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ABSTRACT 

Psychological evidence shows that probability theory is not a proper descriptive model 
of  intuitive human judgment. Instead, some heuristics have been proposed as such a 
descriptive model. This paper argues that probability theory has limitations even as a 
normatiue model. A new normative model o f  judgment under uncertainty is designed 
under the assumption that the system's knowledge and resources are insufficient with 
respect to the questions that the system needs to answer. The proposed heuristics in 
human reasoning can also be observed in this new model, and can be justified 
according to the assumption. 

K E Y W O R D S :  subjective probability, normative and descriptive models, 
heuristics and bias, insufficient knowledge and resources, nonaxiomatic 
reasoning system. 

1. I N T R O D U C T I O N  

The  study of  h u m a n  judgmen t  under  uncertainty reveals a systematic 
discrepancy between actual human  behavior  and the conclusions of  proba-  
bility theory  [18], that  is, be tween what  we should do (according to 
probabili ty theory)  and what  we do (according to psychological experi- 
ments). Therefore ,  probabili ty theory is not  a good  descriptive theory for 
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human reasoning under uncertainty, though it is still referred to as a good 
normative theory. 

When a normative model and a descriptive model conflict with each 
other, which one should be blamed? In this field, the dominant response is 
to explain the inconsistency as fallacies, errors, or illusions that happen in 
human thinking, for the following reasons: 

1. Probability theory has a solid foundation. Its conclusions are derived 
deductively from a set of intuitive, or even self-evident axioms [5]. 

2. Most of the people who commit a fallacy are disposed, after explana- 
tion, to accept that they made a mistake [19]. 

As a result, the research activities in this domain often consist of the 
following steps [9, 12]: 

1. To identify the problem by carrying out psychological experiments, 
and compare the results with the conclusions of probability theory. 

2. To explain the result by looking for the heuristics that are used by 
humans and the factors that affect their usage, and to suggest and 
verify methods to correct the errors. 

Heuristics, as methods to assess subjective probability, "are highly 
economical and usually effective, but they lead to systematic and pre- 
dictable errors " [18]. Compared with normative theories, such as probabil- 
ity theory, heuristics are not optimal, not formal, not systematic, and not 
always correct. 

According to this opinion, the fact that probability theory cannot match 
actual human reasoning is not a problem of the theory. Though the 
discrepancy is well known, probability theory, especially the Bayesian 
approach, is becoming more popular as a normative model of reasoning 
under uncertainty. 

"Bayesian approach" usually means the following in the current context: 
1. Probability is a subjective measurement of an uncertain belief, based 

on available evidence and background knowledge. 
2. The beliefs of an idealized person about a domain can be represented 

by a (consistent) probability distribution function on a proposition 
space. 

3. Bayes' theorem is applied to revise one's beliefs with new evidence. 
However, besides the mainstream opinion expressed above, there are 

proposals to explain the discrepancy as a challenge to the Bayesian 
approach: 

• Probability theory can be interpreted differently, as in the "frequen- 
tist" [9] or "propensity" [4] interpretation. 

• There are alternative normative models that compete with Pascal 
probability theory, such as Baconian probability [4] and belief func- 
tions [16]. 

• Some formal descriptive models are proposed, such as information 
integration theory [1]. 
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Similarly, this paper attempts to address the following questions: Is the 
Bayesian approach always the correct model to use? If not, when and why 
not? Are there other normative models for reasoning under uncertainty? 
What is wrong with the heuristics? 

In Section 2, the assumptions and limitations of the Bayesian approach 
are analyzed. In Section 3, a new normative theory for judgment under 
uncertainty is briefly described. In Section 4, the relationship between the 
heuristics and the new theory is discussed. Finally, there are conclusions 
arguing that the Bayesian approach is not always the appropriate norma- 
tive model for a given problem. 

2. THE BAYESIAN APPROACH AS A NORMATIVE MODEL 

Like other normative theories, the Bayesian approach is based on 
certain assumptions; therefore it is applicable only when the assumptions 
are satisfied. Though such a statement sounds trivial when put in this way, 
the analysis about exactly when the Bayesian approach can be applied is 
far from settled. 

A typical opinion on this issue can be found in the following statements: 
• "The subjective assessment of probability resembles the subjective 

assessment of physical quantities such as distance or size." [18] 
• "Although the language of probability can be used to express any form 

of uncertainty, the laws of probability do not apply to all variants of 
uncertainty with equal force." [12] 

Some authors even take the radical position that "the world operates 
according to Bayes' Theorem" [14]. According to this opinion, Bayesian 
approach is the normative model for judgment under uncertainty, and it 
always gives the correct or optimal answer, although sometimes it is not 
easy to apply. This opinion is also advocated by some authors in the study 
of uncertainty reasoning in artificial intelligence [3, 15, 17]. 

It is well known that the axioms of probability theory can be derived 
from several assumptions about the relationships between evidence and 
belief [5]. These assumptions, though reasonable for many situations, set 
limitations on the Bayesian approach at the same time. 

2.1. Consistency 

All applications of the Bayesian approach begin with a consistent prior 
probability distribution on a predefined proposition (or event) space. The 
requirement for consistency, though it looks reasonable, is not always 
satisfiable, for the following reasons: 

1. When a system is open to new evidence, that is, the system works in a 
continuous, incremental, or adaptive manner [11], it is always possible 
for new knowledge to conflict with previous knowledge. 
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2. Under  time pressure, it is often impossible for the system to locate 
and consider all relevant knowledge when a judgment  is made, so the 
judgments based on different knowledge may conflict with each other. 

In these situations, a belief system cannot be abstracted as a (consistent) 
probability distribution on a proposition space. 

2.2. Ignorance and Revision 

Though a probability distribution is a useful way to express one's 
uncertainty about some events or propositions, it does not contain infor- 
mation about the amount  of evidence that supports the probability distri- 
bution [13]. This type of information is referred to by various authors as 
"ignorance," "confidence," "reliability," and so on [16, 21]. 

Some people argue that this information can be derived from a probabil- 
ity distribution [15, 17], but this argument  is invalid, because it is actually 
based on a confusion between the background knowledge that supports a 
probability assignment and the proposition that appears within a condi- 
tional probability assignment as the condition. A detailed discussion on 
this issue can be found in [20]. In the following, we will summarize the 
argument  briefly. 

Suppose we are talking about the uncertainty of the propositions in a 
space S. For this purpose, we collect some background knowledge C, and 
accordingly set up a prior probability distribution on S. We refer to the 
distribution as Pc(x) (x ~ S), and use the subscript C to indicate the fact 
that the probability distribution is based on the background knowledge, or 
context consideration, C. Now a piece of new knowledge E comes. If 
E ~ S, the updated beliefs should be Pc(xlE), and can be calculated 
according to Bayes' theorem, when Pc(E) > O. 

However, the above procedure cannot be applied when E is not in S or 
Pc(E) = 0. These situations happen typically when what needs to be 
changed is the background knowledge C. Intuitively, we know that some 
probability distributions are established according to huge statistical 
databases or careful theoretical analysis, but some others are based on 
shaky guesses. However,  this difference, what we usually call the ignorance 
about the domain, cannot be reflected within the probability distribution 
Pc(x). When all our  concern is about decision making in S, and C remains 
unchanged during the process, the above difference does not matter.  
However,  if new evidence suggests a revision of the distribution by chang- 
ing C, Bayes' theorem cannot help. 

Sometimes an extension of Bayes' theorem, Jeffrey's rule, can be used to 
modify a probability distribution. If  a proposition T 's  previously estimated 
probability is P(T) = v, and there is a piece of new knowledge saying that 
T's probability should be l-', then T's  probability is changed to v ' ,  and for 
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every judgment x in the space, its probability is changed from P(x) to 
P'(x), where P'(x)  = P(xl T) X v' + P(xl -~ T)  x (1 - v'). This is Jef- 
frey's rule. When v' = 1, we get Bayesian conditionalization. Obviously, 
this rule can be used to change C; however, it is an updating rule (for 
replacing old knowledge by new knowledge), rather than a revision rule (for 
combining knowledge from distinct bodies of evidence). In updating, a 
probability distribution is modified according to a (new) single probability 
assignment on a proposition, whereas the previous probability assignment 
on the proposition is completely ignored. As a result, updating is asymmet- 
ric, but revision (or evidence combination [16]) is symmetric [6]. Although 
updating is a valid operation, it cannot be used to replace revision. 

2.3. Extensional Interpretation 

Probability theory is traditionally interpreted in an extensional way [19], 
which means the following: 

1. All sets are well defined, that is, whether an object belongs to a set 
has a (maybe unknown) " y e s / n o "  answer. 

2. The probability of "A c B," where both A and B are sets, is usually 
closely related to ]A • BI/IAL. For instance, this ratio is often used 
as an estimate of the probability, and its limit, if known, is often 
taken as the probability [18]. 

3. The probability of "a ~ B," where a is an object and B is a set, is 
often determined via another set R, the "reference class." When 
"a ~ R"  is true and the probability of "R c B"  is known, this value 
can be inherited by "a ~ B"  [24]. 

Though this is a very useful and reasonable way to apply probability 
theory to everyday life, we should keep the following points in mind. 

First, this is a way to interpret probability, but not necessarily the only 
way to do it. There are several concepts that are often confused with one 
another: "probability" as a mathematical notion, "probability" under an 
extensional interpretation, and "probability" as used in ordinary language 
to express our (informal) degree of belief or uncertainty. These concepts 
are closely related, but not identical. 

Second, by interpreting probability extensionally, some simplifications 
are introduced. We assume that the extension of all concepts are well 
defined, and only extensional inclusion relations are related to probability 
evaluation. Again, these assumptions are reasonable for some purposes, 
but may be rejected for some other purposes. 

There is a historical reason for why all mathematical and logical theories 
(including probability theory) are more closely related to the extensions of 
concepts than to their intensions, but it does not mean that there is no way 
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(even in the future) to formally process the intension of a concept, or this 
should not be done. 

In summary, the Bayesian approachis useful, but also has limitations. In 
some situations, it cannot be applied or should not be applied. 

3. NARS AS A NORMATIVE MODEL 

The Non-Axiomatic  Reasoning System (NARS) is an intelligent reasoning 
system which adapts to its environment under insufficient knowledge and 
resources. A formal and complete description of the system's logical kernel 
has been published in this journal [21]. It is assumed that the readers of 
the present paper have access to that paper; in the following we only 
introduce the aspects of the system that are most closely related to our 
current issue. 

3.1. Theoretical Assumption 

NARS is designed under the assumption that the knowledge and re- 
sources of the system are usually insufficient with respect to the questions 
that it needs to answer. More concretely, the system's computing facilities 
(such as processor time and memory space) are usually in short supply; the 
questions asked by the environment have various time requirements at- 
tached; the system is always open to new knowledge (which is not necessar- 
ily consistent with the current knowledge of the system) and new questions 
(which may go beyond the current knowledge scope of the system). 

Being adaptive, the system accommodates itself to new knowledge, 
makes judgments under the current knowledge-resource constraints, and 
adjusts its memory structure and the distribution of its resources to 
improve its time-space efficiency, under the assumption that future situa- 
tions will be similar to past situations. 

Because all the judgments are usually based on insufficient evidence, the 
system needs to measure how each of them is supported or refuted by 
available evidence. The system also needs rules to make plausible infer- 
ence from given knowledge, and to revise previous beliefs in the light of 
new knowledge. Therefore,  among other things, NARS attempts to provide 
a normative model for reasoning with uncertainty. 

3.2. Uncertainty Measurement 

In the simplest version of NARS [21], each judgment has the form 
"S c P [t]," where "S"  is the subject term of the judgment, " P "  is the 
predicate term, " c  " can be intuitively understood as "is a kind of" and 
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"has the propert ies of" (see [21] for its formal definition), and " t "  mea- 
sures the uncertainty of  the judgment.  

Because all judgments in NARS are based on the system's experience, 
the uncertainty of a judgment  is actually represented by the weights of its 
(positive and negative) evidence. If  the system knows (from its experience) 
a term M such that M is a kind of S and also a kind of P, or that both S 
and P have the property of M, then M is counted as a piece of positive 
evidence for S c P. I f  the system knows that M is a kind of S but not a 
kind of P, or P has the property of M but S has not, then M is counted 
as a piece of negative evidence for "S c P." Therefore,  the uncertainty of 
a judgment  can be represented by a pair (w +, w - ) ,  where w + is the total 
weight of  positive evidence, and w-  is the total weight of negative 
evidence, w, the weight of all relevant evidence, is simply w ++ w-.  

When a relative measurement  is preferred,  the same information can be 
represented by a pair of real numbers in [0, 1], ( f ,  c) ,  where f = w+/w, 
the frequency (or proportion) of  positive evidence among all relevant 
evidence, and c = w/(w + 1), a monotonically increasing function of the 
total weight of relevant evidence, c is referred to as the confidence of the 
judgment,  because of the familiar phenomenon:  the more evidence one 
has collected, the more  confident one feels when making a judgment  on 
the issue, though it does not follow that the judgment  become " t ruer"  or 
"more  accurate" in an objective sense [7, 8]. 

For a detailed discussion of the related semantics issues, see [22]. 

3.3. Inference Rules 

In NARS there are two types of rules: one is for the derivation of new 
judgments (including deduction, induction, abduction, and so on), and the 
other is for conflict management .  For  our current purpose, we will concen- 
trate on the latter. 

By a conflict between two judgments,  we mean that the two judgments 
are about the same "S c P "  relation, but they are based on different 
bodies of evidence, so they may attach different uncertainties to the 
relation. 

As mentioned previously, this kind of conflict is a normal phenomenon 
in NARS. With insufficient knowledge, it is always possible for new 
knowledge to conflict with previous knowledge. With insufficient resources, 
the system cannot afford the time to consider all of  its knowledge to make 
a judgment,  so a judgment  is usually based on part  of the system's 
knowledge. Therefore,  even without new evidence, conflicting judgments 
may coexist. 

Though that is a normal phenomenon,  the system does not let a 
conflicting pair of judgments stay in that way when it is found. When the 
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inference engine is fed two judgments "S c P ( f l ,  c l ) "  and " S c P  
(f2,  c2)," two different cases are distinguished: if the two judgments are 
based on correlated evidence, then the updating rule is applied; otherwise 
the revision rule is applied. 

By "correlated evidence," we mean that some evidence is used to 
evaluate the uncertainty of both judgments (for an exact definition and 
how the system can recognize its happening, see [21]). The correlation may 
be either full (i.e,. the evidence of one judgment is included in that of the 
other) or partial. For  partially correlated evidence, an ideal solution is to 
merge the evidence without repeatedly counting the shared part. However, 
under insufficient resources, it is simply impossible to distinguish the 
contribution of each piece of evidence to the uncertainty of the judgment. 
Therefore,  in both situations (full and partial correlations) NARS chooses 
the judgment with a higher confidence (that is, based on more evidence) as 
the result, and ignores the other one. 

When the evidence is not correlated, the revision rule is applied to get a 
judgment based on the merged evidence. From the definition of f and c (in 
terms of w ÷ and w-) ,  and the convention that the weight of evidence is 
additive during revision, we can directly get the conclusion "S c P ( f ,  c)"  
where f = ( w l f  1 + w e f 2 ) / ( w  1 + w 2 )  , and c = ( w  1 q- w 2 ) / ( w  1 q- w 2 @ 1). 

We can see from the function that after a revision the conflicting 
frequency evaluations are "averaged" with a (monotonically increasing) 
function of confidence as weight, and the confidence is increased due to 
the accumulation of evidence from different sources. Therefore,  confi- 
dence indicates the stability of a frequency assignment in the face of 
confliction judgments. 

For how the uncertainty measurement is used to predict future situa- 
tions, see [21]. 

3.4. Comparison with the Bayesian Approach 

NARS and the Bayesian approach are based on different assumptions. 
In the Bayesian model, whether an event will happen, or whether a 
proposition is true, is uncertain, but its probability, or degree of uncer- 
tainty, is usually certain. The resources expenses of the rules (for example, 
Bayes' theorem) are ignored. On the contrary, in NARS the insufficiency 
of knowledge and resources is consistently and completely assumed. From 
this, some concrete differences follow: 

1. In the traditional interpretation of probability theory, only exten- 
sional evidence is considered when the probability of a statement is 
evaluated. In NARS, as defined above, extensional evidence ("shared 
instances") and intensional evidence ("shared properties") are equally 
treated when the uncertainty of a judgment is determined. 
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2. All the operations in Bayesian approach are within the same distribu- 
tion function (with updating as an exception); therefore all of the 
probability evaluations involved are based on the same chunk of 
background knowledge, which can be omitted in formulae. In NARS, 
each judgment is evaluated individually, so it is necessary to somehow 
indicate the amount of its evidence. This is why a confidence mea- 
surement is introduced. 

3. In NARS, all rules are "local," in the sense that the uncertainty of 
the conclusion only depends on the premises. Therefore,  the applica- 
tion of a rule only involves a few judgments. On the contrary, the 
Bayesian approach uses "global" rules. For example, when Bayes' 
theorem (or Jeffrey's rule) is used to update a distribution function, 
most probability assignments in the whole proposition space need to 
be recalculated. Pearl correctly argues in [15] that local rules cause 
incorrect conclusions by neglect of relevant information. For a system 
with insufficient resources, however, local rules become the only 
choice. The incorrect conclusions can be revised when the relevant 
information is located at a later time [21]. 

4. As a result, NARS may contain (explicitly or implicitly) conflicting 
judgments. To handle them, NARS has both an updating rule and a 
revision rule, whereas the latter is not available in a Bayesian model, 
because the information about confidence is absent there [20]. 

In spite of the differences, the two models have many similar properties. 
Both of them are normative models for judgment under uncertainty, but 
they are based on different assumptions about the environment where the 
model is applied. 

4. HEURISTICS AND NARS 

Though designed as a normative model, NARS shows some behaviors 
that are usually explained in term of "heuristics and biases" when these 
phenomena happen in human judgments [18]. 

4.1. Availability 

Availability, " the ease with which instances or occurrences can be 
brought to mind," is a common heuristic in intuitive judgment of probabil- 
ity. It is "affected by factors other than frequency and probability," and 
therefore "leads to predictable biases" [18]. 

The same phenomenon happens in NARS. Because NARS is built under 
the assumption of insufficient knowledge and resources, the following 
properties are implied: 
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1. The system has to base its judgments on the auailable, though usually 
incomplete, knowledge. Therefore,  the estimation of the frequency of 
an event is actually about the experienced frequency, rather than the 
objective frequency. 

2. Judgments must be made with the auailable resources. Therefore,  the 
system often cannot consider all of its knowledge, but only part of it. 

3. Which part of the system's knowledge is consulted is determined by 
several factors: relevance, importance, usefulness, and so on. There- 
fore, it is not surprising that certain events, such as priming and 
association, influence the availability distribution [2]. 

Because which piece of knowledge to use at each step of reasoning is 
determined by the current context (by priming) and past experience (by 
association), it is inevitable that some knowledge, necessary for the assess- 
ment of uncertainty of a proposition, either is unknown to the system or 
cannot be recalled at the time. As a result, the system will have expectation 
errors--i.e., conflicts between the system's expectations and the system's 
future actual exper ience--but  this type of error is not caused by misdesign 
or malfunction of the system. Under  the knowledge and resource con- 
straints, the system has done its best. As long as it can revise its beliefs 
according to new evidence, there is no error in the system's operations, 
though there may be errors in the results of those operations. 

4.2. Representativeness 

Representativeness, or degree of similarity, is often used as probability 
by human beings. "This approach to the judgment of probability leads to 
serious errors, because similarity, or representativeness, is not influenced 
by several factors that should affect judgments of probability" [18]. The 
basic difference between them is that " the laws of probability derive from 
extensional considerations" [19], but similarity judgments are based on the 
sharing of properties, so they are intensional. 

As mentioned previously, here we need to distinguish three different 
meanings of "probability": 

1. As a pure mathematical concept, probability is neither extensional 
nor intensional. 

2. Probability theory is usually interpreted extensionally when applied to 
a practical domain. 

3. In everyday language and intuitive thinking, both extensional and 
intensional interpretations of probability happen. 

Why is only the extensional interpretation referred to as "correct"? 
There is a historical reason: the normative theories about extension are 
well developed, but the theories about intension are not. Actually there is 
no commonly accepted theory about how to define and process the 
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intension of a concept. However, that does not imply that intensional 
factors should not be taken into consideration when we make predictions 
about uncertain events. 

NARS is an attempt to treat extension and intension equally. When the 
uncertainty of a judgment is determined, both the extensional factor 
(shared instances) and the intensional factor (shared properties) are con- 
sidered [21, 22]. Doing this does not mean that they are not different, but 
that their effects are the same in the judgment. It is valid to build 
normative theories to process extension or intension separately, but it is 
also valid, and maybe more useful, to have theories that process both of 
them in a unified manner. In the latter case, it is valid to use representa- 
tiveness and probability indiscriminately for certain purposes. 

4.3. Adjustment and Anchoring 

For any system that accepts new knowledge or makes judgments by 
incrementally considering available knowledge, there must be a rule by 
which a previous probability judgment is adjusted in the light of new 
evidence or further consideration [1]. 

The anchoring phenomenon,  or insufficient adjustment from the initial 
point, is observed in human thinking [18]. By calling the observed adjust- 
ments "insufficient," it is assumed that the correct adjustment rule is 
Bayes' theorem, or its extension, Jeffrey's rule. 

As discussed previously, in NARS, two different cases are distinguished 
when judgments conflict with each other. If the evidence supporting the 
two judgments is correlated, the updating rule is applied; otherwise the 
revision rule is applied. 

In updating, there are also two possibilities: if the confidence of the 
previous estimate is no lower than the confidence of the new estimate, 
then nothing is changed; otherwise the former is replaced by the latter. 
Though the second possibility is the same as with Jeffrey's rule, what 
follows is different: NARS usually cannot afford the resources to update 
all related judgments; "therefore only some of them are updated accord- 
ingly, by applying the inference rules and the updating rule of NARS. 

In revision, the new frequency is a weighted sum of those of the 
premises, as discussed previously. 

Therefore,  in all situations, the adjustment of frequency in NARS is no 
more than what is required by probability theory. If conditionalization 
(Bayes' theorem and Jeffrey's rule) is the correct way of adjustment, 
NARS shows the anchoring bias, too. However, as argued above and in 
[20], it is not always valid to use updating as revision, or to assume 
sufficient resources for global updating. Again, there is nothing wrong in 
NARS. 
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5. CONCLUSIONS 

This paper is a follow-up of [21], and its purpose is to show some 
implications of the formal model defined in the previous paper. For a more 
recent and complete description of the NARS project, see [23]. 

Though the above discussions only address some aspects of the system, 
we can still get some conclusions about models of judgment under uncer- 
tainty. 

Despite the fact that NARS is designed as a normative model, the 
system shows some behaviors similar to those in human thinking, which 
are usually explained in terms of heuristics. 

NARS is no less normative than probability theory in the sense that it is 
developed from some basic principles and assumptions about what a 
system (human or computer) should do with incomplete and inaccurate 
knowledge [21]. It is true that when applied to a practical domain, NARS 
may produce wrong expectations, but so does probability theory. 

NARS is not proposed to replace Bayesian models. In Good's terms [10], 
Bayesian approach is toward a "Type I" rationality by maximizing the 
expected utility, while the approach of NARS is toward a "Type II" 
rationality where the cost of computing must be taken into account. If the 
Bayesian approach can be applied in a situation (i.e., the computational 
cost and the revision of background knowledge can be ignored there), it is 
better than NARS. It is in situations where the Bayesian approach cannot 
or should not be applied that approaches like NARS will take over. 

NARS is not proposed as a descriptive model for actual human thinking, 
such as Anderson's model [1]. Its behavior is still different from that of a 
human being. The approach is not justified by psychological data, but by 
logical analysis. Therefore there is no psychological experiment conducted 
to verify the theory. 

However, psychological observations, as those reported in [18], do have a 
strong relation to the study of normative models. From the above discus- 
sion we conclude that there is no unique normative model for judgment 
under uncertainty--different  models can be established according to dif- 
ferent theoretical assumptions. N A R S  is "less idealized" than the Bayesian 
approach, because it assumes stronger knowledge-resource constraints. 
The behavior of NARS is more similar to that of people; therefore, we 
have reason to believe that its assumptions are more "real is t ic"-- that  is, 
more similar to the human cognitive mechanism. This result can be 
explained by the observation that the human mind was evolved, and still 
works, in an environment where the knowledge and resources are usually 
insufficient to solve its problems. 
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On the other hand, we see that it is possible to find a normative 
interpretation for the "heuristics." They are not necessarily "efficient but 
biased." Sometimes they indicate the right thing to do, though they do not 
always succeed. 

As for the "biases" and "fallacies" discussed in the psychological litera- 
ture, the situation is complex. NARS cannot explain all of them, but it 
does suggest a distinction: some violations of probability theory happen in 
the situations where probability theory cannot or should not be applied, 
and they may be explained by other normative theories; therefore they are 
not necessarily errors. The real errors happen when probability theory 
should be applied, but the person fails to do so. 

Even for the latter case, an explanation is suggested by the study of 
NARS: because the human mind usually works under some assumptions 
about knowledge and resources that are quite different from what proba- 
bility theory assumes, it needs some special effort (which does not always 
succeed) to suppress the "natural law of thinking" and to learn, to 
remember,  and to follow probability theory. 

Now we can say that by analyzing the so-called "heuristics and biases," 
we not only find limitations in human reasoning, but also find limitations in 
probability theory, especially in the Bayesian approach. Just as nobody is 
born with a digital calculator embedded in his or her brain, a brain does 
not include a Bayesian network, and for a good reason: in the environment 
for a human to survive, the assumptions made by the Bayesian approach 
are not always correct or usually incorrect. 
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