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Abstract

We consider the following generalization of distance-regular digraphs. A connected digraph
� is said to be weakly distance-regular if, for all vertices x and y with (@(x; y); @(y; x)) = h̃,
|{z ∈ V� | (@(x; z); @(z; x)) = ĩ and (@(z; y); @(y; z)) = j̃}| depends only on h̃; ĩ and j̃. We give
some constructions of weakly distance-regular digraphs and discuss the connections to association
schemes. Finally, we determine all commutative weakly distance-regular digraphs of valency 2.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Weakly distance-regular digraph; Association scheme; Cayley digraph

1. Introduction

A digraph � is a pair (X; E) where X is a 7nite set of vertices and E⊆X 2 is a
set of arcs. Throughout this paper we use the term ‘digraph’ to mean a 7nite directed
graph with no loops. We often write V� for X and E� for E. An arc (u; v) of �
is undirected if (v; u)∈E�. A path of length r joining u and v is a 7nite sequence
of vertices (u=w0; w1; : : : ; wr = v) such that (wt−1; wt)∈E� for t= 1; 2; : : : ; r. A path
(w0; w1; : : : ; wr−1) with distinct vertices is called a circuit of length r if (wr−1; w0)∈E�.
A shortest circuit is called a minimal circuit. The girth g of � is the length of a minimal
circuit. If a digraph contains an undirected arc, its girth is 2 by the de7nition. The
number of arcs traversed in a shortest path joining u and v is called the distance from u
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to v in �, denoted by @(u; v). The maximum value of the distance function in � is called
the diameter d of �. For any two vertices x; y∈V�, de7ne @̃(x; y) = (@(x; y); @(y; x)).

Let �= (X; E) and �′ = (X ′; E′) be two digraphs. A bijection � from X to X ′ is
an isomorphism from � to �′ if (x; y)∈E if and only if (�(x); �(y))∈E′. We do not
distinguish between two isomorphic digraphs. An isomorphism from � to � is called
an automorphism of �. The set of all automorphisms of � forms a group under the
operation of composition. The group is called the automorphism group and denoted
by Aut(�). A digraph � is vertex transitive if Aut(�) is transitive on V�.

Lam [5] introduced a concept of distance-transitive digraphs (by requiring that there
exists an automorphism � taking x to x′ and y to y′ whenever @(x; y) = @(x′; y′)), and
gave some elementary properties and examples. Damerell [4] generalized this concept
to that of distance-regular digraphs. He proved that the girth g of a distance-regular
digraph of diameter d is either 2, d or d+1, and that the one with d=g is a coclique
extension of a distance-regular digraph with d= g− 1: Bannai, Cameron and Kahn [1]
proved that a distance-transitive digraph of odd girth is a Paley tournament or a directed
cycle. Leonard and Nomura [6] proved that except directed cycles all distance-regular
digraphs with d= g − 1 have girth g68. In order to 7nd ‘good’ classes of digraphs
with unbounded diameter, the condition of distance-regularity seems to be too strong.
Damerell [4] suggested a more natural de7nition of distance-transitivity, i.e., weakly
distance-transitivity. In this paper, we introduce weakly distance-regular digraphs. In
Section 2, we give some constructions of weakly distance-regular digraphs. In Section 3,
connections to association schemes are discussed. In the last section, we determine all
commutative weakly distance-regular digraphs of valency 2.

De�nition 1.1 (Damerell [4]). A connected digraph � is said to be weakly distance-
transitive if, for any vertices x; y; x′ and y′ of � satisfying @̃(x; y) = @̃(x′; y′), there
exists an automorphism �∈Aut(�) such that x′= �(x) and y′ = �(y).

De�nition 1.2. A connected digraph � is said to be weakly distance-regular if

ph̃ĩ; j̃(x; y) = |{z ∈V� | @̃(x; z) = ĩ and @̃(z; y) = j̃}|

depends only on ĩ; j̃; h̃ and does not depend on the choices of x and y with @̃(x; y) = h̃.
The numbers ph̃

ĩ; j̃
are called the intersection numbers of �.

It is easy to see that a weakly distance-transitive digraph is weakly distance-regular.
A weakly distance-regular digraph � is commutative if ph̃

ĩ; j̃
=ph̃

j̃; ĩ
for all ĩ; j̃; h̃. Let

�i(x) = {y∈V� | @(x; y) = i}. ki = |�i(x)| does not depend on the choice of x∈V� and
k = |�1(x)| is called the valency of �. Clearly, a weakly distance-regular digraph of
valency 1 is a directed cycle.

Let � be a connected digraph of diameter d. Let Ai; j be a square matrix of size
|V�|, whose rows and columns are indexed by vertices of � such that

(Ai; j)x; y =

{
1 if @̃(x; y) = (i; j);

0 otherwise:
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Ai; j is called the (i; j)th adjacency matrix of �. � is a weakly distance-regular digraph,
if the span of the set {Ai; j | 06i; j6d} is closed under multiplication.

De�nition 1.3. Let G be a 7nite group and S a subset of G not containing the identity
element. We de7ne the Cayley digraph �= Cay(G; S) of G with respect to S by

V�=G and E�= {(x; sx) | x∈G; s∈ S}:

A Cayley digraph �= Cay(G; S) is connected if and only if G= 〈S〉. It is obvious
that Aut(�) contains the right regular representation of G, and so � is vertex transitive.

The following is our main result:

Theorem 1.1. If � is a commutative weakly distance-regular digraph of valency 2
and girth g, then � is isomorphic to one of the following:

(1) Cay(Z2g; {O1; O2}).
(2) Cay(Z2 ×Zq; {(O0; O1); (O1; O0)}); q¿3.

(3) Cay(Zn; {O1; n− 1}); n¿3.

(4) Cay(Z2g; {O1; g+ 1}).
(5) Cay(Z 2

3 ; {(O0; O1); (O1; O0)}).

2. Constructions

Now we give another characterization of weakly distance-transitive digraphs. Let �
be a weakly distance-regular digraph. For each vertex x of �, we de7ne

�i; j(x) = {y∈V� | @̃(x; y) = (i; j)}:

It is easy to see that ki; j = |�i; j(x)| does not depend on the choice of x. For vertices x
and y of �, let

Pĩ; j̃(x; y) = {z ∈V� | @̃(x; z) = ĩ and @̃(z; y) = j̃}:

If @̃(x; y) = h̃, then |Pĩ; j̃ (x; y)|=ph̃ĩ; j̃ (x; y).
The proof of next proposition is similar to the one in the undirected case.

(see [3].)

Proposition 2.1. A connected digraph � with diameter d is weakly distance-transitive
if and only if it is vertex transitive and the stabilizer of a =xed vertex v is transitive
on the set �i; j (v) for each i; j∈{0; 1; : : : ; d}.

Proposition 2.2. Let G be a =nite abelian group and S a subset of G not containing
the identity element. If �= Cay(G; S) is a weakly distance-regular digraph, then �
is commutative.



228 K. Wang, H. Suzuki / Discrete Mathematics 264 (2003) 225–236

Proof. Since G is abelian, we write the operation additively. Thus

@̃( Ox; Oy) = (t1; t2) if and only if @̃(− Oy;− Ox) = (t1; t2):

It is easy to see that

Oz ∈P(i1 ; i2); (j1 ; j2)( Ox; Oy) if and only if − Oz ∈P( j1 ; j2); (i1 ; i2)(− Oy;− Ox):

So we have

p(t1 ; t2)
(i1 ; i2);(j1 ; j2) =p(t1 ; t2)

(j1 ; j2); (i1 ; i2):

Hence, the desired result follows.

Remarks. This result can also be obtained as a corollary to the following well-known
result: Let (G; X ) be a transitive group with an abelian subgroup H acting regularly
on X . Then the group-type association scheme associated with it is commutative.

Proposition 2.3. Let Z2g be a cyclic group of order 2g. Then

�= Cay(Z2g; {O1; O2})
is a commutative weakly distance-transitive digraph.

Proof. Let 06x; y62g− 1. If @̃(O0; Ox) = @̃(O0; Oy), then⌈ x
2

⌉
=
⌈y

2

⌉
and

⌈
2g− x

2

⌉
=
⌈

2g− y
2

⌉
;

where 
z� denotes the minimal integer not less than z. We conclude Ox= Oy. Suppose
not. Without loss of generality, let x be even and y odd. Thus y= x − 1. So⌈

2g− y
2

⌉
=
⌈

2g− x + 1
2

⌉
=
⌈

2g− x
2

⌉
+ 1;

which is impossible. Hence |�i; j(O0)|61 for all i; j. � is vertex transitive, so it is a
weakly distance-transitive digraph by Proposition 2.1. The commutativity follows from
Proposition 2.2.

De�nition 2.1. Let � be a digraph, and let t be an integer at least 2. �′ is said to be
a t-coclique extension of � if

V�′ = {(u; i) | u∈V� and 06i6t − 1}
and

E�′ = {((u; i); (v; j)) | (u; v)∈E�}:
�′′ is said to be a t-clique extension of � if

V�′′ = {(u; i) | u∈V� and 06i6t − 1}
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and

E�′′ = {((u; i); (v; j)) | (u; v)∈E� or u= v and i �= j}:

Proposition 2.4. Let � be a weakly distance-regular digraph of diameter d and girth
g with intersection numbers ph̃

ĩ; j̃
. Then a t-coclique extension �′ of � is weakly

distance-regular if and only if one of the following holds:

(i) kg; g = 0:
(ii) kg; g =p(g; g)

(g; g); (g; g) + 1 and p(0;0)
ĩ; j̃

=p(g; g)
ĩ; j̃

for all ĩ; j̃ =∈{(0; 0); (g; g)}.

Proof. Let Ai; j be the (i; j)th adjacency matrix of �, and let A′i; j be the (i; j)th adja-
cency matrix of �′. It is easy to check that

A′i; j =



A0;0 ⊗ It if (i; j) = (0; 0);

Ai; j ⊗ Jt if (i; j) =∈{(0; 0); (g; g)};
Ag; g⊗ Jt + A0;0 ⊗ (Jt − It) if (i; j) = (g; g);

where It is the identity matrix of size t and Jt is the all one’s matrix of size t. For
any ĩ =∈{(0; 0); (g; g)},

A′ĩ A
′
g; g = tAĩAg; g⊗ Jt + (t − 1)Aĩ⊗ Jt

can be written as a linear combination of A′s; t (06s; t6max{d; g}) if and only if
kg; g = 0 or kg; g =p(g; g)

(g; g); (g; g)+1: Note that the latter equation is equivalent to the fol-
lowing:

Ag;gAg; g = kg; gA0;0 + (kg; g − 1)Ag;g:

Moreover, if it is the case, then

A′g; gA
′
g; g = (t · kg; g + t − 1)A′0;0 + (t · kg; g + t − 2)A′g; g:

For all ĩ; j̃ =∈{(0; 0); (g; g)}, A′ĩ A′j̃ = tAĩ Aj̃ ⊗ Jt can be written as a linear combination

of A′s; t (06s; t6max{d; g}) if and only if p(0;0)
ĩ; j̃

=p(g; g)
ĩ; j̃

. Hence the desired result
follows.

Corollary 2.5. Let Zn be a cyclic group of order n. Then the following hold:

(1) �= Cay(Z2tg; {O1; O2; 2g+ 1; 2g+ 2; : : : ; 2(t − 1)g+ 1; 2(t − 1)g+ 2}) is a commuta-
tive weakly distance-transitive digraph, where t; g¿2.

(2) �= Cay(Ztg; {O1; g+ 1; : : : ; (t − 1)g+ 1}) is a commutative weakly distance-
transitive digraph, where t; g¿2.

Proof. (1) It is easy to see that � is isomorphic to a t-coclique extension of Cay(Z2g;
{O1; O2}). By Proposition 2.3 and Theorem 2.4, � is a commutative weakly distance-
transitive digraph.
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(2) It is easy to see that � is isomorphic to a t-coclique extension of a directed
cycle of length g. By Propositions 2.3 and 2.4, the desired result follows.

Proposition 2.6. Let � be a weakly distance-regular digraph with intersection num-
bers ph̃

ĩ; j̃
. Then a t-clique extension of � is weakly distance-regular if and only if one

of the following holds:

(i) k1;1 = 0:
(ii) k1;1 =p(1;1)

(1;1); (1;1)+1 and p(0;0)
ĩ; j̃

=p(1;1)
ĩ; j̃

for all ĩ; j̃ =∈{(0; 0); (1; 1)}.

Proof. The proof is similar to that of Proposition 2.4 and will be omitted.

Theorem 2.7. Let �1 = (X; E1); : : : ; �n = (X; En) be distance-regular digraphs of girth
3 and diameter 2 with the same intersection numbers. Let X̃ =X n, i.e., the direct
product of n copies of X. Two vertices x̃= (x1; x2; : : : ; xn); ỹ= (y1; y2; : : : ; yn)∈ X̃ are
adjacent if there exists some j such that

@�j (xj; yj) = 1 and xi =yi for all i �= j:

Then the digraph �̃ de=ned above is a commutative weakly distance-regular digraph.

Proof. Take x̃= (x1; : : : ; xn); ỹ= (y1; : : : ; yn)∈ X̃ with @̃(x̃; ỹ) = h̃. If

|{i | @�i(xi; yi) = 1}|= s and |{j | @�j (xj; yj) = 2}|= t

then h̃= (s+2t; t+2s). For any two vertices x̃ ′ = (x′1; : : : ; x
′
n); ỹ

′ = (y′1; : : : ; y
′
n)∈ X̃ with

@̃(x̃ ′; ỹ ′) = h̃, if

|{i | @�i(x′i ; y′i) = 1}|= s′ and |{j | @�j (x′j ; y′j ) = 2}|= t′

then (s+ 2t; t + 2s) = (s′ + 2t′; t′ + 2s′) and so s= s′ and t= t′. Let Ãi; j be the (i; j)th
adjacency matrix of �̃: It is easy to check that the span of the set {Ãi; j | 06i; j62n}
is closed under multiplication, so �̃ is weakly distance-regular.

Proposition 2.8. For integers n and m with 26n6m, let

�= Cay(Zn×Zm; {(O1; O0); (O0; O1)}):

Then � is weakly distance-regular if and only if n= 2 or n=m= 3. Moreover, if �
is weakly distance-regular, then it is weakly distance-transitive.

Proof. Let � be a weakly distance-regular digraph. Suppose n �= 2: We will prove
n=m= 3: If m �= n, then

p(3; m+n−3)
(2; m−2); (1; n−1)((O0; O0); (O1; O2)) �= 0 and p(3; m+n−3)

(2; m−2); (1; n−1)((O0; O0); (O2; O1)) = 0:
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This is impossible. If m= n¿4, then

p(4;2n−4)
(2; n−2); (2; n−2)((O0; O0); (O2; O2)) �= 0 and p(4;2n−4)

(2; n−2); (2; n−2)((O0; O0); ( O3; O1)) = 0:

This is impossible. Hence, n=m= 3. Conversely, if n=m63; then it is easy to
check that � is weakly distance-transitive. Now we consider the case 2 = n¡m: If
@̃((O0; O0); ( Ox; Oy)) = @̃((O0; O0); ( Ox ′; Oy ′)), then Ox= Ox ′ and Oy= Oy ′. Thus |�i; j(O0)|61 for all i; j.
By Proposition 2.1, � is weakly distance-transitive.

3. Connections to association schemes

In this section, we will discuss the relations between weakly distance-regular digraphs
and association schemes.

De�nition 3.1. Let X be a 7nite set. Let ∅ �=Ri⊆X ×X; i= 0; 1; : : : ; d satisfy the fol-
lowing:

(i) R0 = {(x; x) | x∈X }.
(ii) X ×X =R0 ∪ · · · ∪Rd and Ri ∩Rj = ∅ if i �= j.
(iii) tRi =Ri′ for some i′ ∈{0; 1; : : : ; d}, where tRi = {(x; y) | (y; x)∈Ri}.
(iv) For h; i; j∈{0; 1; : : : ; d} and (x; y)∈Rh,

phi; j = |{z ∈X | (x; z)∈Ri; (z; y)∈Rj}|
depends only on h; i; j and does not depend on the choice of (x; y)∈Rh.

Such a con7guration X= (X; {Ri}06i6d) is called an association scheme of class d
on X . If phi; j =p

h
j; i for all h; i; j∈{0; 1; : : : ; d}, X is called a commutative association

scheme. If tRi =Ri for all i, X is called a symmetric association scheme.
For more information about association schemes we would like to refer readers

to [2].
Let � be a digraph, and let Ri; j = {(x; y)∈V�×V� | @̃(x; y) = (i; j)}. Set I = {(i; j) |

Ri; j �= ∅}. � is a weakly distance-regular digraph if X= (V�; {Ri; j}(i; j)∈I ) is an asso-
ciation scheme.

Theorem 3.1. Let X= (X; {R0;0; R1; r(1;1); : : : ; R1; r(1; t1); : : : ; Rq; r(q;1); : : : ; Rq; r(q; tq)}) be an
association scheme satisfying

tRi; j = {(x; y)∈X ×X | (y; x)∈Ri; j}=Rj; i and R0;0 = {(x; x) | x∈X };
where r(j; i) denotes a positive integer for each i; j. Let Aj; r(j; i) be the adjacency
matrix with respect to Rj; r(j; i) and let A=A1; r(1;1) + · · ·+A1; r(1; t1); R=R1; r(1;1) ∪ · · · ∪
R1; r(1; t1). Then the following are equivalent:

(i) Let �= (X; R) denote a digraph. Then @̃(x; y) = (j; r(j; i)) if and only if (x; y)∈
Rj; r(j; i), i.e., � is weakly distance-regular.
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(ii) For any non-negative integer s6q, there exist numbers n(j; r(j; i); s) such that

As =
s∑
j=0

tj∑
i=1

n(j; r(j; i); s)Aj;r(j; i); (1)

where n(s; r(s; i); s) �= 0 for all 16i6ts.
(iii) For any non-negative integers j; i6q and 16l6tj, let

p̃(j; r(j; l))
i;1 =

∑
16t6ti ;16s6t1

p(j; r(j; l))
(i; r(i; t));(1; r(1; s)):

Then p̃(j; r(j; l))
i;1 = 0 if j − i¿2 and p̃(j; r(j; l))

j−1;1 �= 0.

Proof. (i)⇒ (ii): Suppose (i) holds. Let (x; y)∈Rj; r(j; i). Then

(As)x; y =

{
0 if j¿s;

n(j; r(j; i); s) if j6s:

Thus (1) holds and n(j; r(j; i); j) �= 0.
(ii)⇒ (i): Suppose (ii) holds. Then n(s; r(s; j); s) is the number of paths of

length s connecting x and y with (x; y)∈Rs; r(s; j) for all 16s6q; 16j6ts: We claim
that (x; y)∈⋃tl

i=1Rl; r(l; i) if and only if @(x; y) = l. When l= 0 or 1, the claim is
true. Suppose (x; y)∈⋃tl

i=1 Rl; r(l; i). Then there exists a positive integer p such that
(x; y)∈Rl; r(l;p). n(l; r(l; p); l) �= 0 implies @(x; y)6l. If @(x; y)¡l, then by induction
(x; y) =∈ ⋃tl

i=1Rl; r(l; i), which contradicts our assumption. Thus @(x; y) = l. Conversely,
if @(x; y) = l, then (Al)x;y �= 0. Hence, by (1) there exist l16l and i1 such that

(x; y)∈Rl1 ; r(l1 ; i1):
If l1¡l, by induction @(x; y) = l1¡l, which is impossible. Thus (x; y)∈⋃tl

i=1 Rl; r(l; i),
and so our claim holds. Since (x; y)∈Rl; r(l; j) if and only if (y; x)∈Rr(l; j); l, it is clear
that @̃(x; y) = (l; r(l; j)) if and only if (x; y)∈Rl; r(l; j).

(i)⇒ (iii): Suppose (i) holds. By the triangle inequality, p̃(j; r(j; l))
i;1 = 0 if j − i¿2,

and by the connectivity of �, p̃(j; r(j; l))
j−1;1 �= 0.

(iii)⇒ (i): Suppose (iii) holds. We claim that if (x; y)∈Rj; r(j; i) then
@(x; y) = j. We use induction on j. If j= 0; 1, our claim holds. Now suppose j¿2:
Let Rj; r(j; i)(x) = {y | (x; y)∈Rj; r(j; i)}. Then for y∈Rj; r(j; i)(x), there exist i1 and i2 such
that Rj−1; r(j−1; i1)(x)∩Rr(1; i2);1(y) �= ∅ and so @(x; y)6j. Moreover, for all m6j−2, we
have

tm⋃
l=1

Rm; r(m; l)(x)∩
t1⋃
n=1

Rr(1; n);1(y) = ∅;

which implies @(x; y)¿j. Thus @(x; y) = j. Since (x; y)∈Rj; r(j; i) if and only if
(y; x)∈Rr(j; i); j, (x; y)∈Rj; r(j; i) if and only if @̃(x; y) = (j; r(j; i)).
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As an obvious corollary we have the following result:

Corollary 3.2. Let � be a weakly distance-regular digraph with adjacency matrices
A0;0; A1; r(1;1); : : : ; A1; r(1; t1); : : : ; Aq; r(q;1); : : : ; Aq; r(q; tq) and let A(�) be the Bose–Mesner
algebra of �. Then

d+ 16dimA(�)61 + t1 + · · · + tq: (2)

Moreover, if both equalities hold in (2), then � is distance-regular.

4. Proof of Theorem 1.1

Throughout this section, we assume that � is a commutative weakly distance-regular
digraph of valency 2 and girth g. We 7rstly prove the following result:

Proposition 4.1. If there exists an arc (u; v) with @(v; u) = q − 1¿g, then � is iso-
morphic to one of the following:

(1) Cay(Z2g; {O1; O2}).
(2) Cay(Z2 ×Zq; {(O0; O1); (O1; O0)}).

We need the following lemma to prove the proposition:

Lemma 4.2. Assume the hypothesis in Proposition 4.1. For any x∈V�, there exist
the following two circuits with only one common vertex

(x= x0; x1; : : : ; xg−1) and (x= z0; z1; : : : ; zq−1):

Proof. Let (x= x0; x1; : : : ; xg−1) be a minimal circuit and let (x=y0; y1; : : : ; yq−1) be a
circuit with @̃(y0; y1) = (1; q− 1). If the two circuits have another common vertex yj,
then yj = xg−q+j by @(yj; x) = q− j. Let i be the minimal index such that yi = xg−q+i.
Thus we have @̃(yi; yi+1) = @̃(yi; xg−q+i+1) = (1; g−1). Since k1; g−1 = 1; yi+1 = xg−q+i+1.
By induction, we have yj = xg−q+j for all i6j6q: Since yi ∈P(1; q−1); (1; g−1)(yi−1; yi+1),
there exists y′i ∈P(1; g−1); (1; q−1)(yi−1; yi+1) by the commutativity of �. By induction,
there exists a path (yi−1 =y′i−1; y

′
i ; : : : ; y

′
q−1; x) satisfying y′j ∈P(1; g−1); (1; q−1)(y′j−1;yj+1),

where i6j6q − 1 and yq = x. It is clear that y′j �=yj for all i6j6q − 1. Take
z0 = x; z1 =y1; : : : ; zi−1 =yi−1; zi =y′i ; : : : ; zq−1 =y′q−1, then (x0; x1; : : : ; xq−1) and
(z0; z1; : : : ; zq−1) are the desired circuits.

In the rest of this section, we always assume that all 7rst subscriptions of x are
taken modulo g.

Proof of Proposition 4.1. Let (x0;0; x1;0; : : : ; xg−1;0) be a minimal circuit. By Lemma 4.2,
for any i, we can take a circuit (xi;0; xi;1; : : : ; xi; q−1) with xi;1 �= xi+1;0 and xi; g−1 �= xi−1;0.
Note that @̃(xi;0; xi;1) = @̃(xi; q−1; xi;0) = (1; q− 1). Then xi;0 ∈P(1; g−1); (1; q−1)(xi−1;0; xi;1)
for all i. By the commutativity of �, for any i, there exists x′i∈P(1; q−1); (1; g−1)(xi−1;0; xi;1).
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Since k1; q−1 = 1, we get x′i = xi−1;1. So @̃(xi−1;1; xi;1) = (1; g−1) for all i. Let r= |{xi;1;
xi; q−1 | 06i6g − 1}|: First we consider the case r¡2g. Since k1; q−1 = 1, without
loss of generality, we assume there exist two non-negative integers j¡i at most
g − 1 such that xi;1 = xj; q−1. In this case, (xi;1; xj;0; : : : ; xi;0) is a circuit of length
i − j + 2. Since @̃(xi;0; xi;1) = (1; q − 1), we have i − j¿g − 2: Thus i= g − 1; j= 0,
and so p(1; g−1)

(1; q−1); (1; q−1) = 1. By k1; q−1 = 1 and @̃(xi−1;0; xi−1;1) = (1; q − 1), we have
xi−1;1 ∈P(1; q−1); (1; q−1)(xi−1;0; xi;0) for all i. Hence ��Cay(Z2g; {O1; O2}).

Now assume that r= 2g. Suppose all second subscriptions of x are taken modulo q.
We claim that

@̃(xi; j ; xi; j+1) = (1; q− 1) and @̃(xi−1; j+1; xi; j+1) = (1; g− 1) for all i; j:

We will prove our claim by induction on j. Our claim holds for j= q− 1; 0. Suppose
our claim holds for all integers q − 1; 0; 1; : : : ; j. By the argument of 7rst paragraph,
we know that |{xi; j−1; xi; j+1 | 06i6g− 1}|= 2g: So

@̃(xi; j−1; xi; j+1) = @̃(xi; j ; xi; j+2) = (2; q− 2):

Since xi; j ∈P(1; q−1); (1; q−1)(xi; j−1; xi; j+1), xi; j+1 ∈P(1; q−1); (1; q−1)(xi; j ; xi; j+2) by k1; q−1 = 1;
and so @̃(xi; j+1; xi; j+2) = (1; q−1). Since xi; j+1∈P(1; g−1); (1; q−1)(xi−1; j+1; xi; j+2), by k1; q−1

= 1 and the commutativity of �, xi−1; j+2 ∈P(1; q−1); (1; g−1)(xi−1; j+1; xi; j+2), and so
@̃(xi−1; j+2; xi; j+2) = (1; g − 1). Thus our claim is valid. We claim that all vertices xi; j
with 06i6g−1, 06j6q−1 are distinct. Suppose not. Without loss of generality we
may assume that x0;0 = xi; j with 16i6g− 1 and 26j6q− 1. Since there is a circuit
(x0;0; x1;0; : : : ; xi;0; xi;1; : : : ; xi; j−1) with xi; j = x0;0 of length i + j which includes an arc
(xi;0; xi;1), we have i+j¿q. On the other hand, there is a path (xi;0; xi+1;0; : : : ; xg−1;0; x0;0
= xi; j) of length g− i. Since @̃(xi; h; xi; h+1) = (1; q− 1) for h= 0; 1; j− 1, @(xi;0; xi; j) = j.
Thus g−i¿j or g¿i+j. Since g¡q, this is a contradiction. This proves the claim. Now
it is clear that ��Cay(Zg×Zq; {(O0; O1); (O1; O0)}). Hence, ��Cay(Z2 ×Zq; {(O0; O1); (O1; O0)})
by Proposition 2.8.

Proposition 4.3. If every arc is contained in a minimal circuit, then � is isomorphic
to one of the following:

(1) Cay(Zn; {O1; n− 1}).
(2) Cay(Z2g; {O1; g+ 1}).
(3) Cay(Z2

3 ; {(O0; O1); (O1; O0)}).
If g= 2, ��Cay(Zn; {O1; n− 1}). So we only need to consider the case g¿3: We

need the following lemma to prove the proposition:

Lemma 4.4. Assume the hypothesis in Proposition 4.3. For any x∈V�, there exist
the following two minimal circuits:

(x= x0; x1; : : : ; xg−1) and (x=y0; y1; : : : ; yg−1)

satisfying |{x1; xg−1; y1; yg−1}|= 4:
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Proof. Let (x= x0; x1; : : : ; xg−1) be a minimal circuit, and let @(yg−1; x) = @(x; y1) = 1
with x1 �=y1 and xg−1 �=yg−1. If a path (yg−1; x0; y1) is not contained in any minimal
circuit, then every minimal circuit containing the arc (yg−1; x0) [resp. (x0; y1)] must
contain the arc (x0; x1) [resp. (xg−1; x0)]. So we have

p(1; g−1)
(g−1;1); (2; g−2)(x0; x1) = |{yg−1; xg−1}|= 2

and

p(1; g−1)
(g−1;1); (2; g−2)(x0; y1) = |{xg−1}|= 1:

This is impossible.

Proof of Proposition 4.3. Let (x0;0; x1;0; : : : ; xg−1;0) be a minimal circuit. By Lemma
4.4, we can take a circuit (xi;0; xi;1; : : : ; xi; g−1) such that |{xi−1;0; xi+1;0; xi;1; xi; g−1}|= 4
for each i. xg−1;0 ∈P(g−1;1); (1; g−1)(x0;0; xg−1;1), so P(1; g−1); (g−1;1)(x0;0; xg−1;1) �= ∅ by the
commutativity of �. k1 = 2 implies that @(xg−1;1; x1;0) = 1 or @(xg−1;1; x0;1) = 1. First
we consider the case @(xg−1;1; x1;0) = 1. Then p(2; g−2)

(1; g−1); (1; g−1) = 2 and @(xi;1; xi+2;0) = 1
for all i. It is clear that (xi;0; xi;1; xi+2;0; : : : ; xi−1;0) is a minimal circuit for any i.
Thus @̃(xi−1;0; xi;1) = (2; g− 2), and so @(xi−1;1; xi;1) = 1 for all i. Hence ��Cay(Z2g;
{O1; g+ 1}).

Now assume that @(xg−1;1; x0;1) = 1 and @(xg−1;1; x1;0) �= 1. Suppose all second sub-
scriptions of x are taken modulo g. Then p(2; g−2)

(1; g−1); (1; g−1) = 1 and @(xi;1; xi+2;0) �= 1 for
all i. We claim that

@(xi; j ; xi+1; j) = 1 and xi; j+1 �= xi+1; j for all i; j:

We prove our claim by induction on j. If j= 0, our claim is valid. Now suppose
our claim holds for 0; 1; : : : ; j: Since xi; j ∈P(g−1;1); (1; g−1)(xi; j+1; xi+1; j), there exists
x′i; j ∈P(1; g−1); (g−1;1)(xi; j+1; xi+1; j) by the commutativity of �. Since k1 = 2, we get

x′i; j = xi+1; j+1 or xi+2; j. If x′i; j = xi+2; j, then p(2; g−2)
(1; g−1); (1; g−1) = 2, which is impossible.

So x′i; j = xi+1; j+1 and @(xi; j+1; xi+1; j+1) = 1. If there exists i such that xi; j+2 = xi+1; j+1,
then @̃(xi; j ; xi+1; j+1) = (2; g − 2) and xi+1; j ; xi; j+1 ∈P(1; g−1); (1; g−1)(xi; j ; xi+1; j+1). So
p(2; g−2)

(1; g−1); (1; g−1) = 2, which is impossible. Thus xi; j+2 �= xi+1; j+1. So our claim is valid.
We claim that all vertices xi; j with 06i; j6g − 1 are distinct. Suppose not. With-
out loss of generality we may assume that x0;0 = xi; j with 16i; j6g − 1. Since there
is a circuit (x0;0; x1;0; : : : ; xi;0; xi;1; : : : ; xi; j−1) with xi; j = x0;0 of length i + j, we have
i+ j¿g. On the other hand, there is a path (xi;0; xi+1;0; : : : ; xg−1;0; x0;0 = xi; j) of length
g − i. Hence g − i¿j or g¿i + j. Thus i + j= g. Now there is a circuit of length
g containing xi−1;0 and xi;1, so we have p(2; g−2)

(1; g−1); (1; g−1) = 2, which is a contradic-
tion. This proves the claim. Thus ��Cay(Zg×Zg; {(O0; O1); (O1; O0)}). By Proposition 2.8,
��Cay(Z2

3 ; {(O0; O1); (O1; O0)}).

Combining Propositions 4.1 and 4.3, we complete the proof of Theorem 1.1. We
also note that Theorem 1.1 also holds for a weakly distance-transitive digraph.
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5. Concluding remarks

(1) We do not know any example of non-commutative weakly distance-regular di-
graphs, so we think it is important to 7nd such examples.

(2) In Theorem 2.7, the base graph of �̃ is a Hamming graph. It seems interesting that
when an orientation of a distance-regular graph de7nes a weakly distance-regular
digraph.

(3) Recently, A. Hanaki searched weakly distance-regular digraphs with small number
of vertices using the data of the classi7cation of association schemes of small size
(joint work with I. Miyamoto). He kindly uploaded the data of his search on his
homepage at: URL: http://kissme.shinshu-u.ac.jp/as/data/wdrdg.
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