1.
3. r = 2 and d(u)¡n− 1 for all u∈V .
4. r = 2k; for some integer k¿ 2; v∈Lk ; and v is a plummet.
5. r = 2k + 1; for some k¿ 1; v∈Lk and v is a plummet; or v∈Lk+1.

Proof. Cases 1, 2, and 3 do not require further explanation. If r = 2k; k¿ 2, then
according to Lemma 11 and Corollary 15 we know that r(G) = k. This implies that

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 169

a vertex v is a central vertex if and only if d(u; v)6 k for all u∈V . Thus, cen-
tral vertices can only be within Lk . Furthermore recall that for vertices v∈Lk and
u∈Li; i
= k; d(u; v)∈{|i − k|; |i − k| + 1}, see Lemma 11. Hence for a vertex v∈Lk

to be a central vertex it su0ces to satisfy d(x; v)6 k and d(u; v)6 k for all u∈Lr .
Since d(x; v) = k trivially holds for all v∈Lk , we obtain that a vertex in Lk is a central
vertex if and only if it is a plummet. If r = 2k+1; k¿ 1, then according to Lemma 11
and Corollary 15 we know that r(G) = k + 1. This implies that a vertex v is a central
vertex if and only if d(u; v)6 k + 1 for all u∈V . Thus, central vertices can only be
within Lk or Lk+1. In light of Lemma 11, a vertex v∈Lk ∪ Lk+1 is a central vertex if
and only if d(x; v)6 k + 1 and d(u; v)6 k + 1 for all u∈Lr . Observe that all vertices
in Lk+1 satisfy that condition. For the vertices v∈Lk we trivially have d(x; v) = k and
thus a vertex in Lk is a central vertex if and only if it is a plummet. This completes
the proof.

Now we are prepared to state the linear-time algorithm for computing all central
vertices of a claw-free AT-free graph.

Theorem 18. There exists a linear-time algorithm for computing all central vertices
of a claw-free AT-free graph.

Proof. Let G = (V; E) be a claw-free AT-free graph. The algorithm computes a function
cen : V → {0; 1} such that a vertex v of G is central if and only if cen(v) = 1.

Algorithm ALL CENTRAL VERTICES

1. Compute a 2LexBFS scheme of G. Let L0 = {x}; L1 =N (x); : : : ; Lr be its levels.
2. Initialize cen(v) = 0 for all v∈V .
3. If r = 0 or r = 1 set cen(v) = 1 for all v∈V .
4. If r = 2 then set cen(v) = 1 for all vertices v such that d(v) = n − 1. If no such

vertex exists then set cen(v) = 1 for all v∈V .
5. If r = 2k; k¿ 2, then by Theorem 17 the set of all central vertices consists exactly

of all plummets in Lk . Call PLUMMET and set cen(v) = 1 for all v∈Lk such that
g(v) = 1.

6. If r = 2k + 1; k¿ 1, then by Theorem 17 the set of all central vertices contains
exactly all vertices in Lk+1 and all plummets in Lk . Set cen(v) = 1 for all v∈Lk+1.
Call PLUMMET and set cen(v) = 1 for all v∈Lk such that g(v) = 1.

Since a 2LexBFS scheme can be computed in linear time and also PLUMMET runs
in linear time it is not hard to see that our algorithm ALL CENTRAL VERTICES runs in
linear time.

5. Domination, independence, and coloring

We show that for claw-free AT-free graphs there exist linear-time algorithms to
compute a minimum dominating set and maximum independent set. We also show that

170 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

there exists an O(
√
nm) algorithm for coloring a given claw-free AT-free graph with

minimum number of colors. All algorithms exploit the properties of a 2LexBFS scheme
of claw-free AT-free graphs.

The following lemma shows that the total number of potential edges between consec-
utive levels of a 2LexBFS scheme of a claw-free AT-free graph G is linearly bounded
by the number of edges in G. This observation will be useful when proving the running
time of our upcoming algorithms for computing a maximum independent set and an
optimal coloring for claw-free AT-free graphs.

Lemma 19. Let G = (V; E) be a connected claw-free AT-free graph and L0; L1;
L2; : : : ; Lr be the levels of a 2LexBFS scheme of G.
Let E∗ = {{u; v}: u∈Li and v∈Li+1 for some i∈{1; : : : ; r−1}}. Then |E∗|= O(|E|).

Furthermore; the number of edges of G[L1] is -(|L1|2):

Proof. Let ni = |Li|; 06 i6 r. Turan’s theorem (see e.g. [29]) applied to the triangle-
free graph G[L1] implies that G[L1] has at most n1

2=4 edges. Hence the number of
edges of G[L1] is -(n1

2).
Combined with Lemma 6 we obtain

|E|¿ n1
2

4
+

r∑
i=2

(
ni

2

)
:

On the other hand,

|E∗|=
r∑

i=2

(nini−1):

Clearly for all 26 i6 r

nini−16
ni

2 + ni−1
2

2

and thus leading to

r∑
i=2

(nini−1)6
r∑

i=2

ni
2 + ni−1

2

2

=
n1

2

2
+

nr
2

2
+

r−1∑
i=2

ni
2

6 2

(
n1

2

4
+

r∑
i=2

(
ni

2

))
+

r∑
i=2

ni

6 2|E| + |V |
= O(|E|)

Hence |E∗|= O(|E|) which completes the proof.

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 171

5.1. Dominating set and independent dominating set

A minimum dominating set in AT-free graphs can be computed in time O(n6) [21],
while a minimum independent dominating set can be computed in time O(n4) [6]. In
contrast, the decision problems DOMINATING SET and INDEPENDENT DOMINATING SET remain
NP-complete when restricted to claw-free graphs. This is due to the fact that both prob-
lems are NP-complete on line graphs since EDGE DOMINATING SET and EDGE INDEPENDENT

DOMINATING SET are NP-complete [30].

Lemma 20. Let G = (V; E) be a claw-free AT-free graph and L0; L1; : : : ; Lr be the
levels of a 2LexBFS scheme of G. Let u∈Li and v∈Li+2; i∈{0; 1; : : : ; r − 2} such
that u and v have a common neighbor w∈Li+1. Then Li+1 ⊆ (N [u] ∪ N [v]).

Proof. The statement is trivial for i = 0. Otherwise suppose it is false for some i¿ 1.
Let z ∈ (Li+1 \ (N [u] ∪ N [v])). Then {w; u; z; v} induces a claw in G, a contradiction.

Thus, for example, there is a dominating set of G containing exactly one vertex of
every level Li with i even or i = r. On the other hand, for every dominating set D of G
and for every three consecutive levels Li; Li+1 and Li+2 at least one of these levels must
contain a vertex of D. Notice that for u∈Li and v∈Li+3; Li+1 ∪ Li+2 ⊆ N [u]∪N [v] if
and only if N↓(u) =Li+1 and N ↑(v) =Li+2.

Lemma 21. Let G = (V; E) be a claw-free AT-free graph and L0; L1; : : : ; Lr be the
levels of a 2LexBFS scheme of G. Let u∈Li and v∈Li+2; i∈{0; 1; : : : ; r − 2}. Let
xt ; xt−1; : : : ; xt′ ; t¿ t′; be the ordering of the vertices from Li+1 induced by the
2LexBFS ordering of G. Then it holds that for all j and k; t′6 j6 t and t′6 k6 t;
if xj ∈N ↑(v) \ N↓(u) and xk ∈N↓(u) \ N ↑(v) then k ¿ j.

Proof. The claim for i = 0 is trivial. So suppose i¿ 1. Let u∈Li and v∈Li+2. As-
sume j¿k for some xj ∈N ↑(v) \ N↓(u) and some xk ∈N↓(u) \ N ↑(v). According to
LexBFS and our assumption that j¿k, {xk ; u}∈E, and {xj; u}
∈ E there exists a
vertex u′ with higher index than u in the 2LexBFS ordering such that {xk ; u′}
∈ E
and {xj; u′}∈E. Hence u′ ∈Li. Since Li+1 is a clique we also have {xj; xk}∈E and
consequently {xj; u′; xk ; v} induces a claw in G, a contradiction.

Lemma 22. Let G = (V; E) be a claw-free AT-free graph and L0; L1; : : : ; Lr be the
levels of a 2LexBFS scheme of G. Let xt ; xt−1; : : : ; xt′ ; t¿ t′; be the ordering of the
vertices from Li+1 induced by the 2LexBFS ordering of G. Let u∈Li and v∈Li+2; i∈
{0; 1; : : : ; r − 2}; with no common neighbor such that Li+1 ⊆ (N [u] ∪ N [v]). Then
there is an index j with t¿ j¿ t′ such that N↓(u) = {xt ; xt−1; : : : ; xj} and N ↑(v) =
{xj−1; xj−2; : : : ; xt′}.

172 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

Proof. Consider u∈Li and v∈Li+2 with Li+1 ⊆ (N [u]∪N [v]) and N↓(u)∩N ↑(v) = ∅.
By Lemma 21 there is no vertex of N ↑(v) between two vertices of N↓(u) and there is
no vertex of N↓(u) between two vertices of N ↑(v) in the 2LexBFS ordering of Li+1.
Hence there is an index j with t¿ j¿ t′ such that one of the two sets {xt ; xt−1; : : : ; xj}
and {xj−1; xj−2; : : : ; xt′} equals N↓(u) and the other one equals N ↑(v).

If N ↑(v) = {xt ; tt−1; : : : ; xj} and N↓(u) = {xj−1; xj−2; : : : ; xt′} then xj ∈N ↑(v) \ N↓(u)
and xj−1 ∈N↓(u)\N ↑(v); contradicting Lemma 21. Hence N↓(u) = {xt ; xt−1; : : : ; xj} and
N ↑(v) = {xj−1; xj−2; : : : ; xt′}:

Our algorithm for computing a minimum dominating set of claw-free AT-free graphs
consists of two main parts. The >rst part is a preprocessing that itself is divided into
two phases. In the >rst phase a 2LexBFS scheme with levels L0; L1; : : : ; Lr of the input
graph G is computed. Recall that a 2LexBFS scheme induces an ordering of the vertices
of each level, i.e., we assume the vertices of each level to be ordered from highest to
lowest assigned number. In the second phase of the preprocessing for every level Li

of the previously computed 2LexBFS scheme all vertices v∈Li satisfying one of the
following conditions are determined:
1. d↓(v) = |Li+1| (down-dominator).
2. d↑(v) = |Li−1| (up-dominator).
3. There exists a j such that N↓(v) equals the set of the >rst j vertices from Li+1

(left-interval).
4. There exists a k such that N ↑(v) equals the set of the last k vertices from Li−1

(right-interval).
The second and main part of our algorithm exploits the information obtained in the
preprocessing while proceeding stepwise down the levels of the 2LexBFS scheme and
assigning weights to vertices such that the weight of a vertex v∈Li corresponds to the
minimum cardinality of an i-partial dominating set containing v. Informally, an i-partial
dominating set is a set of vertices that dominates the vertices of L0 ∪ L1 ∪ · · · ∪ Li and
contains no vertex from Li+1 ∪ Li+2 ∪ · · · ∪ Lr .

Theorem 23. There is a linear-time algorithm for computing a minimum dominating
set for claw-free AT-free graphs.

Proof. Let G = (V; E) be a claw-free AT-free graph. Let L0; L1; : : : ; Lr be the levels of
a 2LexBFS scheme of G.

For a vertex v∈V \Lr we denote the largest and smallest index of vertices in N↓(v)
by l↓(v) and r↓(v), respectively. Similarly, for a vertex v∈V \L0 we denote the largest
and smallest index of vertices in N ↑(v) by l↑(v) and r↑(v), respectively. If N↓(v) = ∅
then we call v a bottom-vertex and set l↓(v) = r↓(v) = 0. Note that N ↑(v)
= ∅ for all
v∈V \ L0.

The algorithm we describe below in full detail computes the size of a minimum
dominating set and may also be used for computing a minimum dominating set itself.

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 173

Algorithm DOMINATING SET

1. Compute a 2LexBFS scheme of the input graph G = (V; E). Let L0 = {x}, L1 =
N (x); : : : ; Lr be its levels and x = xn; xn−1; : : : ; x1 be its 2LexBFS ordering.

2. Initialize for every vertex v of G: weight(v) =∞; updom(v) = 0, downdom(v) = 0;
leftint(v) = 0; and rightint(v) = 0.

3. For every vertex v∈V \ Lr compute d↓(v); l↓(v), and r↓(v). For every vertex
v∈V \ {x} compute d↑(v); l↑(v); and r↑(v).

4. For every vertex v∈Li; 06 i6 r − 1, do
(a) If d↓(v) = |Li+1| then set downdom(v) = 1.
(b) If downdom(v) = 0; l↓(v) = max{j: xj ∈Li+1}; and d↓(v) = l↓(v) − r↓(v) + 1

then set leftint(v) = 1.
(c) If N↓(v) = ∅ then set leftint(v) = 1.

5. For every vertex v∈Li; 16 i6 r; do
(a) If d↑(v) = |Li−1| then set updom(v) = 1.
(b) If r↑(v) = min{j: xj ∈Li−1} and d↑(v) = l↑(v) − r↑(v) + 1 then set

rightint(v) = 1.
6. For all levels i, 06 i6 r, make an ordered list of all vertices v∈Li with

leftint(v) = 1 sorted by non-increasing values of r↓(v), and an ordered list of
all vertices w∈Li with rightint(w) = 1 sorted by non-increasing values of l↑(w).

7. For every vertex u∈L1 such that L1 ⊆ N [u]; set weight(u) = 1 and i0 = 1.
8. If there is no vertex u∈L1 with L1 ⊆ N [u] then set weight(x) = 1 and i0 = 0.
9. For i := i0 downto r − 1 do

(a) Let Ai be the set of all vertices v∈Li of weight wi = min{weight(w): w∈Li}.
(b) For every vertex u∈Li+1 update weight(u) := min{weight(u); wi + 1}.
(c) For every vertex u∈Li+2 with updom(u) = 1 update weight(u) :=

min{weight(u); wi + 1}:
(d) For every vertex u∈Li+2 with a predecessor in Ai update weight(u) :=

min{weight(u); wi + 1}.
(e) Take the ordered list of all vertices u∈Li with leftint(u) = 1 and the ordered

list of all vertices v∈Li+2 with rightint(v) = 1. Passing both lists (from left
to right) >nd all v∈Li+2 in one list for which there is a u∈Ai in the other
list such that r↓(u)+1 = l↑(v) and update weight(v) := min{weight(v); wi+1}
for each vertex v found.

(f) If there exists a vertex v∈Ai with downdom(v) = 1 set weight(w) =wi + 1
for every vertex w∈Li+3 with updom(w) = 1.

10. Output the minimum weight taken over all vertices of Lr and all vertices v∈Lr−1

satisfying downdom(v) = 1 (and a corresponding dominating set constructed via
pointers).

In the following proof of correctness the notion of a partial dominating set will be
helpful. An i-partial dominating set, i¿ 0; is a set Di ⊆ V such that N [Di] ⊇ L0 ∪
L1 ∪ · · · ∪ Li and Di contains no vertex of Li+1 ∪ Li+2 ∪ · · · ∪ Lr . Note, if the algorithm
assigns weight weight(u) = t to a vertex u∈Li then there is an i-partial dominating set
Di containing u such that |Di|= t.

174 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

Now let us turn to the correctness of the above algorithm. Steps 1–6 just contain
the preprocessing. Observe that steps 7 and 8 assign a weight of 1 to all vertices that
dominate L0∪L1, in other words vertices that form a minimum 1-partial dominating set.
Clearly, x and also all u∈L1 such that L1 ⊆ N [u] have that property. These vertices
are potential start vertices of the to be constructed minimum dominating set.

Note that some vertices v; w∈L1 might dominate L0 ∪ L1 ∪ L2, and so be part of a
minimum dominating set D′ of G. However, for every u′ ∈L2, the vertex sets {x; u′}
and {u; u′} where u∈L1 and L1 ⊆ N [u] also dominate L0 ∪L1 ∪L2 and hence together
with D′ \{v; w} also form a minimum dominating set. Though our algorithm obviously
misses the type of minimum dominating sets containing more than one vertex from L1

it will not miss the type of minimum dominating set described in the previous sentence
as can be seen by looking at steps 9b and 9d. In general, the i-partial dominating sets
implicitly constructed by the algorithm contain at most one vertex per level of the
2LexBFS scheme.

Claim. Let weight(v)¡weight(v′) for some v; v′ ∈Li; i¿ 0. If there exists a minimum
dominating set containing v′ but not v then there exists also a minimum dominating
set containing v but not v′.

To see this let v; v′ ∈Li; i¿ 0. Suppose weight(v)¡ weight(v′). Let D′ be a
minimum dominating set containing v′ but not v and let Dv′ ⊆ D′ be an i-partial
dominating set of size weight(v′) containing v′. Let Dv be an i-partial dominating
set containing v but not v′ of size weight(v). Such a set exists according to the way
the weights are assigned in our algorithm. Observe that |Dv ∪ (D′ \ Dv′)|¡ |D′|.
Furthermore; for every y∈Li+1; Dv ∪ (D′ \ Dv′) ∪ {y} is a dominating set of G
of size less than or equal to the size of D′. Hence if there exists a minimum
dominating set of G containing v′ but not v then there exists also a minimum
dominating set of G containing v but not v′.
The above claim justi>es that for every level Li only the vertices in Li of minimal

weight (forming the set Ai) have to be considered (see step 9). In step 9 the algorithm
determines for every v∈Ai those vertices in Li+1, Li+2, and Li+3 that together with v
dominate all of Li+1, Li+1 ∪ Li+2, and Li+1 ∪ Li+2 ∪ Li+3, i.e., in steps 9b, 9c, 9d and
9e, and 9f, respectively. In other words, the algorithm determines all those vertices in
Li+1; Li+2, and Li+3 such that each one of those vertices u∈Li′ ; i′ ∈{i+ 1; i+ 2; i+ 3};
together with an i-partial dominating set containing v form an i′-partial dominating set.

Clearly, since Li+1; i¿ 1; is a clique, any vertex u∈Li+1 can be chosen. If i = 0;
in particular if x has been chosen as start vertex (see step 8) then, since x dominates
L1; also any vertex in L1 =Li+1 can be chosen. This shows the correctness of step
9b. Step 9c needs no further explanation. The correctness of steps 9d and 9e rests on
the Lemmas 20 and 22. Note in particular that the two lemmas give necessary and
su0cient conditions for a vertex in Li+2 not being an up-dominator (a case that is
handled in step 9c) to form together with an i-partial dominating set containing the
corresponding vertex v∈Li and i + 2-partial dominating set. The correctness of step 9f

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 175

is an immediate consequence of the observation that v∈Li; w∈Li+3, downdom(v) = 1
and updom(w) = 1 imply Li+1 ∪ Li+2 ⊆ N [{v; w}].

In light of the above, especially the above claim, our algorithm ensures that at least
one vertex v∈Lr or at least one vertex v′ ∈Lr−1 with downdom(v′) = 1 gets assigned
a weight that is equal to the size of a minimum dominating set.

Consider the running time. The preprocessing in steps 1–6 can be done in linear
time. Computing 2LexBFS(G) is a linear-time algorithm and all other steps essentially
require to inspect all neighbors of every vertex. Step 6 can be done in linear time
using bucket sort. Steps 7 and 8 can be done in time O(n). Steps 9a, 9b, and 9c can
be done in time linear in |Li|; |Li+1|; and |Li+2|, respectively. Step 9d can be done in
time O(

∑
v∈Li+1

d(v)) by simply >rst marking all nodes in Li+1 that are neighbors of
some w∈Ai and then assigning weight wi + 1 to all vertices in Li+2 that are neighbors
of those marked vertices. Step 9e requires time O(max{|Li|; |Li+2|}). Finally, step 9f
can be done in time O(|Li+3|).

Hence the overall running time of our algorithm is O(n + m).
It is not hard to see that one can also output a minimum dominating set in linear

time by exploiting a suitable pointer structure.

Though the minimum dominating set constructed by the previous algorithm does
not need to be an independent set it has been shown that a minimum independent
dominating set in claw-free graphs has the same size as a minimum dominating set
[1].

Theorem 24 (Allan and Laskar [1]). Every claw-free graph G has a minimum domi-
nating set that is independent. Thus; �(G) = �i(G) for all claw-free graphs.

In light of the above theorem it is not hard to see that our algorithm DOMINATING SET

can be easily modi>ed for computing a minimum independent dominating set in linear
time. As already mentioned, our algorithm computes a minimum dominating set with
at most one vertex per level of the 2LexBFS scheme. So the only edges in a returned
dominating set may occur between vertices in consecutive levels. The sole source for
that possibility can be found in step 9b. So one has to modify step 9b in such a way
that for every vertex v∈Ai only the vertices u∈Li+1 that are not adjacent to v are
assigned weight wi + 1.

Corollary 25. There is a linear-time algorithm for computing a minimum independent
dominating set for claw-free AT-free graphs.

5.2. Independent set

As mentioned earlier there exists an O(n4) algorithm for computing a maximum
independent set for AT-free graphs [6]. There is also a polynomial-time algorithm for

176 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

computing a maximum independent set for claw-free graphs [23,26]. Notice that the
latter problem is a generalization of the well-known MATCHING problem.

Let G = (V; E) be a claw-free AT-free graph and L0; L1; : : : ; Lr be the levels of a
2LexBFS scheme of G. Let I be any independent set of G. Then Lemma 6 and
Lemma 10 imply |Li ∩ I |6 1 if i
= 1, |L1 ∩ I |6 2 and |(Li−1 ∪ Li) ∩ I |6 2. Using
this observation it can be shown that the search for a maximum independent set can
be restricted to independent sets containing at most one vertex per level Li, for all
i¿ 2. This leads to a longest path problem on an auxiliary directed acyclic graph
G̃ = ({s; t} ∪ {d3; d4; : : : ; dr}

⋃∪r
i=2Li; Ẽ), where

Ẽ = {(vi; vi+1): vi ∈Li; vi+1 ∈Li+1; {vi; vi+1}
∈ E; 26 i6 r − 1}
∪{(vi; di+1): vi ∈Li; N↓(vi) =Li+1; 26 i6 r − 1}
∪{(di; vi+1): vi+1 ∈Li+1; 36 i6 r − 1}
∪{(s; v): v∈L2}
∪{(s; v): v∈L3 and L1 is not a clique}
∪{(v; t): v∈{dr} ∪ Lr}:

Now we assign a length ‘(a)∈{0; 1; 2; 3} to each directed edge a such that ‘(a) = 3
if a= (s; v) with v∈L3, ‘(a) = 2 if a= (s; v) with v∈L2, ‘(a) = 0 if a= (vi; di+1) with
vi ∈Li and 26 i6 r − 1, or if a= (v; t), and ‘(a) = 1 otherwise.

For a given claw-free AT-free graph G our algorithm computes >rst a 2LexBFS
scheme and then the auxiliary directed acyclic graph G̃ and the length function ‘.
Then a longest s; t-path on G̃ is computed. Its length is exactly �(G) and the vertex
set of a longest path corresponds to a maximum independent set of G.

Theorem 26. There is a linear-time algorithm for computing a maximum independent
set for claw-free AT-free graphs.

Proof. First, consider the correctness of our above outlined algorithm. Any directed
path in G̃ corresponds to an independent set in G since all directed edges in G̃ join
non-adjacent vertices in G and since the LexBFS scheme guarantees that the set of
vertices of a path not belonging to {s; t} ∪ {d3; d4; : : : ; dr} is an independent set in G.
Furthermore the length of an s; t-path is exactly the cardinality of the corresponding
independent set when we carefully treat the edges (s; v). Namely, to an edge (s; v)∈ Ẽ
with v∈L2 corresponds an independent set containing x and v (and thus ‘((s; v)) = 2);
and to an edge (s; v)∈ Ẽ with v∈L3 corresponds an independent set containing y1; y2,
and v where y1 and y2 are non-adjacent vertices of L1 (and thus ‘((s; v)) = 3). Hence
the length of an edge a equals the number of vertices contributed by a to an independent
set corresponding to an s; t-path containing a. Finally, it is not hard to see that Lemma
6 and Lemma 10 imply that every maximum independent set of G is represented by
an s; t-path of G̃.

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 177

Consider the running time. The graph G̃ has O(|V |) vertices and O(|E∗|) edges.
Thus, by Lemma 19 the size of G̃ is O(|V |+ |E|). It is not hard to see that G̃ can be
constructed in time linear in the size of G̃. Using a linear-time algorithm for computing
a longest path in a directed acyclic graph we obtain overall running time O(|V |+ |E|).

5.3. Coloring

The COLORING problem is NP-complete for claw-free graphs since it remains NP-
complete on line graphs which form a subclass of claw-free graphs [17]. In contrast,
the alogorithmic complexity of the COLORING problem for AT-free graphs is still an
open problem. Let tMATCH (n; m) and tBIPMATCH (n; m) be the times needed to compute a
maximum matching on general graphs and on bipartite graphs, respectively. Similarly,
let tCOLOR(n; m) denote the time to color a claw-free AT-free graph.

Theorem 27. 3 There is an O(n2 +
√
nm) coloring algorithm for claw-free AT-free

graphs. Furthermore; tCOLOR(n; m)6max{tMATCH (n; m); tBIPMATCH (2n; m)}+ O(n2) and
tBIPMATCH (n; m)6 tCOLOR(n; m) + O(n2).

Proof. The following algorithm colors a connected claw-free AT-free graph G with a
minimum number of colors: Compute a 2LexBFS scheme of G. Let L0; L1; : : : ; Lr be
its levels. If r6 2 then by Lemma 10, �(G)6 2 and we thus exploit the well-known
fact that a minimum coloring of a graph G with �(G)6 2 can be determined by com-
puting a maximum matching M of G and by coloring G such that two vertices u
and v of G obtain the same color if and only if {u; v} is an edge of the maximum
matching M . If r ¿ 2 we either have that L1 is a clique, in which case the 2LexBFS
ordering of G is a cocomparability ordering of G since now all levels are cliques,
or L1 is not a clique implying that �(G)¿ 3 and thus G is cocomparability due to
Theorem 3. So we use an algorithm solving the COLORING problem for cocomparabil-
ity graphs by a reduction to MATCHING on a bipartite auxiliary graph [14] (see also
[28, p. 274]). It is not hard to verify that the just outlined algorithm runs in time
max{tMATCH (n; m); tBIPMATCH (2n; m)} + O(n2) which proves the >rst inequality.

Due to the fact that the current best algorithm for maximum matching on graphs
has running time O(

√
nm) [22] it follows that there exists a O(

√
nm + n2) coloring

algorithm for claw-free AT-free graphs.
For the other inequality to be proven simply observe that the complement of a bipar-

tite graph G satis>es �(G)6 2 and thus is a claw-free AT-free graph. So a minimum
coloring of G induces a maximum matching on G.

3 A polynomial-time coloring algorithm for claw-free AT-free graphs was independently found by E.
KPohler.

178 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

Though the above theorem might give the impression that full complementation of
the input graph, and thus an extra O(n2) in the running time, is necessary in order to
apply matching algorithms we emphasize that this is not true.

Theorem 28. There is an O(
√
nm) algorithm for computing a minimum coloring for

claw-free AT-free graphs.

Proof. Our algorithm >rst computes a 2LexBFS scheme of the input graph. Then it
proceeds stepwise down the levels of the 2LexBFS scheme coloring each newly entered
level optimally. The correctness of the algorithm is shown by induction over the levels
of the computed 2LexBFS scheme.

We denote the color of a vertex v by c(v).

Algorithm COLORING

1. Compute a 2LexBFS scheme of the input graph G. Let L0 = {x}; L1 =N (x); : : : ; Lr

be its levels.
2. Set c(x) = 1.
3. Compute a maximum matching of G[L1 ∪ L2]. Let k̂ be the size of the computed

maximum matching.
4. Use colors {2; 3; : : : ; |L1| − k̂ + 1} to color the nodes in L1 ∪ L2 in the following

way: For every edge from the found maximum matching choose a diOerent color
and assign it to the two endpoints of that edge. If there are uncolored vertices of
L2 give one of them color 1. Color the remaining uncolored vertices of L1 ∪ L2

pairwise diOerent with colors {|L1| − k̂ + 2; : : : ; |L1| + |L2| − k̂ − 1}.
5. For i = 2 to r − 1 do

(a) Let Hi be the graph consisting of all vertices from Li ∪ Li+1 and all edges
{u; v} such that u∈Li; v∈Li+1, and {u; v}
∈ E. Compute a maximum match-
ing of Hi. Let ki be the size of the computed maximum matching. Let li be
the number of colors used in Li and let ci denote the number of colors used
in L0 ∪ L1 ∪ · · · ∪ Li.

(b) Use |Li+1| colors to color the vertices in Li+1 in the following way: For every
edge {u; v}, where u∈Li and v∈Li+1, from the found maximum matching
assign color c(u) to v. The remaining vertices of Li+1 are all colored pairwise
diOerent, using at most ci − li colors that have already been used to color
vertices in levels L0; L1; : : : ; Li−1 and that have not been used to color vertices
in Li and if necessary |Li+1| − ki − (ci − li) new colors.

It is not hard to verify that our algorithm produces a proper coloring. To see this note
that on one hand our algorithm ensures that the nodes in each level of the 2LexBFS are
colored properly. Since Li; i¿ 2, forms a clique we have to use |Li| diOerent colors
for coloring Li and our algorithm does exactly that. The coloring of two adjacent levels
is based on a matching algorithm which again ensures that only non-adjacent vertices
get the same color.

H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180 179

It remains to show that the above algorithm produces an optimal coloring. First
recall that by Lemma 10, our algorithm constructs a coloring for which each graph
G[Li ∪Li+1] is colored with the minimum number of colors. Now suppose there exists
an optimal coloring copt using less colors than the coloring c found by the algorithm.
Hence there exists a smallest i, call it i0, such that (a) within levels L0; L1; : : : ; Li0 c and
copt have used the same number of colors and (b) within levels L0; L1; : : : ; Li0 ; Li0+1 c
uses at least one color more than copt. We will now show that this cannot happen.
Clearly, c is an optimal coloring on G[L0 ∪ L1 ∪ L2], since G[L1 ∪ L2] is colored
optimally and color 1 is reused on L2 (if appropriate, i.e., if not all vertices of L2 are
covered by an edge of the maximum matching of G[L1 ∪ L2]). Hence i0¿ 2. Since,
Li0+1 is a clique, all vertices in Li0+1 are assigned diOerent colors by copt and c. Suppose
that copt uses more colors of Li0 to also color vertices in Li0+1 than c does. Since copt

is a coloring, there has to exist a matching of non-edges of G between Li0 and Li0+1

that is larger then the maximum matching computed in the algorithm, a contradiction.
Hence it remains the case that copt uses more colors from previous levels that have
not been used in Li0 than c does. But also this is impossible, since the algorithm itself
uses as many colors from previous levels Li; i¡ i0, as possible. This shows that the
algorithm indeed computes an optimal coloring.

Regarding the time bound of the algorithm we mention that computing a maximum
matching can be done in time O(

√
nm) [22]. In our algorithm a number of maximum

matchings are computed, but every vertex is involved in the computation of a maximum
matching at most twice. Any edge appearing in an input to a matching algorithm is an
edge of E∗ or a non edge of G[L1] and appears exactly once in an input to a matching
algorithm. By Lemma 19, |E∗|= O(|E|) and G[L1] has -(|L1|2) edges. Hence the
overall time bound of the algorithm is O(

√
nm).

Acknowledgements

The authors are deeply grateful to the anonymous referees for their invaluable sug-
gestions regarding the presentation of the material.

References

[1] N.B. Allan, R. Laskar, On domination and independent domination numbers of a graph, Discrete Math.
23 (1978) 73–76.

[2] N. Alon, R. Yuster, U. Zwick, Finding and counting given length cycles, Algorithmica 17 (1997)
209–223.

[4] A. BrandstPadt, V. Bang Le, J. Spinrad, Graph Classes: a Survey, Society for Industrial and Applied
Mathematics, Philadelphia, 1999.

[5] A. BrandstPadt, F.F. Dragan, E. KPohler, Linear time algorithms for hamiltonian problems on
(claw,net)-free graphs, in: Proceedings of the 25th Workshop on Graph-Theoretic Concepts in Computer
Science, Lecture Notes in Computer Science, Vol. 1665, eds. P. Widmayer, G. Neyer, S. Eidenbenz,
Springer, Berlin 1999, pp. 364–376.

[6] H. Broersma, T. Kloks, D. Kratsch, H. MPuller, Independent sets in asteroidal triple-free graphs, SIAM
J. Discrete Math. 12 (1999) 267–287.

180 H. Hempel, D. Kratsch /Discrete Applied Mathematics 121 (2002) 155–180

[7] V. Chepoi, F. Dragan, A linear-time algorithm for >nding a central vertex of a chordal graph, in:
Proceedings of the 4th Annual European Symposium on Algorithms, Lecture Notes in Computer
Science, Vol. 855, ed. J. van Leeuwen, Springer, Berlin, 1994, pp. 159–170.

[8] V. Chepoi, F. Dragan, Finding a central vertex in HHD-free graphs. preprint, University of Rostock,
1998.

[9] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput.
9 (1990) 251–280.

[10] D.G. Corneil, F.F. Dragan, M. Habib, C. Paul, Diameter determination on restricted graph families. in:
Proceedings of the 24th Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes
in Computer Science, Vol. 1517, eds. J. Hromkovic, O. Sykora, Springer, Berlin, 1985, pp. 267–350.

[11] D.G. Corneil, S. Olariu, L. Stewart, Asteroidal triple-free graphs, SIAM J. Discrete Math. 10 (1997)
399–430.

[12] D.G. Corneil, S. Olariu, L. Stewart, A linear time algorithm for dominating pairs in asteroidal triple-free
graphs, SIAM J. Comput. 28 (1999) 1284–1297.

[13] M.J. Fischer, A.R. Meyer, Boolean matrix multiplication and transitive closure, in: Proceedings of the
12th Annual Symposium on Switching and Automata Theory, 1971, pp. 129–131.

[14] D.R. Fulkerson, A Note on Dilworth’s decomposition theorem for partially ordered sets, Proc. Amer.
Math. Soc. 7 (1956) 701–702.

[15] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[16] H. Hempel, D. Kratsch, On claw-free asteroidal triple-free graphs. in: Proceedings of the 25th Workshop

on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, Vol. 1665,
eds. P. Widmayer, G. Neyer, S. Eidenbenz, Springer, Berlin, 1999, pp. 377–390.

[17] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (1981) 718–720.
[18] T. Kloks, D. Kratsch, H. MPuller, Approximating the bandwidth for AT-free graphs. in: Proceedings of

the 5th Annual European Symposium on Algorithms, Lecture Notes in Computer Science, Vol. 979,
ed. P. Spirakis, Springer, Berlin, 1995, pp. 434–447.

[19] T. Kloks, D. Kratsch, H. MPuller, Asteroidal sets in graphs. in: Proceedings of the 23rd Workshop on
Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, Vol. 1335, ed.
R.H. MPoring, Springer, Berlin, 1997, pp. 229–241.

[20] E. KPohler, Graphs without asteroidal triples. Ph.D. thesis, Technische UniversitPat Berlin, 1999.
[21] D. Kratsch, Domination and total domination on asteroidal triple-free graphs, Discrete Appl. Math. 99

(2000) 111–123.
[22] S. Micali, V.V. Vazirani, An O(V 1=2E) algorithm for >nding maximum matching in general graphs.

in: Proceedings of the 20th IEEE Symposium on Foundations of Computer Science, New York, 1980,
pp. 17–25.

[23] G.J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory, Ser. B
28 (1980) 284–304.

[24] A. Parra, P. ScheTer, Characterizations and algorithmic applications of chordal graph embeddings,
Discrete Appl. Math. 79 (1997) 171–188.

[25] D.J. Rose, R.E. Tarjan, G.S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J.
Comput. 5 (1976) 266–283.

[26] N. Sbihi, Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile,
Discrete Math. 29 (1980) 53–76.

[27] J. Spinrad, private communication.
[28] D. West, Parameters of partial orders and graphs: packing, covering, and representation. In Graphs and

order. The role of graphs in the theory of ordered sets and its applications, Proc. NATO Adv. Study
Inst., NATO ASI Ser., Ser. C 147, ed. I. Rival, 1985, pp. 267–350.

[29] D. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, NJ, 1996.
[30] M. Yannakakis, F. Gavril, Edge dominating sets in graphs, SIAM J. Appl. Math. 38 (1980) 364–372.

For further reading

H. Alt, N. Blum, K. Mehlhorn, M. Paul, Computing a maximum matching in a bipartite graph in time
O(n1:5

√
m=log n), Inform. Process. Lett. 37 (1991) 237–240.

