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Abstract

We investigate the typechecking problem for XML queries: statically verifying that every answer to a
query conforms to a given output DTD, for inputs satisfying a given input DTD. This problem had been
studied by a subset of the authors in a simplified framework that captured the structure of XML documents
but ignored data values. We revisit here the typechecking problem in the more realistic case when data
values are present in documents and tested by queries. In this extended framework, typechecking quickly
becomes undecidable. However, it remains decidable for large classes of queries and DTDs of practical
interest. The main contribution of the present paper is to trace a fairly tight boundary of decidability for
typechecking with data values. The complexity of typechecking in the decidable cases is also considered.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Databases play a crucial role in new Internet applications ranging from electronic commerce to
Web site management to digital government. Such applications have redefined the technological
boundaries of the area. The emergence of the Extended Markup Language (XML) as the likely
standard for representing and exchanging data on the Web has confirmed the central role of
semistructured data but has also redefined some of the ground rules. Perhaps the most important
is that XML marks the “return of the schema” (albeit loose and flexible) in semistructured data, in
the form of its Document Type Definitions (DTDs), or XML Schemas, which constrain valid
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XML documents. The benefits of schemas are numerous. Some are analogous to those derived
from schema information in relational query processing. Perhaps most importantly to the context
of the Web, schemas can be used to validate data exchange. In a typical scenario, a user
community would agree on a common schema and on producing only XML documents which are
valid with respect to the specified schema. This raises the issue of (static) typechecking: verifying at
compile time that every XML document which is the result of a specified query applied to a valid
input document, satisfies the output schema.

The typechecking problem takes as input a query and two schemes (or types), one for the input
XML documents and one for the output XML documents generated by the query. The goal is to
verify whether all the XML documents generated by the query, when applied to documents that
conforms to the input type, conform to the output type. In practice, the typechecker is a program
module that analyses the query and either accepts or rejects it. One approach to typechecking is
type inference, a technique derived from functional programming languages and first adapted to
XML by XDuce [15,16]. Murata also addresses the type inference problem for transformations
expressed with certain tree automata [21]. Given program (and possibly an input type), the type
inference system constructs a most general output type for that program in a bottom up fashion.
Typechecking can then be performed by checking that the inferred type is a subset of the given
output type. This approach is quite appealing in practice because typechecking is easy to
implement and is extendible to a large class of query languages; for example XQuery uses this
approach [11].

However, we showed in a previous paper [19] that any type inference system is incomplete, i.e. it
cannot compute the most general output type and, as a consequence, the resulting typechecking
algorithm may reject some queries that are correct. In practice this is a serious limitation for XML
typecheckers, forcing users to turn the typechecker off (when this is an option), or to rewrite the
query in non-obvious ways, in an attempt to overcome the typecheckers limitations. The second
approach to typechecking, which we advocated in [19], is to design specific techniques that are
complete for a given query language. We considered a particular class of tree transformations that
can be expressed by so-called k-pebble transducer, which we showed to be powerful enough to
subsume the tree manipulation core of practical XML query languages, including recursive
traversals like in XSLT [7], and described a method for typechecking all transformations in this
class. The technique, however, is specific only to the particular language considered, i.e. the class
of transformations expressed by k-pebble transducers, and does not extend in obvious ways to
other languages. The main limitation of k-pebble transducers is that they do not allow joins
between data values, which is a feature found in most query languages. We showed in [19] that
type checking becomes undecidable if k-pebble transducers are extended with joins between data
values. However, this negative result is not worrisome in itself, because class of transformations
defined by k-pebble transducers with joins is more powerful than what is needed in practice. Thus,
the results in [19] leave unexplored a large class of queries of significant practical interest: queries
that can express joins by comparing data values, but do less powerful tree restructurings than k-
pebble transducers. This class is precisely where practical declarative query languages lie (XML-
QL [9], XQuery [4]) and deserves a thorough investigation.

The present paper investigates typechecking of queries with comparisons of data values. We
focus on declarative query languages in the style of XML-QL and XQuery and various fragments
thereof, with path expressions containing regular expressions, but without recursive functions,
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and on types consisting of various extensions and restrictions of DTDs. Our findings are mostly
negative: typechecking is undecidable for most practical purposes, but we also find a number of
cases where typechecking is decidable. The main contribution is to trace the boundary of
decidability of the typechecking problem in the presence of data values, for various combinations
of query languages and types. On the decidability side, we show that typechecking is decidable for
queries with non-recursive path expressions, arbitrary input DTD, and output DTD specifying
conditions on the number of children of nodes with a given label. We are able to extend this to
DTDs using star-free regular expressions, and then full regular expressions, by increasingly
restricting the query language. We also establish lower and upper complexity bounds for our
typechecking algorithms. The upper bounds range from PSPACE to non-elementary, but it is open
if these are tight. The lower bounds range from CO-NP to PSPACE. On the undecidability side, we
show that typechecking becomes undecidable as soon as the main decidable cases are extended
even slightly. We mainly consider extensions with recursive path expressions in queries, or with
type specialization in DTDs (also known as decoupled tags). This traces a fairly tight boundary
for the decidability of typechecking with data values.

Related work. Typechecking XML transformations is an important research problem that has
been quite intensively investigated lately. In our prior work [19] we showed that typechecking is
decidable for a certain class of transformations. That class is incomparable with the class of
transformations discussed here, since it only applies to trees without data values, but on such trees
they are more powerful than the XM L-QL-style transformations we consider here. Type inference
for a more restricted class of XML transformations is considered in [25]. The approach taken
there is to extend the types from regular path expressions to context-free grammars to be able to
express certain inferred types.

Typechecking XML views of relational databases is considered in [1]. Although the basic
framework is quite different from the present paper, this problem is related to the one investigated
here. Indeed, some upper bound results from the present papers transfer to [1] and some lower
bound results from [1] transfer to the present paper. The relationship between the two papers is
discussed in more detail in Section 6.

The type inference approach to typechecking XML transformations has first been introduced
by XDuce [15,16]. XDuce is a general-purpose functional language in the style of ML [17], whose
types are essentially DTDs with specialization. Recursive functions can be defined over XML data
by pattern matching against regular expressions. XDuce performs static typechecking for these
functions, verifying that the output of a function will always be of the claimed output type.
However, as we showed in [19], the typechecking algorithm is only sound, not complete: one can
write in XDuce a function that always returns results of the required output type, but that the
typechecker rejects. While this is expected in a general-purpose language that can express non-
terminating functions, in the case of XML the typechecker fails even on simple functions that are
expressible in, say, join-free XML-QL, and for which we know already that typechecking is
decidable [19]. The goal in XDuce however differs from ours: XDuce focuses on making the
typechecker practical, both for the application writer and for the language implementer, while our
work is meant to study the theoretical limits of typechecking.

Yet another approach to typechecking is taken by YAT [6,8]. This system for semistructured
data has an original type system, based on unordered types. YATL (the query language in YAT,
combining datalog with Skolem functions) admits type inference.
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Type inference for the variables occurring in a query has been considered in [18]. We are given a
declarative query and are asked to find all possible types of the variable assignments: the query’s
output type is not considered in this problem. This is a different and more limited problem than
XDuce’s type inference. The analysis in [18] shows that the complexity of this problem ranges
from PTIME to NP-complete for various combinations of query languages and output types.

XML types are usually abstracted as regular tree languages: in both XML type formalisms used
in practice, DTDs and XML-Schema a type is a regular tree language, but none of these
formalisms can express all regular tree languages. Regular tree languages have been traditionally
considered for ranked trees [28]. Several techniques for extending them to unranked trees have
been proposed in the literature: by using unranked automata [2] as specialized DTDs [25] by
encoding unranked trees as binary trees [19] and with hedge automata [22]. These formalisms turn
out to be equivalent, i.e. they all define the same class of unranked regular tree languages. In this
paper we use specialized DTDs [25].

Organization. The paper is organized as follows. The first section develops the basic framework,
including our abstractions of XML documents and DTDs, and our query language formalism.
Sections 3 and 4 present the decidability and complexity results, respectively, and Section 5 the
undecidability results. Section 6 discusses technical connections between [1] and the present paper.
Finally, the paper ends with brief conclusions.

2. Basic framework

We introduce here the basic formalism used throughout the paper, including our abstractions of
XML documents, DTDs, and queries.

Data trees. Data trees are our abstraction of XML documents. They capture the nesting
structure of XML elements, their tags, and data values associated with them. We fix an infinite set
of data values denoted by &. A data tree over finite alphabet X is a triple T = (¢, label, val )
where ¢ is a finite ordered tree, label is a mapping from the nodes of # to 2, and val is a mapping
from the nodes of 7 to 2. Given a tree T, we denote its set of nodes by nodes(T') and its root by
root(T). Since the tree is ordered, we can define a unique depth-first traversal on its nodes, and
denote with < the resulting total order on nodes(T); in particular, if x is an ancestor of y then
x<y. We refer to elements in 2 assigned by label as tags of T and to elements in & assigned by val
as data values of T. Note that we do not restrict the number of children of any given node, so data
trees are unranked. When modeling XML trees only leaf nodes make sense to carry data values,
and we will simply ignore all the other values. We denote the set of data trees over 2 by 7 5 5. The
set of finite labeled ordered trees over X (without data values) is denoted by 7 5. For each
T €T 54, we denote with s(T) € 7 5 its structure, i.e. the tree obtained by dropping all data value
labels. We will often write 7 instead of s(7") when no confusion arises. We sometimes denote a
tree with root 7 and sequence of subtrees 77, ..., T, by (T4, ..., T,).

Types and DTDs. As usual, we define XML types in terms of the tree structure alone, and
ignore data values: an XML type, 7, is a set of trees 7 =7 5. Each type .7 also defines a set of
trees with data values, namely s~'(7) = {T | s(T)e .7}, and we will often write .7 instead of
s~1(T) when no confusion arises. We discuss in the sequel various specification methods for XML
types that we consider in this paper.
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The basic specification method is (an abstraction of ) DTDs. A DTD consists of an extended
context-free grammar over alphabet X (we make no distinction between terminal and non-
terminal symbols). In an extended CFG, the right-hand sides of productions are regular
expressions over the terminals and non-terminals. A data tree <¢,label,valy over X satisfies a
DTD D if the tree {t,label ) is a derivation tree of the grammar. For example, the tree

NS
|

d

is valid with respect to the DTD: a—b*.c.e; b—eg; c—>d*; d—e; e—e.

The set of data trees satisfying a DTD t is denoted by inst(t). Strictly speaking, this is a set of
trees without data values (i.e. a subset of .7 5) but, as we discussed, we can view it as a set of trees
with data values (i.e. a subset of I 5 ).

Usual DTDs use regular languages to describe the allowed sequences of children of a node.
However, weaker specification mechanisms are sufficient in many applications. We consider
throughout the paper several such alternative mechanisms, each yielding a restricted kind of
DTD. To understand the rationale behind the restrictions, it is useful to consider a logic-based
point of view. First, note that strings over alphabet X can be viewed as logical structures over the
vocabulary { <, (0,),.s} where < is a binary relation and every O, is a unary relation. A string
w = aj...ay, is represented by the logical structure ({1, ...,n}; <,(0;),.5) Where < is the natural
order on {1, ...,n}, and for each i,i€ O, iff a; = . It is well-known that regular languages are
exactly those definable by Monadic Second-Order (MSO) logic on the logical vocabulary of
strings [3,10]. MSO is first-order logic augmented with quantification over sets. However, this is
much more powerful than needed by most DTDs. In many cases, the required properties of valid
strings can be expressed simply in First-Order logic (FO). This corresponds to a well-known
subset of the regular languages, called star-free [28]. There is a language-theoretic characterization
of star-free languages: they are precisely described by the star-free regular expressions, which are
built from single symbols, (), and ¢ using concatenation, union, and complement. We call DTDs
using only star-free regular expressions star-free DTDs, and we refer to unrestricted DTDs as
regular DTDs.

We will consider an even simpler class of DTDs, which specify cardinality constraints on the
tags of children of a node, but does not restrict their order. Such DTDs are useful either when
order is irrelevant, or when the order of tags in the output is hard-wired by the syntax of the query
and so can be factored out. We use a logic called SL, inspired by [23]. The syntax of the language
is as follows. For every ae X and natural number i, ¢~ and a®' are atomic SL formulas. Every
atomic formula is a formula, and the negation, conjunction, and disjunction of formulas are also
formulas. For conciseness, we denote by ¢ the formula A,.za™". A word w over X satisfies an
atomic formula ¢~ if it has exactly i occurrences of a, and similarly for ¢>’. Satisfaction of
Boolean combination of atomic formulas is defined in the obvious way. As an example, consider
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the SL formula
1

>1 >
co-producer”’ — producer” .

This expresses the constraint that a co-producer can only occur when a producer occurs. One can
check that languages expressed in SL correspond precisely to properties of structures over the
vocabulary { <, (O,),.s} that can be expressed in FO without using the order relation, <. Thus,
SL forms a natural subclass of star-free regular expressions. We refer to DTDs using the language
SL as unordered DTDs.

We have so far defined DTDs and several restrictions. We next consider an orthogonal
extension of basic DTDs, also present in more recent DTD proposals such as XML-Schema. This
is motivated by a limitation of basic DTDs: their definition of the type of a given tag depends only
on the tag itself and not on the context in which it occurs. For example, this means that the
singleton {7'} where T is the tree a(b(c), b(d)) cannot be described by a DTD, because the “type”
of the first b differs from that of the second b. Of course, T has a DTD (in fact, several), but none
defines precisely the set {7}. This naturally leads to an extension of DTDs with specialization
(also called decoupled types) which, intuitively, allows defining the type of a tag by several “‘cases”
depending on the context. Formally, we have:

Definition 2.1. A specialized DTD over X is a tuple t = (2,2, 7/, ') where

e X and 2’ are finite alphabets;
e 7/ isa DTD over 2'; and
® 4 is a mapping from 2’ to X.

A tree T over X satisfies a specialized DTD =, if T € u(inst(7")).

Intuitively, 2" provides for some a’s in X a set of specializations of a, namely those ¢’ €2’ for
which u(a’) = a. We also denote by u the homomorphism induced on strings and trees by p. It has
been shown [2,25] that specialized DTDs are precisely equivalent to regular tree automata over
unranked trees defined in [2], which in turn are equivalent to hedge automata [22]. This is more
evidence that specialized DTDs (and the other formalisms) are a robust and natural specification
mechanism. We will consider specialization in conjunction with regular DTDs, star-free DTDs,
and unordered DTDs.

The query language QL. A query in the language QL defines a function 7 5 4 — .7 5. That is, the
function takes as input a tree with data values, since we want to allow this function to compare
different data values for equality, and returns a tree without data values, since our discussion is
restricted to studying the type of the output tree. To make such a formalism practical, one needs
to extend it to include data values in the output tree: this is orthogonal to our discussion on
typechecking and we do not consider such an extension here.

A query Q in QL consists of a tree template in which each node is labeled with a tag and a
formula: Q€7 749« ¢. A tag is either a symbol in X or a variable from a fixed a set of variables,
Var: that is, Tag = X Var. First, we define a set of formulas, .. Then we define QL formally.

Formulas in . will be interpreted over the input tree to the query, T€.7 5y 4. There are two
kinds of atomic formulas: path expressions and comparisons. A path expression is of the form
Yy=X R Y, where X,YeVar and R is a regular expression over 2. Such expressions are
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interpreted as follows:  is true in T if there exists a path from node X to node Y whose sequence
of labels (excluding the first node and including the last node) on that path belongs to R. A
comparison formula is of the form = X op V where X e Var, ope{=,#}, and VeVaruZ.
Comparison formulas are interpreted as follows:  is true in T if X’s data value is equal (not
equal) to V’s data value. Further, formulas in % are conjunctive formulas over atomic formulas.
More precisely, ¢ € & is an expression of the form

@ =3Y1.. 3y A AY,,). (1)

The variables Y1, ..., Y are called existential, or bound variables. All other variables are called
free variables. We denote the set of free variables with free(¢). As usual, existential variables
correspond to projections, and we say that a formula ¢ is projection-free when it has no existential
variables. When we consider several formulas ¢, ¢,, ..., we always assume that they have disjoint
sets of existential variables (otherwise we rename these variables).

We often write a formula as a datalog rule, by dropping the existential quantifiers and instead
listing the free variables in the rule’s head. That is, ¢ in (1) can be written as

P(Xy, o X)) s =y, o, )

where P is some identifier, and free(¢) = {X), ..., X, }.
We can now formally define the language QOL:

Definition 2.2. A query Qin QL is a tree Q€ .7 1,4« ¢ such that the following conditions hold. We
denote with fag(v) and ¢, the tag and the formula associated to a node v, respectively:

e For any two nodes v, if v is an ancestor of v’ then free(¢p,) < free(¢p,).
o If r is the root node, then ¢, = true and free(¢,) = 0.
o If tag(v) e Var then tag(v) € free(¢,,).

A query is called projection-free if all its formulas are projection-free.

Example 2.3. Fig. 1 illustrates a query in QL. Here Q is a tree where each node is labeled with a
rule label(X) <y, ..., . Here, labele Tag and v, ..., s, is datalog rule with free variables X.
We refer to the nodes with labels root, title; actor, V', AllensReviews, and reviews as vy, vy, ..., Us,
respectively. Where the datalog rule is missing it is assumed to be true. All path expressions
occurring in datalog rules are very simple and consist of a single tag (e.g. movie, director, etc.),

root()

title(Xy) «— Xo movie X, X; title X, X director X3, X3 = “ W. Allen”

— ™~

actor(Xa,U) «— X, actor U AllensReviews(X3)

V(X,U, V)« U_V reviews(Xs,Ys2) « Y title X5, Y7 review Y,
Fig. 1. The Woody Allen query.
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with the exception of _ which is the wildcard (a convenient abbreviation meaning any tag). This
query is not projection-free, since several formulas have existential variables.

Next, we define next the query’s semantics, for which we first need some notation. Let T be
some input tree in 7 5 4. If V<= Var is a set of variables, then a }-substitution (or V-binding)
is a mapping 0:V —>nodes(T). We fix a distinguished variable Xye Var which we always
interpret as the root, 6(Xy) = root(T). Recall that nodes(T) is totally ordered by a depth-first
traversal. We extend this order to a lexicographic order on V-substitutions (for this we fix a total
order on Var). If V'2V and ¢ is a V’'-substitution then we say that 0’ extends 6 if 6(X) = 0'(X)
for all X e V. Finally, if v is a node in some query Q€ QL, and root(Q) = vy, U1, ..., Uy—1,Uy = U 18
the path from the root to v, then we denote by &, = ¢, Ap, A--- A, , the conjunction of all
formulas labeling v’s ancestors, including v. Clearly, free(¢,) = free(®,). Now we can define Q’s
semantics:

Definition 2.4. Given a query Qe QL and a tree T€.J 5 4, the output Q(7T) is a tree T'e T 5
defined as follows:

® nodes(T') consists of all pairs (v,0) such that venodes(Q), 0:free(¢,)—>nodes(T), and
TE®,0];

® nodes(T') are ordered by the relation (v,0)<(v/,0') if v<tv’ or v ="' and 0<0'. Here v<v/
denotes the node ordering in Q, while <@’ is the lexicographic order discussed above;

o edges(T') = {((v,0), (V',0)) | (v,v) eedges(Q), 0 extends 0}; and,

o if tag(v) e X, then label(v,0) = tag(v); if tag(v) € Var, then label(v,0) = label(0(v)).

Example 2.5. Continuing Example 2.3, assume that the input tree, 7', is an XML document
holding information about movies (titles, directors, actors, and possibly reviews), described by the
(partial) DTD:

root— movie*; movie — title.director.review™;
title— actor™; actor —name.X™;
director —¢; review —¢.
The query in Fig. 1 collects W. Alien’s movie titles, their actors (grouped under title), all
available information about each actor (grouped under the actor with the same tags as
in the input), and their reviews, if any. The output tree has a single root node, labeled root,

with several children labeled title: there will be one such child for every value X, satisfying the
formula:

&, (X2) : —Xo movie Xy, X, title X, X\ director X3, X3 = “W.Allen”.
Intuitively there is one fitle in the output for each movie directed by “W. Allen”. Each corresponds

to a unique value of X, and has several actor children, one for each binding of U satisfying the
formula:

D, (X5, U) : =&, (X2), Xz actor U.

In addition each title node has exactly one child labeled AllensReviews, because ®,, = ®,,.
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For each actor node there will be a number of children, one for each binding of V' satisfying the
formula:

(pvs(XL U, V):=2,(X3),U_V.

The tag of that node will be the same as Vs tag. Recall that _ denotes here the regular expression
which matches any tag, i.e. V' is simply bound to all U’s children, in effect copying all actors’
children from the input tree to the output tree.

Finally, nodes of type AllensReviews will have several children labeled reviews, one for each
binding of Y> satisfying the formula:

(pv5(X27 Yz) : —(pv4(X2), Y, title X, Y1 review Y.

The intention here is for Y5 to collect all reviews of X>’s parent. We already bound X to X3’s
parent in the formula ¢, , but the variable X is not free making it inaccessible for ¢, . Hence we
use a new variable Y| to be bound to X>’s parent. Since we interpret such queries only over trees,
Y will be bound to the same node as Xj.

QL can express a large subset of the queries expressible in XML-QL [9] and XQuery [4],
although the latter have block structure while QL does not. For example the query in Example 2.5
can be expressed equivalently in XQuery [4] as:

{root)
{for $X2 in /movie/title[director = ¢ ‘W.Allen’’|
return{title)
{for $U in $X2/actor
return{actor )
{for $V in $U/x
return{element{$V}{}}
}

{/actor)
¥

{AllensReviews )
{for $Y2 in $X2/../review
return{reviews/ )
}

{ /AllensReviews )
{/title)
}
{/root)

Notice how the block structure in XQuery can be expressed in QL by a judicious use of free
variables. QL can express that way a rather large fragment of XQuery.
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Remark. As already mentioned, our definition does not address how data values are to be
included in the output tree. For instance, in Example 2.5 it would make sense to extract the actual
values of titles, text of reviews, etc. There are many ways to specify this, but the issue is irrelevant
to our investigation since we only study the type of the output tree and the DTDs we consider do
not restrict data values. Our framework can be augmented with any mechanism for producing
data values in the output without affecting our typechecking results.

The typechecking problem. Given an input DTD 1, an output DTD 1, (possibly specialized)
and a query ¢, we say that ¢ typechecks (with respect to 7, and 1) iff g(inst(t;)) S inst(t;). We will
show in Section 5 that typechecking for the full QL and unrestricted regular DTDs is undecidable.
Therefore, we are led to consider restricted decidable cases.

3. Decidability results

We present in this section our decidability results on typechecking QL queries, under various
restrictions on QL and output DTDs. There are three main decidability results, involving
increasingly restricted fragments of QL and increasingly powerful output DTDs:

1. non-recursive QL (QL where path expressions define finite languages), and unordered output
DTDs;

2. non-recursive QL without tag variables and star-free output DTDs;

3. non-recursive, “‘projection-less” QL without tag variables, and regular output DTDs. We will
formally define projection-less queries later on. For now, recall that a projection-free query is
one with no existential variables. A “projection-less” query is one that is equivalent, under a
given input DTD, to its projection-free variant obtained by dropping all the existential
quantifiers.

The above results highlight an interesting trade-off between the query language and the DTDs.
The undecidability results of Section 5 show that our decidability results are quite tight.

All three results are proven using the following idea. If there exists some input tree 7" such that
Q(T) does not conform to the required output type, then there exists a subtree Ty < 7" whose size
is bounded by a function that depends only on Q and the input and output types, such that Q(7})
also fails to conform to the output type. Hence, in order to typecheck Q it suffices to compute
QO(Ty)) for all trees Ty up to a given size, and check that each result conforms to the output type.
Before giving the formal proofs, we illustrate the basic intuition on the following simple
example.

Example 3.1. Consider the query Q in Fig. 2. The nodes with labels a, b, ¢, d, and e are referred

to as vy, ..., 04, respectively. Assume that we need to typecheck Q against the following output
DTD:

a = bx

b= cx

c:=(d,d,d,dx, (e e?)?).
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a()
l

b(X) —aq

C(X7Y) — Q@

RN

d(X,Y,Z)(—q;g C(vayU)‘—(M
Fig. 2. A query for Example 3.1.

The DTD requires a ¢ element to have at least three d children and at most two e children.
Suppose Q(T) fails to conform to this DTD. Assume there is a node u labeled ¢ in Q(T) that
violates the output DTD. There are two cases: either u has two or fewer d children, or u has three
or more e children. In both cases we start by finding a subtree 7y < 7T such that u is also in Q(7y).
Since u is witnessed by a substitution 0 : { X, Y} > nodes(T) we only need two nodes in 7' to make
this substitution possible; we also need some extra nodes in 7T to serve as witnesses for the
existential variables in @, = ¢, A, (namely one node for each existential variable in
bound(®,,)); and we need all ancestors of these nodes to ensure that 7y is a tree. The number
of nodes in Ty is at most (|q1| + |q2|) x height(T'). In the first case, when u has two or fewer d
children in Q(T), then we argue that u has also two or fewer d-children in Q(7)) (it cannot have
more than in Q(T')), hence Q(T)) violates the output DTD. In the second case, when u has three
or more e children, then we choose arbitrarily three such children, u;, u,, u3. They are witnessed by
three different extensions of 0 to the variable U, hence we only need 3 |g4| nodes in T to allow
these three nodes to be constructed: by adding these and all their ancestors to Ty, we ensure that u
still has the three children u;, up, u3 in Q(7)), i.e. Q(Ty) also violates the output DTD, and its size
is <(|q1| + |g2| + 3|qa|)height(T). Except for the factor height(T) everything else depends only on
the query and the output DTD (the number 3 was derived from the output DTD). Finally we
explain how to reduce the height(T) factor. Consider the input DTD. If it is not recursive, then
height(T) is also bound. Otherwise we use a form of a pumping lemma applied to the input DTD
and all paths expressions in ¢y, ¢», ¢3, g4 to argue that we can bound the height of Tj. In all cases
some additional elements may need to be added to T to make it conform to the input DTD. At
the end we obtain a tree 7, with a bounded size, such that Q(7y) does not conform to the output
DTD.

The example only illustrates the basic intuition. Rigorous proofs differ for each special case we
consider, and are provided in the remainder of the section.

Our first result concerns non-recursive QL and unordered output DTDs. The size of a query ¢,
denoted by |g|, and of a DTD t, denoted by |t|, is simply the number of characters in their
definition.

Theorem 3.2. The typechecking problem for non-recursive QL queries, regular input DTDs, and
unordered output DTDs is decidable in CO-NEXPTIME.

Proof. Let ¢ be a non-recursive QL query, 7; a regular input DTD, and 7, an unordered output
DTD. Suppose T einst(t;) and ¢(T) ¢ inst(t,). We show that there exists T € inst(t;) with at most
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exponentially many nodes (with respect to |¢|, |t1],|72|), and ¢(Tp) ¢ inst(t2). We construct T from
T as follows. Since ¢(7T') violates 15, there exists a path n;...n; from the root of ¢(7) to a node ny
with tag ae X such that the sequence w of the children of n; violates the SL formula ¢, specified
by 7. Thus, w satisfies —¢,. Clearly, ~¢, can be written as \/, C; where each C; is of the form
aj'™ A --- na;"™ where the a; are distinct symbols in X, ;€ { >, =} and each i; is an integer bounded
by the maximum integer occurring in ¢,. Since w satisfies —¢,, it satisfies at least one Cj, say

1) *plp

a"" A Aa". Let vp...v, be a (not necessarily continuous) subsequence of w that satisfies
Cr = alzi A A a;i”. Let var(q) denote the set of all variables in all formulas in ¢, both bound and
free variables. Each node on the path n;...n; from root to n;, and among the nodes v;...v,
mentioned above, was constructed due to some binding of a subset of var(q). Let B consist of the

set of nodes of T in the images of these bindings, or on some path from the root of 7" to such a
node. Note that | B|<|g|*(|g] + |z2| |Z|). This is because k <|¢| and n<|15| | 2|, the number of nodes
in each binding is <|g|, and the number of nodes from root to each node in a binding is bounded
by |g|. The inequality n<|t;| |Z| assumes the integers in 7, are written in unary.

We will use the following observation. Let 77 be any tree whose restriction to depth up to |¢| is a
subtree of T, and that contains all nodes in B. Note that ¢(7”) still contains the node n; and its
children v; ...v,, since all the bindings in 7" that contributed to the creation of n; in ¢(7') still exist

in T". Thus, the sequence v of children of 1 in ¢(T") satisfies a7 A --- Aa; ™. Furthermore, if #; is

equality, then v satisfies aj:lj, since every binding of ¢ in 7" is also a binding of ¢ in T, and the
sequence of children of ny in ¢(7') satisfies aj:"". It follows that v satisfies C; and so ¢(7") violates 7.

Let Ty be a minimal tree whose restriction to depth up to |g| is a subtree of T, that contains all
nodes in B, and that satisfies 7. Since 7 satisfies the property just described, ¢(7p) violates 7,. An
upper bound on the number of nodes in 7y is found as follows. For each node n in T}, consider the
sequence of its children written as u;byus ... by, 1 Where b; e B, 1 <i<m, and u; contains no nodes
in B, 1<j<m + 1. Since T} is minimal, the size of each u; is bounded by ||| (more precisely by the
number of states in the automaton for the regular language describing the allowed sequences of
children of n in 7;). Thus, the number of children of any node in Tj is bounded by [|B| + (|B| +
1)|71|]. Since nodes in B occur in T at depth at most |¢g|, the number of nodes of T} at depth up to

|q| is bounded by [|B| + (|B| + 1)|1]'/". Finally, observe that paths of T whose nodes are at depth
larger than |¢| contain no paths with repeated labels in X (otherwise we could pump down 7 thus
contradicting its minimality). Thus, the number of nodes at depth>|g| is bounded by the
maximum number of nodes at depth <|g| times |t ||Z|. This yields a total bound of [|B| + (|B| +
Do % (1 +|11|*" for the size of Ty.

Hence, our procedure testing that g does not typecheck with respect to input DTD 7; and
output DTD 1, simply consists of guessing a Ty of exponential size and then verifying whether (1)
T) satisfies 71, and (2) ¢(7)) violates 7,. Both (1) and (2) can be tested in exponential time. Indeed,
let N be the size of the input. Then (1) can be checked in time linear in 7y and N, which is
exponential in N: just check for every node that its sequence of children matches the specified
regular expression. For testing (2), we first construct the output tree. As there are at most |T0]N
possible bindings, this takes time at most exponential in N. Next, we transform each SL formula
in DNF, which can be done in time exponential in N and which can result in formulas that are at
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most of exponential size. So in the worst case, we have to check for an exponential number of
nodes, an exponential number of disjuncts. [

Our second decidability result, corresponding to (2) in our earlier discussion, further restricts
the QL queries but extends the output DTDs.

Theorem 3.3. The typechecking problem for non-recursive QL queries without tag variables, with
regular input DTDs, and star-free output DTDs, is decidable in CO-NEXPTIME.

Proof. The proof'is by reduction to the case when the output DTD is unordered, for which we can
use Theorem 3.2. The key observation is the following:

() if r is a star-free regular expression and ay, ..., @, are distinct symbols in X, then there exists an
SL sentence ¢, using integers whose value is bounded by |r| and computable in EXPTIME from
rand ay, ...,a;, such that

* . * *
roaj...ay = L(p,)naj...a;.

The proof of (), is by induction on the structure of r. We provide it for completeness at the end
of the current proof.

Now consider a non-recursive QL query ¢ without tag variables and a star-free output DTD 1,.
Suppose first that

(x) all siblings nodes in ¢ have distinct tags

(we eliminate this restriction below). Since ¢ has no tag variables, all sequences of sibling nodes in
answers to g are of the form aj ...a; for distinct @;€ 2. From (7) it follows that ¢ typechecks with
respect to 75 iff it typechecks with respect to 75, for an unordered DTD 7, computable in EXPTIME
from t,. The decidability and cO-NEXPTIME upper bound then follow from Theorem 3.2. The fact
that 7} is exponential in 7, is not a problem since the size of the integers used in 7} is only linear in
the size of 15, and the size of the counterexample in the proof of Theorem 3.2 is exponential only
in |¢l,|71|, and the integers occurring in the SL formulas in 7.

Suppose now that ¢ violates (x). We construct from ¢ a query g by replacing in ¢ all tags
ai, ...,ai by distinct by, ..., b, and we use the following variant of (}):

(1) Leta;,b;ie X, ie[l, k|, where the b; are distinct, and let /2 be the homomorphism mapping b; to
a;. If r is a star-free regular expression then there exists an SL sentence ¢,, using integers
whose value is bounded by |r| and computable in EXPTIME from r,ay, ...,ax, and by, ..., by,
such that

roa...ap = h(L(p,)nbi...by).

Using (f) it is clear that ¢ typechecks with respect to 7, iff g typechecks with respect to an
unordered DTD 1, computable in EXPTIME from 7,. The decidability and CO-NEXPTIME upper
bound follow as above.

To conclude, we provide the proof of (1). The proof of (1) immediately follows, taking / to be
the identity mapping.
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More specifically, we define inductively ¢, as a disjunction of statements of the form

b{" A - Abin (abbreviated for convenience bj''...bMn) where each xije{=,>} and i; are
natural numbers. Moreover, ij, ..., i, <|r|, the size of ¢, is exponential in |r|, and ¢, can be

(¢10)

1

2.

mputed in time exponential in |r|.
The inductive definition proceeds as follows. We distinguish several cases:

. If r = 0 or r = ¢ then ¢, is the empty disjunction and consists of the only disjunct b7°...5-°,
respectively.

If r = a;, then ¢, is a disjunctions of terms of the form bT/ '...b7, having one disjunct per each
bi such that h(by) = a;, with jr = 1 and j, = 0 for /#k.

. If r =ry + r, then @, consists of the disjuncts in ¢, and ¢,,.

. If r =ry -1y, then ¢, consists of the disjuncts obtained from ¢, and ¢,, as follows. Add
b*{l"l “.b:‘lnin
each time there is a disjunct
b’{}"’l _ b;,if,i

in @, and a disjunct
i 22
1 I >klllll
b,""...b,

in ¢,, such that there is a je{l, ...,n} for which the following holds:
e il =0 for all />j;
e i2 =0 for all /<j;
® % ="="if both %/ and «; are ‘=", otherwise %; is >;
=i
® x, =« and iy = i} for /<j; and
® 5, =2 and i, = i2 for />].
For instance, the concatenation of a='56>2¢>% and a>°h='¢=3 gives rise to a='5>3¢=3.
. If r = —s, then ¢, is the intersection of the negation of the disjuncts of ¢,. The negation of a
single disjunct b?’" ...biin is equivalent to the disjunction obtained by adding for every
j=1,...,n, the disjuncts

)iy =0 peady priit =1 i wip =il s,

b; ...bj byt by ...bj byt b ...bj by
If x; =*=", then we also add

*[i] 21/+1 *p1;

b; ...bj bt

We now have an intersection of sets of disjuncts. By De Morgan’s laws we transform this to a
disjunction of conjunctions. Every conjunction can then be transformed to a single expression

kik «k ik . . . .
as follows. Suppose we have the conjunction /\, b?l‘ ...by"". This conjunction can be omitted,
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as it is contradictory, when there is a j and /; # /¢, with

12 /s [ /| />
[ ] L= == . i
% * , and I;' #1;*; or
[ ] *{1 ==’ *[.‘2 :‘2’ l.fl = l.f/Z_

J > g
Otherwise the conjunction is equivalent to b'" ... where for each j =1, ...,n,
o x; ="="and i; = IJ/ for some 7 for which *j ='="; and

3 b

_ s T . -/ {3 _
® x; =>"and ;; = max{i; |/} when no ¥; is ‘=",

From the construction it readily follows that the integers are <|r|. Further, as there are at most
(2|r|)" possible disjuncts, the size of ¢, is exponential in |r|. However, the above algorithm is
double exponential in the size of |r|. Indeed, the conversion from conjunctive to disjunctive
normal form can result in an exponential blow-up of the formula size. Therefore, we next give a
brute force algorithm to compute ¢, in exponential time.

We have just shown that the integers in the expression are bounded above by |r|. Therefore, we
can define ¢, as the expression

\/bi by (s = = and §i<]r])
or (x; =*>"and i, = |r| + 1), and A(b]...b") = L(r)}.

As there are only exponentially many strings b}'"...5" and b{ ...b» < L(r) can be tested in
PSPACE, the result follows. To see the latter, we can translate the star-free regular expression
into an equivalent FO sentence whose size is linear in the size of r and test whether b}'" ... b5
satisfies this formula. This is well-known to be in PSPACE. [

Our third decidability result removes all restrictions on output DTDs, allowing full regular
DTDs. However, it requires an additional restriction on QL queries. Intuitively, this limits the
projections which can be performed by the query. We formalize this as follows.

Definition 3.4. Let ¢ be a QL query and 7 an input DTD. The query ¢ is projection-less with
respect to t iff it is equivalent, on all inputs satisfying t, to the projection-free query ¢’ obtained
from ¢ by dropping all the existential quantifiers.

Obviously, there are many syntactic sufficient conditions on ¢ and 7 ensuring that ¢ is
projection-free with respect to with respect to 7. We illustrate this by an example.

Example 3.5. Consider the movie DTD of Example 2.5 and the query in ¢ in Fig. 1. Obviously ¢
not projection-free, but we show that it is projection-less. For that we construct the query ¢’ in
Fig. 3, by promoting all existential variables to free variables (i.e. including them in the datalog
rule’s head). Clearly ¢’ is projection-free. We argue now that ¢ and ¢’ are equivalent over input
documents of the given DTD. For that it suffices to show for each formula the query ¢ that, if
there exists some binding of its existential variables that makes that formula true, then that
binding is unique. We only illustrate this on the formula ¢,; given by the datalog rule:

title(X7) : —Xo movie X1, X, title X», X, director X3, X3 = “W.Allen”,
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root()

tit]e(Xo,Xl,Xz,Xg) «— Xo movie X3, X; title Xo, X; director X3, X3 = “ W. Allen”

/ \

actor(Xo, X1, X3, X3,U) « X5 actor U AllensReviews(Xp, X1, X2, X3)

V(.Xo,Xl,X2,U, V) — UxV I‘eVieWS(Xo,Xl,Xz,Xg,Yl,Yz) — YI title Xz, Y] review Yz

Fig. 3. A projection-free query.

where Xj, X1, X3 are existential variables. Given a binding of X», clearly bindings for Xy, X are
unique: Xjp is the root and X is the parent of X,. A binding for X3 is also unique, because the
DTD requires a movie to have a unique director. This completes the proof for ¢, , and the other
formulas are treated similarly. It follows that ¢ and ¢’ are equivalent and, consequently, that g is
projection-less.

Restricting queries to be projection-less is clearly a limitation. However, as this example
suggests, the limitation may be less severe in practice when the input DTD has certain uniqueness
requirements.

For projection-less queries we prove next the following result, the most technically challenging
of this section.

Theorem 3.6. The typechecking problem for projection-less non-recursive QL queries without tag
variables, with regular input DTDs, and regular output DTDs, is decidable.

It remains open whether Theorem 3.6 holds without the projection-less restriction.

The proof of Theorem 3.6 uses Ramsey’s Theorem [13,26] and requires developing some
technical machinery. We dedicate the remainder of the section to this development.

Assume we are given some projection-less non-recursive QL query ¢'. By the definition of
projection-less, ¢’ is equivalent to the projection-free query ¢ obtained from ¢’ by dropping all the
existential quantifiers. So it suffices to prove the theorem for ¢.

To simplify the presentation, we first assume that all the path expressions in ¢ are single labels
or disjunctions of such labels, and prove the theorem for this class of queries. Once the proof for
this restricted case is established, we explain how to extend it to the general case.

Recall that, for a node v in ¢g, @, is the conjunction of all formulas labeling v’s ancestors,
including v. We also use the following notation.

Definition 3.7. For a query Qe QL, ve nodes(Q), and a tree T€J 5 4.

o vars(v) = free(¢,).
® Binds(v,T) = {0|0:vars(v) —>nodes(T), and T=®,[0]}.

For convenience, we will view in the sequel Binds(v, T) as a relation whose attributes are the
variables names. We will apply to it usual relational algebra operators: projection on a subset X of
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vars(v), denoted my (Binds(v, T)), and selection ¢y, (Binds(v, T')) producing the set of tuples in
Binds(v, T) satisfying the condition xfy, where x € vars(v), and yevars(v) or y is a constant, and
Oe {27 # }

To further simplify the presentation, we will assume first that, for every veg the tags of v’s
children are all distinct. The general case where some tags may repeat is considered afterwards.

Let 171, 72 be input and output DTDs respectively. Suppose T €inst(t;) and ¢(7") ¥ t,. Since ¢(T)
violates 1,, there exists a path n; ---n; from the root of ¢(7') to a node n; with some tag ae X such
that the sequence w of the tags of the children of #; is not in the regular language defined by the
regular expression r, specified by 7,. Note that, by the definition of ¢(T), n; was contributed by
some node cenodes(q). If ay, ..., a, are the tags of the children of v, w is in the language 7, =
—r,Naj...a,. We will use a characterization of the words in 7, in terms of the number of symbols
ai, ...,a, they contain. To this end, we prove the following.

Lemma 3.8. Let ay, ...,a, be distinct symbols and let v = (iy,}1), ..., (in,jn) be a vector of n pairs of
natural numbers. We denote by L, the language consisting of all words of the form ai'...a% where
Oy = I, mod j,, when j,>0 and o,, =i, if j, = 0. For each regular language r over alphabet
{ay, ..., ay}, there exists a finite set Vec(r) of vectors of pairs of natural numbers as above such that
rody...ay, = U, eyecr) Lr-

Proof. Let M = (Q, 2,9, qo, F) be a non-deterministic finite-state automaton accepting r, where Q
is the set of states, X = {ay, ...,a,},5: Q x ¥—22 is the transition mapping, qo is the start state
and F the set of final states. The mapping ¢ is extended in the usual way to Q x 2*. Let Q be the
set of all sequences ¢ of states gq---¢, for which there exists some word w = u;---u, in rnaj...a;,
where uj€aj, ...,u,€a),, such that g, €0(qmu—1,un), 1<m<n. For each pair of states p,q and
alphabet symbol a,, let L) = {d" | ged(p,d")}, and for each vector §=gqo---¢,€Q let L =

1
Ly Ly, - Clearly,

roda...a, = U L.
geQ

Next, consider any of the languages Ly,. This is a regular language over the singleton alphabet
{a,,}. By the Pumping Lemma for regular languages, there exist positive k and i bounded by |Q|
such that, for each weLy, of length >k, w(afn)*gL}’,”q. Let L<j consist of the words in Ly of
length <k and L. consists of the words in LZ;[ of length > k. Clearly, Ll’fil =L¢rulsy. LetJ be

the set of equivalence classes j modulo 7 for which there exists some word w in L. of length
Jjmod i, and let w; be the shortest such word. Clearly,

Ly, = Lo | wila),)"
jeJ
Thus, words in Ly, can be described using pairs of integers as follows. Each singleton word

we Ly is described by the pair (Jw],0). Each language w;(d’,)" consists of the words of length
|wj| + o where o = 0 mod i so is described by the pair (|w;[, ). Thus, each language L7/ is a union
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of languages described by pairs of numbers. The lemma easily follows by distributing
concatenation over union in each of the languages L; = Ly, ...L,, 4, Finally, note that
the sizes of the integers involved in the vectors v are linear in the number of states of M, so
linear in r. [J

Thus, 7, can be written as a union of languages L, as defined in Lemma 3.8. Furthermore, the
sizes of the integers involved in the vectors v are linear in =, so at most exponential in the size of

r,. The following is immediate from the above discussion.

Proposition 3.9. Let ¢ be a QL query, T some input tree, and t, some output DTD; q(T)

violates T, iff there exists a node cenodes(q) with some tag a and children cy, ... c, having
tags ay, ...,a, and free variables X\, ...,X,, and a vector (iy,ji), ..., (in,Ju) in Vec(-ronaj...a,),
such that

T Binds(c, T) contains a tuple v where for all | =1...n,15/(0uu)—o(Binds(c;, T))) is of
size o for some positive integer o such that o = ijmodj; when j;>0, and of size i
when j; = 0.2

For brevity, we will refer in the sequel to the property () of Binds(c, T') as the modulo property.

It thus remains to show that, given an input DTD 7, a query ¢, some node cenodes(q), and a
vector (i1,/1), ..., (in,Ju) for ¢ as defined above, one can decide if the modulo property holds for
some tree 7T €inst(ty).

To prove this it suffices to show that if such a T exists, then there exists a “small’” such 7', whose
size is bounded by some function of the sizes of 7y, ¢, and the numbers (iy, ), ..., (iy,/,). Then, to
decide if the above holds, we simply need to check all the trees up to that size. We show below that
such a bound on the tree size indeed exists.

Without loss of generality, assume that 7; contains no redundant symbols (i.e., every symbol
occurs as a label in some tree satisfying 7). First observe that if none of the regular expressions in

7) contains * then it suffices to look at trees of size O(|t; |“’|). This is because ¢ looks at paths of a
bounded length. Thus all we need to check are trees of the corresponding maximal depth and with
a bounded width. (The actual violating instance can then be obtained by replacing each of the tree
leaves by some arbitrary derivation tree for the leaf label.) We thus assume in the sequel that at
least some of the regular expressions in t; contain .

Next, note that 7 may be large due to its depths or due to its width. Since the query looks
at a bounded depth in 7', all nodes beyond depth |g| are essentially irrelevant. So we only
need to look at trees up to depth g. (As above, the actual violating instances can later be
obtained from these trees by replacing each of the tree leaves by some arbitrary derivation
tree for the leaf label.) For brevity, we will abuse below the standard terminology as follows:
whenever we say a tree we shall mean a tree of depth <|q|. Whenever we say that a tree T satisfies
71 we mean that T can be extended, by adding nodes only at depth greater than |g|, to a tree that
satisfies 7.

?Recall that we view Binds(c, T) as a relation with attribution vars(c).
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Let T einst(t;) be a tree of minimum size having the modulo property. Let N be the set of nodes
in T consisting of the following (using the notation in (7)):

1. all the nodes in the vector v,
2. for every ¢; where the relation

R, = Ovars(c)=v (Binds(cl > T) ) )

is not empty, the nodes in some vector ;€ R;,
3. for every ¢; with corresponding pair (i, j;), all the nodes in some sub-relation of size i; of

3 Ovars(c)=v (Binds(c;, T) )) )

and
4. all the nodes on the paths from the root to the nodes in items 1-3 above.

We next argue that the size of N is bounded by the input, independently of 7. Indeed, (1)
generates at most |¢| nodes; as the number of ¢’s is bounded by |¢|, (2) generates at most |¢|* and

(3) at most i; x \q\z nodes. Let the sum of these numbers be m. Then, taking into account (4), the
size of N is bounded by m X |¢|. Clearly, N only depends on the input and not on 7'. Our goal is to
show that if 7 is bigger than a given size then it contains a set of nodes X, not including any of the
nodes in N, such that the tree 7" obtained from 7 by removing X still belongs to inst(z;) and has
the modulo property. This will contradict the minimality of 7.

Clearly, if X is not chosen carefully, the resulting tree may no longer belong to inst(t;). We will
thus be interested only in deletion of nodes resulting in trees in inst(t;). To this end we define the
notion of deletable unit, and deletable set of units.

Definition 3.10. Given a tree T einst(t;), a sequence of full subtrees of 7" rooted at consecutive
siblings in T is called a unit. A unit 7i is deletable if (i) the tree 7’ obtained from 7' by deleting all
subtrees in 7 still belongs to inst(t;), and (ii) 7 contains no consecutive subsequence having

properly (1).

Two units 72, m of T are overlapping if they have some common node. Otherwise, they are called
non-overlapping. A set U of units of T is deletable if it consists of non-overlapping deletable units
of T and for each subset U’ of U, the tree obtained from 7 by deleting all nodes in the units of U’
still satisfies 7.

We can show the following.

Proposition 3.11. Let U be a maximal deletable set of units of T, not containing any of the nodes in
N. The number of units in U is no less than |T|/((|t1]| x (|N| + 1))l.

Proof. It is sufficient to consider sets of deletable units 7 with the following property:

() Let n;...ni be the sequence of roots of the subtrees in 7, o the sequence of preceding siblings, f
the sequence of siblings following it, a the label of their parent, and M, the standard non-
deterministic finite-state automaton for the regular expression associated to a by 7; (whose
number of states is bounded by 7). There exists an accepting computation of M, on input
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o ny...np such that the state after reading « is the same as the one after reading o ny...ng,
and is distinct from those reached after reading o n;...n; for 1<j<k.

Note that any set U of deletable units satisfying () is a deletable set of units. Consider a maximal
such set U not containing any of the nodes in N. By the Pumping Lemma for regular languages,
the length of each deletable unit in U is at most |t;|, and the number of siblings separating any
two consecutive deletable units in U is also at most |r;|. Similarly, a node in N has at most ||
siblings between it and the next (previous) sibling belonging to N or to some deletable unit.
Consider the maximal size of a tree not having any deletable unit. This is a tree where every node
has as children nodes in N separated by at most |71| nodes. So, the maximal size of such a tree is
(It1] % (IN] + 1))", where h is the depth of the tree. Any node added to this tree is part of some
deletable unit. In the case of T, each such additional node belongs, in the worst case, to one
distinct deletable unit. For ¢ := (|71 x (|N| + 1))“"*1, the number of such nodes is then at least
|T'|/(c + 1). Furthermore, since each deletable unit is of length at most |z;| this yields a deletable
set of units of size at least 7/((c 4+ 1) x |t1]). Summing up, we have that 7 has a deletable set of
units of size at least

T/(((m1] x (IN]+ 1) +1) x [z]),
which is bounded by
T/(((lm] x (IN[+ 1) O

Corollary 3.12. For each positive integer m, and each tree T €inst(t,) of size larger than m X

((|r1] x (|N| + 1))“1‘, there exists a deletable set of units of T of size at least m, whose units do not
contain any of the nodes in N.

We will use Corollary 3.12 to derive the required bound on the size of 7. In particular, we will
show that if T is larger than a given size then it has a sufficiently large deletable set of units so that
some subset can be removed without affecting the modulo property.

To each deletable unit u of 7 we associate a vector t, = (¢, ...") where ¢, [ = 1...n, is the
number of tuples in 7z, (G yars(c)—o(Binds(c;, T'))) that contain some node in u, modulo j;.

Similarly, to each deletable set s of units of size k <|q| we associate a vector ¢, = (!, ...7") where
forall/=1...n, ti is the number of tuples in 7z, (6 yarg(c)—s (Binds(c;, T))) that contain some node in
s, modulo jj.

Note that each vector associated to a deletable set of units can be viewed abstractly as a color.
We can then apply Ramsey’s Theorem (stated below for convenience), and its Corollary 3.14.
Indeed, it follows from Corollary 3.14 and from the definition of deletable set of units that for
every m>0, if T is larger than some given bound (a function of the m, the given js, |ti|, and |q|,
called the Ramsey bound) then there exists a deletable set X of m units in 7', not including any of
the nodes in N, such that for every integer r<|g|, all subsets of X of size r have the same
associated vector (there may be different vectors for different #’s, but all subsets of the same size r
have the same vector).



708 N. Alon et al. | Journal of Computer and System Sciences 66 (2003) 688-727

To obtain our result, we make use of the above for a conveniently chosen value of m.
Specifically, let m = I1;—y__,j; x k! (where k = |g|). If T is larger than the corresponding Ramsey
bound, then it contains a deletable set X of m units with the above property. Now, consider the
tree T’ obtained from T by removing all the nodes in X. Note that 7" still satisfies 7, and since
none of the nodes in N was deleted, the following hold.

® ve Binds(c, T').

e For every ¢; where, in the corresponding (iy,j;) tuple, j1 =0, 7z, (Guurs(c)—o(Binds(ci, T")))
contains exactly #; tuples.

e For every ¢; where X; is the empty vector

75, (Coars(c)—o (Binds(c;, T'))) = 7z, (G vars(e)—o(Binds(c;, T))).

More specifically, the relations are either both empty or both contain a single 0-ary tuple. This
is because in the definition of N we picked (in item 2) a tuple from each non-empty relation R;.
So, if R; was not empty the projection results in one tuple—the empty tuple.

To show that 7’ has the modulo property, it remains to prove that for every ¢; where %, is not the
empty vector, the relations 7z, (G yars(c)—s(Binds(c;, T'))) is of size (« x j; +1i;) for some positive
integer o. Rather than computing the exact size of this relation, we will compute the number of
vectors deleted from

s (Uvars(c):v (BindS(C[, T) )) :

If we show that this number is zero modulo j;, then we are done.

Observe that since the query is projection-less, each deleted node affects precisely the tuples in
75, (G vars(c)=o(Binds(c;, T'))) in which it appears. The total effect of the deletion of all the nodes in X
is described by the following inclusion—exclusion formula:

m m m
n,:mxc}—<2> xc,2+<3> xcf’—---+/—<|X|> xc‘lX‘,

which we explain next. The formula first counts separately for each node in a deletable unit in X
how many tuples are deleted in 7z, (G yurs(c)—o(Binds(c;, T'))) when the node is removed. Note that
according to the corollary to Ramsey’s Theorem mentioned above, the number of images destroyed
for each node are the same—this is essentially the value of the / entry in the vectors associated with
subsets of X of size 1. Let ¢} be this number. Thus the total sum of destroyed images is at most
m x c}. However, this is an overestimate: some tuples, (i.e. those containing two or more nodes in
X) are counted several times. To fix this we subtract for every pair of nodes the number of tuples in

which the two nodes appear together. There are (3) such pairs of nodes, each appearing (again

according to the corollary to Ramsey’s Theorem), in c,2 images (where c% is the value of the / entry
in the vectors associated with subsets of X of size 2). So we deduct (}) x ¢7. Note that this time we
deducted too much: some tuples (i.e. those containing three or more nodes in X) were counted
several times. To compensate, we add for every triplet of nodes the number of tuples in which the
three nodes all appear. As above this is () x ¢, for some constant ¢;. Now again we added too
much so we deduct for the four-or-more images, etc. Since the maximal number of nodes in a tuple
is bounded by |¢| the inclusion/exclusion sum can stop when that size is reached.
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Since we chose m to be the number I1,_; _,j; x k! (where k = |¢|), each element in the above
sum divides by jj, so the total number n; of X; assignments that we lost divides by j;. It follows that
T’ still has the modulo property, which contradicts the minimality of 7.

To conclude, we state Ramsey’s Theorem, and the corollary used above.

Theorem 3.13 (Ramsey’s Theorem) (Graham et al. [13], see also Ramsey [26, pp. 7-9]). For all
natural numbers k,m,w there exists a finite number R(k,m,w) such that for every set Y of elements
with | Y| = R(k,m,w) and every coloring of the family of all the subsets of Y of size k with w colors,
Y contains a subset X = Y of size | X| = m where all the subsets of X of size k have the same color.

Furthermore, the number R(k,m,w) is computable but of size non-elementary with respect to
k,m,w. The following variant is an easy consequence of Ramsey’s Theorem.

Corollary 3.14 (Graham et al. [13]). For all natural numbers k,m,w there exists a finite number
R (k,m,w) such that for every set Y of elements of size |Y|=R'(k,m,w) and every coloring of the
Sfamily of all the subsets of Y of size <k with w colors, Y contains a subset X <Y of size |X| =m
where for all k' <k, all Xs subsets of size k' have the same color (there may be different colors for
different k's).

Proof. The proofis by induction on k. For k = 1 the statement follows immediately from Ramsey
theorem. Now, assume correctness for kK — 1 (and every m, w). We prove the statement for k.
Define R'(k,m,w) == R(k,m,w) for k =1 and R'(k,m,w) == R(k, R'(k — 1,m,w),w) for k>1.
Note that R'(k — 1,m,w) exists by the induction hypothesis and R(k, R'(k — 1,m, w), w) exists by
Ramsey’s theorem. Now, if |y'|>R'(k,m,w) then, by the definition of R, for every coloring of
subsets of Y’ there is some X' < Y’ of size |X'| = R'(k — 1,m,w) where all the subsets of size k
have the same color. There is some X = X’ of size | X| = m where for every k' <k — 1 all the subsets
of size k' have the same color. But all subsets of size k of X also have the same color since X < X’
and all subsets of size k of X’ have the same color. [

Observe that, in the proof above, we simply need to consider each possible vector attached to a
deletable set of units as a color. The number w of available colors is then simply j; X -+ X j;
k =lq|; and, m = II;—;_,j; x k!. Now, recall from Corollary 3.12 that every tree T of size larger

than R (k,m,w) x ((|t1] x (|N| 4+ 1))7) has a deletable set of units of size at least R'(k,m,w),
whose units do not contain any of the nodes in N. The rest follows immediately from Corollary
3.14.

To conclude, recall that in the course of the above proof we made two simplifying assumptions
on the structure of the query ¢: (1) We assumed for every node cenodes(q), the tags of ¢’s children
are all distinct, and (2) we assumed that all the path expressions in ¢ are single labels or
disjunctions of such labels. It is therefore left to remove these restrictions and extend the proof to
the general case.

Repeated tags: Let ¢ be a query and 7 an output DTD. As in the proof of Theorem 3.3, we
construct from ¢ a query g by replacing all tags aj, ..., ax of children of a node labeled a by distinct
tags by, ..., bx. We also construct from 7 a new DTD 7 by replacing the regular expression ¢, by



710 N. Alon et al. | Journal of Computer and System Sciences 66 (2003) 688-727

h(ry) N b} ...b; where h is the mapping h(b;) = a;, 1 <i<k. Itis easy to see that ¢ typechecks with
respect to 7 iff § typechecks with respect to 7 (the input DTD remains unchanged).

General path expressions: A path expression in non-recursive queries represents a finite union of
simple paths (rather than just a union of single labels, as we assumed so far). We next explain how
the proof can be extended to accommodate those. Consider a node ce€nodes(q), whose attached
formula contains such a path expressions. The first step is to take these (unions of) simple paths in
the query and make them, and each of the edges they contain, “explicit”, by attaching a new
variable name to each node along those paths. Each conjunct with such a path expression
becomes a disjunction of conjunctions, describing the possible paths and the edges they contain.

Consider for instance the formula below (similar but not identical to Example 2.5).

title(Xo, X1, X2, X3) + =Xy catalog.movies | cinema.info X\,
X title X5,
X director X3,
Xz = “W.Allen”.

After transforming the path expression in the first conjunct we obtain the following:
title(Xo, X1, X2, X3) : —((Xo catalog Z,,Z, movies X\)v (Xy cinema Z,,Z, info X)),
X title X5,
X1 director Xj,
Xz = “W.Allen”.

Correspondingly, the notion of variables binding is extended in the natural way to contain the
new variables. The only point to note is that since our XML data consists of trees, and each node
is reachable from the root by a single path, in each of the bindings some of the variables may not
have “‘real nodes” assigned to them (i.e. the variables corresponding to the ““non used” paths), but
instead some arbitrarily chosen null value.

Finally, observe that since each tree node uniquely determines its ancestors, the bindings to the
new variables functionally depend on those of the original query variables. It follows immediately
that one can replace the head /() of each formula by f(%, Z) where Z are the new variables and the
query result will remain the same. For instance, in the above rule we could replace
title(Xo, X1, X2, X3) by title( Xy, X1, X2, X3, Z1, Z,) without changing the query result.

The resulting query is projection-less and the proof proceeds from here on along the same lines
as above.

This concludes the proof of Theorem 3.6.

4. More on complexity

Theorems 3.2 and 3.3 provide an upper bound of CO-NEXPTIME on the complexity of
typechecking non-recursive QL queries with respect to unordered output DTDs, or non-recursive
QL queries without tag variables and star-free output DTDs. However, it remains open whether
this complexity is tight.
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There are significant special cases in which the complexity of typechecking can be brought
down to PSPACE. We consider the case when the input DTDs are of bounded depth (which implies
that queries are also of bounded depth). This is a restriction of practical interest, since many
applications use shallow DTDs. For example, relational databases can naturally be represented by
DTDs of depth at most 2 (the root has depth zero). We can show the following using the proofs of
Theorems 3.2 and 3.3.

Corollary 4.1. Let X and M >0 be fixed. (i) Typechecking non-recursive QL queries with respect to
input DTDs of depth < M and unordered output DTDs is in PSPACE; (i) Typechecking non-recursive
OL queries without tag variables with respect to input DTDs of depth <M and star-free DTDs is in
PSPACE.

Proof. The size of the smallest counterexample is now polynomial in the output, but testing
whether a candidate input is indeed a counterexample requires PSPACE. [

Once again, it remains open whether the above complexity is tight. To show some lower
bounds, we first make the following remark.

Remark 4.2. It is not so difficult to see that the usual conjunctive queries over a relational schema
can be simulated in QL. Indeed, we only need to specify a tree representation of a database
instance and to translate the conjunctive queries into a QL query. Let R:=R;,...,R, be a
relational schema, i.e. a set of relation names with associated arities. We specify the tree
representing the database by the DTD 1 as follows: root—Rj, ..., R}, for each ie{l,...,n},
Ry — Ay, ..., Ay, where n; is the arity of R;, and 4;— ¢ for each A;. Note that this corresponds to a
standard encoding of the relation R as an XML tree. Let ¢(X) be a conjunctive query. We can
assume without loss of generality that the relational literals in ¢(X) contain distinct, non-repeating
variables (all equalities are stated explicitly by equality atoms). Then define ¢2%(X) as the formula
obtained from ¢(%) by replacing each occurrence of a literal of the form R;(xi,...,x,) by
XoR; Y, YA X1, ..., Y Ay, X,,,, and occurrences of literals of the form x; = x; by X; = X;. Recall
that Xj is mapped to the root. Further, Y here is a fresh variable; we tacitly assume that Y is a
different variable for every literal R;(xy, ..., x,,). For a simple illustration assume R is binary, then
a query ¢(x1,x) and its encoding ¢2%(x, x,) are shown below, both in datalog notation:

q(x1,%2) < R(x1,21), R(z2,%2), 21 = 223
L (X1, X2) < Xo R Y1, Y1 A\ X1, Y1 A1 Zy, Xo R Y2, Y2 Ay Zy, Y2 Ay X2, Z1 = Z,.
We make use of the above translation in proof of the next theorem and in Section 6.

Theorem 4.3. Typechecking non-recursive QL queries without tag variables with respect to input
DTD of depth <2, and unordered output DTDs is:

3The complexity class IT5 is co-NPNP. Recall that D properties are of the form o A g, where a1 eNP and 6, € CO-NP.
We refer the reader to [24] for more information.
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(1) co-Np-hard for QL queries without conditions on data values;
(i1) Dp-hard for QL queries with equalities on data values; and,
(iii) IT5-hard for QL queries with equalities and inequalities on data values.

Proof. (i) We reduce validity of propositional formulas to the typechecking problem. Let ¢ be a
propositional formula using variables xi, ..., x,. Consider the input DTD

root—A;7...A,"

Ai—e, 1<i<n.

A derivation tree of this DTD represents a truth assignment of the propositional variables
X1, ..., X, : A;is present iff x;, =1, fori=1,...,n.

Consider the query ¢ represented in Fig. 4. The query’s variables are {X, Y} with X denoting
the root.

The query is basically the identity function, modulo some label renaming , whose sole purpose
is to make the query easier to read: i.e., the query maps an input tree into an isomorphic output
tree. Label B; is present in the output iff the label A4; is present in the input. We now define the
output type as an SL formula for answer, by checking whether the set of B;’s in the output
corresponds to a truth assignment that makes ¢ true. More precisely the SL formula is obtained
from ¢ as follows: each positive literal x; is replaced with B7! and each negative literal —x; is
replaced with Bizo, 1<i<n, while all other connectives v, A,— are preserved. For a simple
illustration, if the propositional formula is:

@ = (x1vx2) A (mx1vxs) A (X v voxs),
then we define the output DTD:
answer— (By' v B;Y) A (Br°v BT A (B! v B3 v BSY).

Clearly, ¢ is valid iff g typechecks with respect to 7; and 5.

(i1) The proof is by simultaneous reduction of propositional validity and conjunctive query
containment, which is known to be Np-complete. The query consists of the concatenation of two
independent sub-queries, one corresponding to propositional validity and the other to conjunctive
query containment. The subquery corresponding to propositional validity (and its corresponding
SL formula) is the one described in (i). We describe the subquery corresponding to conjunctive
query containment. Consider two conjunctive queries ¢; (%), ¢2(X) over relation R of arity k,with
the same set of free variables X. We take tg as the input DTD where 15 is as defined in Remark
4.2. Next, we construct a QL query ¢ as shown in Fig. 5. The formulas q]QL(X’) and QZQL (X) are
defined as in Remark 4.2.

Consider some relation instance R and let T be its encoding as a tree. We denote by ¢;(R)
and ¢»(R) the answers of ¢;,¢> on R(q1(R),q>(R) are sets of tuples) and denote by ¢(7") the

answer()
BIY) «X A Y By(Y)—XAY . By(Y)—XA,Y

Fig. 4. The query for propositional validity.
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a()
|

b(X) — ¢ (X)
|

oX) — ' T)NX =Y

Fig. 5. QL query used in the proof of Theorem 4.3.

result of applying ¢ to T (a tree). The tree ¢(7) has a root labeled ¢ and several h-labeled
children, one for each % in ¢;(R). If X is also in ¢>(R) then that b node has a child labeled c;
otherwise it has no children. Hence ¢;(R)<=¢>(R) iff ¢(T) is valid w.r.t. the following un-
ordered output DTD: a—b>° h—c>! and, consequently, ¢ =¢, iff ¢ typechecks w.r.t. this
output DTD.

The proof of (iii) is by reduction of containment of conjunctive queries with inequalities, which
is known to be IT5-complete [27]. The reduction is similar to that of (ii). [

For star-free output DTDs, we can show a PSPACE lower bound, even without conditions on
data values:

Proposition 4.4. Typechecking non-recursive QL queries without conditions on data values and
without tag variables with respect to input DTD of depth <2 and star-free output DTDs (using FO
sentences) is PSPACE-hard.

Proof. We use a reduction from the Quantified 3SAT problem, known to be PSPACE-complete
[12]. Let = Q1xy ... Qpxu0(x1, ..., X,) Where Q;e{V,3},1<i<n, and ¢ is an instance of 3SAT
(conjunction of disjunctions of three literals) using variables among xi, ..., x,,. Consider the input
DTD:

root— X10X11 -+ Xuo X1

1<i<n,0<j<1. Valid input trees correspond to strings of length 2xn. Let ¢ be the identity
query, which returns the input tree unchanged (see the proof of Theorem 4.3 for an example
of such a query). Hence the output tree is the same string of length 2n : X0 X1 X20 X521 ... Xpo X1
We construct the output star-free DTD / such that the output typechecks iff formula v
is true. Recall that a star-free regular expression is a first-order logic formula over the
vocabulary (<, Oy,),i=1,...,n,j = 0,1. We obtain  from s by replacing recursively every sub-
formula of the form 3Jx;o with 3y;(Ox,(yi)VvOyx,(vi)Aa) and each Vx with
Vyi((Ox,(yi) v Ox, (yi)) o). Further, we replace each occurrence of x;(—x;) in ¢ by
Ox, (¥:)(Ox, (:)). Clearly, the size of \ is polynomial in that of  and  satisfied by strings of
length 2n iff ¥ is true. Since ¢ outputs a string of length 2n, it follows that ¢ typechecks iff s is
true. [
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5. Undecidability results

So far, we have shown that typechecking QL queries is decidable under various restrictions on
the query language and output DTD. In particular, all decidability results require non-recursive
QL queries, and output DTDs without specialization. In this section we show that these
restrictions are largely necessary for decidability. Specifically, we show the following:

1. allowing specialization in output DTDs leads to undecidability of typechecking even for highly
restricted queries and DTDs (QL queries with path expressions limited to single symbols, no
inequality tests on data values, no tag variables, unordered input DTDs of depth two, and
unordered output DTDs); and

2. allowing recursive path expressions in QL queries yields undecidability of typechecking even for
very simple output DTDs without specialization.

We also consider a variation of (1), where QL queries are further restricted to use only a limited
form of nesting provided by Skolem functions, but allow disjunction of single labels in path
expressions (i.e., expressions of the form a or a + b, for a,be2). Together with the previous
decidability results, these results yields a fairly tight boundary of decidability for typechecking.

The first result shows that allowing specialization in output DTDs quickly leads to
undecidability of typechecking, even under stringent assumptions. We call a QL query
conjunctive if every path expression is a single symbol in 2.

Theorem 5.1. Typechecking is undecidable for conjunctive QL queries without tag variables and
without inequality, unordered input DTDs of depth <2, and unordered output DTDs with
specialization.

Proof. The proof is by reduction of the implication problem for functional dependencies (FDs)
and inclusion dependencies (IDs) [5,20]. Assume the relational scheme only consists of one
relation R of some arity k. A functional dependency is a rule of the form X — Y where X and Y
are sets of coordinates, that is, subsets of {1, ..., k}. A relation satisfies the FD X — Y if whenever
two tuples agree on X they should also agree on Y. Clearly, every set F id FDs is equivalent to
one where all FDs have singleton right-hand sides. An inclusion dependency is of the form
[i1y - in) S 1, ---,Jn) Where each iz, j,e{1, ..., k}. A relation satisfies the ID [iy, ..., i) S [ji, ..., /]
if m;, i, (R)=m,  ;,(R). Here, = denotes the usual projection of the relational algebra.

The implication problem for FDs and IDs is a particular instance of the following problem.
Givenaset D = {f},/, ..., f,} of FDs and inclusion dependencies over some k-ary relation R, and
fo an FD over R, decide whether every relation that satisfies all dependencies in D also satisfies fy.
It is known that the latter problem is undecidable [5,20]. First, we translate every dependency into
containment of conjunctive queries as follows. Let f = X — Y be an FD with X = {i, ..., i,} and
Y = {1, ....jm}. Then define the following conjunctive queries:

q1, 7 (Xiys ooy Xy Xy ooy Xy Vs oo Vi) < ROX1 ooy Xk), RODVL, <o Vi) Xip = Vigs oo Xiy = Vi
q2«,f(xi17 oo Xiys Xy oo Xy Vit “'7yjm)(_R(x17 “-vxk)’xj/ =Vis o1 Xjy = Vi

Note that g, /(R)=q» r(R) iff R satisfies /. Here, g(R) denotes the set of tuples obtained by
evaluating ¢ on R.
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Let f = [i1, ..., 1| <1, -..,Ju] be an ID. Then define the following conjunctive queries:
g1, (X oo, X)) < R(X1, .l X)),
g2, 7 (X5 oo X5,) = R(x1, .o Xk).
Again, note that g; s(R)=q», r(R) iff R satisfies /. Thus, the implication problem for FDs and

inclusion dependencies is a particular instance of the following problem: given p + 1 pairs of
queries (g;,r;),i = 0,1, ..., p, decide whether for every relational instance R:

</\ c]i(R)Eri(R)> = qo(R)Sro(R). (3)

i=lp

We construct an input DTD 7, a QL query ¢, and an output DTD 1, (satisfying the restrictions in
the statement) such that ¢ typechecks with respect to t; and 1, iff Eq. (3) holds for every instance
R. As input DTD we take t; = 15 where tg is as defined in Remark 4.2. The QL query is given in
Fig. 6. Here, each quL and rl-QL is constructed from ¢; and r; as specified in Remark 4.2. The output
DTD 1, is designed to correspond to Eq. (3) and says “either for every i = 0, ..., p, every b; has a
child labeled ¢;, or there exists some i = 1,...,p such that at least one node labeled b; has no
children”. This can be expressed as a DTD with specializations in a straightforward way. Indeed,
define the specialized DTD 1, = (X, 2,7/, u) as follows:

X ={a,by,....by,co,....cp},
and
Y ={a,by,....0% by, ....b co, ..., )}

<5 Dps EREY

Here, b? and b} indicate that b; has no child and one child, respectively. The DTD 7’ consists of the
rules:

=0 >1
o a—(N_y(b})7")v (VI (67,
o WWe bl >l e, 0<i<p.

The mapping u is defined by w(a) =a, for each i€{0,...,p}, u(b?) = u(b!)=>; and
ule)) =¢. O

Similar undecidability results can be shown for slightly different combinations of features,
which highlight rather subtle trade-offs. For example, consider the use of nested queries in QL.
Consider a node n in a QL query, labeled by the rule P(X) < ¢. Suppose the node n has a child n’
labeled with P'(X, Y)«<¢'. The node n’' can be viewed as a nested query, parameterized by

/ | \
bo(X) « ¢ (X) / bp(X) — ¢F4(X)

I |
aX) —rf'TINX =Y  (X) —rLF)AX =Y

Fig. 6. The QL program g of the proof of Theorem 5.1.
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bindings of X inherited from its parent n. The language QL adopts a flexible nesting semantics
whereby a node generated by n may appear in the answer for a given binding of X even if n’ does
not generate any nodes for that binding. This is disallowed in some XML query languages, where
all nodes specified in the query tree must be present in every non-empty answer. We refer
informally to this nesting semantics as ‘‘nesting without optional nodes”, and to the QL nesting
semantics as ‘‘nesting with optional nodes”. Note how the proof of Theorem 5.1 crucially relies on
nesting with optional nodes. One might wonder if this is in fact essential to undecidability. We
next show that it is not: undecidability continues to hold even if optional nodes are disallowed, so
long as tag variables are allowed, and the path expressions in formulas may use disjunctions of
single labels.

We formalize next the variant of QL without optional nodes. For each QL query Q, we define
the query Q” obtained from Q as follows. First, we rename variables so that formulas occurring
in distinct subtrees under the root of Q have disjoint sets of variables. (Recall that the sets of
existential variables of formulas along the same path in the query tree are already disjoint.) Next,
we replace each formula ¢ in a label of a node of Q other than the root by the conjunction of all
formulas occurring in Q. The semantics of O without optional nodes is then defined as the
semantics of O under usual QL semantics. Clearly, the answer to Q” on any given input consists
either of the root alone, or all nodes specified in the query tree are present in the answer. As a
simple example consider the input DTD:

root — a
a — b*.
Consider the QL query O:
root «— true

alX) <« ZakX

|
bX,Y) « XbY

With the usual QL semantics allowing nesting with optional nodes, Q simply copies its input.
Note that a node a is output even if it does not have a b child. The semantics without optional
nodes would only output a node « if it has at least one b child. The query Q” enforcing this is:

root < true
|
a(X)<—ZaX, XbY
|
b(X, Y)<—ZaX, XbY

Clearly, Q" evaluated under usual QL semantics is equivalent to Q evaluated under the no-
optional-nodes semantics.

Note that, by definition, all nodes in Q” other than the root are labeled with the same formula,
say . To avoid repeating ¥ at every node, one could adopt an alternative syntax that separates
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the formula from the query tree, such as

where  construct T

where T is Q" with  dropped from node labels. Thus, node labels specify only the heads of rules,
providing the tag and free variables. Note the similarity with XML-QL syntax using Skolem
functions.

We call a QL program disjunctive if the path expressions in its formulas are of the form a or
a + b where a, b are single symbols. We can show the following.

Theorem 5.2. Typechecking is undecidable for disjunctive QL queries without optional nodes, with
tag variables, without inequality, unordered input DTDs of depth <2, and unordered output DTDs
with specialization.

Proof. We use again a reduction from the implication problem for functional and inclusion
dependencies [5,20]. However, the straightforward construction used in Theorem 5.1 no longer
works, due to the more restricted semantics disallowing optional nodes. Let R be a k-ary relation,
A a set of FDs and IDs over R, and f an additional FD over R. We assume without loss of
generality that all FDs in 4u{f} have singleton right-hand sides. We construct from (4,f ) an
unordered input DTD 7, a disjunctive QL query Q with tag variables and without inequality, and
an unordered specialized output DTD 1, such that A=f iff Q” typechecks with respect to 7; and
75. In fact, the construction of Q will guarantee that Q and Q” are equivalent under QL
semantics. In other words, the usual QL semantics of Q coincides with the more restrictive
semantics disallowing optional nodes.

As before, the input DTD will encode the relation R. However, for technical reasons, the input
also represents explicitly the projections of R on certain subsets of its attributes involved in the
FDs or IDs. The query Q together with the output DTD will allow verifying that these
representations are correct. Let # denote the FDs in AU { f} and .# the IDs in 4. The input DTD
uses the following alphabet:

root, R;1, ... k,

¢1...c where the ¢; are new symbols,
F, for each ce %,

I, J, for each ce./.

and has the following rules:

root — R>1 A /\JE%(FU)>1A/\Uej((lg)>1/\(]a)>l)’

R — 1:1 .../\k:17

4 (i) A A(ly)” ifaisiy...i— i,

I = (i)™ Ao a(i)™ Aler) " A a(en)”', and

Jo = G A AU AT A A(e)T i ois the ID iy ... iy S s
i — g, 1<i<k,

¢ - e 1<i<k
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The additional labels cy, ..., ¢, used in relations associated with IDs are needed for technical
reasons that will become clear later on. The query Q has several subtrees under the root. Their
roots are labeled as follows:

® enc«true
® g« true for each e AU {f}.

In conjunction with Q, the constraints placed by the output DTD 7, on the subtrees rooted at enc
and o (cedu{f}), respectively, will ensure that at least one of the following holds:

e the input does not represent a correct encoding of some non-empty relation R and its
projections;

e some dependency g€ 4 is violated;

e f is satisfied.

This and the equivalence of Q and Q” imply that Q” typechecks with respect to t; and 7, iff
A=f.

We next describe separately the subtrees of Q rooted at enc and each o. The role of the subtree
rooted at enc is to verify whether the input represents a correct encoding of some non-empty
relation R and its projections. We denote by tup(R) the set of tuples of data values of the children
of each node labeled R in the input tree, and similarly for tup(F,) where ce % . If ¢ is an ID
[i1...0| S [J1-..Ju], tup(I;) denotes the set of tuples of data values of the children labeled 7, ..., i, of
each node labeled 7, and tup(J,;) denotes the set of tuples of data values of the children labeled
Jji, ..., jn of each node labeled J,. The following must hold in a correct encoding:

1. For nodes labeled R, F,, I, or J,, the tuples of data values of their children with labels among
1, ...,k are distinct for different nodes.

2. Ifoisan FD ij...i,— iy, tup(F,) = 7, ;, (tup(R)); if o isan ID [i} ...iy| S [ jn...Ju), then tup(l,) =
i, (tup(R)) and tup(J,) = ., (tup(R)).

3.If ¢ is an ID [iy...iy)=[)1...Ju], for each node labeled by I, the tuple of data values of its
children labeled by i ..., equals the tuple of data values of the children labeled ¢;...c,, and
similarly for nodes labeled J,.

Each of (1)-(3) above is tested by a separate subquery sitting under enc. Consider (1). The
subquery ensuring uniqueness of the tuples of data values represented by R is shown in Fig. 7,
where gr(X1, ..., Xi) is the formula

ZiRZ:,Z: 1 X1, ..., 7> k Xp.

Note that R-no-duplicates always has at least one child R for every binding of X. This is
compatible with the semantics without optional nodes. The representation of R contains duplicate

R-no-duplicates(X) «— qr(X)

R(X,Y)—qr(Y),X=Y
Fig. 7. Subquery detecting duplicate tuples.
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tuples iff some node labeled R-no-duplicates has more than one child R. Similar queries are used to
detect duplicate tuples in Fy, I, and J,.

Next, consider (2). Satisfaction of (2) for each F, where ¢ is the FD i ...i, — iy is checked by two
queries: the first, represented in Fig. 8, checks whether tup(F,)<mn;, ., (tup(R)) and the second,
represented in Fig. 9, checks the reverse inclusion. Note that in Fig. 8, each node labeled F,-proj
always has at least one child. The inclusion holds if each node labeled F,-proj has at least one child
labeled R. In Fig. 9 the symmetric observation holds. Checking (2) is done using similar queries
for relations I, and J, when ¢ is an ID.

Consider (3). Let ¢ be an ID [ij...i,|<[/i...ju). The query verifying (3) for 7, is shown in
Fig. 10. Note that (3) is satisfied iff each node labeled I,-copy has precisely 2" children labeled Ry:.
A similar subquery verifies (3) for J,.

The portion of the output DTD used to check whether the input represents a correct encoding
of R and its projections uses the following specialized alphabet:

L4 R, F;;—(O'Eeg;)7 IO—7JO—((TGJ), Rzn;

e (enc),, and (enc),, signifying that the input is (resp. is not), a correct encoding satisfying (1)—(3)
above;

® (y-no-duplicates), and (y-no-duplicates),,, meaning that y satisfies (1) (resp. does not satisfy (1)),
where ye{R}U{F,; |oeF}u{l,,J, |ceI};

® (F,-proj), for FDs o, meaning that the inclusion tup(F;)<m;, ; (tup(R)) required by (2) is
satisfied, (F,-proj), meaning that the inclusion is violated, and similarly for (y-proj), for IDs o,
re{l;, Js}, €40, 1};

® (R-proj),, and (R-proj),, meaning that a converse inclusion to the above is satisfied (resp.
violated);

e for each ID oe.#, (y-copy), and (y-copy),, meaning that (3) is satisfied (resp. violated) for

1€{ls,Js}.

Fy-proj(Xo, ..., Xn) « W F, Y, Y 9 Xo,...,Y in Xn

Z(Xo,..., Xn,Z) «V (R+F,) Z,Z iy Yo,..., Z in Yu, Yo = Xo,...,Ys = Xn

Fig. 8. First subquery checking correct projection encoding.

R-proj(Xy, ..., Xn) — W RY,Y ig Xo,...,Y in Xn

Z(Xo,...,Xn,Z) =V (R+F,) 2,Z io Yo,..., Z in Ya,Yo = Xo,...,Yn = Xn

Fig. 9. Second subquery checking correct projection encoding.

Ip-copy(Z, X1,..., Xn) =W 1, 2,7 i1 Xq,...,2Z ip Xn

I

RQH(Z,Xl,...,Xn,Yl,...,Yn) — 7 (11 +Cl) Yi,...,Z (zn+cn) Yn,l/l ‘—=X1,...,Yn =Xn
Fig. 10. Subquery checking (3) for 1.
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The specialization mapping is the identity on R, F,, I,, J,, Ry, and maps every subscripted
symbol («), to o, for e€{0, 1}. The rules of this portion of the output DTD are as follows:

d (enc)l - lpno-duplicates A l/’projections A wcopies where:

Y o-duplicates = (R-no-duplicates);’ /\ (F,-no-duplicates)3° n
oeF
/\ [(I,-no-duplicates);” A (J,-no-duplicates)3"),

oeS

lpprojections = (R'PVOJ)(TO A /\ (Fﬁ'proj)(?o A /\ [(Iﬁ'proj)ozo A (Ja'proj)OZOL

oeF oeS

lpcopies = /\ [(Iﬂ_copy)(To A (J”_copy)(?o]’
=

(e ) _)ﬁlpno duplicates ¥ 7 projectionsv_‘lpcopies’

(y-no-duplicates), — y~' and

(y-no-duplicates),— y>? for ye{R} U{F,|ceFZ}u{l,;,J,|oce I},
(x-proj); —» R>! and

(x-proj)y— R for ye{F,|ceF}u{l,,J,|oe I},

(Reprof), = Ve s F2'5 Ve (17 1VIZY),

(R-prof)o= Nees Fo' A Noe s U0 A IZ0),
(x-copy), — (R~ for aef 1€{ly,Js},
(

1-copy)o = Viern(Re) ™ for o€ 7, ye {15, 5},
y—e for ye{R,Ru}U{F,|oeZF }u{l,,J,|ceI}.

We next describe the subqueries and portion of the output DTD checking whether each FD or
ID g is satisﬁed by R, assuming that the input is a correct encoding of R and its projections. Let o
be an FD i;...i, —iy. The query used to verify ¢ is shown in Fig. 11. Clearly, ¢ holds in R iff i; .
is a key in n,o_,_,”( ). Assuming that the input represents a correct encoding of R and 1ts
projections, ¢ holds iff the data values of the nodes labeled i;...i, uniquely determine each node
labeled F, in the input. This in turn holds iff each node labeled LHS,-key has exactly one child
labeled F, in the answer to the above query.

o « true

LHS,-key(X1,...,Xp) « W Fy Z, Z i1 X1, ... Z in Xn

F(T(le-",Xn:Y—lv"':Yn)(—VFUY7 Y4 },17 (RS Y i, Yny X = }/17 [AEE] Xn

[
=

Fig. 11. Subquery verifying an FD o.
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o <+ true

I§1~~~Cn(Xl,__.’Xn) — Wi, Z, Zc X1, ... Z ey Xp

Y(X1...,X%,Y) «V(U;+Jn)Y, Y Y, ...,Yen Yy, a0 =Y1, ..., Xy, =Y,
Fig. 12. Subquery verifying an ID ¢.

Let ¢ be an ID [ij...iy|<[J)...ju). Recall that every input representing a correct encoding
satisfies (3) above for each ID ¢. Using this property, ¢ can be checked by the query in Fig. 12.
Clearly, R satisfies ¢ iff each node labeled 7'~ has a node labeled J,.

We next define the portion of the output DTD corresponding to the subtrees of O rooted at ¢
for some FD or ID ¢. The additional symbols in the specialized alphabet are:
® (o), and (0),, meaning that ¢ is satisfied (resp. violated);

e (LHS,-key),, (LHS,-key),, meaning that the left-hand side of an FD ¢ is a key in F, (resp. is
not a key);

® (I¢+) and (I&),, meaning that the projection of /; on ¢; ...c, is included in the projection
of J, on ¢|...c, (resp. is not).

As before, the specialization maps each symbol (), to o,6€{0, 1}. The rules for this portion of
the DTD are:

for each FD o, (9),
(LHS,-key), — (F,)™';
(LHS,-key), — (F,) ™
for each ID &, (), » (1¢+)5° and (a),— (19",
(I2), > (1)

(IC] C") _’<Ja>:O§

Finally, the DTD rule for the root is:

root—»gv(enc)gl v \/ (a)g1 v(f)lzl.

geA

(LHS,-key);" and (0),— (LHS,-key);'

The above states that either the input is empty, or it is not a correct encoding of R and its
projections, or at least one dependency in 4 is not satisfied, or f is satisfied. This ensures that Q
typechecks with respect to 7, and 7, iff A=f. Note that by construction, Q and Q" are
equivalent. [

We conclude the section by considering QL queries with recursion. All the decidability
results of Section 3 assume non-recursive QL queries. We next show that removing this
restriction immediately causes undecidability of typechecking, even with very simple output
DTDs.
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Theorem 5.3. Typechecking is undecidable for QL queries and any output DTD that requires a
nonempty sequence of children under the root.

Proof. We reduce the Post Correspondence Problem (PCP, see. e.g., [14]) to typechecking
a QL query with respect to an output DTD requiring a nonempty sequence of children under the
root. Recall that an instance of PCP is a sequence of pairs (u1,v;), ..., (ux, vi) where u;, v;€ {a,b}".
A solution for the instance is a sequence of indices ij...i,, m>1, such that u; ...u; =v; ...v; . It
is well-known that it is undecidable whether a PCP instance has a solution [14]. We
encode a solution to the PCP as a linear data tree (a single path). For simplicity, we represent
the path as a string where to each position is associated a symbol (the label of the node) and a data
value (the data value of the node). We write such a string as b;(v1)...b,(v;) where the b; are
symbols and the v; data values (which may be omitted). Suppose i ...i, is a solution to the PCP,
and u;, ...u;, = vj,...v;, = ay...a,. The encoding of the solution is a string x$y# where x and y
specify how a; ...a, is parsed as u;, ...u;, , and v;, ...v;, , respectively. For each i, 1<i<n, the string
x contains four consecutive positions w(i)s(j )i;a;, where a; occurs within »; and w and s are
distinct tags. Note that there is an unbounded number of i and j values, so these cannot be
represented as tags and are instead represented as data values of the nodes labeled w and s,
respectively. On the other hand, the number of values of i; and «; is bounded, so these can be
represented as tags. The string y is analogous for v;, ...v; . As an example, consider the instance of
the PCP:

uj up us vp 0 U3

aba aab bb a abab babba

and its solution 1,3,2,1. Note that wjusupu; = viv3v.0; = ababbaababa. The corresponding
encoding is the string (read top-down and left-to-right):

w(D)s(1)la  w(l)s(1)1a
w(2)s(1)1b  w(2)s(2)3b
w(3)s(1)la  w(3)s(2)3a
w(4)s(2)3b  w(4)s(2)3b
w(5)s(2)3b  w(5)s(2)3b
w(6)s(3)2a  w(6)s(2)3a
w(7)s(3)2a  w(7)s(3)2a
w(8)s(3)2b  w(8)s(3)2b
w(9)s(4)la  w(9)s(3)2a
w(10)s(4)1b  w(10)s(3)2b
w(ll)s(4)la w(11)s(4)la
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input DTD 7, we use is the following:

root—w w—s s—1+ - +k
i—»a+b (I<i<k) a-»w+S+#
b-w+S+# S-w #oe

query ¢ is the concatenation of several queries, each of which checks for a violation of the

correct form for the encoding of a solution. Then ¢ typechecks iff every input yields a violation, so
the PCP instance has no solution.

It

is easily seen that a tree satisfying 7; whose corresponding string is of the form

w(ay)s(By)ig,ar...w(ow)s(B,)ig, an$

WS (B i - (,)5(8, )iy

is an encoding of a solution to the PCP iff it satisfies the following properties:

IS

10.
11.

12.

o;#0; and o #o; for all i#j;
o = of;
for each i<n, if o; = o, then i<m and o = o, ;
symmetric to (3) for m and n;
for each i(1<i<n),a; = a;

Note that (1)—(5) imply that n = m,

o =0, 1<i<n,anda;...a, =d,...a
for each fixed f;, the set

/.
no

{i|w(i)s(B;)ip, is a substring}

is an interval [aj,, ;] of the totally ordered set {«;...0,}, and gj, ...q;, = Uiy ;

the property analogous to (6) for ﬁ]'. and viﬁ};

by = ﬁll;

for each iy, ji, if B; = /3]’-1 and there exists some i, >y, such that f8; #f; then there exists some
J2>j1 such that § #p;

symmetric to (9) for 5 and f;;

for each i1,ji, if p;, =p; then B, =p, where i =min{i[i>i, f;#f,} and jr =
min{j [j> 1, B;#p} }:

for each i/, if f; = f; then ig = ig;.

The queries making up ¢ check that at least one of (1)-(12) fails. For conciseness, we
denote queries by expressions of the form ¢ =r;.X|...r,.X,.r,y1 and a conjunction of
(in)equalities among the X; that apply to the data values. Here the r; are regular expressions
over the alphabet ~ = {a,b,$, #,w,s, 1, ..., k}. Given a string a;(v;)...a,(v,), a binding of ¢ is a
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mapping v from {Xi,...,X,} to {l,...,m} such that aj...ayx,)er;, for every
i, 1<i<n, ayx)41...ayx,,)€riy1, and for some v<m,a,x,)i1...a,€r,y1. Additionally, the
specified (in)equalities among the data values must hold. Clearly, such queries can be expressed
by QL queries of the form:

answer|( )

|
WitnCSS(Xl, ,Xn)<—X0 r Xl,Xl ry Xz, ...,Xn Tn+1 Z

To illustrate, consider properties (1)—(4). The queries detecting a violation of (1) are *w.X.
w.Y.x.$, X = Y (recall that (in)equalities apply to the data values) and *.$. x w. X. xw. Y, X = Y.
The query detecting a violation of (2) is w.X.x.$.w.Y, X#Y. Violations of (3) and (4) are
detected by the following queries:

o «w X 23w Y «8. x wXo 2 w. Y, Xi =X, Y1#Y, (for two indexes of equal value
occurring before and after $, their successors are not equal);

o «w. X1. 23 w. Y. 8. % .W.X2.23#, X1 = X, (for two indexes of equal value occurring before
and after §, the first has a successor and the second does not);

o «w. X238« .w.X2.23w. Y5, X1 =X, (for two indexes of equal value occurring before and
after $, the second has a successor and the first does not).

Clearly, (3) and (4) are satisfied iff all queries return the empty answer. The queries used for the
remaining properties are similar. [l

6. Typechecking XML views of relational data

In another paper [1], we considered typechecking of transformations mapping relational data
into XML. We briefly discuss the relation between that work and the typechecking of XML-to-
XML transformations investigated in the present paper.

In [1] we investigate the typechecking problem for a family of query languages TreeQL(.%)
defining mappings from relations to labeled trees. The parameter ¥ is a relational query
language, such as the conjunctive queries, possibly extended with inequalities or negation. The
syntax and semantics of TreeQL () queries are similar to those of QL, where the queries used in
the query tree belong to . The typechecking problem is to verify whether, for given query
geTreeQL(¥), relational constraints X, and output DTD 1, ¢(I)esat(t) for each relational
instance / satisfying 2.

By Remark 4.2, there is an immediate translation from TreeQL(%) queries to QL queries
when the language . is the set of conjunctive queries (CQ). Hence, the typechecking problem
for TreeQL(CQ) queries in the absence of constraints can be reduced to the typechecking
problem for QL queries. We can conclude that, subject to these restrictions, upper bounds from
the present paper carry over to [1] and lower bounds from [1] carry over to the present setting.
Because of this correspondence, Theorems 4.3 and 5.1 carry over from [1], and Theorem 3.6
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carries over from the present paper to [1]. The proofs of Theorems 4.3 and 5.1 are adapted to
the QL formalism and provided here for the convenience of the reader and to make the paper
self-contained.

Beyond the restricted connection just described, the ability to transfer results between [1] and
the present framework is limited by the significant differences between the two settings. In [1] we
show that typechecking still remains in CO-NEXPTIME when negation is added to CQ, with
integrity constraints specified by FO(3*V*) formulas, that is, first-order logic formulas of the form
Ixy...3x, VY.V where ¢ is quantifier-free. We also obtain a matching lower bound.
However, negation seems to be required so the lower bound does not transfer to the present
formalism. We did not consider negation in this paper as it is not present in XML transformation
languages while it is a well-accepted extension of conjunctive queries in the relational setting. In
[1], we also consider virtual nodes and more expressive DTDs.

Conversely, the full typechecking problem considered here is not reducible to the setting
in [1]. For example, input DTDs cannot be expressed by the relational constraints con-
sidered in [1]. Furthermore, the language QL cannot be simulated in the languages TreeQL (%)
studied in [1], due to the presence of recursion in the form of regular expressions used in QL
queries.

7. Conclusions

The main contribution of the present paper is to shed light on the feasibility of typechecking
XML queries that make use of data values in XML documents. The results trace a fairly tight
boundary of decidability of typechecking. In a nutshell, they show that typechecking is decidable
for XML-QL-like queries without recursion in path expressions, and output DTDs without
specialization. As soon as recursion or specialization are added, typechecking becomes
undecidable.

The decidability results highlight subtle trade-offs between the query language and the output
DTDs: decidability is shown for increasingly powerful output DTDs ranging from unordered
and star-free to regular, coupled with increasingly restricted versions of the query language.
Showing decidability is done in all cases by proving a bound on the size of counterexamples that
need to be checked. The technical machinery required becomes quite intricate in the case of
regular output DTDs and involves a combinatorial argument based on Ramsey’s Theorem. For
the decidable cases we also consider the complexity of typechecking and show several lower and
upper bounds.

The undecidability results show that specialization in output DTDs or recursion in queries
render typechecking infeasible. If output DTDs use specialization, typechecking becomes
undecidable even under very stringent assumptions on the queries and DTDs. Similarly, if
queries can use recursive path expressions, typechecking becomes undecidable even for very
simple output DTDs without specialization.

Several questions are left for future work. We showed decidability of typechecking for regular
output DTDs and queries restricted to be projection free. It is open whether the latter restriction
can be removed. With regard to complexity, closing the remaining gaps between lower and upper
bounds remains open.
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Beyond the immediate focus on typechecking, we believe that the results of the paper provide
considerable insight into XML query languages, DTD-like typing mechanisms for XML, and the
subtle interplay between them.
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