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Abstract 

In this paper we completely characterise the family of eulerian simple graphs G with 
maximum degree at most 4 which admit a triangle-free eulerian tour, i.e., a sequence v l v2 .-- v,, c l 
such that each vi is a vertex, the pairs vi, vi+ 1, i = 1,2 . . . . .  m are the m distinct edges in G and 
finally, v~+ 3 ~ v~ for all i = 1,2 . . . . .  m, with indices counted modulo m. 

1. Introduction 

In  [1, P r o b l e m  3.3] R o l a n d  H/iggkvis t  f o r m u l a t e d  the fo l lowing p rob lem:  

Let  G be an eulerian graph with minimum degree 6. Show that there exists  a funct ion  

f ( 6 )  such that G admits an eulerian tour U1UZ'"UmU 1 such that every segment 

vivi+ 1 "'" vi+j induces a path or cycle !f  j = 1,2 . . . . . .  f (6 ) .  

A s imple  v a r i an t  of  this p r o b l e m  asks for a cha rac t e r i s a t i on  of the eu le r ian  g raphs  

which  a d m i t  an  t r iangle-f ree  eu le r i an  t o u r  as def ined in the abs t rac t .  In  this pape r  it is 

s h o w n  tha t  an  eu le r i an  g r ap h  of m a x i m u m  degree at mos t  4 admi t s  a t r iangle-f ree  

eu le r i an  t o u r  if it does n o t  c o n t a i n  an y  of a smal l  n u m b e r  of subgraphs .  In  Sect ion  

2 we list all these s u b g r a p h s  a n d  in  Sect ion  3 we p rove  tha t  the list is complete .  The  

m e t h o d  used is a case-by-case  ana lys i s  where  we pick a t r iangle  T in the graph,  then  

look  at its n e i g h b o u r  set a n d  try to re rou te  some  given eu le r i an  t ou r  so as to avoid  

confl ic t  local ly  a r o u n d  T. 

A trail is a sequence  vlv2  ... v,, such tha t  each vi is a vertex a n d  the pairs  v i , r i t  1, 

i = 1,2, . . . ,  m - 1 are m - 1 d i s t inc t  edges in G. To  d e n o t e  a subse t  of a trail  we wri te  

P, i.e., in v~ vzPv3, P is a n o n - d e t e r m i n e d  sub t ra i l  of  the trail .  The  length, l(P), of  a trail  

P is def ined to be the n u m b e r  of  i n t e r io r  vertices in it + 1, i.e., the n u m b e r  of in te r io r  

edges p lus  the two c o n n e c t i n g  edges. A triangle-free trail is def ined in an  o b v i o u s  way. 

If v~Pv2 is a t r i angu la r - f ree  trail ,  vzPvl is the same  trail  t raversed  in the oppos i t e  

d i rec t ion .  It  is of  course  also tr iangle-free.  F o r  s impl ic i ty ' s  sake we do no t  use any  

n o t a t i o n  to ind ica te  tha t  P is t raversed  in the oppos i t e  d i rec t ion .  A g r aph  is split along 
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a tra i l  v l  v2 "'" V m 1, Um when we do the following operat ion.  Fo r  each i = 2 . . . . .  m - 1 
where d(v i )  = 4, vl is split into v'i and v~', v'i taking the edges v i - l v i  and v i v i + l ,  and 
v~' taking the rest of vi's edges. 

The  convent ions  for the figures used in this paper  are the following. When  a figure is 
said to depict a graph,  then it is not  necessarily the whole graph that  is displayed. 
Edges in a figure that  have only one vertex explicitly drawn are mean t  to indicate that  
the edge is connected to a par t  of the graph  without  significance to the argument .  
Trails are depicted with bold lines. Edges printed in dot ted lines m a y  or may  not  exist. 

2. Forbidden subgraphs 

There  exists a number  of graphs  that  makes  it impossible for an eulerian graph 
containing them as subgraphs  to have a triangle-free eulerian tour. In this section we 
list these graphs  and in our  main  theorem we shall show that  this is the complete  list. 

Definition. A subgraph  that  makes  it impossible to find a triangle-free eulerian tour  in 
a simple eulerian graph  G with 6 ~> 2 and A ~< 4 is called a f o r b i d d e n  subgraph.  Let 

be a set containing the graphs  as defined by Fig. l. Fo r  convenience we give them 
the following names: 

(a) 3-cycle C3, also called a triangle, 
(b) jut t ing triangle, 
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(c) double  tr iangle,  

(d) lantern,  

(e) doub le  lantern,  

(f) comple te  g raph  on 5 vemces ,  deno ted  Ks ,  

(g) K5 - e, so named  since it is a K5 lacking one edge. 

Al though  tedious,  it is a rout ine  mat te r  to check that  all the graphs  in . ~  are 

forb idden  subgraphs .  

3. Results and Proofs 

Theorem.  The graphs in J~ are the only ones to obstruct a triangle-free euler tour Jbr 

graphs with maximum degree at most 4. I.e., every simple eulerian graph G, with 6 >~ 2 

and A <~ 4, that does not contain any subgraph belonging to o~, has a triangle-[ree 

eulerian tour. 

If A = 2 then G does not  conta in  any tr iangle since I V(G)I > 3, henceforth we will 

assume that  A = 4. F i rs t  a r emark  which will simplify our  proof.  Let G be a g raph  as in 

the theorem.  Let v ~ G, d(v) = 4. Split  v into 2 vertices :~ and/~, each of degree 2. Split  

in to  cq and  ct2 and  add  an edge between these 2 vertices. D o  the same with [~. Call  the 

resul t ing g raph  G'. If G'  conta ins  a subgraph  that  belongs to ~ then (since the only 

difference between the graphs  G' and G is the vertices ei and  [ti, i = 1,2), this subgraph  

must  conta in  one or  more  of the ~i and  fli. Since these vertices are of degree 2 but  do 

not  be long to any t r iangle  (unlike all vertices of degree 2 in the graphs  in ~ ) ,  this 

canno t  be the case. Hence,  G'  does not  conta in  any subgraphs  be longing  to ,N. 

Proof of Theorem. The p roo f  is by induc t ion  on t + N~, where t is the number  of 

t r iangles  in G and  N4 is the number  of vertices of degree 4 in G. If t + N4 = 1 the 

theorem is t r ivial ly true (the case N4 = 0 is trivial). Assume that  G is a s imple euler ian 

graph  with A = 4 and with t + N4 = # and that  the theorem is true for all graphs  with 

t + N4 < #. Cons ide r  a t r iangle  T on vertices v l ,v2,  v3. Since A = 4 we have 6 cases 

accord ing  to the number  of t r iangles  ad jacent  to T. The cases are descr ibed below and 

depic ted  in Fig. 2. 

I. 1 t r iangle  on each side of T and the three tr iangles have their  top  vertex in 

common ,  i.e. T has its vertices in a 4-clique, 

2. 1 t r iangle  on each side of 7" and these three tr iangles have three different top  

vertices, 

3. one t r iangle  on each of  two sides of T, 

4. two t r iangles  on one side of  T, 

5. one t r iangle  ad jacent  to 7", 

6. no t r iangle  ad jacen t  to 7". 

Since we use induc t ion  to prove  the theorem,  we can assume that  when we invest igate 

each case, G does  not  conta in  any subgraphs  that  app ly  to any preceeding cases. This 
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is because in our  inductive step, we may  pick any triangle we like, and hence we pick 
them in case order, i.e., pick all the triangles that  applies to case 1, then those applying 

to case 2, and so on. This is of importance when case 5 is studied. Before we continue, 

we prove a lemma. 

Lemma.  Assume G has the following properties: 

(i) 3S c V(G) such that all vertices are independent in S and that GI, Gz are two 

subgraphs such that G1 w G2 = G and V(G1)c~ V(G2) = S. 
(ii) For every v ~ S it holds that dal(v ) = da2(v ) = 2. In other words, S separates 

G such that every vertex in S has two edges to each component. 

(iii) G1 and G2 do both have an eulerian tour which is triangle-free with a possible 

exception for  the vertices in S. 

Then G has a triangle-free eulerian tour. 

Proof.  (By induct ion on the size of the minimal set S). If lSI : 1 and v e S, split v into 

~1,c(2 and f l l ,32,  where :q ,~2 take the edges from G1 to v and 31,32 take the edges 
from G2 to v. Add an edge between cq and ~2 and an edge between fll and 32. These 
new graphs do both  have triangle-free eulerian tours which we may  assume are 

P ~ 1 ~ 2  and P231f12. Then PxvP2v is a triangle-free eulerian tour  for G. If ISI/> 2, 
repeat the splitting procedure for one vertex v in S. By induction, the resulting graph 

has a triangle-free eulerian tour  P ~ c(1 ~2 P2 3132 say and then P x vP2 v is a triangle-free 
eulerian tour  for G. This proves the lemma. [] 
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Fig. 3 

Proof of Theorem (continued). Since we use induction over t + N4 in the proof, the 

lemma implies that  if the requirements (i) and (ii) are fulfilled by G then (iii) also is. This 
is because when splitting vertices as in the proof, we reduce N4. Hence, if G contains 

a set S as in the lemma we can conclude that G has a triangle-free eulerian tour. Note  
that  in an eulerian graph, a cutvertex is a special case of the set S. 

We now turn to the task of examining the six different cases. 

Case 1: In case 1, G has a subgraph like that in Fig. 3(a). 
Let v l ,v2 ,v j ,v4  be the vertices shown in the figure and note that they form 

a 4-clique in G. Case 1 has different subcases according to the ne ighborhood  of the 

4-clique. If all 4 of the vertices in the clique are adjacent to a single vertex, then 

G = K5 and if3 of the vertices are adjacent to a single vertex, then K5 - e ~ G. Hence. 
we have only to consider the three subcases when the clique has 2, 1 or 0 pair(s) ot  
vertices with a distinct vertex in common.  

Subcase 1: In the first subcase, we have the situation in Fig. 3(b) where w and y are 

adjacent to two distinct pairs of vertices in the 4-clique. 
Note  that neither w nor  y has degree 2 since otherwise G contains a lantern or 

a double lantern. Const ruct  G' by deleting/)1, u2,u3, u4 and split w into wl and w 2. 
adding an edge between them and doing the same with y (getting Yl and Y2) getting 
the graph in Fig. 4a. The graph G' has no forbidden subgraph and since w and y are 

not cut vertices, it has, by induction, a triangle-free eulerian tour  P1 w l w2 P2 Y~ !'2. This 

induces a triangle-free eulerian tour  in G, namely, P~ wu2u 1 vav3YP2wvl t~3t;2v4Y. See 
Fig. 4(b). 

Subcase 2: In the second subcase, depicted in Fig. 5(a), only one vertex, w say, has 

edges to 2 of  the vertices in the clique, say to vl and v2. Ifd(w) = 2 then G contains the 
lantern, hence this is not  the case. Moreover ,  by the lemma, w is not  a cut vertex. Now 
construct  G' by removing the vertices v~ and v2. Then split w into w~ and w2, each 
vertex taking one edge from w each. Add an edge between Wl and w2. G' has nc, 
forbidden subgraphs and is depicted in Fig. 5(b). By induction, we have a triangle-free 
eulerian tour  which we, without  loss of generality, may assume looks like: 

E'  = P1 v3F4Pzwl  w2, where I(Pi) ~> 2 for each i = 1,2 (since v'3w ~ E(G), v4w 4~ E(G~) 
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Fig. 5 

Using E '  we construct  a triangle-free eulerian tour  in G, P1 v3 v4vt 1)2wP2/)4/)21)3/)1 W. 
See Fig. 5(c). 

Subcase 3: In the third subcase, no pair of  vertices have a vertex in c o m m o n  

(outside the clique) and since G is eulerian it is possible to select two vertices that do 

not  separate the graph. We may assume that v~ and v2 have this property.  Let G' be 
the graph obtained by deleting the edges vl 1)3,1)1/)4,1)2/)3 and v2 v4 as in Fig. 6(b). By 
induct ion we can find a triangle-free eulerian tour  E ' = / ) l V 2 P l v 3 v 4 P z  in G'. Note  
that, since no pair of vertices have a c o m m o n  neighbour  (outside the clique), l(Pi) >~ 3 

for i = 1, 2. By using the eulerian tour  E '  we can construct  

E = U11)2U41)3P1/)21)3UIU4P 2 

which is triangle-free in G. See Fig. 6(c). This proves the theorem in case 1. 
Case 2: In case 2, G has one of the subgraphs depicted in Fig. 7. We have four 

different subcases according to the degree of the vertices v4, v5 and v6. 
(a) d(v , )  = d(vs) = d(v6) = 2, 

(b) d(v4) = d(v5) = 2, d(v6) = 4, 
(c) d(v4) = d(vs) = 4 ,  d ( v 6 )  - -  4, 

(d) d(v4) = d(v5) = d(v6) = 4. 
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Fig. 6 
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Fig. 7 

In subcase (a), G looks like the graph in Fig. 7(a) and has a triangle-free eulerian 

tour  u1u3u6u291u5u3u294. 
In the remaining cases we see that  the lemma can be applied with an appropiate  

selection of v4, vs, v6, forming the set S. 
Case 3: In case 3, we have a subgraph as depicted in Fig. 8(a). We have 3 subcases. 

(1) d ( v 4 ) =  d ( v s ) =  2, 
(2) d(v , )  = d(vs)  = 4, 

(3) d(v4) = 4, d(vs) = 2. 
In subcase 1, G -  {vg,v3,  vs} has a triangle-free eulerian tour  Wll :1V2w2 P and 

WlV193V5Vz91V4V3V2W2 P is a triangle-free eulerian tour  for G. In subcase 2, split 
G along wl 9192w2 and call this graph G'. See Fig. 8b. By the lemma, G' is connected 
and by induction, it has a triangle-free eulerian tour. The same eulerian tour  is 
triangular-free in G unless it contains any of  the sequences v'(v4 W l 9'1 and v'~ 9s w2 9'2. 

Suppose the tour  contains v'~v4w19'~. Then there is a vertex x, such that v394x also is 
in the tour. It is evident that  an interchange between the edges "out  from" 94 do not 
produce any triangles in the eulerian tour. Hence, there exists a triangle-free eulerian 

tour  where 9'~'94x and 9394wlv'~ exist as sequences. By repeating the argument,  if 
necessary, for the sequence v'~vswz9'2, we know that there exists a triangle-free 
eulerian tour  in G' with such features that it is also triangle-free in G. Subcase 3 is 
treated in the same way as subcase 2, with the exception that the graph is instead 

splitted along w l 91 v3 95 v2 w z. 
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Fig. 9 

Case 4: In case 4, exactly one edge in T has 2 adjacent triangles. G then has 
a subgraph as in Fig. 9. 

At least two of the vertices vl, v4,v5 have degree 4. (Or else G has a forbidden 
subgraph.) We can apply the lemma with a suitable selection of  vl, v4, v5 as the set S. 

Case 5: In case 5, only one edge in Tis  adjacent to another  triangle, and G will look 
as in Fig. 10. 

We assume that  none of  w2, w3 is adjacent to none of vl ,v4,  since otherwise we 
would have case 3. Split G along w2vzv3w3 and call the resulting graph G'. By the 
lemma, G' is connected and has by induction a triangle-free eulerian tour. By the 
assumpt ion above this eulerian tour  is also triangle-free in G. 

Case 6: In case 6, G has a subgraph as in Fig. ll(a). We have 2 subcases: 
1. d ( v 3 )  = 2, 
2. d ( v 3 )  = 4. 

However,  subcase 1 is treated in virtually the same way as subcase 2, so we will only 
show this latter case. 



.-z
l 

~<
 

0 
d 

~ 
Q

 
t~

J 

~ 
0 

~ 

l 
%

 
I i 

\ 

~
L

 

c~
 



14 T. Adelgren/Discrete Mathematics 138 (1995) 5 14 

Let the neighbours to vi be wi, yi for i = 1,2, 3 as in the Fig. 11 (a). Construct  a new 

graph G' by deleting the edges v lv2 ,  v2v3 and vlv3.  Then split vx into cq,~2, each 
vertex taking one edge from vl. Repeat the procedure for v2 and v3, letting the new 

vertices be fll,fl2 and 71,72, respectively. See Fig. ll(b). G' does not have any 
forbidden subgraph and since none of vl, v2 or v3 is a cut vertex, G'  has, by induction, 
a triangle-free eulerian tour, which we, without  loss of generality, may  assume is 

o~1WlPlY3~;l~/2w3P2Y2f12fllW2PaYlO~2. See Fig. 12(a). Then 

u 1 w1 e l  Y3 v3 •2 w2 P3 Yl va u 3 w 3 P2 Y2 v2 

is a triangle-flee eulerian tour  in G. See Fig. 12(b). With this the last case is examined 
and the theorem is proved. [] 
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