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Abstract

This paper introduces a probabilistic rebound Turing machine (PRTM), and investigates the
fundamental property of the machine. We 4rst prove a sublogarithmic lower space bound on
the space complexity of this model with bounded errors for recognizing speci4c languages. This
lower bound strengthens a previous lower bound for conventional probabilistic Turing machines
with bounded errors. We then show, by using our lower space bound and an idea in the proof
of it, that
(i) $[PRTM (o(logn))] is incomparable with the class of context-free languages,
(ii) there is a language accepted by a two-way deterministic one counter automaton, but not in

$[PRTM(o(logn))], and
(iii) there is a language accepted by a deterministic one-marker rebound automaton, but not in

$[PRTM(o(logn))],
where $[PRTM(o(logn))] denotes the class of languages recognized by o(logn) space-bounded
PRTMs with error probability less than 1

2 . Furthermore, we show that there is an in4nite space
hierarchy for $[PRTM(o(logn))]. We 4nally show that $[PRTM(o(logn))] is not closed under
concatenation, Kleene+, and length-preserving homomorphism. This paper answers two open
problems in a previous paper. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Probabilistic rebound Turing machine; Rebound automaton; Space hierarchy;
Closure property

1. Introduction

The rebound automaton (RA) introduced by Sugata et al. [17] has the same struc-
ture as a two-dimensional 4nite automaton [1, 8, 14], but an input to it is a square
tape whose top row is a word to be recognized, and whose other symbols are all
blank. It was demonstrated in [17] that many nonregular languages (e.g., the languages
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{anbncn | n¿1} and {ww |w∈{0; 1}∗}) are accepted by RAs. In papers [9, 11, 12, 15],
investigations of RAs have been continued. Furthermore, in [20], alternating rebound
Turing machines were introduced, and their fundamental properties were investigated.
It should be noted that Petersen [11] (resp., [12]) gave a language accepted by a two-
way (resp., one-way) deterministic one-counter automaton, but not accepted by any
nondeterministic RA, and Petersen [12] gave a separation of the classes of languages
accepted by deterministic and nondeterministic RAs, solving the long standing open
problems.
Recently, in [19], we introduced a probabilistic rebound automaton (PRA), and

showed that
(1) the class of languages recognized by PRAs with error probability less than 1

2 ,
$[PRA], is incomparable with the class of context-free languages,

(2) there is a language accepted by a two-way nondeterministic one counter automaton,
but not in $[PRA],

(3) there is a language accepted by a deterministic one-marker RA, but not in $[PRA],
and

(4) $[PRA] is not closed under concatenation and Kleene +.
It is quite natural to introduce a probabilistic rebound Turing machine (PRTM) which
is a PRA equipped with one semi-in4nite read-write storage tape. In this paper, we
investigate recognizing powers, space hierarchy, and closure property of o(log n) space-
bounded PRTMs with error probability less than 1

2 .
Section 2 of the paper presents some de4nitions and notations necessary for this

paper.
Dwork and Stockmeyer [2] proved an impossibility result for probabilistic 4nite

automata with bounded errors. By using an idea similar to the proof of this result,
Freivalds and Karpinski [4] proved, for the 4rst time, a sublogarithmic lower space
bound for probabilistic Turing machines with bounded errors. In Section 3, by ex-
tending their proof techniques to our model, we 4rst prove a sublogarithmic lower
space bound on the space complexity of our model with bounded errors for recogniz-
ing speci4c languages. We believe that our sublogarithmic space lower bound is the
strongest for probabilistic machines (with bounded errors) so far, because our o(log n)
space-bounded models are more powerful than conventional o(log n) space-bounded
probabilistic Turing machines, which is shown below.
Freivalds and Karpinski [4] showed, by using their lower space bound theorem, that

there is a context-free language not accepted by any o(log n) space-bounded probabilis-
tic Turing machine with bounded error. Pal, i.e., the set of all the palindromes, is such
a language. Dwork and Stockmeyer [2] also showed that there is another context-free
language ‘Center= {u1v | u; v∈{0; 1}∗ and the lengths of u and v are the same}’ not
accepted by any o(log n) space-bounded probabilistic Turing machine with bounded
error. It is easy to see that the languages Pal and Center are recognized by determin-
istic RAs, and thus by PRAs with bounded errors. Thus, L(n) space-bounded PRTMs
with bounded errors are more powerful than L(n) space-bounded probabilistic Turing
machines with bounded errors for any L(n)= o(log n).
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In Section 4, by using our lower space bound theorem and an idea in the proof
of it, we investigate relationships between $[PRTM(o(log n))], which is the class of
languages recognized by o(log n) space-bounded PRTMs with error probability less
than 1

2 , and other classes of languages. We 4rst show that $[PRTM(o(log n))] is in-
comparable with the class of context-free languages. We next show that there is a
language accepted by a two-way deterministic one counter automaton [6], but not in
$[PRTM(o(log n))]. This result solves an open problem in [19]. Further, we show that
there is a language accepted by a deterministic one-marker RA, but not in $[PRTM(o
(log n))].
Section 5 investigates a space hierarchy for $[PRTM(o(log n))], and shows that if

L(n) is space constructible by a deterministic rebound Turing machine (DRTM) [20],
log log n6 L(n) = o(log n), and L′(n)= o(L(n)), then there is a language accepted by
L(n) space-bounded DRTM, but not recognized by any L′(n) space-bounded PRTM
with error probability less than 1

2 .
Section 6 investigates closure properties of $[PRTM(o(log n))]. We 4rst show that

$[PRTM(o(log n))] is not closed under concatenation and Kleene +. We next show that
$[PRTM(o(log n))] is not closed under length-preserving homomorphism. This result
solves an open problem in [19]. We again note that Petersen [11] showed that the class
of languages accepted by nondeterministic RAs is not closed under length-preserving
homomorphism.
Section 7 presents several open problems.

2. Preliminaries

Let � be a 4nite set of symbols. A two-dimensional tape over � is a two-dimensional
rectangular array of elements of �. The set of all two-dimensional tapes over � is
denoted by �(2). Given a tape x∈�(2), we let l1(x) be the number of rows of x, and
l2(x) be the number of columns of x. If 1 6 i 6 l1(x) and 1 6 j 6 l2(x), we let
x(i; j) denote the symbol in x with coordinates (i; j). Furthermore, we de4ne

x[(i; j); (i′; j′)];

only when 1 6 i 6 i′ 6 l1(x) and 1 6 j 6 j′ 6 l2(x), as the two-dimensional tape
z satisfying the following:
(i) l1(z)= i′ − i + 1 and l2(z)= j′ − j + 1;
(ii) for each k; r[16 k 6 l1(z); 16 r 6 l2(z)]; z(k; r)= x(k + i − 1; r + j − 1).

For each m; n ¿ 1, let �m×n = {x∈�(2) | l1(x)=m & l2(x)= n}. For each n ¿ 1,
let �n be the set of words in �+ of length n. For any word w, |w| denotes the length
of w, and for any set A, |A| denotes the number of elements of A.

We now introduce a probabilistic rebound Turing machine which is a probabilistic
rebound automaton [19] equipped with one semi-in4nite read–write storage tape. Let
S be a 4nite set. A coin-tossing distribution on S is a mapping � from S to {0; 12 ; 1}
such that �a∈S�(a)= 1. The mapping means “choose a with probability �(a)”.
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Fig. 1. Probabilistic rebound Turing machine.

A probabilistic rebound Turing machine (PRTM) is a 10-tuple

M = (Q;�; �; #; “;B;  ; q0; qa ; qr);

where
(1) Q is a 4nite set of states,
(2) � is a 4nite input alphabet,
(3) � is a 4nite storage tape alphabet,
(4) #∈� is the blank symbol on the storage tape,
(5) “ =∈� is the blank symbol on the input tape,
(6) B =∈� is the boundary symbol,
(7)  is a transition function,
(8) q0 ∈Q is the initial state,
(9) qa ∈Q is the accepting state, and
(10) qr is the rejecting state.
For each word w∈�+, let w(“) denote the two-dimensional square tape over �∪{“},
whose top row is w and whose other symbols are all “’s. As shown in Fig. 1, an input
tape for M is a two-dimensional square tape w(“) for some w= a1a2 : : : an ∈�+; n¿ 1,
surrounded by the boundary symbols B. Of course, M has one semi-in4nite storage
tape (initially blank), a 4nite control, an input tape head, and a storage tape head. For
convenience sake, a position is also assigned to each cell of the read-only input tape
and the storage tape as shown in Fig. 1.
The transition function  is de4ned on (Q−{qa ; qr})×(�∪{“;B})×� such that for

each q∈Q−{qa ; qr}, each $∈�∪{“;B}, and each %∈�,  [q; $; %] is a coin-tossing dis-
tribution on Q× (�−{#})×{Left;Right;Up;Down;Stay}×{Left;Right;Stay}, where
Left means “moving left”, Right “moving right”, Up “moving up”, Down “moving
down”, and Stay “staying there”. The meaning of  is that if M is in state q with



L. Zhang et al. / Theoretical Computer Science 270 (2002) 739–760 743

Fig. 2. (m; n)-chunk.

the input head scanning the symbol $ and the storage tape head scanning the symbol
%, then with probability  [q; $; %](q′; %′; d1; d2) the machine enters state q′, rewrites the
symbol % by the symbol %′, either moves the input head one cell in direction d1 if
d1 ∈{Left;Right;Up;Down} or does not move the input head if d1 =Stay, and either
moves the storage head one cell in direction d2 if d2 ∈{Left;Right} or does not move
the storage head if d2 =Stay.
Suppose that an input tape w(“) with w∈�n (n¿1) is presented to M . M starts in

the initial state q0 with the input head on the upper left-hand corner of w(“), with all
the cells of the storage tape blank and with the storage tape head on the left end of
the storage tape. The computation of M on w(“) is then governed (probabilistically)
by the transition function  until M either accepts by entering the accepting state qa
or rejects by entering the rejecting state qr . We assume that  is de4ned so that the
input head never falls oR an input tape out of the boundary symbols B, the storage
tape head cannot write the blank symbol, and fall oR the storage tape by moving left.
M halts when it enters state qa or qr .
Let T ⊆�+ and 06'¡ 1

2 . A PRTM M recognizes T with error probability ' if for
all w∈T , M accepts w(“) with probability at least 1− ', and for all w =∈T , M rejects
w(“) with probability at least 1− '.
Let L :N →N ∪{0} be a function. We say that a PRTM M is L(n) space-bounded

if for each n¿1 and for each input tape w(“) with |w|= n, M on w(“) uses at most
L(n) cells of the storage tape. By $[PRTM(L(n))], we denote the class of sets of words
recognized by L(n) space-bounded PRTMs with error probability less than 1

2 .
The reader is referred to [7] for unde4ned terms.

3. A lower space bound for PRTMs

In this section, we prove a lower space bound for PRTMs, which is used in the
subsequent sections. We 4rst give some preliminaries necessary for getting the lower
space bound.
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Fig. 3. v(B).

Fig. 4. Illustration for v(B) (v : (m; n)-chunk.

Let � be an alphabet. For each m¿2 and each 16n6m−1, an (m; n)-chunk over �
is a pattern over �∪{“} as shown in Fig. 2, where v1 ∈�1×(m−n) and v2 ∈{“}(m−1)×m.
By ch(m;n)(v1), we denote the (m; n)-chunk as shown in Fig. 2.
Let M be a PRTM whose input alphabet is �, and “ and B be the blank symbol

and boundary symbol of M , respectively. For any (m; n)-chunk v, we denote by v(B)
the pattern obtained from v by attaching the boundary symbols B to v as shown in
Fig. 3. Below, we assume without loss of generality that M enters or exits the pattern
v(B) only at the face designated by the bold line in Fig. 3. Thus, the number of the
entrance points to v(B) (or the exit points from v(B)) for M is n + 3. We suppose
that these entrance points (or exit points) are named (2; 0), (2; 1); : : : ; (2; n), (1; n+ 1),
(0; n+ 1) as shown in Fig. 4. Let PT (v(B)) be the set of these entrance points (or
exit points). To each cell of v(B), we assign a position as shown in Fig. 4.
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Fig. 5. Illustration for u(B).

Fig. 6. [u]v.

Let PS(v(B)) be the set of all the positions of v(B). For each n¿1, an n-chunk over
� is a pattern in �1×n. For any n-chunk u, we denote by u(B) the pattern obtained
from u by attaching the boundary symbols B to u as shown in Fig. 5. We again
assume without loss of generality that M enters or exits the pattern u(B) only at
the face designated by the bold line in Fig. 5. The number of the entrance points to
u(B) (or the exit points from u(B)) for M is again n + 3, and these entrance points
(or exit points) are named (2; 0)′; (2; 1)′; : : : ; (2; n)′; (1; n+ 1)′; (0; n+ 1)′ as shown in
Fig. 5. Let PT (u(B)) be the set of these entrance points (or exit points). (Note that
the entrance points of an n-chunk are distinguished from the entrance points of an
(m; n)-chunk only by “dash”.)
For any (m; n)-chunk v over � and any n-chunk u over �, let [u]v be the tape in

(�∪{“})m×m consisting of v and u as shown in Fig. 6.
The result in this section is based on an idea 4rstly used by Rabin [13], and then

adapted in diRerent contexts by Greenberg and Weiss [5], Dwork and Stockmeyer [2]
and Freivalds and Karpinski [4].
Let M be a PRTM. A storage state of M is a combination of the state of the 4nite

control, the nonblank contents of the storage tape, and the storage tape head position.
Let qa and qr be the accepting and the rejecting states of M , respectively, and x be
an (m; n)-chunk (or an n-chunk) over � (m; n¿1). We de4ne the chunk probabilities
of M on x as follows. A starting condition for the chunk probability is a pair (s; l),
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where s is a storage state of M and l∈PT (x(B)); its intuitive meaning is “M has just
entered x(B) in storage state s from entrance point l of x(B)”. A starting condition for
the chunk probability of M on x(B) is either:
(i) “Initial” meaning that M has just started in its initial storage state with the input

head on the upper left-hand corner of x, where the initial storage state of M is
the storage state of M such that the state of the 4nite control is the initial state
of M , all the cells of the storage tape are blank, and the storage tape head is on
the left end of the storage tape, or

(ii) a pair (s; l), where s is a storage state of M and l∈PT (x(B)); its intuitive meaning
is “M has just entered x(B) in storage state s from entrance point l of x(B)”.

A stopping condition for the chunk probability is either:
(i) a pair (s; l) as above, meaning that M exits from x(B) in storage state s at exit

point l,
(ii) “Loop” meaning that the computation of M loops forever within x(B),
(iii) “Accept” meaning that M halts in the accepting state qa before exiting from x(B)

at an exit point of x(B), or
(iv) “Reject” meaning that M halts in the rejecting state qr before exiting from x(B)

at an exit point of x(B).
For each starting condition $ and each stopping condition ,, let p(x; $; ,) be the prob-
ability that stopping condition , occurs given that M is started in starting condition
$ on an (m; n)-chunk (or n-chunk) x. If W is a large set of words, then a pigeon-
hole argument shows that there must be two chunks ch(m;n)(w) and ch(m;n)(w′), where
w; w′ ∈W and |w|= |w′|=m− n for some m¿n¿1, which M cannot distinguish, that
is, the probabilities p(ch(m;n)(w); $; ,) and p(ch(m;n)(w′); $; ,) are very close. If L is a
language such that for any two diRerent words w and w′ in W with the same length,
there is a word u such that wu∈L iR w′u =∈L, then M does not recognize L.
Computations of a PRTM are modeled by Markov chains [16] with 4nite state space,

say {1; 2; : : : ; s} for some s. A particular Markov chain is completely speci4ed by its
matrix R= {rij}16i; j6s of transition probabilities. If the Markov chain is in state i,
then it next moves to state j with probability rij. The chains we consider have the
designated starting state, say, state 1, and some set TR of trapping states, so rtt =1 for
all t ∈TR. For t ∈TR, let p∗[t; R] denote the probability that Markov chain R is trapped
in state t when started in state 1. The following lemma which bounds the eRect of
small changes in the transition probabilities of a Markov chain is used below.
Let 0¿1. Say that two numbers r and r′ are 0-close if either (i) r= r′ =0 or (ii)

r¿0, r′¿0, and 0−16r=r′60. Two Markov chains R= {rij}si; j=1 and R′ = {r′ij}si; j=1

are 0-close if rij and r′ij are 0-close for all pairs i; j.

Lemma 3.1 (Dwork and Stockmeyer [2]). Let R and R′ be two s-state Markov chains
which are 0-close; and let t be a trapping state of both R and R′. Then p∗[t; R] and
p∗[t; R′] are 02s-close.

We are now ready to prove our lower space bound.
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Theorem 3.1. Let A; B⊆�∗ with A∩B=2. Suppose that there is an in8nite set I of
positive integers and a function G(n) such that G(n) is a 8xed function bounded by
some exponential in n; and for each n∈ I there is a set W (n) of words in �∗ such
that:
(1) |w|=G(n) for all w∈W (n);
(2) there are constants c¿1 and r¿0 such that |W (n)|¿2c

nr

for all n∈ I;
(3) for every n∈ I and every w; w′ ∈W (n) with w �=w′; there is a word u∈�n such

that:

either

{
uw ∈ A

uw′ ∈ B
or

{
uw ∈ B;

uw′ ∈ A:

Then; if an L(n) space-bounded PRTM with error probability '¡ 1
2 separates A and

B; then L(H (n)) cannot be o(nr); where H (n)= n+ G(n).

Proof. Suppose that there is a PRTM(L(n)) M separating A and B with error proba-
bility '¡ 1

2 . By C(n) we denote the set of possible storage states of M on input tapes
of side-length n (n¿1), and let c(n)= |C(n)|. It is obvious that c(n)6O(exp(L(n))).
For any integer n∈ I , let V (n), {ch(H (n); n)(w) |w∈W (n)}, where H (n)= n+G(n) as
described in the theorem.
Suppose to the contrary that L(H (n))= o(nr) and c(H (n))= 2o(n

r ). We shall below
consider the computations of M on input tapes of side-length H (n).
Consider the chunk probabilities p(v; $; ,) de4ned above. For each (H (n); n)-chunk

v in V (n), there are a total of

d(n) = c(H (n))× |PT (v(B))| × (c(H (n))× |PT (v(B))|+ 3) = O(n2{c(H (n))}2)

chunk probabilities. Fix some ordering of the pairs ($; ,) of starting and stopping
conditions and let P(v) be the vector of these d(n) probabilities according to this
ordering.
We 4rst show that if v∈V (n) and if p is a nonzero element of P(v), then p¿

2−c(H (n))a(n), where a(n)= |PS(v(B))|=O({H (n)}2). Form a Markov chain K(v) with
states of the form (s; l), where s is a storage state of M and l∈PS(v(B))∪PT (v(B)).
The chain state (s; l) with l∈PS(v(B)) corresponds to M being in storage state s
scanning the symbol at position l of v(B). Transition probabilities from such states
are obtained from the transition probabilities of M in the obvious way. For example,
if the symbol at position (i; j) of v(B) is e, and if M in storage state s reading the
symbol e can move its input head left and enter storage state s′ with probability 1

2 , then
the transition probability from state (s; (i; j)) to state (s′; (i; j − 1)) is 1

2 . Chain states
of the form (s; (i; j)) with (i; j)∈PT (v(B)) are trap states of K(v) and correspond to
M just having exited from v(B) at exit point (i; j) of v(B). Now consider, for exam-
ple, p=p(v; $; ,), where $=(s; (i; j)) and ,=(s′; (k; l)) with (i; j); (k; l)∈PT (v(B)).
If p¿0, then there must be some paths of nonzero probability in K(v) from (s; (i; j))
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to (s′; (k; l)), and since K(v) has at most c(H (n))a(n) nontrapping states, the length
of the shortest path among such paths is at most c(H (n))a(n). Since 1

2 is the smallest
nonzero transition probability of M , it follows that p¿2−c(H (n))a(n). If $=(s; (i; j))
with (i; j)∈PT (v(B)) and ,=Loop, there must be a path Pa of nonzero probability
in K(v) from state (s; (i; j)) to some state (s′; (i′; j′)) such that there is no path of
nonzero probability from (s′; (i′; j′)) to any trap state of the form (s′′; (k; l)) with
(k; l)∈PT (v(B)). Again, if there is such a path Pa, there is one of length at most
c(H (n))a(n). The remaining cases are similar.
Fix an arbitrary n∈ I . Divide W (n) into M -equivalence classes by making w and

w′ M -equivalent if P(ch(w)) and P(ch(w′)) are zero in exactly the same coordinates,
where for each x∈W (n), ch(x) denotes ch(H (n); n)(x)∈V (n).
Let E(n) be a largest M -equivalence class. Then we have

|E(n)|¿ |W (n)|=2d(n):

Let d′(n) be the number of nonzero coordinates of P(ch(w)) for w∈E(n). Let P̂(ch(w))
be the d′(n)-dimensional vector of nonzero coordinates of P(ch(w)). Note that P̂(ch(w))
∈ [2−c(H (n))a(n); 1]d

′(n) for all w∈E(n). Let log P̂(ch(w)) be the componentwise log
of P̂(ch(w)). Then log P̂(ch(w))∈ [−c(H (n))a(n); 0]d

′(n). By dividing each coordi-
nate interval [−c(H (n))a(n); 0] into subintervals of length :, we divide the space
[−c(H (n))a(n); 0]d

′(n) into at most (c(H (n))a(n)=:)d(n) cells, each of size :× :×
· · · × :. We want to choose : large enough, such that the number of cells is smaller
than the size of E(n), that is

(
c(H (n))a(n)

:

)d(n)

¡
|W (n)|
2d(n)

: (1)

Concretely, we choose :=2−n. From the assumption on the rate of growth of |W (n)|,
from the assumption that H (n)= n+G(n) is bounded by some exponential function in
n, and since, by assumption from the contrary, c(H (n))= 2o(n

r), it follows that (1) holds
for :=2−n with large n∈ I . Assuming (1), there must be two diRerent w; w′ ∈E(n)
such that log P̂(ch(w)) and log P̂(ch(w′)) belong to the same cell. Therefore, if p and
p′ are two nonzero probabilities in the same coordinate of P(ch(w)) and P(ch(w′)),
respectively, then

|logp− logp′|6 ::

It follows that p and p′ are 2:-close. Therefore P(ch(w)) and P(ch(w′)) are compo-
nentwise 2:-close.
For this w and w′, let u∈�n be the word in Assumption (3) in the statement in the

theorem (Note that u is an n-chunk over �). We describe two Markov chains R and
R′, which model the computations of M on [u]ch(w) and [u]ch(w′), respectively. The
state space of R is

C(H (n))× (PT (ch(w)(B)) ∪ PT (u(B))) ∪ {Accept;Reject;Loop}:
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Thus, the number of states of R is

z = c(H (n))(n+ 3 + n+ 3) + 3 = 2c(H (n))(n+ 3) + 3:

The state (s; (i; j))∈C(H (n))×PT (ch(w)(B)) of R corresponds to M just having en-
tered ch(w)(B) in storage state s from entrance point (i; j) of ch(w)(B), and the state
(s′; (k; l)′)∈C(H (n))×PT (u(B)) of R corresponds to M just having entered u(B) in
storage state s′ from entrance point (k; l)′ of u(B). For convenience sake, we assume
that M begins to read any input tape x in the initial storage state s0 = (q0; ;; 1), where
q0 is the initial state of M , by entering x(1; 1) from the lower edge of the cell on
which x(1; 1) is written. Thus, the starting state of R is Initial, (s0; (2; 1)′). The states
Accept and Reject correspond to the computations halting in the accepting state and
the rejecting state, respectively, and Loop means that M has entered an in4nite loop.
The transition probabilities of R are obtained from the chunk probabilities of M on
u(B) and ch(w)B. For example, the transition probability from (s; (i; j)) to (s′; (k; l)′)
with (i; j)∈PT (ch(w)(B)) and (k; l)′ ∈PT (u(B)) is just p(ch(w); (s; (i; j)); (s′; (k; l))),
the transition probability from (s′; (k; l)′) to (s; (i; j)) with (i; j)∈PT (ch(w)(B)) and
(k; l)′ ∈PT (u(B)) is p(u; (s′; (k; l)′); (s; (i; j)′)), the transition probability from (s; (i; j))
to Accept is p(ch(w); (s; (i; j));Accept), and the transition probability from (s′; (k; l)′)
to Accept is p(u; (s′; (k; l)′);Accept). The states Accept, Reject and Loop are trap
states. The chain R′ is de4ned similarly, but using [u]ch(w′) in place of [u]ch(w).
Suppose that uw∈A and uw′ ∈B, the other case being symmetric. Let acc(uw)

(resp., acc(uw′)) be the probability that M accepts input [u]ch(w) (resp., [u]ch(w′)).
Then, acc(uw) (resp., acc(uw′)) is exactly the probability that the Markov chain R
(resp., R′) is trapped in state Accept when started in state Initial. Now uw∈A implies
acc(uw)¿1− '. Since R and R′ are 2:-close, Lemma 3.1 implies that

acc(uw′)
acc(uw)

¿ 2−2:z:

2−2:z approaches 1 as n increases. Therefore, for large n∈ I , we have

acc(uw′)¿ 2−2:z(1− ') ¿ 1
2 ;

because '¡ 1
2 . But since uw′ ∈B, this contradicts the assumption that M separates A

and B.

Remark 3.1. In the proof of Theorem 3.1, we assumed that the randomized deci-
sions correspond to the choice from two possibilities with the probability 1

2 each. In
fact, we can do without this assumption. Let all the notations in this remark be de-
4ned as in the proof of Theorem 3.1, and let pmin be the smallest nonzero transition
probability of M . Then, in the same way as in the proof of Theorem 3.1, we can
show that if v∈V (n) and if p is a nonzero element of P(v), then p¿(pmin)c(H (n))a(n).
Therefore, it follows that for all w∈E(n), P̂(ch(w))∈ [(pmin)c(H (n))a(n); 1]d

′(n), and thus
log P̂(ch(w))∈ [−(log 1=pmin)c(H (n))a(n); 0]d

′(n). We again choose :=2−n. It follows
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that for large n∈ I ,(
(log 1=pmin)c(H (n))a(n)

:

)d(n)

¡
|W (n)|
2d(n)

;

which corresponds to Eq. (1) in the proof of Theorem 3.1. Then, in the same way as
in the proof of Theorem 3.1, we can derive a contradiction.

4. Comparison with other classes of languages

This section investigates relationships between $[PRTM(o(log n))] and other classes
of languages.
Freivalds [3] proved a surprising fact that the language {anbn | n¿1} is recognized

by a two-way probabilistic 4nite automaton with bounded error. Wang [18] proved, by
using this result, that the non context-free language {anbncn | n¿1} is also recognized
by a two-way probabilistic 4nite automaton with bounded error. On the other hand,
Freivalds and Karpinski [4] proved that Pal (= the set of all the palindromes) is not
recognized by any o(log n) space-bounded probabilistic Turing machine with bounded
error. From this observation, it follows that BPSPACE(o(log n)), i.e., the class of
languages recognized by o(log n) space-bounded probabilistic Turing machines with
bounded errors, is incomparable with the class of context-free languages.
It is easy to see that the language Pal is recognized by a deterministic rebound

automaton, and thus in $[PRTM(0)]. From this, it follows that for any L(n)= o(log n),
$[PRTM(L(n))] properly contains BPSPACE(L(n)).
It is natural to ask what is the relationship between $[PRTM(o(log n))] and the class

of context-free languages. We 4rst answer this question.

Lemma 4.1. There is a context-free language not in $[PRTM(o(log n))].

Proof. Let

L1 = {u2w12w22 : : : 2wk | k ¿ 1& u ∈ {0; 1}+

&∀i(16 i 6 k)[wi ∈ {0; 1}+]&∃j(16 j 6 k)[u = wj
R]};

where for any word w; wR denotes the reverse of w.
As is easily seen, L1 is a context-free language (The proof is omitted here). By using

Theorem 3.1 in the previous section, we below show that L1 =∈ $[PRTM(o(log n))].
For any integer n¿1, let V (n)= {2w12w22 : : : 2w2n | ∀i(16i62n)[wi ∈{0; 1}n]}. For

each w=2w12w22 : : : 2w2n ∈V (n), let contents(w)= {v∈{0; 1}n | v=wi for some i(16i
62n)}. Divide V (n) into contents-equivalence classes by making w and w′ contents-
equivalent if contents(w)= contents(w′). There are

contents(n) =

(
2n

1

)
+

(
2n

2

)
+ · · ·+

(
2n

2n

)
= 22

n − 1
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contents-equivalence classes of words in V (n). (Note that contents(n) corresponds to
the number of all the nonempty subsets of {0; 1}n). We denote by W (n) the set of
all the representatives arbitrarily chosen from these contents(n) contents-equivalence
classes. Let I be the set of all the positive integers. Thus, for any n∈ I , |W (n)|=
contents(n)= 22

n −1¿2c
n
for some constant c¿1. It is easily seen that for every n∈ I

and every w; w′ ∈W (n) with w �= w′, there is a word u∈{0; 1}n such that

either

{
uw ∈ L1

uw′ ∈ L1
or

{
uw ∈ L1;

uw′ ∈ L1;

where for any language T , TT denotes the complement of T .
Further, for each n∈ I and for each w∈W (n), |w|=(n + 1)2n,G(n), which is

bounded by some exponential in n. Thus, by Theorem 3.1, if an L(n) space-bounded
PRTM with error probability '¡ 1

2 recognizes L1, then L(n+G(n)) cannot be o(n), and
thus L(n) cannot be o(log n). This completes the proof of “L1 =∈ $[PRTM(o(log n))]”.

It is well known [17] that there is a language accepted by a deterministic rebound
automaton, but not generated by any context-free grammar. (L2 = {anbncn | n¿1} is
such a language.) Thus, there is a language in $[PRTM(0)] which is not context-free.
From this fact and Lemma 4.1, we have:

Theorem 4.1. $[PRTM(o(log n))] is incomparable with the class of context-free
languages.

It is easy to see that the language Pal is accepted by a two-way deterministic one
counter automaton. Thus, it follows that there is a language accepted by a two-way
deterministic one counter automaton, but not in BPSPACE(o(log n)). Does a similar
fact hold for PRTMs? The following theorem answers the question.

Theorem 4.2. There is a language accepted by a two-way deterministic one counter
automaton; but not in $[PRTM(o(log n))].

Proof. Let

H = {u$(enf)(n+1)20m110m21 : : : 0mk ∈ {a; b; c; d; e; f; $; 0; 1}+|

(k; n¿ 0)& u ∈ {a; b; c; d}n &∀i(16 i 6 k)[mi ¿ 0]

&∃j(16 j 6 k)[mj = |u|a(n+ 1)2 + |u|b(n+ 1) + |u|c]};

where |u|a (resp., |u|b; |u|c) denotes the number of a’s (resp., b’s, c’s) occurring in u,
and let

L3 = H{$}∗:
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Petersen [11] showed that H is accepted by a two-way deterministic one counter au-
tomaton. Petersen’s idea is straightforwardly applicable for accepting L3 by a two-way
deterministic one counter automaton.
We below show that L3 =∈ $[PRTM(o(log n))].
Suppose to the contrary that there exists an L(n) space-bounded PRTM M recog-

nizing L3 with error probability '¡ 1
2 , where L(n)= o(log n).

For any large integer n, let
• U (n), the set of all the n-chunks over {a; b; c; d},
• W (n),{$(enf)(n+1)20m110m21 : : : 0mk$s |∀i(16i6p(n))[06mi6p(n)−1]&

|0m110m21 : : : 0m2(n)$s|=p(n)2}, where p(n)= (n3 + 6n2 + 11n+ 6)=6, and
• V (n), {ch(r(n)+n; n)(w) |w∈W (n)}, where r(n)= (n + 1)3 + p(n)2 + 1=O(n6) is

the length of each word in W (n).
We shall below consider the computations (using at most L(r(n)+n) storage tape cells)
of M on the input tapes [u]v of side-length r(n) + n with v∈V (n) and u∈U (n). For
each n¿1, let C(n) be the set of all the storage states of M using at most L(r(n) +
n) storage tape cells, and c(n)= |C(n)|. Then, c(n)= bL(r(n)+n) for some constant b.
Consider the chunk probabilities p(v; $; ,) de4ned before. For each (r(n)+n; n)-chunk v
in V (n), there are a total of

d(n) = c(n)× |PT (v(B))| × (c(n)× |PT (v(B))|+ 3) = O(n2tL(r(n)+n))

chunk probabilities for some constant t. Fix some ordering of the pairs ($; ,) of starting
and stopping conditions and let P(v) be the vector of these d(n) probabilities according
to this ordering.
As in the proof of Theorem 3.1, it follows that if v∈V (n) and if p is a nonzero

element of P(v), then p¿2−c(n)a(n), where a(n)= |PS(v(B))|=O(n12).
For each w=$(enf)(n+1)20m110m21 : : : 0mp(n)$s ∈W (n), let contents(w)= {m |m=mi

for some i(16i6p(n))}. Divide W (n) into contents-equivalence classes by making w
and w′ contents-equivalent if contents(w)= contents(w′). There are

contents(n) =

(
p(n)

1

)
+

(
p(n)

2

)
+ · · ·+

(
p(n)

p(n)

)
= 2p(n) − 1 = 2O(n

3)

contents-equivalence classes of words in W (n). We denote by CONTENTS(n) the set
of all the representatives arbitrarily chosen from these contents(n) contents-equivalence
classes. Of course, |CONTENTS(n)|= contents(n). Divide CONTENTS(n) into M -equi-
valence classes by making w and w′ M -equivalent if P(ch(w)) and P(ch(w′)) are zero
in exactly the same coordinates, where for each x∈W (n), ch(x) denotes ch(r(n)+n; n)(x).
Let E(n) be a largest M -equivalence class. Then we have

|E(n)|¿ contents(n)=2d(n):

As in the proof of Theorem 3.1, we choose : such that(
c(n)a(n)

:

)d(n)

¡
contents(n)

2d(n)
(6 |E(n)|): (2)
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Concretely, we choose :=1=n3. (From the assumption that L(n)= o(log n), we have
L(r(n)+n)= o(log n). By using this, we can easily show that for large n, (2) holds for
:=1=n3.) Assuming (2), as in the proof of Theorem 3.1, it follows that there must be
two diRerent words w, w′ ∈E(n) such that P(ch(w)) and P(ch(w′)) are componentwise
2:-close. For this w and w′, we choose a number m∈ contents(w)− contents(w′), and
let u∈U (n) be an n-chunk such that m= |u|a(n+1)2+ |u|b(n+1)+ |u|c. (Note that for
n-chunks y in U (n), there are p(n) diRerent numbers |y|a(n+1)2 + |y|b(n+1)+ |y|c.)
As in the proof of Theorem 3.1, we consider two Markov chains, R and R′, which
model the computations of M on [u]ch(w) and [u]ch(w′), respectively. The state space
of R is

C(n)× (PT (ch(w)(B)) ∪ PT (u(B))) ∪ {Accept;Reject;Loop}
and thus the number of states of R is

z = c(n)(n+ 3 + n+ 3) + 3 = 2c(n)(n+ 3) + 3:

Similar also for R′.
Let acc(uw) (resp., acc(uw′)) be the probability that M accepts input [u]ch(w) (resp.,

[u]ch(w′)). Then, acc(uw) (resp., acc(uw′)) is exactly the probability that the Markov
chain R (resp., R′) is trapped in state Accept when started in state Initial = (s0; (2; 1)′),
where s0 = (q0; ;; 1) and q0 is the initial state of M . From the fact that uw∈L3, it
follows that acc(uw)¿1− '. Since R and R′ are 2:-close, Lemma 3.1 implies that

acc(uw)
acc(uw′)

¿ 2−2:z:

2−2:z approaches 1 as n increases. Therefore, for large n, we have

acc(uw′)¿ 2−2:z(1− ') ¿ 1
2 ;

because '¡ 1
2 . This is a contradiction, because uw′ =∈L3. This completes the proof of

“L3 =∈ $[PRTM(L(n))]”.

The following corollary answers an open problem in [19]:

Corollary 4.1. There is a language accepted by a two-way deterministic one counter
automaton; but not recognized by any probabilistic rebound automaton with error
probability less than 1

2 .

A deterministic one-marker rebound automaton [9] is a deterministic rebound au-
tomaton with one marker. It is shown in [19] that language L1 in the proof of
Lemma 4.1 is accepted by a deterministic one-marker rebound automaton. From this
and the fact that “L1 =∈ $[PRTM(o(log n))]”, we have:

Theorem 4.3. There is a language accepted by a deterministic one-marker rebound
automaton; but not in $[PRTM(o(log n))].
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5. Space hierarchy

This section shows that there is an in4nite space hierarchy for PRTMs with spaces
below log n.
Let L :N →N ∪{0} be a function. A deterministic rebound Turing machine (DRTM)

[20] M is said to be strongly L(n) space-bounded if for any n¿1 and for any
input tape w(“) with |w|= n, M on w(“) uses at most L(n) cells of the storage
tape.
A function L :N →N ∪{0} is DRTM space constructible if there is a strongly L(n)

space-bounded DRTM M such that for each n¿1, there exists some input tape w(“)
with |w|= n on which M halts after its storage tape head has marked oR exactly
L(n) cells of the storage tape. (In this case, we say that M constructs the function
L.)

Theorem 5.1. If L :N →N ∪{0} is DRTM space constructible; log log n¡L(n)=
o(log n); and L′(n)= o(L(n)); then there exists a set accepted by some strongly L(n)
space-bounded DRTM; but not in $[PRTM(L′(n))].

Proof. Let M be a strongly L(n) space-bounded DRTM which constructs the function
L; and T [L;M ] be the following set; which depends on L and M :

T [L;M ] = {x ∈ (�× {0; 1; 2})+ | ∃n¿ 3[|x| = n&∃r 6 L(n)

[(when the tape h1(x)(“) is presented to M; it uses r cells of

the storage tape and halts)& h2(x) ∈ T (r)]]};

where
(i) � is the input alphabet of M ,
(ii) h1 :�×{0; 1; 2}→� is the length-preserving homomorphism such that h1(a; b)=

a for any (a; b)∈�×{0; 1; 2},
(iii) h2 :�×{0; 1; 2}→{0; 1; 2} is the length-preserving homomorphism such that h2

(a; b)= b for any (a; b)∈�×{0; 1; 2}, and
(iv) for any integer r¿1, T (r)={w02w12w22 : : : 2wk2l | k¿1&∀i(06i6k)[wi∈

{0; 1}r] & l¿0&∃j(16j6k)[w0 =wj]}.
It is shown in [20] that T [L;M ] is accepted by a strongly L(n) space-bounded

DRTM. We below show that T [L;M ] =∈ $[PRTM(L′(n))], where L′(n)= o(L(n)).
The proof is similar to that of Theorem 3.1. For each integer n¿1, let x(n)∈�+

be a 4xed word such that
(i) |x(n)|= n and
(ii) when x(n)(“) is presented to M , M marks oR exactly L(n) cells of the storage

tape and halts. (Note that for each n¿1, there exists such a word x(n), because
M constructs the function L.)
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Suppose to the contrary that there exists an L′(n) space-bounded PRTM M2 recognizing
T [L;M ] with error probability '¡ 1

2 . For any large integer n, let
• U (n), {u∈ (�×{0; 1})L(n) | h1(u)= x(n)(1 :L(n))},
• W (n), {w∈ (�×{0; 1; 2})n−L(n) | h1(w)= x(n)(L(n)+ 1 : n)& (h2(w)= 2w12w22 : : :

2w2L(n)2l(n) for some w1; w2; : : : ; w2L(n) such that wi ∈{0; 1}L(n) for each 16i62L(n)),
where l(n)= n− {L(n) + (L(n) + 1)2L(n)}, and

• V (n), {ch(n; L(n))(w) |w∈W (n)}.
Note that l(n)¿0 and W (n) is well de4ned for large n, because L(n)= o(log n). We
shall below consider the computations (using at most L′(n) storage tape cells) of M2

on the input tapes [u]v of side-length n with v∈V (n) and u∈U (n). For each n¿1,
let C(n) be the set of all the storage states of M2 using at most L′(n) storage tape
cells, and c(n)= |C(n)|. Then, c(n)= bL

′(n) for some constant b. Consider the chunk
probabilities p(v; $; ,) de4ned before. For each (n; L(n))-chunk v in V (n), there are a
total of

d(n) = c(n)× |PT (v(B))| × (c(n)× |PT (v(B))|+ 3) = O(L(n)2tL
′(n))

chunk probabilities for some constant t. Fix some ordering of the pairs ($; ,) of starting
and stopping conditions and let P(v) be the vector of these d(n) probabilities according
to this ordering.
As in the proof of Theorem 3.1, it follows that if v∈V (n) and if p is a nonzero

element of P(v), then p¿ 2−c(n)a(n), where a(n)= |PS(v(B))|=O(n2).
For each w=W (n), where h2(w)= 2w12w22 : : : 2w2L(n)2l(n), let contents(w)= {u∈

U (n) | h2(u)=wi for some i(1 6 i 6 2L(n))}. Divide W (n) into contents-equivalence
classes by making w and w′ contents-equivalent if contents(w)= contents(w′). There
are

contents(n) =

(
2L(n)

1

)
+

(
2L(n)

2

)
+ · · ·+

(
2L(n)

2L(n)

)
= 22

L(n) − 1

contents-equivalence classes of words in W (n). We denote by CONTENTS(n) the set
of all the representatives arbitrarily chosen from these contents(n) contents-equivalence
classes. Of course, |CONTENTS(n)|= contents(n). Divide CONTENTS(n) into M2-
equivalence classes by making w and w′ M2-equivalent if P(ch(w)) and P(ch(w′))
are zero in exactly the same coordinates, where for each x∈W (n), ch(x) denotes
ch(n; L(n))(x). Let E(n) be a largest M2-equivalence class. Then we have

|E(n)|¿ contents(n)=2d(n):

As in the proof of Theorem 3.1, we choose : such that(
c(n)a(n)

:

)d(n)

¡
contents(n)

2d(n)
(6 |E(n)|): (3)

Concretely, we choose :=2−L(n). (From the assumption that L′(n)= o(L(n)), by a
simple calculation, it follows that for large n, (3) holds for :=2−L(n).) Assuming (3),
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as in the proof of Theorem 3.1, it follows that there must be two diRerent words w,
w′ ∈E(n) such that P(ch(w)) and P(ch(w′)) are componentwise 2:-close. For this w
and w′, we consider an L(n)-chunk u∈ contents(w)− contents(w′). As in the proof of
Theorem 3.1, we consider two Markov chains, R and R′, which model the computations
of M2 on [u]ch(w) and [u]ch(w′), respectively. The state space of R is

C(n)× (PT (ch(w)(B)) ∪ PT (u(B))) ∪ {Accept; Reject; Loop}
and thus the number of states of R is

z = c(n)(L(n) + 3 + L(n) + 3) + 3 = 2c(n)(L(n) + 3) + 3:

Similar also for R′.
Let acc(uw) (resp., acc(uw′)) be the probability that M2 accepts input [u]ch(w)

(resp., [u]ch(w′)). Then, acc(uw) (resp., acc(uw′)) is exactly the probability that the
Markov chain R (resp., R′) is trapped in state Accept when started in state Initial =
(s0; (2; 1)′), where s0 = (q0; ;; 1) and q0 is the initial state of M2. From the fact that
uw∈T [L;M ], it follows that acc(uw) ¿ 1 − '. Since R and R′ are 2:-close, Lemma
3.1 implies that

acc(uw)
acc(uw′)

¿ 2−2:z:

2−2:z approaches 1 as n increases. Therefore, for large n, we have

acc(uw′)¿ 2−2:z(1− ') ¿ 1
2 ;

because '¡ 1
2 . This is a contradiction, because uw′ =∈T [L;M ]. This completes the proof

of “T [L;M ] =∈ $[PRTM(L′(n))]”.

Since (log log n)k , k ¿ 1, is DRTM space constructible [20], it follows from Theo-
rem 5.1 that the following corollary holds.

Corollary 5.1. For any integer k ¿ 1; $[PRTM(log log n)k ]⊂ $[PRTM(log log n)k+1].

Remark 5.1. A function L :N →N ∪ {0} is DRTM fully space constructible if there
is a strongly L(n) space-bounded DRTM which, for each n ¿ 1 and each input tape
w(“) with |w|= n, makes use of exactly L(n) cells of the storage tape and halts.
We consider the following functions:

• log(1) n=

{
0; (n=0);

�log n�; (n¿ 1)
and for each k ¿ 1;

• log(k+1) n= log(1)(log(k) n),

• fk(n)=

{
log(k)(

√
n=4) if n=22m for some m¿ 0;

1 otherwise:
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Recently, Petersen [10] showed that for each k ¿ 1, fk(n) is fully space constructible
by a two-dimensional deterministic Turing machine. By using this fact, we showed in
[20] that
(i) for each k ¿ 1, fk(n) is DRTM fully space constructible, and
(ii) for each k ¿ 2, fk(n) space-bounded deterministic (nondeterministic) rebound

Turing machines are more powerful than fk+1(n) space-bounded deterministic
(nondeterministic) rebound Turing machines.

We conjecture that for each k ¿ 2, a fact similar to (ii) above holds also for PRTMs,
but we have no proof of this conjecture.

6. Closure properties

This section investigates closure properties under concatenation, Kleene + and length-
preserving homomorphism.
We 4rst consider concatenation and Kleene + operations.

Theorem 6.1. $[PRTM(o(log n))] is not closed under concatenation and Kleene +.

Proof. Let

L3 = {cw2w12w22 : : : 2wk |k ¿ 1 & w ∈ {0; 1}+

& ∀i(16 i 6 k)[wi ∈ {0; 1}+] & w = wk
R}

and

L4 = {2w12w22 : : : 2wkc|k ¿ 1 & ∀i(16 i 6 k)[wi ∈ {0; 1}+]}:

As is easily seen, both L3 and L4 are accepted by deterministic rebound automata,
and thus in $[PRTM(o(log n))]. On the other hand, it is proved by using the same
techniques as in the proof of Lemma 4.1 that

L3L4 = {cw2w12w22 : : : 2wk2wk+1c|k ¿ 1 & w ∈ {0; 1}+

& ∀i(16 i 6 k + 1)[wi ∈ {0; 1}+] & ∃j(16 j 6 k)[w = wj
R]}

is not in $[PRTM(o(log n))]. Therefore, it follows that $[PRTM(o(log n))] is not closed
under concatenation.
Let

L5 = L3 ∪ L4:

As easily seen, L5 is in $[PRTM(o(log n))]. On the other hand,

L+5 ∩ {c}({0; 1}+{2})+{c} = L3L4 =∈ $[PRTM(o(log n))]:
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From the fact that $[PRTM(o(log n))] is closed under intersection with regular lan-
guages, it follows that $[PRTM(o(log n))] is not closed under Kleene +.

We next show witness languages for getting the nonclosure result under length-
preserving homomorphism. Fix each integer n¿0, m(n)= 22n and let ≡m(n) be an equi-
valence relation de4ned on words in {a; b; $}m(n). Two words v= v0v1 : : : vm(n)−1 and
w=w0w1 : : : wm(n)−1 (with vi; wi ∈{a; b; $}) are equivalent (v ≡m(n) w) if vi =wi for
each i∈POS(m(n)), where POS(m(n))= {i∈{0; 1; : : : ; m(n) − 1}|i=(22n−1 − 2)=3 +∑n−1

j=0 cj·22j with cj ∈{0; 1} for 06 j 6 n− 1}. Intuitively two words are equivalent
if they agree on symbols with oRsets that have 1’s in the n−1 least signi4cant digits of
their binary expansions that appear at odd positions. (Note that (i) 21 +23 +25 + · · ·+
22(n−1)−1 = (22n−1− 2)=3, and (ii) |POS(m(n))|=2n.) We use the following languages
K and K ′ which were introduced in [11].
Let

K = {u$w1w2 : : : w2k−1|(n; k ¿ 1) & u ∈ {a; b}m(n)−1 & ∀i(16 i 6 2k − 1)

[wi ∈ {a; b}m(n)] & ∃i(16 i 6 2k − 1)[u$ ≡m(n) wi]};
where m(n)= 22n, and K ′ be like K , with the exception that exactly one of the w′

i s
contains marked symbols a′, b′ at the positions that are relevant for equivalence.

Theorem 6.2. $[PRTM(o(log n))] is not closed under length-preserving homo-
morphism.

Proof. It is shown in [11] that the above language K ′ is accepted by a deterministic
rebound automaton. Thus, K ′ ∈ $[PRTM(0)]. Let h be the length-preserving homomor-
phism such that h(a)= h(a′)= a, h(b)= h(b′)= b, h($)= $. To prove the theorem, we
below show that K = h(K ′) is not in $[PRTM(o(log n))].
For any integer m(n), n ¿ 1, let U (m(n))= {u0u1 : : : um(n)−1 ∈{a; b}m(n)|uj = b for

each j =∈POS(m(n))}, where m(n)= 22n, and thus
√

m(n)= 2n. Note that
(i) |POS(m(n))|=2n =

√
m(n),

(ii) |U (m(n))|=2|POS(m(n)| =2
√

m(n), and
(iii) u �≡m(n) u′ for each u, u′ (u �= u′) in U (m(n)).

For each integer m(n), n¿ 1, let V (m(n))= {v1v2 : : : v2√m(n) | ∀i(16 i 6 2
√

m(n))[vi ∈
U (m(n))]}. For each v= v1v2 : : : v2

√
m(n) ∈V (m(n)), let contents(v)= {u∈U (m(n))|u= vi

for some i(1 6 i 6 2
√

m(n))}. Divide V (m(n)) into contents-equivalence classes by
making v and v′ contents-equivalent if contents(v)= contents(v′). There are

contents(m(n)) =

(
2
√

m(n)

1

)
+

(
2
√

m(n)

2

)
+ · · ·+


 2

√
m(n)

2
√

m(n)


 = 22

√
m(n) − 1

contents-equivalence classes of words in V (m(n)). We denote by W (m(n)) the set of
all the representatives arbitrarily chosen from these contents(m(n)) contents-equivalence
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classes. Let I = {m(n) | n¿ 1}. Then, for any m(n)∈ I , |W (m(n))|= contents(m(n))=

22
√

m(n) − 1¿ 2c
√

m(n)
for some constant c¿1. It is easily seen that for every m(n)∈ I

and every w; w′ ∈W (m(n)) with w �= w′, there is a word u$∈{a; b}m(n)−1{$} such that

either

{
u$w ∈ K

u$w′ ∈ TK
or

{
u$w ∈ TK;

u$w′ ∈ K:

Further, for each m(n)∈ I and for each w∈W (m(n)), |w|=m(n)×2
√

m(n) , G(m(n)),
which is bounded by some exponential in m(n). Thus, by Theorem 3.1, if an L(n)
space-bounded PRTM with error probability '¡ 1

2 recognizes K , then L(m(n)+G(m(n)))
cannot be o(

√
m(n)), and thus L(n) cannot be o(log n). This completes the proof of

“K =∈ $[PRTM(o(log n))]”.

The following corollary answers an open problem in [19]:

Corollary 6.1. The class of languages recognized by probabilistic rebound automata
with error probability less than 1

2 is not closed under length-preserving homomor-
phism.

7. Conclusions

We conclude this paper by giving the following open problems.
(1) Does $[PRTM(L(n))] properly contain the class of languages accepted by L(n)

space-bounded deterministic (or nondeterministic) rebound Turing machines [20]
for any L(n)?

(2) Is there a language in $[PRTM(o(log n))] which cannot be accepted by any non-
deterministic (or deterministic) two-way one counter automaton?

(3) Is there an in4nite space hierarchy for PRTMs with error probability '¡ 1
2 whose

space are below log log n?
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