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ABSTRACT 

A decomposition method for nonlinear programming problems with structured 
linear constraints is described. The structure of the constraint matrix is assumed to 
be block diagonal with a few coupling constraints or variables, or both. The method 
is further specialized for linear objective functions. An algorithm for performing post 
optimality analysis--ranging and parametric programming--for such structured 
linear programs is included. Some computational experience and results for the 
linear case are presented. 

l .  INTRODUCTION 

In practice, large nonlinear programming problems with linear constraints, as 
well as large linear programs, almost always exhibit some structure in their constraint 
matrix. The most common of these structures is the block diagonal structure with a 
few coupling constraints or variables or both. To date, various methods for the solution 
of such large problems with either coupling constraints or coupling variables (both 
linear and nonlinear) and linear, quadratic, separable or general nonlinear objective 
functions have been developed (see, e.g., [1-4, 9, 11]). In [16, 17], Rosen describes 
partition methods which use the special block diagonal structure of the constraints 
to reduce the given problem by elimination of variables. 

A common assumption in all decomposition or partitioning methods known to the 
authors is that the constraint matrix represents a "weakly coupled" system: The 
number of coupling constraints or coupling variables, or both, is assumed to be much 
smaller than the corresponding dimension of the problem. Violation of this rather 
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qualitative criterion reportedly has led to poor convergence and other computational 
irregularities. 

The block diagonal structure with a small number of coupling constraints and 
variables frequently arises in dynamic formulations of multiplant, multi-commodity 
production scheduling and distribution models in various industries. This type of 
a linear model can be converted into the familiar block diagonal structure with only 
coupling constraints (or only coupling variables) but this conversion results in a drastic 
increase in the number of such coupling constraints (or variables). Thus, the most 
desirable property of this inherently weakly coupled system is sacrificed. 

This paper describes a decomposition or partitioning method [I3] which uses the 
special structure of the constraints to reduce the given problem through elimination 
of variables. If  may be readily applied to problems having a block diagonal structure 
with coupling constraints or variables, or both. The objective function is assumed to be 
nonlinear, differentiable and concave in all variables. Dual feasibility is maintained 
throughout the optimization procedure. 

The method is further specialized to the case of a linear objective function, first 
treated by Ritter [12] as a generalization of Rosen's Primal Partition Programming [17]. 
In addition, an algorithm for performing postoptimality studies for the linear case [14] 
is offered. This uses the computational tools developed for the linear version of the 
proposed decomposkion algorithm. 

In the next section, the nonlinear problem is defined and the basic idea of the 
method, to be detailed in Section 3, is summarized. In Section 4, the simplifications 
arising from the linearity of the objective function are discussed. The postoptimality 
algorithm is given in Section 5. The validity of the proposed algorithm is demon- 
strated in Section 6. In the final section some computational aspects and our experience 
with this algorithm are presented. 

2. T HE  NONLINEAR PROBLEM 

We consider the following problem: 
Maximize 

F(y ,  x 1 ..... xk) 

subject to the linear constraints 

k 

A~x~ + Doy = b o 

B~xj + D j y  = b~ 

y ~ O ; x ~ O  

( j  = 1 ..... k) 

( j  ----- 1 ..... k),  

(2.1) 

(2.2)  

(2.3) 

(2.4) 
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where F ( y ,  x 1 .... , xk) is a differentiable and concave function, A s (j  = 1 ..... k) is an 
(too, n~.)-matrix, B~ (j = 1 ..... k) is an (mj, n~)-matrix, Oj (j  = O, I ..... k) is an (mj, no)- 
matrix, while xj and cj are nj-vectors, y is a no-vector and b~. ( j  = O, 1 ..... k) is an 
mj-vector. This problem will be referred to as the Primal Problem (P). The  corre- 
sponding dual is: 

Minimize 

F ( y ,  xl ..... xk) - -  Uo' ( ~ l  Ajx j  D~  --  b~ 

le k 

- -  ~ uj'(Baxj + D i y  - -  ba) + wo'y + ~ w~'xj ,  (2.5) 
j = l  j = l  

subject to the constraints 

k 

D~' uj + Do" u o - -  w o - -  VuF(y, Xl .... , xk) = 0, (2.6) 
j = l  

Ba'uj + A / u  o --  wj --  VxF(y,  x 1 ,..., x~) = 0 ( j  = l ..... k), (2.7) 

wj ~> 0 (j  = 0, 1 ..... k), (2.8) 

where the u s (j = 0, 1 ..... k) and wj (j  = 0, 1 .... , k) represent the dual variables or 
Lagrange multipliers and are rnj, and nj-vectors respectively; ~7aw is a n0-vector 
corresponding to the portion of VF which consists of the partial derivatives of F 
with respect to the components of y only, and V~F are nj-vectors corresponding to 
the portions of ~TF which consist of partial derivatives of F with respect to the com- 
ponents of x~. only. 

A more convenient form of the dual problem, which will be referred to as D, may be 
obtained by eliminating the variables wj (j  = 0, 1 ..... k) from (2.5)-(2.7) and using (2.8). 
This is given by: 

Minimize 

/e 

F ( y ,  xl ..... xk) + ~ u~'bj - -  (y ' ,  Xx', .... xk'). VF(y ,  x~ ..... xk), (2.9) 
j=0  

subject to 

k 

D/u~ + Do'u o - -  VuF(y, x 1 . . . . .  xk) >1 O, (2.10) 
J = l  

B~'uj + A j u  o - -  V~F(y,  x 1 ..... xe) >~ 0 ( j  = 1 ..... k), (2.11) 

The decomposition method described in this paper is mainly based on the following 
observation. I f  P has an optimal solution, then the variables in this solution have 
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k 
nonnegative values. Since we have a total of n ---- ~j=0 n~ variables, we would expect 
to have, at most, as many active constraints in P. However, the m ---- ~]j~0 ms equality 
constraints (2.2)-(2.3) are always active. Therefore, provided that (2.2)-(2.3) are 
linearly independent, 1 at most ( n -  m) of the nonnegativity constraints (2.4) are 
active. The  remaining m nonnegativity restrictions, which are inactive, may be 
canceled with no effect on the optimal solution of P. 

A further simplification may be effected by using the special structure of the 
constraints (2.3) to eliminate at least (m - -  m0) of the variables which are not restricted 
in sign. This elimination procedure reduces the maximization problem P to a concave 
programming problem with at most s = n --  (m --  m0) variables, all of which are 
restricted to be nonnegative, and m 0 linear equality constraints. This problem will be 
referred to as the Modified Primal Problem (M), and may be regarded as analogous 
to the "master problem" in Dantzig-Wolfe decomposition [1] or the "Problem I I "  
in Rosen's Primal Partition Programming [17]. 

Clearly, if the set of nonnegative restrictions (2.4) active in the optimal solution to P 
were known in advance, then the solution of l~I would provide the optimal solution 
to P. Generally, however, it is unlikely that one might predict the optimal basic 
variable set or equivalently the nonnegativity restrictions which would be active in the 
optimal solution to P. To circumvent this difficulty, we begin by ignoring the non- 
negativity restrictions for an arbitrary set S 1 of at least (m --  m0) variables chosen 
among the xj.. In  this case, the optimal solution to 1~I need not be feasible for P since 
some of the eliminated variables may take on negative values. I f  it is feasible, however, 
then it is also an optimal solution to P (Theorem 1). 

I f  some variables have negative values, we determine a new set S 2 of at least (m -- m0) 
variables and repeat the procedure. I t  can be shown (Lemmas 1 and 2) that corre- 
sponding to the sequence of optimal solutions to the modified primal problems (M), 
there is a sequence of solutions to D which give non-increasing values of the dual 
objective function. From this fact it follows (Theorem 2) that after a finite number of 
steps, we obtain a modified maximization problem (M) which has the same optimal 
solution as P. 

Since the appearance of [11-13, 7], the name "relaxation methods" has been offered 
by Geoffrion [6] to describe this general class of techniques. 

3. THE ALGORITHM 

We assume that each of the matrices B~. contains a nonsingular square matrix of 
order m~. This is no loss of generality since if Bj does not contain such a matrix, we 
can add suitable unit vectors and artificial variables having sufficiently large negative 

1 The case of linearly dependent constraints (2.2)-(2.3) may cause a larger number of non- 
negativity restrictions to be active which may in turn result in a larger number of constraints 
in l~I (See Section 3, Case 3). 
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entries in the objective function. Then,  provided that the original problem (P) has 
a feasible solution, the optimal solution to this enlarged problem is identical to that 
for P. 

Let B~'I be an m~--order nonsingular square submatrix of Bj.. We denote the matrix 
formed by the remaining columns by B~z and partition .4~, x~ and c~ accordingly into 
.4~.1, Aj~, x n ,  xj2 , and c n , cj2, respectively. Then, the constraints (2.3) can be 
written as: 

x n --= B~Xb~ --  B~lBjzx~2 - -  B~ ID~y .  (3.1) 

Substituting (3.1) into (2.1)-(2.2) we can eliminate the vectors x~l (j  = 1 ..... k) and 
obtain the "Modified Primal Problem" (19I) as: 

Maximize 

G ( y ,  xlz , x22 ,..., x~2 ), (3.2) 

subject to the linear constraints 

k 

~,  M , x , z  + m o y  = b, x~2 >i. O, y >~ O, (3.3) 
5=1 

where the function G ( y ,  x12, x22 ..... xk2) is concave and differentiable since it is 
obtained from the function F ( y ,  (Xll, x12 ) ..... (xkl, xk2)) by the linear trans- 
formation (3.1); and 

k 

b = b o - -  ~ ,  Ai lB~Xb~,  

7e 

M o = D O - -  ~,, Aj1B711Dj, (3.4) 
i=1 

M j  = A ~  - -  AnB-[xlB~2. 

I f  19I has no feasible solution, then the original problem P has no feasible solution 
since it contains all constraints (3.3) of 19I. In the following, we assume that P has a 
feasible solution and 19I attains an optimal solution for a finite point (y, x12 ..... xk2 ). (If 
not, the precautionary procedure outlined in Section 6, Remark 2, may be used). 

We note that M is a concave maximization problem considerably smaller than the 
original problem P, with at most s variables and m 0 linear equality constraints (in 
addition to the nonnegativity restrictions). Efficient and computationally successful 
methods for the solution of nonlinear programming problems subject to linear 
constraints developed by Rosen [15], Frank and Wolfe [5], and others, may be used. 
The  solution of 19I, theoretically, may not be a finite procedure. 
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Let (y*, x~) (j  = 1 ..... k) be an optimal solution to M. Substituting this solution 
into (3.1) we obtain 

x*  B'~lbj -1 * __ B~ID~y*. j l  : - -  Bix Bizx~2 (3.5) 

Now we apply the following optimality criterion (Theorem 1): 
If x* > /0  (j = 1 ..... k), then (y*, x * ,  x*) (j = 1,..., k) is an optimal solution to 

the original problem P. 
Suppose x* (j = 1 ..... k 1 ~< k) has at least one negative component. We construct 

a new problem M, of the form (3.2)-(3.3), in such a way that in the resulting solution 
(y**, x** ,  x~*) one of the components of x s (j  = 1 ..... kl) which was negative in 
(y*, x* ,  x~) is forced to be nonnegative. This procedure will now be outlined for a 
general cycle. 

(A) Let (x*)l , (x~) 2 ,..., (x*)~ be the negative components of x~ .  Denote the 
t t first l rows of the matrix B~ t B~2 by gJl ,..., g~ �9 Furthermore, suppose that x~ has q 

positive components, say the first q components. Then, for each j ~ k 1 , consider the 
following two cases: 

(I) At least one of the components (g~)~ (i = 1 ..... l; v = 1 ..... q) is nonzero. 

(II) ( g ~ ) v = 0 f o r i =  1 .... , l ; v =  1,...,q.2 

In Case I, let (g~t)~ :7 ~ 0. Denote the vth column of Bj2 by hj,.  If the ith column 
of B~'I is replaced by h~,  the new matrix B*  is nonsingular since (B~lhj~)i = (g~l)~ -7 b 0 
implies that the columns of B~ are linearly independent. Thus, replace B~I by B~ 
for any j for which x* t has negative components and for which Case I holds. Then, 
the procedure (3.4) which leads to the construction of 1~I is applied using the new 
matrices B~ -1. It should be noted that those M~ for which x* ) 0, are not altered and 
need not be recomputed. 
In Case II, let x* ' ' (j~), < 0. Denote the vth row of/~1Br and B~IDj  by g~ and ej~, 

respectively, and the vth component of B-~tbj by/3j~. Then, add the condition: 

-- (xn)v = g~xs2 + e;.~y - -  fl~v <~ O, (3.6) 

to the constraints (3.3) of M after all changes dictated by Case I have been imple- 
mented. 

Finally, the new M problem is solved resulting in (y**, x**) as its optimal solution. 
The corresponding x** (j = 1 ..... k) is obtained by inserting this solution into (3.1). 

By Theorem I, (y**, x~a*, x~*) is an optimal solution to P if all components of 
~ * > / o ( j = 1  . . . . .  k) .  

2 If q = 0, proceed as if Case II holds. 
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(B) I f  at  least one of the vectors x**, has negative components,  the "additional 
constraints" of the form (3.6) are t reated as follows: 

Case 1. ' ** e' ~** I f  ga~xj2 + 3~-. - -  flJ~ < 0 then this constraint is canceled. 

Case 2. if o ' ~ * *  6 ~ 2  + e ~ y * *  - -  flj~ = 0 and (gjv) .(x~*).  =/= O, then the constraint 
is canceled and the vth column of Bj l  is replaced by the /z th  column hi. of Bj2. The  
resulting matr ix B** is nonsingular since (B~lhj.)~ = (gj~). :76 0 implies that the 
columns of B** are linearly independent,  a 

Case 3. I f  ,,' ,-** 6j~.~j2 + e~vy** - -  flj~ = 0 and (gj~).(x**). = 0 for all /~,  then this 
constraint is left unaltered in M. Since in this case 

g~ xj** + ~ y * *  = ~ y * *  = flj~, 

l~I may contain, except for degenerate cases, at most n o constraints of the form (3.6) 
at the conclusion of any cycle. 4 The  presence of linear dependence among the rows of 
the original constraint matrix (2.2)-(2.3) may cause a slight increase in the number  of 
constraints of M. 

The  modification of the "addit ional  constraints" outl ined above, completes a 
decomposit ion "cycle." We let x* = x~* and start the next cycle at A. 

Since in each cycle at most k "addit ional  constraints" are appended to M, it follows 
from Case 3, that, disregarding degeneracy, l~I may contain at most (n o + k) 
"additional constraints" at any cycle. 

By Theorem 2, an optimal solution to P is obtained after a finite number  of cycles. 

Remark.  T h e  above procedure yields the optimal solution to P after a finite number  
of decomposition cycles, even when only one of the variables negative in the tth cycle 
is forced to be nonnegative at the (t + 1)th cycle. Consequently, it  would suffice to 
append at most one "additional constraint"  of the form (3.6) at each cycle. Then,  the 
number of additional constraints involved in any single cycle would reduce to at 

most (n o + 1). 

3 Since (x**)v = 0, this procedure changes only the partitioning of x~ into (xjl, x~a) but not 
the actual value of xj**. In the new partitioning * (x~l)v belongs to the variables which are restricted 
to nonnegative values. 

4 This is easily shown by considering the basis M B of the current 1~. In the case of non- 
. �9 - t B �9 degeneracy, (x**) B > 0, which xmphes that (gJv) = 0 for all "additional constraints" v remaining 

t t B in M after Cases 1 and 2 have been applied. Since the vectors (gJv, e~) , being part of M B, 
must be linearly independent, there can be at most no such vectors. In the degenerate case, 
some components of(x**) B may be zero and thus the corresponding "additional constraints" 
have (g~v) 8 ~ O, resulting in a larger number of possible constraints in M. 
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4. T H E  L I N E A R  C A S E - - S I M P L I F I C A T I O N S  

The linear case is characterized by a linear objective function, i.e. 

F ( y ,  x 1 . . . . .  xk) = co'y + ~ c / x j ,  

resulting in the Linear Primal problem (LP) and leading to the following formulation 
of the dual problem (LD) corresponding to (2.9)-(2.11): 

Minimize 

subject to 

/e 

b/u~ , (4.1) 
5=0 

k 

Dj'u~ + Do'u o >~ co, (4.2) 
j=l  

B~'u~ + A / u  o > / c j  ( j  = 1 ..... k). (4.3) 

The obvious, and most important, simplification resulting from our assumption of 
a linear objective function is the linearity of M, i.e.: 

Maximize 

k 

o~ + ~ d~'xj2 + do'y, (4.4) 

subject to 
/e 

Mjxs2 + M o y  = b, (4.5) 
j= l  

y >/0, xj~ >~ 0 (j = 1 ..... k) (4.6) 

where M0, Mj (j = 1,..., k) and b are given by (3.4) and 

k 

o~ = Z c;1Br , (4.7) 
j=l  

k 

do = Co -- ~ (B~ID~) ' r ; dj = ca~ - -  (B2B~2) '  c n . (4.8) 
j= l  

We note that the above linear version of M, which will be referred to as LM, is an 
ordinary linear programming problem with m 0 equality constraints and s variables. 
It may be solved using any of the commercially available linear programming codes. 
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Although the maximum number  of constraints in L M  may differ from one cycle to 
the next, the last remark in Section 3 suggests that a constant size of  at least (n o + 1), 
and not more than (n o -]- k), rows may be selected in advance and used for all cycles. 
This  will facilitate the use of an existing linear programming code for solving LM. 

5. POSTOPTIMALITY ANALYSIS--THE LINEAR CASE 

We consider the following parametric form of LP:  
Maximize 

/c 

E (c5 + Afs)' x~. + (c o + Afo )' y,  
5=1 

subject to the constraints 

k 
Asx5 + Doy = b o + Aeo, 

J=l 

Bsx 5 + Dsy  ----- b 5 + Ae 5 ( j  = 1,..., k), 

y > ~ 0 ;  x j ~ > 0  ( j = l  .... ,k) ,  

where f j  and e 5 ( j  = 0, 1,..., k) are given nj and ms-vectors respectively and h is a 
parameter in a specified range Az ~ h ~ Au �9 This  problem will be referred to as the 
Parametric Linear Primal problem (PLP) .  

Considering the partitioning introduced in Section 3, we may write a relation 
analogous to (3.1) as: 

Xsx = B~l(b5 + Ae~-) - -  Bsqlxs~ --  B~IDjy ,  (5.1) 

whence we may state the Parametric Linear Modified primal problem (PLM) as: 
Maximize 

k 
0~(~) + ~ (d/1 + )idj2) ' xj2 + (do I + ,)td02) ' y ,  

j=l 

subject to the constraints 

k 
Y~ Mjxn + Moy = b + ;~e, 
i=l 

x~2 >/O, y 1> O, 
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where 

k 
a(h) = ~ (c~i + Alia)' B'~(bj + her), 

Ie 
b + )re = (b o + Aeo) -- ~. A ~ B 2 ( b  ~ + )~e~), 

j=l  

k 
do 1 + Ado 2 = (Co + Afo) -- Z (B-~Dj)' (cjt + )ifjl) , 

j=l 

do 1 21- ~dJ '~ -~- (r + ~fJ2) - -  (B f l l lB j2 )  t (cJl -~  ~fJl).  

Clearly, all properties of LM are shared by PLM and the two problems are equivalent 
forh = 0 .  

We assume that an optimal solution for A = h 0 has already been obtained by the 
decomposition method outlined in the previous sections. The questions of post- 
optimality analysis to be examined here, are: 

(I) For which values of the parameter 2~, 2t t ~< h ~ Au, ~ =fi Ao does the current 
solution remain feasible and optimal ? This question is commonly referred to as 
"ranging information" on the current optimal solution. 

(II) For a given change in the value of the parameter A, for which the current 
basic solution for h = A o is no longer feasible or optimal, what is the new feasible and 
optimal basic solution ? This is usually referred to as "parametric programming." 

The procedures described in this section provide solutions to these questions by 
using and expanding on, information available from the current optimal solution 
for ~ = Ao. The ranging information is obtained by the well known ratios (see e.g. [8]). 
The parametric programming algorithm provides mechanisms for altering the existing 
optimal solution, so that it remains feasible and optimal when the value of the param- 
eter falls outside one of the computed "ranges." Thus, (1) if feasibility in the last 
PLM is violated, a basis change is performed using the dual simplex method, (2) if the 
nonnegativity of at least one variable (x~l), is violated for at least one j, either the 
current partitioning is altered by exchanging (xjl)~ by a nonbasic variable (xj~),, or 
the violated nonnegativity constraint expressed in terms of xj2 and y is appended to 
the last PLM. (3) If the optimality condition is violated, a basis change is made in 
the last P L M  using the primal simplex method, provided that the resulting levels of 
the X~l (j = 1,..., k) variables are nonnegative. If not, their nonnegativity is secured 
by following (2) above. 
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The Algorithm 

Let  (y(~), xn(fi), xj~(~)) ( j  = l ..... k) be the opt imal  solution to P L P  for fi = ~o 
and (y(A), x~(~)) ( j  = 1 .... , k) be the  solution to the  last P L M  whose definition and data 
are also available.  T h e  latter is a s sumed  to have q rows, m 0 + p  + 1 ~ q ~ m o + p  + k, 
and s variables.  

We  now examine  the postopt imal i ty  quest ion (I), i.e. 

(I) For  which  values of  ,~; ~l ~< A ~< '~u, '~ ~& 'X0 does (y(,X), x~x(,~), x~(,~)) satisfy 
the condit ions for: (1) feasibility, (2) opt imali ty ,  (3) both  feasibil i ty and optimali ty.  

For  (1), we wish to de termine  the  largest interval for which overall  feasibility is 
maintained.  W e  distinguish two cases. 

(a) Feasibil i ty condit ion on the  last P L M :  This  is a necessary condit ion for 
feasibility in P L P .  T h e  largest interval for  which this condit ion is satisfied, denoted by  
[A{1, A~I], is obta ined by  considering the  r ight -hand-s ide  vector  of  the last P L M  
(i.e. for A = Ao) upda ted  by the inverse of its opt imal  basis M ~  x, i.e. we consider 
(gl + 2tg2) ~= M~a(b + ,~e) and apply the condit ion 

gl  -t- )lg 2 ~ 0 (5.2) 

which gives (i) Fo r  A > rio : 

A~x = min{--(gl)v/(g2)~ I (gZ)v < 0; v = 1 .... , q}, (5.3) 

orA~ta = + o o i f ( g ~ ) , ~ > 0 f o r v -  1 ..... q . ( i i )  F o r A < , X  o:  

A~x = max{(ga)d(g2)v I (g~)v > 0; v = I ..... q}, 

or A{l = - -oo  if (g2), ~< 0 for v = 1,..., q. 

(b) Feasibi l i ty  condit ion on the  .xjz variables:  In  addi t ion to (a) above,  it is 
necessary to satisfy the nonnegat ivi ty  restrictions on the xn(,~ ) whose  levels, denoted 
by  gl  -k AgZ, are established by subs t i tu t ing  the opt imal  levels of  the basic xj2(A ) 
and y(,~) into (5.1) which gives the op t imal  xjx(A ) as linear funct ions of  )~, denoted by  
(gjl + Agj2) ( j  - -  1 ..... k). T h e  largest interval [,~tt2, ,V~2 ] for which  nonnegat ivi ty  of  
the xn(A) is main ta ined  is obta ined by:  (i) For  ,~ > '~0 : 

At2 = min{_(gja)~/(g~)~ [ (g2)~ < O; v = 1 ..... m~ ; j = 1 .... , k}, 

or  h~z = oo if  (g~)~ > / 0  for all v a n d j .  (ii) For  A < h o : 

h~u -= max{(g~X)d(g~2), [ (g~.~), > 0; v = l ..... m~ ; j ----- I ..... k}, 

or  ,~(~ = - -oo  if (g~) ,  ~< 0 for all v and  j .  For  overall feasibili ty we mus t  therefore 
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Now for (2), we wish to determine the largest interval [h~l , A~l ] for which the current 
solution remains optimal. This is easily accomplished by considering the cost row of the 
last P L M  (updated by the inverse of its optimal basis), denoted by (hi x + hhs 2) 
(j  = 0, 1 ..... k). Thus, for optimality we must have, for the xj2(h) variables: 

and for the y(A) variables: 

hi1 2r hhj 2 -~< 0 (j  = 1,..., k), (5.4) 

h01 § hh0 2 ~ 0. (5.5) 

The sought interval is immediately established by: (i) For h > h 0 : 

h~l = min{--(hjl)~j/(hj~)~j [ (hj2)~j > 0; alp vj ; j  : 0, 1,..., k}, (5.6) 

or ,)t~l : -koo if  (hj2)vj ~ 0 for all 4 vj ; j  = 0, 1,..., k. (ii) For h < h o : 

A;x = max{(hr [ (hj2)~j < 0; alp u s ; j  = 0, 1 .... , k}, 

or h~l = --  Go if (hfl)v, >~ 0 for all 5 vj ; j = 0, 1,..., k. 
Finally, (3) is obtained as an obvious consequence of (1) and (2). That  is, the solution 

will remain both feasible and optimal for h z [h , ,  h*] where 

h .  = max{h~l, hla, AIr2 , h~}; A* = min{h~,x, hful , ,)t~2 , hit}. 

If  h ,  = At and h* : hu then the postoptimality question I has been answered and 
question I I  is clearly not relevant. We must assume, therefore, that either h t < •. 
or h* < h~, or both. In the ensuing discussion we consider only the case h* < A~. 
This is no loss of generality since the case h < A. leads to entirely symmetric results. 

The postoptimality question II ,  i.e. "parametric programming", is stated as: 

(II) Utilizing the information available from the current optimal solution for 
= h*, obtain the optimal solution to P L P  for h : h* + r �9 > 0. 

We consider three cases: (1) A* = h~l, i.e. for h = ~* -}- �9 �9 > 0 the current 
optimal solution to the last P L M  does not satisfy the feasibility condition of P L M .  

(2) h* = h~z ; i.e. for h = h* + �9 e > 0 the current optimal solution does not satisfy 
the nonnegativity condition on the xn(h ). (3) h* = he~l, i.e. for h = h* + �9 e > 0 the 
current optimal solution does not satisfy the optimality conditions. 

For (1), we would like to effect a basis change in the last P L M  optimal basic solution 
such that the feasibility condition (5.2) will be restored with respect to the new basis. 

5 Assuming (for notational purposes) that the Bn are formed by the first ms columns of B~ 
for j = 1,...,k, "all v~" refers to: 

v ~ = l,...,p; v~- = m~ q- 1,..., nj ; j  = 1,..., k. 
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This is easily accomplished by considering the optimal levels of  the basic y(h) and 
X~.l(A) variables (earlier denoted as gl q_ hg2) for A = A~I. Due to (5.3) we must have 
(gl -k Ag2)v = 0 for at least one component  v. For h = A~I q- E, therefore, we have 
a basic optimal but infeasible solution. The  customary rules of the dual simplex method 
(see, e.g., p. 247 in [8]) are applied and the vth variable is exchanged with one of the 
nonbasic xj1 and y variables which enters the basis at zero level. This  requires exactly 
one pivot step when v is unique. Several pivot steps may be necessary to obtain 
feasibility if v is not unique. I f  no nonbasic variable is eligible to enter, i.e. row v of the 
last P L M  simplex tableau has no negative entries, we conclude that there is no feasible 
solution to PLI~r further implying that no such solution to P L P  exists. 

For (2) we assume that for h = A~2 we obtain from (5.1) xjl ~> 0 with (xn) . = 0 for 
at least o n e j  and/~. For h = A~2 q- E; E > 0 we wish to restore the nonnegativity of 
t he  x~.l(h ). This  may be accomplished by an exchange between the xjl(A ) and x~.2(A ) 
variables; that is by updating the current partitioning of the problem, or by appending 
an additional constraint to PLM.  For a fixed value of A = h~2 and the corresponding 
optimal solution to the last PLM,  (5.1) gives the form: Xjl = p j  - -  P jx j z  ( j  = 1 .... , k)  
where Pj = B ~ I B j 2  ; p~ = B-f11(bj -k  hej) - -  B ~ I D j y ( A ) .  At this point we treat two 
cases: 

(i) I f  there exists a column index v such that (Pj),~(xj2)v ~= 0 where (Pj),v is 
the element in position (/z, v) of P~, then the variables (X~x)u and (xj2)~ are exchanged. 
The  current partitioning is updated to reflect this exchange, a revised PLrvI is defined 
and solved to optimality. The  computational effort required to solve this revised P L M  
may be drastically reduced by attempting to use as a starting basic set those column 
indices which were in the optimal basic set of the previous PLrvI. 

(ii) I f  (P~),~(xj2), = 0 for all v, the above exchange is not possible. Nevertheless, 
we can secure the nonnegativity of (x~l), by generating and appending an "additional 
constraint" of the form (3.6) expressing this restriction in terms of the x~- 2 and y. An 
optimal solution to this enlarged P L M  is then obtained by revising the optimal 
solution to the current P L M  by the well known rules (see, e.g., pp. 384-385 in [8]). 

The  above two cases lead to the consideration of a solution strategy whereby one 
may keep applying (ii) until either the number  of additional constraints becomes 
excessive, or case (i) is possible. Tha t  is (i) may be used at will, whenever possible, 
to reduce the size of the P L M  by eliminating all of the accumulated "additional 
constraints." The  number  of "additional constraints" may also be reduced while 
applying exclusively case (ii), by omitting such constraints as soon as they become 
inactive. I f  they become active at later stages the appropriate "additional constraint" 
will be generated (case (ii)), or alternately the nonnegativity of the corresponding x~l 
variable will be guaranteed by a revised partitioning (case (i)). 

Finally, for (3), we would like to effect a basis change such that the optimality 
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conditions (5.4)-(5.5) are restored. For A = A~t, (5.6) guarantees the existence of at 
least one nonbasic variable (z)~, among the components of x~.2(A ) or y(A), with a reduced 
cost of zero. The rules of the simplex method could be applied to introduce (z)v into 
the basis. However, due to the provisional nature of this pivot step (see case b below), 
we first examine the effect of such a step on the current levels x~x of the variables x n . 

For restoring feasibility in PLM, we must have, at the conclusion of the pivot step: 
z~  a = zB b --p~b(zb)~ ~ O, where ZB b and zB a are the basic optimal solution vectors 
before and after the pivot step respectively and p b is the column corresponding to 
the nonbasic variable (zb)~ in the current simplex tableau of PLM. The effect of the 
pivot step would thus be to increase the level of (z)~ from zero to: 

(z~)v = m{.n{(zB)d(p~b)l(p~b),  > 0; i = 1,...,g} 

and (zn~)o = 0 for at least one component p. If, upon substituting zn ~ into (5.1), the 
resuking X~l are strictly positive, then the contemplated pivot step, with (/~, v) as the 
pivot position, is carried out. 

Alternately, if (X~.l) p = 0 for at least one p and: 

(a) x~l ~ X~x, then the contemplated pivot step is performed. 

(b) xjla <~ x~t,b then the nonnegativity of xjt(h ) for ?t = '~ule + E, E > 0, is secured 
by the procedure outlined in 2(i)-(ii) above. 

It should be noted however, that if P L M  is solved by the product form of the inverse 
revised simplex method, it is computationally expedient to carry out the pivot step 
in advance and subsequently check its validity. If (b) prevails, return to the pre-pivot 
status of P L M  is achieved by simply dropping the last elementary matrix in the product 
form of the inverse. 

6. VERIFICATION OF THE METHOD 

In this section the validity of the algorithm is outlined. 
Suppose that in the tth cycle the problem M has st "additional constraints" of the 

form (3.6). It follows from (3.1) that M is equivalent to the problem (2.1)-(2.3) and 
the constraints 

y >~ 0, x~ ~ 0 (j = 1,..., k), 
and (6.1) 

(x~l),~ >~ 0 (v = 1 . . . . .  s,), 

where (xjvl)i ~ > /0  corresponds to the vth constraint of the form (3.6). 
Since canceling the restriction (x~)v ~ 0 (j  ----- 1,..., k) in the primal problem (P) 

results in the removal of the column corresponding to (wj)v from the dual problem 
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(2,5)-(2.8), it follows that in the second formulation of the dual (i,e. in D or for the 
linear case in LD) the vth inequality in the jth block is replaced by an equation, 
Therefore, the dual problem of the problem stated by (2,1)-(2.3) and (6.1) is given by: 

Minimize 
/r 

q~(y, x, u) --- F(y ,  x t ..... x~) + ~ b/ua --  VF(y,  x t ..... x ~ ) "  (y ,  x t ..... xk), (6.2) 

subject to: 
k 

D," us + Do' U o - -  "r x 1 ..... x~) >i O, (6.3) 
j = l  

B~tu, + A~uo -- V ~ F ( y ,  x~ ,..., x~) (~>) O, 

B~2ui + A~lu o --  V~j2F(y, xa ..... xk) >~ O, 

Similarly, for the linear ease, the above dual problem is given by: 
Minimize 

k 

Z b;u , 
J = i  

subject to 

( j  ----- 1 ..... k) (6.4) 

(6.2a) 

D/u j  + Do'u o >~ Co, (6.3a) 
J = l  

t 
: -  C i l  , 

(j--~ 1 ..... k) (6.4a) 

B~zus + A~2uo >I ej~, 

where = means that the constraints corresponding to the variables (xj,a),, (v ~ 1 ..... st) 
are inequalities. 

The following theorem states the optimality condition: 

Tm~OREM 1. Let (y*, x~t, x~) ( j  ~- 1 ..... k) be the vector obtained after t cycles. I t  
i~ an optimal solution t~ P i f  and only i f  x~  >~ 0 ( j  = 1,..., k). 

Proof. The condition is clearly necessary because otherwise (2.4) would not be 
* ,  y*) is an optimal solution satisfied. For sufficiency, we note from (3.1) that (x~, x~2 

to the problem given by (2.1)-(2.3) and (6.1). If x~t > /0  (j = 1,..., k) the condition 
(6.1) can be replaced by (2.4) without changing the optimal solution. Thus, 
(x*, x* ,  y*) is an optimal solution to P if x~ >/0. | 
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In order to prove that an optimal solution to P is obtained after a finite number of 
cycles, we need the following two statements. 

LEMMA 1. To each vector (y*, x ~ ,  x*) (j  = 1 ..... k), obtained in the tth cycle, 
there exists a corresponding vector (y*, xj*, uo*, us*) (j  = 1,..., k) which is a feasible 
point of D and has the property: 

F(y*,  xt* ..... xk*) : #(y*, xl* ..... xk*, U 0 * , U l * , . . .  , Ule*), (6.5) 

where x~* : (X~l, x*). 

Proof. (y*, x~ , x~) (j  = 1 ..... k) is an optimal solution to the problem given by 
(2.1)-(2.3) and (6.1). Since (6.2)-(6.4) define the dual of this problem, it follows from 
the duality theorem for nonlinear programming [21] that there exists a point 
(y*, x~.*, u0*, us* ) (j = 1,..., k) satisfying (6.3)-(6.4) such that the objective functions 
(2.1) and (6.2) have equal values, immediately establishing the property (6.5). Com- 
parison of (6.3)-(6.4) with (2.10)-(2.11) shows that each feasible point of (6.3)-(6.4) 
is also a feasible point of (2.10)-(2.11) (but not conversely). | 

For a linear objective function (6.5) is simply: 

k k 

c/x~* + co'y* = ~ b/uj*. (6.6) 
j=l j=0 

X * * )  LEMMA 2. Let ( y * , x ~ , x ~ )  and (y**,x~*,  j~ ( j  = 1 ..... k) be the vectors 
obtained at the tth and (t + 1)th cycle, respectively. Then, 

F(y**, x** .... , x**~ <~ F(y*, xl*,..., xk* ) (6.7) k / 

Proof. In the tth cycle we have solved a problem given by (2.1)-(2.3) and (6.1). 
Denote the feasible region of this problem by R 1 . This domain is subsequently altered, 
according to the procedure described in Section 3, as follows: 

(1) If 19I contains "additional constraints" of the form (3.6) we cancel those which 
are not active in the optimal solution (Case 1). Each remaining "additional constraint" 
is either left unchanged (Case 3) or rewritten (Case 2) while one of the constraints 
(x~2)i > /0  (which is not active in the optimal solution since (x~)i > 0) is disregarded. 

(2) Suppose X~l has at least one negative component, say (x*)v �9 If Case I applies, 
one of the constraints (x*), >~ 0 (which is inactive since (x~)~ > 0) is canceled and 
replaced by (x*)v >/0. If Case II applies, an additional constraint of the form (3.6), 
equivalent to (x~.l) ~ >~ 0, is added to the problem. 

Thus, upon completion of a cycle, say the tth, only inactive constraints are canceled 
while the new "additional constraints" of the form (3.6) which are added to rvI are 
not satisfied by (y*, x* ,  x~). For a maximization problem this implies (6.7). | 
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For a linear objective function (6.7) is simply: 

k k 

E c/x** + Co'Y** < X c~'~* + Co'Y*. (6.8) 
i = l  j = l  

Remark 1. The  above proof shows that the feasible domain R 1 is altered in two 
steps. First, by canceling some constraints, we obtain a larger domain R e in which 
the objective function remains at its optimal solution value. Then,  new constraints 
(i.e. nonnegativity restrictions on the xj~ variables) which are not satisfied by the current 
optimal solution are added. This results in a smaller feasible domain, say R 3 . I t  follows, 
therefore, that strict inequality holds in (6.7) and (6.8), except in the case of an alternate 
optimal solution in R 3 . In  this case, a possibility of cycling exists. Nevertheless, it 
can easily be prevented by a small perturbation in the coefficients of (2.1) or in the ej ; 
( j  = 0, 1 ..... k) for the linear case. Clearly, cycling will not occur for strictly concave 
objective functions since in such cases the optimal solution is unique. 

Remark 2. In  Section 3 we assumed that if a feasible solution to P exists, then 1~I 
attains an optimal solution for a finite point (y, x12 ,..., Xke ). Now, suppose that the 
latter is not true, i.e. rvl does not attain an finite optimum. In  order to prevent such 
occurrences, we propose the following procedure. 

Let T be a sufficiently large positive number,  and oj,  q~ vectors, conformal to the 
current partitioning of xr = (x~l, x~e), which have as their components all zeros and 

k t ones respectively. Then, the addition of the condition ~ j= l  q5 xj2 + qo'Y ~ T to the 
existing constraints of rvl, insures that this enlarged M has an optimal solution provided 
that l~I has a feasible solution. Clearly, this is equivalent to the addition of: 

k (XSl 1 (05, qs)' \x521 + qo'Y + T = T; , >1 0 
5=1 

to the constraints of P. I f  in the optimal solution to this enlarged P we have ~- ---- 0 for 
arbitrary large T, then the original problem has an unbounded solution. 

Since the optimal value of the current 1~ is an upper bound to the objective function 
values of all subsequent M problems (Lemma 2), and due to the way in which the 
feasible domain of M is altered from one cycle to the next, it follows that all sub- 
sequent M problems have optimal solutions, provided they have a feasible solution. 

THEOREM 2. I f  P has an optimal solution it is obtained in a finite number of cycles. 

Proof. Let (y*,  xs* , u0* , us* ) and (y**,  x~* , ,  ** �9 **~ -0 ,~5 J (J = 1,...,k) be the 
feasible points of n associated with the vectors (y*,  x ~ ,  x*) and (y**,  x~*, x** 
( j  = 1,..., k) obtained in the tth and (t + 1)th cycle, respectively (Lemma 1). Con- 
sidering (6.5) in conjunction with Lemma  2 we see that: 

r , x**sl, x*'52, u**, u**) ~< ~ (y* ,  x ~ ,  x'j2, u0*, us*) (j ---- 1 .... , k). (6.11) 

57I/3/4-2 
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We observe that (y*, x~*, Uo*, us* ) ( j  -- 1,..., k) is an optimal solution to the dual 
problem (6.2)-(6.4) and that it satisfies as equalities at least those constraints in 
(6.3)-(6.4) which correspond to cancelation of the nonnegativity restrictions on the Xjx 
in M. Denote the set of equations in (6.3)-(6.4) for the tth and (t + 1)th cycle by S* 
and S**, respectively. If (6.11) is an equality for several eonsequtive eye les, appropriate 
methods to prevent cycling can be employed to insure that S* re-occurs at most a 
finite number of times. 

If D has an unbounded solution, it follows that a problem (6.2)-(6.4) with an 
unbounded solution is obtained after a finite number of cycles. Since G(y, x~2 ) is 
differentiable, by the duality theory for nonlinear programming [21], this implies 
that M has no feasible solution. The latter then implies that P has no feasible solution. 

If D has an optimal solution, then it follows from the preceding discussion that 
it is obtained in a finite number of cycles. If D satisfies a constraint qualification (which 
is satisfied if, e.g., F(y, xj) is strictly concave), the converse duality theorem [10] 
asserts that the optimal solution of the corresponding M yields the optimal solution 
to P. Alternately, for cases where the constraint qualification is not satisfied, the 
optimal solution to the corresponding M need not be feasible for P. However, 
since we have an optimal solution to D, it follows from Lemmas 1 and 2 that any 
subsequent M problem has either no feasible solution or an optimal solution for which 
the objective function has a value equal to the optimal value of D. Hence, using 
appropriate methods to prevent cycling (Remark 1) we arrive, after a finite number of 
additional cycles, at an M which either provides an optimal solution to P or has no 
feasible solution. | 

Remark 3. For the case of a linear objective function the above proof may be 
stated in a concise manner as follows: 

The relation (6.11) implies: 

k k 

X-jl ' j l  (/?, '~** + s ' -4- co'y** <<. ~ (C'jlX ~ -4- ~ * )  + Co'Y*. (6.12) 
J-i j=i 

Therefore, with appropriate methods to prevent cycling, the optimal solution of LD, 
if it exists, will be reached in a finite number of cycles, say after r cycles. By the 
duality theorem for linear programming, the vector (X~.l, x~. 2 ,YO (J = 1 ..... k) 
obtained in the rth cycle is an optimal solution to LP. If LD has no optimal solution, 
it follows again from the dualky theorem that LP  also has no optimal solution. 

7. COMPUTATIONAL ASPECTS AND RESULTS 

The computational efficiency of the algorithm presented in Section 3 depends on 
several factors. First, the distinction between linear and nonlinear objective function 
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is an essential one. It is generally known that for most of the available methods, the 
solution efficiency for nonlinear problems depends almost entirely on the number of .  
variables. This is particularly evident when one uses a method in the dual space such 
as Gradient Projection [15]. Consequently, the reduction in the total number of 
variables involved in each M solution should be viewed as a much more important 
development than the obvious reduction in the number of constraints. This reduction 
can be impressive for many problems arising in practical applications. Then, little 
attention is paid to the increase in "additional constraints" of the form (3.6) during 
the course of the algorithm. Their accumulation is tolerated and their elimination may 
be deferred until convenient. 

The situation may be markedly different for the linear case depending on the method 
of solving LM. Its solution may be accomplished either by the primal or the dual 
simplex method. The choice will depend on the size of LM which is related to the 
size of the original problem LP. If this problem is specified with subproblem matrices 
B i for which mj ~ nj, then the number of variables in LM will still be substantial, 
thus dictating the use of the primal simplex method for its solution. The accumulation 
of additional constraints will then be checked by effective pivoting procedures. As 
mentioned earlier, however, the existence of nonvanishing pivots cannot be guaranteed 
for all the variables corresponding to existing "additional constraints." Therefore, 
even with the emphasis on pivoting, the possibility of a modest accumulation of these 
constraints remains. On the other hand, if mj ~ n~ with m~ ~ n~, the number of xjz 
variables in LM will be relatively small. In such instances, use of the dual simplex 
method should prove more efficient. In this case, solution of LM to optimality may 
be avoided (see, e.g., Theorem 4 in [16]. The number of additional constraints may 
then be allowed to increase more freely, with pivoting assuming a secondary role. 

The choice of initial bases Bjl for the subproblem matrices B~ is an obvious param- 
eter which affects solution efficiency. Clearly, the optimal solution to the complete 
problem P would be obtained in one cycle if this choice were made to coincide with 
the optimal basis. In most industrial problems an initial point (yO, xfl), j = 1 ..... k 
(not necessarily feasible) will be known from the physical characteristics of the model 
or from a previous solution to a slightly modified problem. The columns of Bj which 
correspond to the positive components of the xfl specify the partial initial basis which 
may then be used, whenever linear independence holds, to construct the inverse B~ 1 
by appending, if necessary, some linearly independent nonbasic columns. Other 
methods of obtaining an initial subproblem basis may be more advantageous. However, 
computational evidence will be required to establish their relative merits. 

The solution efficiency will also be influenced by the method of variable exchanges, 
referred to as "pivoting." Such exchanges are required under both steps A and B of 
the algorithm. Complete lack of nonzero pivots at the required positions will cause the 
generation of at least one "additional constraint" for the next cycle. Since generation 
of an excessive number of such constraints is undesirable, at least when LM is solved 
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by the primal simplex method, intuition suggests that more than one pivot step should 
be performed for the nonoptimal blocks at each cycle. One way of performing this 
operation is to apply the simplex method to a modified subproblem as follows. Let 
the current basis for thejth subproblem be Bjl ,  and let the submatrix of Bj containing 
the nonbasic columns be Bj2. Suppose that the solution of l~I and the 
subsequent application of (3.1) gives the following partition of variables 

Xjl = (Xll , X12 , XI3); Xj2 = (XII , Xir,) with 

I1 = {il (X~l), < 0}; 

12 = ( i l  (x~x)~ - -  0 ;  i~1~}; 

18 = {i[  ($J1)i ~ 0);  

I~ = {il (xj~), > 0} 

where 1~ represents the set of column indices i for which "additional constraints" of 
the form (3.6) were present in M. An effective pivoting strategy would then be to 
exchange as many of the variables in/1 and 14 as possible, and to retain the variables I a 
as basic. This is accomplished by considering the linear program: 

Maximize 

subject t o  

--Tlq'ixl~ - -  T2q'@+ ~ + Taq}4xl ~ , 

B~xXi 2 + B12x12 + Bl~xt3 + BI4Xi4 = 0, 

XI1 , XI~ , XI3 , XI4 ~ 0, 

(7.1.1) 

(7.1.2) 

(7.1.3) 

where qt 1 , q1~, ql~ are vectors having all ones in their components and the scalars 
7"1,7"2, T~ ~ 0 are specified weighing constants. This problem is solved by the 
primal simplex method. In order to retain xi3 in the basis, the usual pivot selection 
rules of the simplex method are revised to avoid pivoting xq out of the basis. In our 
program, an initial inverse for the above problem is obtained by reinverting the sub- 
problem basis of the previous decomposition cycle. It would certainly be more efficient 
to maintain each inverse/~11 in the product form which can then be revised, if the 
block is nonoptimal, by the simplex algorithm. If T 1 ~ Tz = 7"4, then the solution 
to (7.1.1)-(7.1.3) will obtain the revised subproblem basis Bjl and its inverse by 
following the best pivoting sequence with preference given to reducing the infeasibility 
caused by xq .  Thus, the exchanging will take place primarily between x11 and xq and 
only to a limited degree between x1~ and xi,.  If the weighing constants are chosen so 
that T 2 ~ T1 = 7"4, then exchanging will favor the elimination of the existing 
additional constraints over the reduction in the existing infeasibility. It is reasonable 
to assume then that the choice of these constants will also influence the overall 
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efficiency. However, limited computational experience in comparing the two extreme 
choices stated above, indicated no appreciable differences in the number of cycles. 

Finally, the choice of an initial starting point for each ~ is the key to the overall 
efficiency. Starting each l~I from the solution to the previous l~I seems to be a plausible 
way. Although such a point will be infeasible for the l~I of the current decomposition 
cycle, the method outlined in [15] may be applied to obtain a feasible starting point. It 
is expected that this choice will be a good one, particularly in the later decomposition 
cycles. Similarly, for the linear case, the optimal basis to the previous LI~I will provide 
a partial basis for starting the solution to the current LM. Our experience has shown 
that the optimal bases of successive LI~I problems differ from each other only by a 
few basic columns. This observation leads us to expect that the use of the previous 
basis columns, which are still present in the new LM, as a partial starting basis,will 
result in considerable computational savings. 

A small experimental computer program for solving the linear problem LP has been 
written in FORTRAN and has been tested on a number of randomly generated 
problems. 

The program, which is completely core resident, is divided into a number of sub- 
routines which essentially perform the following functions: (a) Problem data input 
or generation of input data, (b) Construction of initial bases Bil ; j  -~ 1,..., k and their 
inverses, (c) Generation of the LI~r matrices, (d) Solution of LI~I, (e) Extraction of 
solution values, computation of X~l and optimality tests, (f) Variable exchanges for 
the subproblems, and (g) Output and solution check. 

The input phase reads in the matrices A j, Bj, Do, D~, the vectors b0, b~, Co, 
and q ( j  = 1,..., k). Optionally, these matrices and vectors are generated randomly 
with the necessary precautions insuring feasibility and boundedness. This part of the 
program also generates the input data for the complete problem LP in a form acceptable 
by the CDM4-LP System [22] for the CDC3600. Subsequently this data is used to 
obtain solutions for each LP  as an ordinary linear program. The initial bases, for this 
early version of the program, are taken as unit matrices representing slack and artificial 
vectors. The bulk of the computational work is done in (c) above, where the matrices, 
cost and right hand side vectors of LI~I are computed and are stored in packed form 
for later use by CDM4 which is then called to solve LM starting from a completely 
artificial basis. This undesirable manner of starting the solution of LI~r was chosen in 
the interest of simplicity since it was found that CDM4 could not effectively handle 
a given partial starting basis. The solution values, basis, etc. obtained by the CDM4 
are extracted by unpacking. Then, the current value of the objective function and the 
levels of x~l ; j ~ 1 ..... k are computed. For each nonoptimal block, the necessary 
variable exchanges are performed by direct pivoting, or optionally, by solving the 
modified subproblem (7.1.1)-(7.1.3) by CDM4. The data for these problems are 
packed and set-up for use by the CDM4 using the subroutines of (c) above. Each 
problem (7.1.1)-(7.1.3) is solved by first reinverting to the previous (feasible) B~I and 
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then by carrying Phase II iterations. Each block is handled in succession and requires 
the original data of B~. only. The output phase is negligible since the (x~x, x~ ,  y) 
(j  = 1 ..... k) are available from the last LM solution and the computation (3.1) which 
was necessary for the optimality test. Finally, a solution check is made by substituting 
the optimal variable levels into (2.2)-(2.4) to obtain a computed right-hand-side vector 
and by comparing it to the given b~ ( j  = 0, 1,..., k). 

A number of test cases were solved successfully by our experimental program. The 
data for these problems are randomly generated as follows. The matrices Bj. and A t , D i 
are 50 and 100Yo dense, respectively with the nonzero elements of Bj arranged in 
a checkerboard pattern. Each element is a pseudo-random number in the range [0, 10]. 
In addition, unit matrices of appropriate dimensions are appended to Aj and Bj 
(j  = 1 .... , k) representing nonnegative slack variables. The vectors cj, b~ (j = 0, 1 ..... k) 
are generated by first constructing a known optimal solution to the complete problem. 
The desired optimal levels of the variables xj and y are chosen so that: (a) a specified 
number of the coupling constraints are active (b) a specified number of the coupling 
variables y are at a positive level and (c) a specified number of the block variables 
xj are at a positive level. Within these restrictions, randomly selected subsets 
of the xj and y variables are then declared basic by assigning random levels in the 
range [0, 1] and random cost elements which are appropriately magnified to insure that 
these variables will remain basic in the optimal solution. The right-hand sides are then 
obtained by multiplying the constraint matrix by the generated values of x~. and y. 
The problem thus generated is insured to require a reasonable amount of work for its 
solution. The computed answers, however, may be slightly different from the generated 
ones for obvious reasons. 

No claims will be made regarding the resemblance of these test cases to actual 
industrial problems. In fact, our test cases are too small to allow any inference for 
problems of giant sizes for which this method is primarily intended. Thus, the results 
of the 26 test cases presented in Fig. 7.1 should be regarded only as an indication that 
our method should not be abandoned. Tests of large problems of practical importance, 
a sophisticated computer program with the flexibility for introducing the various 
solution strategies discussed in the previous paragraphs and a large amount of com- 
puting time, will be needed before the efficiency of this method, or any other method 
previously proposed by others, may be accepted on firm ground. Plans for designing 
such a system and performing extensive large scale testing are reported under con- 
sideration [20]. 

The information given in Fig. 7.1 is arranged as follows: 

Columns 1-6: Test case identification and problem sizes 

Column 7: The number of decomposition cycles to optimality, which also 
corresponds to the number of LM's solved 

Column 8: Subproblem pivoting strategy used: 



DIRECT LP 
SOLUTION uJ 

= ; ~ ,  - 

uJ r 

. . . . .  ~ ~:,,,--- 

,_i ~ I.~I 

1 2 3 ~ 6 7 8 9 10 11 12 13 1~ 15 16 17 18 

1 5 5 10X20 2 25X~.5 8 1 5.0 10.7 86 2.3 18 1.5 ~.6 10.3 28 11.0 
3 2 h..7 15.6 ~,7 5.7 17 0.0 1.9 4.7 

2 10 5 10X20 2 30X45 3 1 5.7 11.3 3~. 1.0 3 0.5 1.4! 3.0 15 6.0 
3 2 2.5 16.~ 4.9 5.3 15 0.7 2 .0  ~,.9 

3 5 i0 10X20 2 25X50 8 1 7.7 1~.~ 115 1.9 15 1.0 7.2 15.8 30 8.0 
6 2 7.1 18.7 112 2.5 I~, 0.2 6.6 12,2 

4 10;10 lOX20 2 30X50 h. 1 4.2 17.5 70 1.3 5 0.5 3.8 7.1 29 9.0 
h, 2 2.6 19.3 77 4.,5 18 0.2 3.8 8.5 

5 5 5 10X30 2 25X65 7 1 6.3;16.9 117 3.0 21 0.1 9.0 18.3 28 10,0 
8 2 5.8 19.4. 155 3.4. 27 0.3 11.6 20.9 

I0 5 10X30 2 30X65 9 1 6.4. 18.4 166 2.4 22 0.2 14..I 27.7 31 12.0 
4. 2 4..8 19.0 76 4..3 17 0.3 5.8 11.9 

7 5 i0 10X30 I 2 25X70 ~ 1 10.~ 22.3 156 2.6 18 0.1 15.1 25.2 38 13.0 
�9 2 9.1124..0 14.~ 2.8 17 0.2 13.3 20.9 

8 10 10 IOX301 2 30X70 5 1 8.2 27.21 136 2.6 13 0.2 12.6 21.2 32 13.0 
5 2 5.8 33,51 158 3.4. 17 O.h 16.1; 20.1 

9 5 5 15X30 2 35Xb5 13 1 6.h lb.9 194. 5.2 4.1 D.O 12.7 hO.7 I~5 13.0 
10 2 6.8 17.3 173 2.6 26 0.2 11.1 25.5 

i0 10 5 15X30 2 ~X65 7 1 5.7 17.~,! 122 2.6 18 0.3 8.6 23.7 32 12.0 
4. 2 ~,.0 25.0 I00 7,3 29 0.0 12.9 lb..6 

11 5 i0 15X30 2 35X70 8 1 11.1 23.2 186 2.8 22 0 . i  15.7 3h.5 4.9 1.5.0 
6 2 7.6 21.2 127 5,5 21 0,2 9.8 19,0 I L 

12 i0 !i0 15x30i 2 bOX70 6 1 8.6 21.2 127 3.3 201 0.2 10.9 26,.3 36 15.0 
13 4. 2 6.2 28,0 112 5,5 14. 0.3 8.9 16.8 

5 5 IOX20 5 55XI05 13 1 8.4 19.6, 255 5.2 68 0.9 24..0 ~h.3 86 4.5.0 
7 2 9.3 23.4. 16~ 5.1~ 381 1.3 14..7 28.2 

14. i0 5 fOX20 5 60Xi05 9 1 8.9 24..2 268 5.5 b,9i 0.3 21.9 39.7 6% 24..0 
6 2 9.3 29~2 175 6.0 56 0,5 17.9 32.0 

15 5 10 10X20 5 55XII0 I0 1 12.0 27.h 27~, 5.8 58 0.6 31.6 5~.8 81 32.0 
6 2 13.0 34.. L', 204. 6.5 59 0.6 25.6 36.4. 

16 10 10 10X20 5 60X110 9 1 15.0 35.4. 329 5,.1 ~,6 0.7 4.3.4. 68.2 72 31.0 
9 2 11.8 39.2 352 6.1 55 1.1 4.5.4. 69.0 

17 5 5 LOX30 5 55X155 18 1 8.6 25.5 4.59 5,.2 93 0.6 70.4. 120.0 112 52.0 
11 2 11.8 35,4. 390 5.5 60 0.6 63.9 92.4. 

18 i~ 5 lOXSO 5 60X155 15 1 8.6 57.0 555 6.h 96 0.5 105.5 162.0 109 55.0 
12 2 12.2 ~5.0 516 7,~ 89 0,8 100,7 II~2,8 

19 5 10 10X30 5 55;(160 16 i 12.5 37.~ 597 5.3 85 0.6 108.2 16,0.91 109 55.0 
14. 2 12 8 38,8] 5/~I~ 6.7 9310.8 96.1 lhO.6 

20 i0 10 10X50 5 60X160 II 1 12.0 4.4..6 4.91 6.7 7k 0.5 104..~ 155.5 109 71.0 
10 2 10.3 4.4..5 ~I~5 9.0 90 0.7 89.6 150.7 

21 5 5 15X50 5 80X155 25 1 9.5 2~.i 578 6.9 1172 0.2 7h.O 189.2 121 63.0 
17 2 13.3 36.h 617 7.7 131 0.4. 83.8 145.8 

22 10 5 15X30 5 85X155 21 1 9.0 30.8 6~6 6.3 132 0.8 97.~ 208.9 90 52.0 
14. 2:14.,I ~.5.1; 652 , .8  ; 67 1.6 108.0 165.2 

23 5 I0 15X30 5 80X16,0 20 II 13.h 52.8 656 5.9 !117 0.5 98.8 205.~ 118 66.0 
19 211~,9 %4..6 850 8.2 1156 0.5 133.5 208.0 

24. i0 10 15X30 5 85X160 17 1 15.h 4.2.6 723 6.5 iiii 0.4. 129.1 2h6.1 122 72.0 
14. 2 11.6 4.1,5 582 9.7 15~ 1.0 97.7 169.7 

25 5 5 10X20 i0 105X205 35 1 13.0 51.6 10kl 6.7 219 3.9 171.5 26~.2 126 79.0 
18 2 18.0 I,,5.8 828 5.7 103 3.3 152.0 210.1 

26 5 5 fOX20 15 155X505 57 1 Ik.9 3k.8 1984. 6.0 34.3 7.5 4.57.9 659.2 199 177.0 

SOLUTION BY DECOMPOSITION 

* C D C 3 6 0 0  seconds  

( M a x i m u m  row error  is less than  2.4 x 10 -7 for all solutions) 

F igure  7.1 - -  T e s t  resul ts  
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(1): Select one component of x~- 1 corresponding to one active "additional 
constraint" for a particular block and exchange it with a positive component of xj2 
for the same block. If no nonzero pivot is found, this exchange is abandoned and this 
"additional constraint" is left in L/gI. Select one negative component of xjl ,  say (xjl),, 
for the same block and exchange it with a positive component of x~- 2 for the same block. 
If no nonzero pivot is found, an "additional constraint" for (xj.1) ~ is generated for 
inclusion in the next LM. 

(2): Multiple pivoting by defining and solving, for each non-optimal block, 
the subproblem (7.1.1)-(7.1.3)with T x = 1, T 2 = T 4 = 100. 

Column 9: Average number of "additional constraints" which are present 
in LM at each decomposition cycle. 

Columns 10, 11: The average and total number of simplex iterations required 
to solve LM by the CDM4-LP System. Each LM solution is started "from scratch" 
i.e. from a full artificial or slack basis. 

Columns 12, 13: The average and total number of variable exchanges performed 
in the subproblems. For strategy (2) the reported numbers represent the number of 
simplex iterations after the completion of the reinversion to the current basis B~- 1 . 
For each nonoptimal block, reinversion generally requires an additional mj pivot steps. 

Column 14: The average number of optimal blocks in each cycle. This number is 
appreciably greater for problems with a large number of blocks. When a block is 
optimal, the corresponding matrices of LM remain the same for the next cycle. Our 
program, however, takes little advantage of this and thus some recomputation occurs. 

Column 15: Net computation time required to solve the number of LM problems 
(given in Column 7), starting each time from a full artificial or slack basis and using 
the primal simplex method as programmed in the CDM4-LP System. 

Column 16: The total solution time required to solve LP  by the decomposition 
method starting from a full slack basis. This result includes: Preparation of LM 
matrices and vectors, packing of these for use by CDM4, solution (from scratch) 
of LM, unpacking of answers, computation of x~- 1 , optimality checks, subproblem 
pivoting (in case of stategy (2) preparation of the data for (7.1.1)-(7.1.3) in packed 
form, reinversion, solution by CDM4, unpacking of answers, etc.), generation of 
"additional constraints," etc. 

Columns 17, 18: Number of primal simplex iterations and net computation time 
required to solve the complete problem LP (Column 6) by the CDM4 LP System 
which, for the purpose of this test, was arranged so that both data and program resided 
in core. 

The running times reported for the deomposition method, in some instances, 
exceed those for the direct LP solution of the same problem. This disconcerting fact 
may be explained through consideration of several practical factors. First, we note 
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that our experimental program was written with no regard for programming efficiency, 
for the sole purpose of solving a limited number of small test cases and investigating 
some of the computational aspects of the method. Consequently, the timing results 
should not be compared too closely with those obtained by CDM4, which is an 
efficient production tool. Second, an appreciable part of our program performs 
operations which allow the use of CDM4 as a subroutine. Most of this work would 
not be necessary if a more flexible and versatile linear programming code could be 
used as a subroutine for the decomposition program. Third, a substantial part of the 
total solution times consits of the optimization of the sequence of LM problems, each 
one starting from scratch. Comparing Columns 15 and 16, we find that for the test 
cases treated here, an average of 57 % of the total computation time has been expended 
for solving the LM problems. In some cases this percentage exceeds 70%. It is evident, 
therefore, that considerable savings would result if good starting bases for these LM 
problems were used. In addition, the total computation times for solutions by strategy 
(b) include the time required for reinversion of the nonoptimal subproblem bases 
in every cycle. Such reinversions may, of course, be avoided by maintaining the current 
subproblem inverses in product form, which will result in further savings. The recom- 
putation of the LM matrices for optimal blocks, is another expensive operation which 
may be avoided. Finally, the results reported herein are, in a sense, the worst possible, 
since solutions to these problems were initiated from an all slack basis and the problem 
data were generated so that only a small number of these slacks would be contained in 
the optimal basis. Thus a good starting basis for the complete problem should be 
expected to improve matters considerably. 
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