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Abstract

In this paper we completely characterise the family of eulerian simple graphs G with
maximum degree at most 4 which admit a triangle-free eulerian tour,i.e., a sequence v, v, -~ t,,
such that each v; is a vertex, the pairs v;, v, ,, i = 1,2,...,m are the m distinct edges in G and
finally, v; . ; # v; for all i = 1,2, ..., m, with indices counted modulo m.

1. Introduction

In [1, Problem 3.3] Roland Haggkvist formulated the following problem:

Let G be an eulerian graph with minimum degree 8. Show that there exists a function
f(8) such that G admits an eulerian tour vyv,---v,v, such that every segment
Uity - Uiy j induces a path or cycle if j = 1,2, ..., f(0).

A simple variant of this problem asks for a characterisation of the eulerian graphs
which admit an triangle-free eulerian tour as defined in the abstract. In this paper it is
shown that an eulerian graph of maximum degree at most 4 admits a triangle-free
eulerian tour if it does not contain any of a small number of subgraphs. In Section
2 we list all these subgraphs and in Section 3 we prove that the list is complete. The
method used is a case-by-case analysis where we pick a triangle 7 in the graph, then
look at its neighbour set and try to reroute some given eulerian tour so as to avoid
conflict locally around 7.

A trail is a sequence v, v, - v, such that each ¢; is a vertex and the pairs v;, v, .
i=1,2,...,m—1arem— 1 distinct edges in G. To denote a subset of a trail we write
P.ie., in vy v, Pvs, Pis a non-determined subtrail of the trail. The length, [(P), of a trail
P is defined to be the number of interior vertices in it + 1, i.e., the number of interior
edges plus the two connecting edges. A triangle-free trail is defined in an obvious way.
If vy Pv, is a triangular-free trail, v, Pv, is the same trail traversed in the opposite
direction. It is of course also triangle-free. For simplicity’s sake we do not use any
notation to indicate that P is traversed in the opposite direction. A graph is split alony
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atrail v, vy -+ v,,_ 1,0, when we do the following operation. Foreachi=2,...,m — 1
where d(v;) = 4, v; is split into v; and v}, v} taking the edges v;_,v; and v;0;, ,, and
v taking the rest of v/’s edges.

The conventions for the figures used in this paper are the following. When a figure is
said to depict a graph, then it is not necessarily the whole graph that is displayed.
Edges in a figure that have only one vertex explicitly drawn are meant to indicate that
the edge is connected to a part of the graph without significance to the argument.
Trails are depicted with bold lines. Edges printed in dotted lines may or may not exist.

2. Forbidden subgraphs

There exists a number of graphs that makes it impossible for an eulerian graph
containing them as subgraphs to have a triangle-free eulerian tour. In this section we
list these graphs and in our main theorem we shall show that this is the complete list.

Definition. A subgraph that makes it impossible to find a triangle-free eulerian tour in
a simple eulerian graph G with 6 > 2 and 4 < 4 is called a forbidden subgraph. Let
F be a set containing the graphs as defined by Fig. 1. For convenience we give them
the following names:

(a) 3-cycle Cs, also called a triangle,

(b) jutting triangle,
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(¢) double triangle,

(d) lantern,

(e) double lantern,

(f) complete graph on 5 vertices, denoted Ks,

(g) K5 — e, so named since it is a K5 lacking one edge.

Although tedious, it is a routine matter to check that all the graphs in % are
forbidden subgraphs.

3. Results and Proofs

Theorem. The graphs in F are the only ones to obstruct a triangle-free euler tour for
graphs with maximum degree at most 4. l.e., every simple eulerian graph G, with 6 > 2
and A < 4, that does not contain any subgraph belonging to %, has a triangle-free
eulerian tour.

If A =2 then G does not contain any triangle since | V(G)| > 3, henceforth we will
assume that 4 = 4. First a remark which will simplify our proof. Let G be a graph as in
the theorem. Let v € G, d(v) = 4. Split v into 2 vertices % and f3, each of degree 2. Split
ainto o, and a, and add an edge between these 2 vertices. Do the same with . Call the
resulting graph G'. If G’ contains a subgraph that belongs to # then (since the only
difference between the graphs G’ and G is the vertices «; and f;, i = 1,2), this subgraph
must contain one or more of the «; and f;. Since these vertices are of degree 2 but do
not belong to any triangle (unlike all vertices of degree 2 in the graphs in %), this
cannot be the case. Hence, G’ does not contain any subgraphs belonging to .%.

Proof of Theorem. The proof is by induction on t + N,, where ¢ is the number of
triangles in G and N, is the number of vertices of degree 4 in G. If t + Ny =1 the
theorem is trivially true (the case N, = 0 is trivial). Assume that G is a simple eulerian
graph with A = 4 and with ¢t + N, = p and that the theorem is true for all graphs with
t + N, < u. Consider a triangle T on vertices vy, v,,v;3. Since 4 = 4 we have 6 cases
according to the number of triangles adjacent to T. The cases are described below and
depicted in Fig. 2.

1. 1 triangle on each side of 7 and the three triangles have their top vertex in
common, i.e. T has its vertices in a 4-clique,

2. 1 triangle on each side of T and these three triangles have three different top
vertices,

3. one triangle on each of two sides of 7,

4. two triangles on one side of 7,

5. one triangle adjacent to 7,

6. no triangle adjacent to 7.
Since we use induction to prove the theorem, we can assume that when we investigate
each case, G does not contain any subgraphs that apply to any preceeding cases. This
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is because in our inductive step, we may pick any triangle we like, and hence we pick
them in case order, i.e., pick all the triangles that applies to case 1, then those applying
to case 2, and so on. This is of importance when case 5 is studied. Before we continue,
we prove a lemma.

Lemma. Assume G has the following properties:
(1) 1S = V(G) such that all vertices are independent in S and that G|, G, are two

subgraphs such that G, U G, = G and V(G,)n V(G,) = S.

(ii) For every veS it holds that dg,(v) = dg,(v) = 2. In other words, S separates
G such that every vertex in S has two edges to each component.

(iti) G, and G, do both have an eulerian tour which is triangle-free with a possible
exception for the vertices in S.

Then G has a triangle-free eulerian tour.

Proof. (By induction on the size of the minimal set ). If |[S| = 1 and v € S, split v into
oy, and B, B,, where ay,x, take the edges from G, to v and §,, 8, take the edges
from G, to v. Add an edge between «; and a, and an edge between f; and f,. These
new graphs do both have triangle-free eulerian tours which we may assume are
P,o,0, and P, B, f,. Then P, vP,v is a triangle-free eulerian tour for G. If | S| > 2,
repeat the splitting procedure for one vertex v in S. By induction, the resulting graph
has a triangle-free eulerian tour P« a, P, 8, B, say and then P, vP,v is a triangle-free
eulerian tour for G. This proves the lemma. [
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Proof of Theorem (continued). Since we use induction over t + N, in the proof, the
lemma implies that if the requirements (i) and (1) are fulfilled by G then (iii) also is. This
is because when splitting vertices as in the proof, we reduce N,. Hence, if G contains
a set S as in the lemma we can conclude that G has a triangle-free eulerian tour. Note
that in an eulerian graph, a cutvertex is a special case of the set S.

We now turn to the task of examining the six different cases.

Case 1: In case 1, G has a subgraph like that in Fig. 3(a).

Let vy,v,,035,04 be the vertices shown in the figure and note that they form
a 4-clique in G. Case 1 has different subcases according to the neighborhood of the
4-clique. If all 4 of the vertices in the clique are adjacent to a single vertex, then
G = K and if 3 of the vertices are adjacent to a single vertex, then K5 — ¢ < G. Hence.
we have only to consider the three subcases when the clique has 2, 1 or 0 pair(s) of
vertices with a distinct vertex in common.

Subcase 1: In the first subcase, we have the situation in Fig. 3(b) where w and y are

adjacent to two distinct pairs of vertices in the 4-clique.
Note that neither w nor y has degree 2 since otherwise G contains a lantern or
a double lantern. Construct G’ by deleting vy, v,,v3,v4 and split w into w, and w,.
adding an edge between them and doing the same with y (getting y, and v,) getting
the graph in Fig. 4a. The graph G’ has no forbidden subgraph and since w and y are
not cut vertices, it has, by induction, a triangle-free eulerian tour Py w;w, P, y, v,. This
induces a triangle-free eulerian tour in G, namely, P, wt, v v 03y Pywe 030,04 v, See
Fig. 4(b).

Subcase 2: In the second subcase, depicted in Fig. 5(a), only one vertex, w say, has
edges to 2 of the vertices in the clique, say to v; and v,. If d(w) = 2 then G contains the
lantern, hence this is not the case. Moreover, by the lemma, w is not a cut vertex. Now
construct G’ by removing the vertices vy and v,. Then split w into w; and w,, each
vertex taking one edge from w each. Add an edge between w, and w,. G’ has nc
forbidden subgraphs and is depicted in Fig. 5(b). By induction, we have a triangle-frec
eulerian tour which we, without loss of generality, may assume looks like
E' = Pivyva Pawyw,, where [(P;) = 2 foreach i = 1,2 (since vaw ¢ E(G), vqaw ¢ E(G)).
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Using E’ we construct a triangle-free eulerian tour in G, P 030,010, WP,0405050, W.
See Fig. 5(c).

Subcase 3: In the third subcase, no pair of vertices have a vertex in common
(outside the clique) and since G is eulerian it is possible to select two vertices that do
not separate the graph. We may assume that v, and v, have this property. Let G’ be
the graph obtained by deleting the edges v, vs,v,v4, 0,05 and v, v, as in Fig. 6(b). By
induction we can find a triangle-free eulerian tour E’ = v,v, Pyv3v, P, in G'. Note
that, since no pair of vertices have a common neighbour (outside the clique), [(P;) = 3
for i = 1,2. By using the eulerian tour E’ we can construct

E = UIUZU4U3P1U21)3U1 U4P2

which is triangle-free in G. See Fig. 6(c). This proves the theorem in case 1.

Case 2: In case 2, G has one of the subgraphs depicted in Fig. 7. We have four
different subcases according to the degree of the vertices v,, v5 and ve.

(@) d(vs) = d(vs) = d(ve) = 2,

(b) d(vs) = d(vs) = 2,d(ve) = 4,

(c) d(vs) = d(vs) = 4,d(vs) = 4,

(d) d(vs) = d(vs) = d(ve) = 4.
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In subcase (a), G looks like the graph in Fig. 7(a) and has a triangle-free eulerian
tOUr v U3V U503V,

In the remaining cases we see that the lemma can be applied with an appropiate
selection of v,,vs,ve, forming the set S.

Case 3: In case 3, we have a subgraph as depicted in Fig. 8(a). We have 3 subcases.

(1) d(vy) = d(vs) = 2,

(2) d(vy) = d(vs) = 4,

(3) d(vy) =4, d(vs) = 2.

In subcase 1, G — {v,4,v3,0s} has a triangle-free eulerian tour w,v,z,w, P and
WD D3UsUa0 04030, W, P is a triangle-free eulerian tour for G. In subcase 2, split
G along w,v,v,w, and call this graph G'. See Fig. 8b. By the lemma, G’ is connected
and by induction, it has a triangle-free eulerian tour. The same eulerian tour 1s
triangular-free in G unless it contains any of the sequences v{v,w, v and vivswyv5h.
Suppose the tour contains vv,w, v}. Then there is a vertex x, such that v3v,x also 1s
in the tour. It is evident that an interchange between the edges “out from” v, do not
produce any triangles in the eulerian tour. Hence, there exists a triangle-free eulerian
tour where vjv,x and vsv,w, v exist as sequences. By repeating the argument, if
necessary, for the sequence vyvsw,v5, we know that there exists a triangle-free
eulerian tour in G’ with such features that it is also triangle-free in G. Subcase 3 is
treated in the same way as subcase 2, with the exception that the graph is instead
splitted along wy v v3v50,w,.
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Case 4. In case 4, exactly one edge in 7 has 2 adjacent triangles. G then has
a subgraph as in Fig. 9.

At least two of the vertices vy,v4,vs have degree 4. (Or else G has a forbidden
subgraph.) We can apply the lemma with a suitable selection of v,,v,,v5 as the set S.

Case 5: In case 5, only one edge in T'is adjacent to another triangle, and G wilt look
as in Fig. 10. '

We assume that none of w,, w; is adjacent to none of v,,v,, since otherwise we
would have case 3. Split G along w,v,v3w; and call the resulting graph G'. By the
lemma, G’ is connected and has by induction a triangle-free eulerian tour. By the
assumption above this eulerian tour is also triangle-free in G.

Case 6: In case 6, G has a subgraph as in Fig. 11(a). We have 2 subcases:

1. d(v3) =2,

2. d(v3) = 4.

However, subcase 1 is treated in virtually the same way as subcase 2, so we will only
show this latter case.
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Let the neighbours to v; be w;, y; for i = 1,2, 3 as in the Fig. 11(a). Construct a new
graph G’ by deleting the edges v,v,, v,v; and v vy. Then split v, into «,,a;, each
vertex taking one edge from v,. Repeat the procedure for v, and v, letting the new
vertices be B;,f8, and 7y,,y,, respectively. See Fig. 11(b). G’ does not have any
forbidden subgraph and since none of v,, v, or v; is a cut vertex, G’ has, by induction,
a triangle-free eulerian tour, which we, without loss of generality, may assume is
w1 Pyysyi72wasPay, B2 f1wa Psyya,. See Fig. 12(a). Then

VWi P1ysv3v,wa P3yv103w3 Poysv,

is a triangle-free eulerian tour in G. See Fig. 12(b). With this the last case is examined
and the theorem is proved. [
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