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Abstract

We investigate the typechecking problem for XML queries: statically verifying that every answer to a
query conforms to a given output DTD, for inputs satisfying a given input DTD. This problem had been
studied by a subset of the authors in a simplified framework that captured the structure of XML documents
but ignored data values. We revisit here the typechecking problem in the more realistic case when data
values are present in documents and tested by queries. In this extended framework, typechecking quickly
becomes undecidable. However, it remains decidable for large classes of queries and DTDs of practical
interest. The main contribution of the present paper is to trace a fairly tight boundary of decidability for
typechecking with data values. The complexity of typechecking in the decidable cases is also considered.
r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Databases play a crucial role in new Internet applications ranging from electronic commerce to
Web site management to digital government. Such applications have redefined the technological
boundaries of the area. The emergence of the Extended Markup Language (XML) as the likely
standard for representing and exchanging data on the Web has confirmed the central role of
semistructured data but has also redefined some of the ground rules. Perhaps the most important
is that XML marks the ‘‘return of the schema’’ (albeit loose and flexible) in semistructured data, in
the form of its Document Type Definitions (DTDs), or XML Schemas, which constrain valid
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XML documents. The benefits of schemas are numerous. Some are analogous to those derived
from schema information in relational query processing. Perhaps most importantly to the context
of the Web, schemas can be used to validate data exchange. In a typical scenario, a user
community would agree on a common schema and on producing only XML documents which are
valid with respect to the specified schema. This raises the issue of (static) typechecking: verifying at
compile time that every XML document which is the result of a specified query applied to a valid
input document, satisfies the output schema.
The typechecking problem takes as input a query and two schemes (or types), one for the input

XML documents and one for the output XML documents generated by the query. The goal is to
verify whether all the XML documents generated by the query, when applied to documents that
conforms to the input type, conform to the output type. In practice, the typechecker is a program
module that analyses the query and either accepts or rejects it. One approach to typechecking is
type inference, a technique derived from functional programming languages and first adapted to
XML by XDuce [15,16]. Murata also addresses the type inference problem for transformations
expressed with certain tree automata [21]. Given program (and possibly an input type), the type
inference system constructs a most general output type for that program in a bottom up fashion.
Typechecking can then be performed by checking that the inferred type is a subset of the given
output type. This approach is quite appealing in practice because typechecking is easy to
implement and is extendible to a large class of query languages; for example XQuery uses this
approach [11].
However, we showed in a previous paper [19] that any type inference system is incomplete, i.e. it

cannot compute the most general output type and, as a consequence, the resulting typechecking
algorithm may reject some queries that are correct. In practice this is a serious limitation for XML
typecheckers, forcing users to turn the typechecker off (when this is an option), or to rewrite the
query in non-obvious ways, in an attempt to overcome the typecheckers limitations. The second
approach to typechecking, which we advocated in [19], is to design specific techniques that are
complete for a given query language. We considered a particular class of tree transformations that
can be expressed by so-called k-pebble transducer, which we showed to be powerful enough to
subsume the tree manipulation core of practical XML query languages, including recursive
traversals like in XSLT [7], and described a method for typechecking all transformations in this
class. The technique, however, is specific only to the particular language considered, i.e. the class
of transformations expressed by k-pebble transducers, and does not extend in obvious ways to
other languages. The main limitation of k-pebble transducers is that they do not allow joins
between data values, which is a feature found in most query languages. We showed in [19] that
type checking becomes undecidable if k-pebble transducers are extended with joins between data
values. However, this negative result is not worrisome in itself, because class of transformations
defined by k-pebble transducers with joins is more powerful than what is needed in practice. Thus,
the results in [19] leave unexplored a large class of queries of significant practical interest: queries
that can express joins by comparing data values, but do less powerful tree restructurings than k-
pebble transducers. This class is precisely where practical declarative query languages lie (XML-
QL [9], XQuery [4]) and deserves a thorough investigation.
The present paper investigates typechecking of queries with comparisons of data values. We

focus on declarative query languages in the style of XML-QL and XQuery and various fragments
thereof, with path expressions containing regular expressions, but without recursive functions,
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and on types consisting of various extensions and restrictions of DTDs. Our findings are mostly
negative: typechecking is undecidable for most practical purposes, but we also find a number of
cases where typechecking is decidable. The main contribution is to trace the boundary of
decidability of the typechecking problem in the presence of data values, for various combinations
of query languages and types. On the decidability side, we show that typechecking is decidable for
queries with non-recursive path expressions, arbitrary input DTD, and output DTD specifying
conditions on the number of children of nodes with a given label. We are able to extend this to
DTDs using star-free regular expressions, and then full regular expressions, by increasingly
restricting the query language. We also establish lower and upper complexity bounds for our
typechecking algorithms. The upper bounds range from pspace to non-elementary, but it is open
if these are tight. The lower bounds range from co-np to pspace. On the undecidability side, we
show that typechecking becomes undecidable as soon as the main decidable cases are extended
even slightly. We mainly consider extensions with recursive path expressions in queries, or with
type specialization in DTDs (also known as decoupled tags). This traces a fairly tight boundary
for the decidability of typechecking with data values.

Related work. Typechecking XML transformations is an important research problem that has
been quite intensively investigated lately. In our prior work [19] we showed that typechecking is
decidable for a certain class of transformations. That class is incomparable with the class of
transformations discussed here, since it only applies to trees without data values, but on such trees
they are more powerful than the XML-QL-style transformations we consider here. Type inference
for a more restricted class of XML transformations is considered in [25]. The approach taken
there is to extend the types from regular path expressions to context-free grammars to be able to
express certain inferred types.
Typechecking XML views of relational databases is considered in [1]. Although the basic

framework is quite different from the present paper, this problem is related to the one investigated
here. Indeed, some upper bound results from the present papers transfer to [1] and some lower
bound results from [1] transfer to the present paper. The relationship between the two papers is
discussed in more detail in Section 6.
The type inference approach to typechecking XML transformations has first been introduced

by XDuce [15,16]. XDuce is a general-purpose functional language in the style of ML [17], whose
types are essentially DTDs with specialization. Recursive functions can be defined over XML data
by pattern matching against regular expressions. XDuce performs static typechecking for these
functions, verifying that the output of a function will always be of the claimed output type.
However, as we showed in [19], the typechecking algorithm is only sound, not complete: one can
write in XDuce a function that always returns results of the required output type, but that the
typechecker rejects. While this is expected in a general-purpose language that can express non-
terminating functions, in the case of XML the typechecker fails even on simple functions that are
expressible in, say, join-free XML-QL, and for which we know already that typechecking is
decidable [19]. The goal in XDuce however differs from ours: XDuce focuses on making the
typechecker practical, both for the application writer and for the language implementer, while our
work is meant to study the theoretical limits of typechecking.
Yet another approach to typechecking is taken by YAT [6,8]. This system for semistructured

data has an original type system, based on unordered types. YATL (the query language in YAT,
combining datalog with Skolem functions) admits type inference.

N. Alon et al. / Journal of Computer and System Sciences 66 (2003) 688–727690



Type inference for the variables occurring in a query has been considered in [18]. We are given a
declarative query and are asked to find all possible types of the variable assignments: the query’s
output type is not considered in this problem. This is a different and more limited problem than
XDuce’s type inference. The analysis in [18] shows that the complexity of this problem ranges
from ptime to np-complete for various combinations of query languages and output types.
XML types are usually abstracted as regular tree languages: in both XML type formalisms used

in practice, DTDs and XML-Schema a type is a regular tree language, but none of these
formalisms can express all regular tree languages. Regular tree languages have been traditionally
considered for ranked trees [28]. Several techniques for extending them to unranked trees have
been proposed in the literature: by using unranked automata [2] as specialized DTDs [25] by
encoding unranked trees as binary trees [19] and with hedge automata [22]. These formalisms turn
out to be equivalent, i.e. they all define the same class of unranked regular tree languages. In this
paper we use specialized DTDs [25].

Organization. The paper is organized as follows. The first section develops the basic framework,
including our abstractions of XML documents and DTDs, and our query language formalism.
Sections 3 and 4 present the decidability and complexity results, respectively, and Section 5 the
undecidability results. Section 6 discusses technical connections between [1] and the present paper.
Finally, the paper ends with brief conclusions.

2. Basic framework

We introduce here the basic formalism used throughout the paper, including our abstractions of
XML documents, DTDs, and queries.

Data trees. Data trees are our abstraction of XML documents. They capture the nesting
structure of XML elements, their tags, and data values associated with them. We fix an infinite set
of data values denoted by D: A data tree over finite alphabet S is a triple T ¼ /t; label; valS
where t is a finite ordered tree, label is a mapping from the nodes of t to S; and val is a mapping
from the nodes of t to D: Given a tree T ; we denote its set of nodes by nodesðTÞ and its root by
rootðTÞ: Since the tree is ordered, we can define a unique depth-first traversal on its nodes, and
denote with o the resulting total order on nodesðTÞ; in particular, if x is an ancestor of y then
xoy:We refer to elements in S assigned by label as tags of T and to elements in D assigned by val
as data values of T : Note that we do not restrict the number of children of any given node, so data
trees are unranked. When modeling XML trees only leaf nodes make sense to carry data values,
and we will simply ignore all the other values. We denote the set of data trees over S byTS;D: The
set of finite labeled ordered trees over S (without data values) is denoted by TS: For each
TATS;D; we denote with sðTÞATS its structure, i.e. the tree obtained by dropping all data value

labels. We will often write T instead of sðTÞ when no confusion arises. We sometimes denote a
tree with root t and sequence of subtrees T1;y;Tn by rðT1;y;Tn).

Types and DTDs. As usual, we define XML types in terms of the tree structure alone, and
ignore data values: an XML type, T; is a set of trees TDTS: Each typeT also defines a set of

trees with data values, namely s�1ðTÞ ¼ fT j sðTÞATg; and we will often write T instead of

s�1ðTÞ when no confusion arises. We discuss in the sequel various specification methods for XML
types that we consider in this paper.
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The basic specification method is (an abstraction of ) DTDs. A DTD consists of an extended
context-free grammar over alphabet S (we make no distinction between terminal and non-
terminal symbols). In an extended cfg, the right-hand sides of productions are regular
expressions over the terminals and non-terminals. A data tree /t; label; valS over S satisfies a
DTD D if the tree /t; labelS is a derivation tree of the grammar. For example, the tree

is valid with respect to the DTD: a-b�:c:e; b-e; c-d�; d-e; e-e:
The set of data trees satisfying a DTD t is denoted by instðtÞ: Strictly speaking, this is a set of

trees without data values (i.e. a subset ofTS) but, as we discussed, we can view it as a set of trees
with data values (i.e. a subset of TS;D).

Usual DTDs use regular languages to describe the allowed sequences of children of a node.
However, weaker specification mechanisms are sufficient in many applications. We consider
throughout the paper several such alternative mechanisms, each yielding a restricted kind of
DTD. To understand the rationale behind the restrictions, it is useful to consider a logic-based
point of view. First, note that strings over alphabet S can be viewed as logical structures over the
vocabulary fo; ðOsÞsASg where o is a binary relation and every Os is a unary relation. A string

w ¼ a1yan is represented by the logical structure ðf1;y; ng;o; ðOsÞsASÞ whereo is the natural

order on f1;y; ng; and for each i; iAOs iff ai ¼ s: It is well-known that regular languages are
exactly those definable by Monadic Second-Order (MSO) logic on the logical vocabulary of
strings [3,10]. MSO is first-order logic augmented with quantification over sets. However, this is
much more powerful than needed by most DTDs. In many cases, the required properties of valid
strings can be expressed simply in First-Order logic (FO). This corresponds to a well-known
subset of the regular languages, called star-free [28]. There is a language-theoretic characterization
of star-free languages: they are precisely described by the star-free regular expressions, which are

built from single symbols, |; and e using concatenation, union, and complement. We call DTDs
using only star-free regular expressions star-free DTDs, and we refer to unrestricted DTDs as
regular DTDs.
We will consider an even simpler class of DTDs, which specify cardinality constraints on the

tags of children of a node, but does not restrict their order. Such DTDs are useful either when
order is irrelevant, or when the order of tags in the output is hard-wired by the syntax of the query
and so can be factored out. We use a logic called SL; inspired by [23]. The syntax of the language

is as follows. For every aAS and natural number i; a¼i and aXi are atomic SL formulas. Every
atomic formula is a formula, and the negation, conjunction, and disjunction of formulas are also

formulas. For conciseness, we denote by e the formula
V

aAS a¼0: A word w over S satisfies an

atomic formula a¼i if it has exactly i occurrences of a; and similarly for aXi: Satisfaction of
Boolean combination of atomic formulas is defined in the obvious way. As an example, consider
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the SL formula

co-producerX1-producerX1:

This expresses the constraint that a co-producer can only occur when a producer occurs. One can
check that languages expressed in SL correspond precisely to properties of structures over the
vocabulary fo; ðOsÞsASg that can be expressed in FO without using the order relation,o: Thus,
SL forms a natural subclass of star-free regular expressions. We refer to DTDs using the language
SL as unordered DTDs.
We have so far defined DTDs and several restrictions. We next consider an orthogonal

extension of basic DTDs, also present in more recent DTD proposals such as XML-Schema. This
is motivated by a limitation of basic DTDs: their definition of the type of a given tag depends only
on the tag itself and not on the context in which it occurs. For example, this means that the
singleton fTg where T is the tree aðbðcÞ; bðdÞÞ cannot be described by a DTD, because the ‘‘type’’
of the first b differs from that of the second b: Of course, T has a DTD (in fact, several), but none
defines precisely the set fTg: This naturally leads to an extension of DTDs with specialization
(also called decoupled types) which, intuitively, allows defining the type of a tag by several ‘‘cases’’
depending on the context. Formally, we have:

Definition 2.1. A specialized DTD over S is a tuple t ¼ ðS;S0; t0;m0Þ where
* S and S0 are finite alphabets;
* t0 is a DTD over S0; and
* m is a mapping from S0 to S:

A tree T over S satisfies a specialized DTD t; if TAmðinstðt0ÞÞ:

Intuitively, S0 provides for some a’s in S a set of specializations of a; namely those a0AS0 for
which mða0Þ ¼ a:We also denote by m the homomorphism induced on strings and trees by m: It has
been shown [2,25] that specialized DTDs are precisely equivalent to regular tree automata over
unranked trees defined in [2], which in turn are equivalent to hedge automata [22]. This is more
evidence that specialized DTDs (and the other formalisms) are a robust and natural specification
mechanism. We will consider specialization in conjunction with regular DTDs, star-free DTDs,
and unordered DTDs.

The query language QL. A query in the language QL defines a functionTS;D-TS: That is, the
function takes as input a tree with data values, since we want to allow this function to compare
different data values for equality, and returns a tree without data values, since our discussion is
restricted to studying the type of the output tree. To make such a formalism practical, one needs
to extend it to include data values in the output tree: this is orthogonal to our discussion on
typechecking and we do not consider such an extension here.
A query Q in QL consists of a tree template in which each node is labeled with a tag and a

formula: QATTag
L: A tag is either a symbol in S or a variable from a fixed a set of variables,

Var: that is, Tag ¼ S,Var: First, we define a set of formulas, L: Then we define QL formally.
Formulas in L will be interpreted over the input tree to the query, TATS;D: There are two

kinds of atomic formulas: path expressions and comparisons. A path expression is of the form
c ¼ X R Y ; where X ;YAVar and R is a regular expression over S: Such expressions are
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interpreted as follows: c is true in T if there exists a path from node X to node Y whose sequence
of labels (excluding the first node and including the last node) on that path belongs to R: A
comparison formula is of the form c ¼ X op V where XAVar; opAf¼;ag; and VAVar,D:
Comparison formulas are interpreted as follows: c is true in T if X ’s data value is equal (not
equal) to V ’s data value. Further, formulas inL are conjunctive formulas over atomic formulas.
More precisely, jAL is an expression of the form

j ¼ (Y1y(Ykðc14?4cmÞ: ð1Þ
The variables Y1;y;Yk are called existential, or bound variables. All other variables are called
free variables. We denote the set of free variables with freeðjÞ: As usual, existential variables
correspond to projections, and we say that a formula j is projection-free when it has no existential
variables. When we consider several formulas j1;j2;y; we always assume that they have disjoint
sets of existential variables (otherwise we rename these variables).
We often write a formula as a datalog rule, by dropping the existential quantifiers and instead

listing the free variables in the rule’s head. That is, j in (1) can be written as

PðX1;y;XnÞ : �c1;y;cm; ð2Þ
where P is some identifier, and freeðjÞ ¼ fX1;y;Xng:
We can now formally define the language QL:

Definition 2.2. A query Q in QL is a tree QATTag
L such that the following conditions hold. We

denote with tagðvÞ and fv the tag and the formula associated to a node v; respectively:

* For any two nodes v; v0 if v is an ancestor of v0 then freeðfvÞDfreeðfv0 Þ:
* If r is the root node, then fr � true and freeðfrÞ ¼ |:
* If tagðvÞAVar then tagðvÞAfreeðfvÞ:

A query is called projection-free if all its formulas are projection-free.

Example 2.3. Fig. 1 illustrates a query in QL: Here Q is a tree where each node is labeled with a

rule labelð %XÞ’c1;y;cn: Here, labelATag and c1;y;cn is datalog rule with free variables %X:
We refer to the nodes with labels root, title; actor, V ; AllensReviews, and reviews as v0; v1;y; v5;
respectively. Where the datalog rule is missing it is assumed to be true. All path expressions
occurring in datalog rules are very simple and consist of a single tag (e.g. movie, director, etc.),

Fig. 1. The Woody Allen query.
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with the exception of which is the wildcard (a convenient abbreviation meaning any tag). This
query is not projection-free, since several formulas have existential variables.
Next, we define next the query’s semantics, for which we first need some notation. Let T be

some input tree in TS;D: If VDVar is a set of variables, then a V-substitution (or V -binding)

is a mapping y :V-nodesðTÞ: We fix a distinguished variable X0AVar which we always
interpret as the root, yðX0Þ ¼ rootðTÞ: Recall that nodesðTÞ is totally ordered by a depth-first
traversal. We extend this order to a lexicographic order on V -substitutions (for this we fix a total

order on Var). If V 0+V and y0 is a V 0-substitution then we say that y0 extends y if yðXÞ ¼ y0ðXÞ
for all XAV : Finally, if v is a node in some query QAQL; and rootðQÞ ¼ v0; v1;y; vn�1; vn ¼ v is
the path from the root to v; then we denote by Fv ¼ fv0

4fv1
4?4fvn

; the conjunction of all

formulas labeling v’s ancestors, including v: Clearly, freeðfvÞ ¼ freeðFvÞ: Now we can define Q’s
semantics:

Definition 2.4. Given a query QAQL and a tree TATS;D; the output QðTÞ is a tree T 0ATS

defined as follows:

* nodesðT 0Þ consists of all pairs ðv; yÞ such that vAnodesðQÞ; y : freeðfvÞ-nodesðTÞ; and
TFFv½y;

* nodesðT 0Þ are ordered by the relation ðv; yÞoðv0; y0Þ if vov0 or v ¼ v0 and yoy0: Here vov0

denotes the node ordering in Q; while yoy0 is the lexicographic order discussed above;
* edgesðT 0Þ ¼ fððv; yÞ; ðv0; y0ÞÞ j ðv; v0ÞAedgesðQÞ; y0 extends yg; and,
* if tagðvÞAS; then labelðv; yÞ ¼ tagðvÞ; if tagðvÞAVar; then labelðv; yÞ ¼ labelðyðvÞÞ:

Example 2.5. Continuing Example 2.3, assume that the input tree, T ; is an XML document
holding information about movies (titles, directors, actors, and possibly reviews), described by the
(partial) DTD:

root-movie�; movie-title:director:review�;

title-actor�; actor-name:S�;

director-e; review-e:

The query in Fig. 1 collects W. Alien’s movie titles, their actors (grouped under title), all
available information about each actor (grouped under the actor with the same tags as
in the input), and their reviews, if any. The output tree has a single root node, labeled root,
with several children labeled title: there will be one such child for every value X2 satisfying the
formula:

Fv1ðX2Þ : �X0 movie X1;X1 title X2;X1 director X3;X3 ¼ ‘‘W :Allen’’:

Intuitively there is one title in the output for each movie directed by ‘‘W.Allen’’. Each corresponds
to a unique value of X2 and has several actor children, one for each binding of U satisfying the
formula:

Fv2ðX2;UÞ : �Fv1ðX2Þ;X2 actor U :

In addition each title node has exactly one child labeled AllensReviews, because Fv4 ¼ Fv1 :
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For each actor node there will be a number of children, one for each binding of V satisfying the
formula:

Fv3ðX2;U ;VÞ : �Fv2ðX2Þ;U V :

The tag of that node will be the same as V ’s tag. Recall that denotes here the regular expression
which matches any tag, i.e. V is simply bound to all U ’s children, in effect copying all actors’
children from the input tree to the output tree.
Finally, nodes of type AllensReviews will have several children labeled reviews, one for each

binding of Y2 satisfying the formula:

Fv5ðX2;Y2Þ : �Fv4ðX2Þ; Y1 title X2;Y1 review Y2:

The intention here is for Y2 to collect all reviews of X2’s parent. We already bound X1 to X2’s
parent in the formula jv1

; but the variable X1 is not free making it inaccessible for fv5
: Hence we

use a new variable Y1 to be bound to X2’s parent. Since we interpret such queries only over trees,
Y1 will be bound to the same node as X1:

QL can express a large subset of the queries expressible in XML-QL [9] and XQuery [4],
although the latter have block structure while QL does not. For example the query in Example 2.5
can be expressed equivalently in XQuery [4] as:

/rootS
f for $X2 in =movie=title½director ¼ ‘‘W:Allen’’

return/titleS
f for $U in $X2=actor

return/actorS
f for $V in $U=�

returnfelementf$Vgfgg
g

/=actorS
g
/AllensReviewsS

f for $Y2 in $X2=::=review
return/reviews=S

g
/=AllensReviewsS
/=titleS

g
/=rootS

Notice how the block structure in XQuery can be expressed in QL by a judicious use of free
variables. QL can express that way a rather large fragment of XQuery.
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Remark. As already mentioned, our definition does not address how data values are to be
included in the output tree. For instance, in Example 2.5 it would make sense to extract the actual
values of titles, text of reviews, etc. There are many ways to specify this, but the issue is irrelevant
to our investigation since we only study the type of the output tree and the DTDs we consider do
not restrict data values. Our framework can be augmented with any mechanism for producing
data values in the output without affecting our typechecking results.

The typechecking problem. Given an input DTD t1; an output DTD t2 (possibly specialized)
and a query q; we say that q typechecks (with respect to t1 and t2) iff qðinstðt1ÞÞDinstðt2Þ:We will
show in Section 5 that typechecking for the full QL and unrestricted regular DTDs is undecidable.
Therefore, we are led to consider restricted decidable cases.

3. Decidability results

We present in this section our decidability results on typechecking QL queries, under various
restrictions on QL and output DTDs. There are three main decidability results, involving
increasingly restricted fragments of QL and increasingly powerful output DTDs:

1. non-recursive QL (QL where path expressions define finite languages), and unordered output
DTDs;

2. non-recursive QL without tag variables and star-free output DTDs;
3. non-recursive, ‘‘projection-less’’ QL without tag variables, and regular output DTDs. We will
formally define projection-less queries later on. For now, recall that a projection-free query is
one with no existential variables. A ‘‘projection-less’’ query is one that is equivalent, under a
given input DTD, to its projection-free variant obtained by dropping all the existential
quantifiers.

The above results highlight an interesting trade-off between the query language and the DTDs.
The undecidability results of Section 5 show that our decidability results are quite tight.
All three results are proven using the following idea. If there exists some input tree T such that

QðTÞ does not conform to the required output type, then there exists a subtree T0DT whose size
is bounded by a function that depends only on Q and the input and output types, such that QðT0Þ
also fails to conform to the output type. Hence, in order to typecheck Q it suffices to compute
QðT0Þ for all trees T0 up to a given size, and check that each result conforms to the output type.
Before giving the formal proofs, we illustrate the basic intuition on the following simple
example.

Example 3.1. Consider the query Q in Fig. 2. The nodes with labels a; b; c; d; and e are referred
to as v0;y; v4; respectively. Assume that we need to typecheck Q against the following output
DTD:

a ::¼ b�
b ::¼ c�
c ::¼ ðd; d; d; d�; ðe; e?Þ?Þ:
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The DTD requires a c element to have at least three d children and at most two e children.
Suppose QðTÞ fails to conform to this DTD. Assume there is a node u labeled c in QðTÞ that
violates the output DTD. There are two cases: either u has two or fewer d children, or u has three
or more e children. In both cases we start by finding a subtree T0DT such that u is also in QðT0Þ:
Since u is witnessed by a substitution y : fX ;Yg-nodesðTÞ we only need two nodes in T to make
this substitution possible; we also need some extra nodes in T to serve as witnesses for the
existential variables in Fv2 ¼ fv2

4fv1
(namely one node for each existential variable in

boundðFv2 )); and we need all ancestors of these nodes to ensure that T0 is a tree. The number
of nodes in T0 is at most ðjq1j þ jq2jÞ 
 heightðTÞ: In the first case, when u has two or fewer d
children in QðTÞ; then we argue that u has also two or fewer d-children in QðT0Þ (it cannot have
more than in QðTÞÞ; hence QðT0Þ violates the output DTD. In the second case, when u has three
or more e children, then we choose arbitrarily three such children, u1; u2; u3: They are witnessed by
three different extensions of y to the variable U ; hence we only need 3 jq4j nodes in T to allow
these three nodes to be constructed: by adding these and all their ancestors to T0; we ensure that u

still has the three children u1; u2; u3 in QðT0Þ; i.e. QðT0Þ also violates the output DTD, and its size
ispðjq1j þ jq2j þ 3jq4jÞheightðTÞ: Except for the factor heightðTÞ everything else depends only on
the query and the output DTD (the number 3 was derived from the output DTD). Finally we
explain how to reduce the heightðTÞ factor. Consider the input DTD. If it is not recursive, then
heightðTÞ is also bound. Otherwise we use a form of a pumping lemma applied to the input DTD
and all paths expressions in q1; q2; q3; q4 to argue that we can bound the height of T0: In all cases
some additional elements may need to be added to T0 to make it conform to the input DTD. At
the end we obtain a tree T0 with a bounded size, such that QðT0Þ does not conform to the output
DTD.
The example only illustrates the basic intuition. Rigorous proofs differ for each special case we

consider, and are provided in the remainder of the section.
Our first result concerns non-recursive QL and unordered output DTDs. The size of a query q;

denoted by jqj; and of a DTD t; denoted by jtj; is simply the number of characters in their
definition.

Theorem 3.2. The typechecking problem for non-recursive QL queries, regular input DTDs, and

unordered output DTDs is decidable in co-nexptime.

Proof. Let q be a non-recursive QL query, t1 a regular input DTD, and t2 an unordered output
DTD. Suppose TAinstðt1Þ and qðTÞeinstðt2Þ:We show that there exists T0Ainstðt1Þ with at most

Fig. 2. A query for Example 3.1.
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exponentially many nodes (with respect to jqj; jt1j; jt2jÞ; and qðT0Þeinstðt2Þ:We construct T0 from
T as follows. Since qðTÞ violates t2; there exists a path n1ynk from the root of qðTÞ to a node nk

with tag aAS such that the sequence w of the children of nk violates the SL formula ja specified
by t2: Thus, w satisfies :ja: Clearly, :ja can be written as

W
l Cl where each Cl is of the form

a�1i11 4?4a�hih
h where the aj are distinct symbols in S; �jAfX;¼g and each ij is an integer bounded

by the maximum integer occurring in ja: Since w satisfies :ja; it satisfies at least one Cl ; say

a�1i11 4?4a�hih
h : Let v1yvn be a (not necessarily continuous) subsequence of w that satisfies

C¼
l ¼ a¼i1

1 4?4a¼ih
h : Let varðqÞ denote the set of all variables in all formulas in q; both bound and

free variables. Each node on the path n1ynk from root to nk; and among the nodes v1yvn

mentioned above, was constructed due to some binding of a subset of varðqÞ: Let B consist of the
set of nodes of T in the images of these bindings, or on some path from the root of T to such a

node. Note that jBjpjqj2ðjqj þ jt2j jSjÞ: This is because kpjqj and npjt2j jSj; the number of nodes
in each binding ispjqj; and the number of nodes from root to each node in a binding is bounded
by jqj: The inequality npjt2j jSj assumes the integers in t2 are written in unary.
We will use the following observation. Let T 0 be any tree whose restriction to depth up to jqj is a

subtree of T ; and that contains all nodes in B: Note that qðT 0Þ still contains the node nk and its
children v1yvn; since all the bindings in T that contributed to the creation of nk in qðTÞ still exist
in T 0: Thus, the sequence v of children of nk in qðT 0Þ satisfies aXi1

1 4?4aXih
h : Furthermore, if �j is

equality, then v satisfies a
¼ij
j ; since every binding of q in T 0 is also a binding of q in T ; and the

sequence of children of nk in qðTÞ satisfies a
¼ij
j : It follows that v satisfies Cl and so qðT 0Þ violates t2:

Let T0 be a minimal tree whose restriction to depth up to jqj is a subtree of T ; that contains all
nodes in B; and that satisfies t1: Since T0 satisfies the property just described, qðT0Þ violates t2: An
upper bound on the number of nodes in T0 is found as follows. For each node n in T0; consider the
sequence of its children written as u1b1u2ybmumþ1 where biAB; 1pipm; and uj contains no nodes

in B; 1pjpm þ 1: Since T0 is minimal, the size of each uj is bounded by jt1j (more precisely by the
number of states in the automaton for the regular language describing the allowed sequences of
children of n in t1). Thus, the number of children of any node in T0 is bounded by ½jBj þ ðjBj þ
1Þjt1j: Since nodes in B occur in T at depth at most jqj; the number of nodes of T0 at depth up to

jqj is bounded by ½jBj þ ðjBj þ 1Þjt1jjqj: Finally, observe that paths of T0 whose nodes are at depth
larger than jqj contain no paths with repeated labels in S (otherwise we could pump down T0 thus
contradicting its minimality). Thus, the number of nodes at depth4jqj is bounded by the

maximum number of nodes at depth pjqj times jt1jjSj: This yields a total bound of ½jBj þ ðjBj þ
1Þjt1jjqj 
 ð1þ jt1jjSjÞ for the size of T0:

Hence, our procedure testing that q does not typecheck with respect to input DTD t1 and
output DTD t2 simply consists of guessing a T0 of exponential size and then verifying whether (1)
T0 satisfies t1; and (2) qðT0Þ violates t2: Both (1) and (2) can be tested in exponential time. Indeed,
let N be the size of the input. Then (1) can be checked in time linear in T0 and N; which is
exponential in N: just check for every node that its sequence of children matches the specified

regular expression. For testing (2), we first construct the output tree. As there are at most jT0jN
possible bindings, this takes time at most exponential in N: Next, we transform each SL formula
in DNF, which can be done in time exponential in N and which can result in formulas that are at
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most of exponential size. So in the worst case, we have to check for an exponential number of
nodes, an exponential number of disjuncts. &

Our second decidability result, corresponding to (2) in our earlier discussion, further restricts
the QL queries but extends the output DTDs.

Theorem 3.3. The typechecking problem for non-recursive QL queries without tag variables, with
regular input DTDs, and star-free output DTDs, is decidable in co-nexptime.

Proof. The proof is by reduction to the case when the output DTD is unordered, for which we can
use Theorem 3.2. The key observation is the following:

(w) if r is a star-free regular expression and a1;y; an are distinct symbols in S; then there exists an
SL sentence jr using integers whose value is bounded by jrj and computable in exptime from
r and a1;y; ak; such that

r-a�
1ya�

k ¼ LðjrÞ-a�1ya�k:

The proof of ðwÞ; is by induction on the structure of r:We provide it for completeness at the end
of the current proof.
Now consider a non-recursive QL query q without tag variables and a star-free output DTD t2:

Suppose first that

ð�Þ all siblings nodes in q have distinct tags

(we eliminate this restriction below). Since q has no tag variables, all sequences of sibling nodes in
answers to q are of the form a�1ya�k for distinct aiAS: From ðwÞ it follows that q typechecks with

respect to t2 iff it typechecks with respect to t02 for an unordered DTD t02 computable in exptime

from t2: The decidability and co-nexptime upper bound then follow from Theorem 3.2. The fact
that t02 is exponential in t2 is not a problem since the size of the integers used in t02 is only linear in
the size of t2; and the size of the counterexample in the proof of Theorem 3.2 is exponential only
in jqj; jt1j; and the integers occurring in the SL formulas in t2:
Suppose now that q violates ð�Þ: We construct from q a query %q by replacing in q all tags

a1;y; ak by distinct b1;y; bk; and we use the following variant of ðwÞ:

ðzÞ Let ai; biAS; iA½1; k; where the bi are distinct, and let h be the homomorphism mapping bi to
ai: If r is a star-free regular expression then there exists an SL sentence jr; using integers
whose value is bounded by jrj and computable in exptime from r; a1;y; ak; and b1;y; bk;
such that

r-a�
1ya�

k ¼ hðLðjrÞ-b�
1yb�

kÞ:

Using ðzÞ it is clear that q typechecks with respect to t2 iff %q typechecks with respect to an
unordered DTD %t2 computable in exptime from t2: The decidability and co-nexptime upper
bound follow as above.
To conclude, we provide the proof of ðzÞ: The proof of ðwÞ immediately follows, taking h to be

the identity mapping.

N. Alon et al. / Journal of Computer and System Sciences 66 (2003) 688–727700



More specifically, we define inductively jr as a disjunction of statements of the form

b�1i11 4?4b�nin
n (abbreviated for convenience b�1i11 yb�nin

n ) where each �ijAf¼;Xg and ij are

natural numbers. Moreover, i1;y; inpjrj; the size of jr is exponential in jrj; and jr can be
computed in time exponential in jrj:
The inductive definition proceeds as follows. We distinguish several cases:

1. If r ¼ | or r ¼ e then jr is the empty disjunction and consists of the only disjunct b¼01 yb¼0n ;
respectively.

2. If r ¼ ai; then jr is a disjunctions of terms of the form b
¼j1
1 yb¼jn

n ; having one disjunct per each
bk such that hðbkÞ ¼ ai; with jk ¼ 1 and jc ¼ 0 for cak:

3. If r ¼ r1 þ r2 then jr consists of the disjuncts in jr1
and jr2

:

4. If r ¼ r1 � r2; then jr consists of the disjuncts obtained from jr1
and jr2

as follows. Add

b�1i1
1 yb�nin

n

each time there is a disjunct

b
�1
1
i1
l

1 yb�1ni1n
n

in jr1
and a disjunct

b
�2
1
i2
l

1 yb�2ni2n
n

in jr2
such that there is a jAf1;y; ng for which the following holds:

� i1c ¼ 0 for all c4j;
� i2c ¼ 0 for all coj;
� �j ¼‘¼’ if both �1j and �2j are ‘¼’, otherwise �j is X;

� ij ¼ i1j þ i2j ;

� �c ¼ �1c and ic ¼ i1c for coj; and
� �c ¼ �2c and ic ¼ i2c for c4j:

For instance, the concatenation of a¼1bX2cX0 and aX0b¼1c¼3 gives rise to a¼1bX3c¼3:
5. If r ¼ :s; then jr is the intersection of the negation of the disjuncts of js: The negation of a

single disjunct b�1i1
1 yb�nin

n is equivalent to the disjunction obtained by adding for every

j ¼ 1;y; n; the disjuncts

b�1i1
1 yb¼0j yb�nin

n ; b�1i11 yb¼1
j yb�nin

n ;y; b�1i1
1 yb

¼ij�1
j yb�nin

n :

If �j ¼‘¼’, then we also add

b�1i1
1 yb

Xijþ1
j yb�nin

n :

We now have an intersection of sets of disjuncts. By De Morgan’s laws we transform this to a
disjunction of conjunctions. Every conjunction can then be transformed to a single expression

as follows. Suppose we have the conjunction
V

k b
�k
1
ik
1

1 yb
�k

n ik
n

n : This conjunction can be omitted,
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as it is contradictory, when there is a j and c1ac2 with
� �c1j ¼ �c2j ¼‘¼’, and ic1j aic2j ; or

� �c1j ¼‘¼’, �c2j ¼‘X’ ic1j ¼ ic2j :

Otherwise the conjunction is equivalent to b�1i11 yb�nin
n ; where for each j ¼ 1;y; n;

� �j ¼‘¼’ and ij ¼ icj for some c for which �cj ¼‘¼’; and
� �j ¼‘X’ and ij ¼ maxficj j cg when no �cj is ‘¼’.

From the construction it readily follows that the integers arepjrj: Further, as there are at most
ð2jrjÞn possible disjuncts, the size of jr is exponential in jrj: However, the above algorithm is
double exponential in the size of jrj: Indeed, the conversion from conjunctive to disjunctive
normal form can result in an exponential blow-up of the formula size. Therefore, we next give a
brute force algorithm to compute jr in exponential time.
We have just shown that the integers in the expression are bounded above by jrj: Therefore, we

can define jr as the expression_
fb�1i1
1 yb�nin

n j ð�j ¼ ‘ ¼ ’ and ijpjrjÞ
or ð�j ¼ ‘X’ and ij ¼ jrj þ 1Þ; and hðbi1

1ybin
n ÞDLðrÞg:

As there are only exponentially many strings b�1i11 yb�nin
n and bi1

1ybin
n DLðrÞ can be tested in

pspace, the result follows. To see the latter, we can translate the star-free regular expression

into an equivalent FO sentence whose size is linear in the size of r and test whether b�1i11 yb�nin
n

satisfies this formula. This is well-known to be in pspace. &

Our third decidability result removes all restrictions on output DTDs, allowing full regular
DTDs. However, it requires an additional restriction on QL queries. Intuitively, this limits the
projections which can be performed by the query. We formalize this as follows.

Definition 3.4. Let q be a QL query and t an input DTD. The query q is projection-less with
respect to t iff it is equivalent, on all inputs satisfying t; to the projection-free query q0 obtained
from q by dropping all the existential quantifiers.

Obviously, there are many syntactic sufficient conditions on q and t ensuring that q is
projection-free with respect to with respect to t: We illustrate this by an example.

Example 3.5. Consider the movie DTD of Example 2.5 and the query in q in Fig. 1. Obviously q

not projection-free, but we show that it is projection-less. For that we construct the query q0 in
Fig. 3, by promoting all existential variables to free variables (i.e. including them in the datalog
rule’s head). Clearly q0 is projection-free. We argue now that q and q0 are equivalent over input
documents of the given DTD. For that it suffices to show for each formula the query q that, if
there exists some binding of its existential variables that makes that formula true, then that
binding is unique. We only illustrate this on the formula fv1 given by the datalog rule:

titleðX2Þ : �X0 movie X1;X1 title X2;X1 director X3;X3 ¼ ‘‘W :Allen’’;

N. Alon et al. / Journal of Computer and System Sciences 66 (2003) 688–727702



where X0;X1;X3 are existential variables. Given a binding of X2; clearly bindings for X0; X1 are
unique: X0 is the root and X1 is the parent of X2: A binding for X3 is also unique, because the
DTD requires a movie to have a unique director. This completes the proof for fv1

; and the other

formulas are treated similarly. It follows that q and q0 are equivalent and, consequently, that q is
projection-less.
Restricting queries to be projection-less is clearly a limitation. However, as this example

suggests, the limitation may be less severe in practice when the input DTD has certain uniqueness
requirements.
For projection-less queries we prove next the following result, the most technically challenging

of this section.

Theorem 3.6. The typechecking problem for projection-less non-recursive QL queries without tag

variables, with regular input DTDs, and regular output DTDs, is decidable.

It remains open whether Theorem 3.6 holds without the projection-less restriction.
The proof of Theorem 3.6 uses Ramsey’s Theorem [13,26] and requires developing some

technical machinery. We dedicate the remainder of the section to this development.
Assume we are given some projection-less non-recursive QL query q0: By the definition of

projection-less, q0 is equivalent to the projection-free query q obtained from q0 by dropping all the
existential quantifiers. So it suffices to prove the theorem for q:
To simplify the presentation, we first assume that all the path expressions in q are single labels

or disjunctions of such labels, and prove the theorem for this class of queries. Once the proof for
this restricted case is established, we explain how to extend it to the general case.
Recall that, for a node v in q; Fv is the conjunction of all formulas labeling v’s ancestors,

including v: We also use the following notation.

Definition 3.7. For a query QAQL; vA nodesðQÞ; and a tree TATS;D:

* varsðvÞ ¼ freeðfvÞ:
* Bindsðv;TÞ ¼ fy j y : varsðvÞ-nodesðTÞ; and TFFv½yg:

For convenience, we will view in the sequel Bindsðv;TÞ as a relation whose attributes are the
variables names. We will apply to it usual relational algebra operators: projection on a subset X of

Fig. 3. A projection-free query.
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varsðvÞ; denoted pX ðBindsðv;TÞÞ; and selection sxyyðBindsðv;TÞÞ producing the set of tuples in
Bindsðv;TÞ satisfying the condition xyy; where xAvarsðvÞ; and yAvarsðvÞ or y is a constant, and
yAf¼;ag:
To further simplify the presentation, we will assume first that, for every vAq the tags of v’s

children are all distinct. The general case where some tags may repeat is considered afterwards.
Let t1; t2 be input and output DTDs respectively. Suppose TAinstðt1Þ and qðTÞjt2: Since qðTÞ

violates t2; there exists a path n1?nk from the root of qðTÞ to a node nk with some tag aAS such
that the sequence w of the tags of the children of nk is not in the regular language defined by the
regular expression ra specified by t2: Note that, by the definition of qðTÞ; nk was contributed by
some node cAnodesðqÞ: If a1;y; an are the tags of the children of v;w is in the language r̂a ¼
:ra-a�

1ya�
n:We will use a characterization of the words in r̂a in terms of the number of symbols

a1;y; an they contain. To this end, we prove the following.

Lemma 3.8. Let a1;y; an be distinct symbols and let n ¼ ði1; j1Þ;y; ðin; jnÞ be a vector of n pairs of

natural numbers. We denote by Ln the language consisting of all words of the form aa11 yaan
n where

am � im mod jm when jm40 and am ¼ im if jm ¼ 0: For each regular language r over alphabet
fa1;y; ang; there exists a finite set VecðrÞ of vectors of pairs of natural numbers as above such that

r-a�
1ya�

n ¼
S

nAVecðrÞ Ln:

Proof. LetM ¼ ðQ;S; d; q0;FÞ be a non-deterministic finite-state automaton accepting r; where Q

is the set of states, S ¼ fa1;y; ang; d :Q 
 S-2Q is the transition mapping, q0 is the start state
and F the set of final states. The mapping d is extended in the usual way to Q 
 S�: Let Q be the
set of all sequences ~qq of states q0?qn for which there exists some word w ¼ u1?un in r-a�

1ya�n;
where u1Aa�

1;y; unAa�
n; such that qmAdðqm�1; umÞ; 1pmpn: For each pair of states p; q and

alphabet symbol am let Lm
pq ¼ fah

m j qAdðp; ah
mÞg; and for each vector ~qq ¼ q0?qnAQ let L~qq ¼

L1q0q1yLn
qn�1qn

: Clearly,

r-a�1ya�n ¼
[
~qqAQ

L~qq :

Next, consider any of the languages Lm
pq: This is a regular language over the singleton alphabet

famg: By the Pumping Lemma for regular languages, there exist positive k and i bounded by jQj
such that, for each wALm

pq of length 4k;wðai
mÞ

�DLm
pq: Let Lpk consist of the words in Lm

pq of

lengthpk and L4k consists of the words in Lm
pq of length4k: Clearly, Lm

pq ¼ Lpk,L4k: Let J be

the set of equivalence classes j modulo i for which there exists some word w in L4k of length
j mod i; and let wj be the shortest such word. Clearly,

Lm
pq ¼ Lpk,

[
jAJ

wjðai
mÞ

�:

Thus, words in Lm
pq can be described using pairs of integers as follows. Each singleton word

wALpk is described by the pair ðjwj; 0Þ: Each language wjðai
mÞ

� consists of the words of length
jwjj þ a where a � 0mod i so is described by the pair ðjwjj; iÞ: Thus, each language Lm

pq is a union
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of languages described by pairs of numbers. The lemma easily follows by distributing
concatenation over union in each of the languages L~qq ¼ Lq0q1yLqn�1qn

: Finally, note that

the sizes of the integers involved in the vectors n are linear in the number of states of M; so
linear in r: &

Thus, r̂a can be written as a union of languages Ln as defined in Lemma 3.8. Furthermore, the
sizes of the integers involved in the vectors n are linear in :ra so at most exponential in the size of
ra: The following is immediate from the above discussion.

Proposition 3.9. Let q be a QL query, T some input tree, and t2 some output DTD; qðTÞ
violates t2 iff there exists a node cAnodesðqÞ with some tag a and children c1;y; cn having
tags a1;y; an and free variables %x1;y; %xn; and a vector ði1; j1Þ;y; ðin; jnÞ in Vecð:ra-a�1ya�

nÞ;
such that

w Bindsðc;TÞ contains a tuple v where for all l ¼ 1yn;p %xl
ðsvarsðcÞ¼vðBindsðcl ;TÞÞÞ is of

size a for some positive integer a such that a � il mod jl when jl40; and of size il
when jl ¼ 0:2

For brevity, we will refer in the sequel to the property ðwÞ of Bindsðc;TÞ as the modulo property.
It thus remains to show that, given an input DTD t1; a query q; some node cAnodesðqÞ; and a

vector ði1; j1Þ;y; ðin; jnÞ for c as defined above, one can decide if the modulo property holds for
some tree TAinstðt1Þ:
To prove this it suffices to show that if such a T exists, then there exists a ‘‘small’’ such T ; whose

size is bounded by some function of the sizes of t1; q; and the numbers ði1; j1Þ;y; ðin; jnÞ: Then, to
decide if the above holds, we simply need to check all the trees up to that size. We show below that
such a bound on the tree size indeed exists.
Without loss of generality, assume that t1 contains no redundant symbols (i.e., every symbol

occurs as a label in some tree satisfying t1). First observe that if none of the regular expressions in
t1 contains � then it suffices to look at trees of size Oðjt1jjqjÞ: This is because q looks at paths of a
bounded length. Thus all we need to check are trees of the corresponding maximal depth and with
a bounded width. (The actual violating instance can then be obtained by replacing each of the tree
leaves by some arbitrary derivation tree for the leaf label.) We thus assume in the sequel that at
least some of the regular expressions in t1 contain �:
Next, note that T may be large due to its depths or due to its width. Since the query looks

at a bounded depth in T ; all nodes beyond depth jqj are essentially irrelevant. So we only
need to look at trees up to depth q: (As above, the actual violating instances can later be
obtained from these trees by replacing each of the tree leaves by some arbitrary derivation
tree for the leaf label.) For brevity, we will abuse below the standard terminology as follows:
whenever we say a tree we shall mean a tree of depthpjqj:Whenever we say that a tree T satisfies

t1 we mean that T can be extended, by adding nodes only at depth greater than jqj; to a tree that
satisfies t1:

2Recall that we view Bindsðc;TÞ as a relation with attribution varsðcÞ:
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Let TAinstðt1Þ be a tree of minimum size having the modulo property. LetN be the set of nodes
in T consisting of the following (using the notation in ðwÞ):

1. all the nodes in the vector v;
2. for every cl where the relation

Rl ¼ svarsðcÞ¼vðBindsðcl;TÞÞÞ

is not empty, the nodes in some vector rlARl;
3. for every cl with corresponding pair ðil; jlÞ; all the nodes in some sub-relation of size il of

p %xl
svarsðcÞ¼vðBindsðcl ;TÞÞÞ;

and
4. all the nodes on the paths from the root to the nodes in items 1–3 above.

We next argue that the size of N is bounded by the input, independently of T : Indeed, (1)

generates at most jqj nodes; as the number of c’s is bounded by jqj; (2) generates at most jqj2 and
(3) at most il 
 jqj2 nodes. Let the sum of these numbers be m: Then, taking into account (4), the
size of N is bounded by m 
 jqj: Clearly, N only depends on the input and not on T : Our goal is to
show that if T is bigger than a given size then it contains a set of nodes X ; not including any of the
nodes in N; such that the tree T 0 obtained from T by removing X still belongs to instðt1Þ and has
the modulo property. This will contradict the minimality of T :
Clearly, if X is not chosen carefully, the resulting tree may no longer belong to instðt1Þ:We will

thus be interested only in deletion of nodes resulting in trees in instðt1Þ: To this end we define the
notion of deletable unit, and deletable set of units.

Definition 3.10. Given a tree TAinstðt1Þ; a sequence of full subtrees of T rooted at consecutive
siblings in T is called a unit. A unit %n is deletable if (i) the tree T 0 obtained from T by deleting all
subtrees in %n still belongs to instðt1Þ; and (ii) %n contains no consecutive subsequence having
properly (i).

Two units %n; %m of T are overlapping if they have some common node. Otherwise, they are called
non-overlapping. A set U of units of T is deletable if it consists of non-overlapping deletable units
of T and for each subset U 0 of U ; the tree obtained from T by deleting all nodes in the units of U 0

still satisfies t1:
We can show the following.

Proposition 3.11. Let U be a maximal deletable set of units of T, not containing any of the nodes in

N. The number of units in U is no less than jT j=ððjt1j 
 ðjNj þ 1ÞÞjqjÞ:

Proof. It is sufficient to consider sets of deletable units %n with the following property:

ðwÞ Let n1ynk be the sequence of roots of the subtrees in %n; a the sequence of preceding siblings, b
the sequence of siblings following it, a the label of their parent, and Ma the standard non-
deterministic finite-state automaton for the regular expression associated to a by t1 (whose
number of states is bounded by t1). There exists an accepting computation of Ma on input
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a n1ynkb such that the state after reading a is the same as the one after reading a n1ynk;
and is distinct from those reached after reading a n1ynj for 1pjok:

Note that any set U of deletable units satisfying ðwÞ is a deletable set of units. Consider a maximal
such set U not containing any of the nodes in N: By the Pumping Lemma for regular languages,
the length of each deletable unit in U is at most jt1j; and the number of siblings separating any
two consecutive deletable units in U is also at most jt1j: Similarly, a node in N has at most jt1j
siblings between it and the next (previous) sibling belonging to N or to some deletable unit.
Consider the maximal size of a tree not having any deletable unit. This is a tree where every node
has as children nodes in N separated by at most jt1j nodes. So, the maximal size of such a tree is
ðjt1j 
 ðjNj þ 1ÞÞh; where h is the depth of the tree. Any node added to this tree is part of some
deletable unit. In the case of T ; each such additional node belongs, in the worst case, to one

distinct deletable unit. For c :¼ ðjt1j 
 ðjNj þ 1ÞÞjqj�1; the number of such nodes is then at least
jT j=ðc þ 1Þ: Furthermore, since each deletable unit is of length at most jt1j this yields a deletable
set of units of size at least T=ððc þ 1Þ 
 jt1jÞ: Summing up, we have that T has a deletable set of
units of size at least

T=ðððjt1j 
 ðjNj þ 1ÞÞjqj�1 þ 1Þ 
 jt1jÞ;

which is bounded by

T=ðððjt1j 
 ðjNj þ 1ÞÞjqj: &

Corollary 3.12. For each positive integer m, and each tree TAinstðt1Þ of size larger than m 

ððjt1j 
 ðjNj þ 1ÞÞjqj; there exists a deletable set of units of T of size at least m; whose units do not

contain any of the nodes in N.

We will use Corollary 3.12 to derive the required bound on the size of T : In particular, we will
show that if T is larger than a given size then it has a sufficiently large deletable set of units so that
some subset can be removed without affecting the modulo property.

To each deletable unit u of T we associate a vector tu ¼ ðt1u;ytn
uÞ where tl

u; l ¼ 1yn; is the
number of tuples in p %x1ðsvarsðcÞ¼vðBindsðcl ;TÞÞÞ that contain some node in u; modulo jl:

Similarly, to each deletable set s of units of size kpjqj we associate a vector ts ¼ ðt1s ;ytn
s Þ where

for all l ¼ 1yn; tl
s is the number of tuples in p %xl

ðsvarsðcÞ¼vðBindsðcl;TÞÞÞ that contain some node in
s; modulo jl:
Note that each vector associated to a deletable set of units can be viewed abstractly as a color.

We can then apply Ramsey’s Theorem (stated below for convenience), and its Corollary 3.14.
Indeed, it follows from Corollary 3.14 and from the definition of deletable set of units that for
every m40; if T is larger than some given bound (a function of the m; the given j0ls; jt1j; and jqj;
called the Ramsey bound) then there exists a deletable set X of m units in T ; not including any of
the nodes in N; such that for every integer rpjqj; all subsets of X of size r have the same
associated vector (there may be different vectors for different r’s, but all subsets of the same size r

have the same vector).
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To obtain our result, we make use of the above for a conveniently chosen value of m:
Specifically, let m ¼ Pl¼1ynjl 
 k! (where k ¼ jqj). If T is larger than the corresponding Ramsey
bound, then it contains a deletable set X of m units with the above property. Now, consider the
tree T 0 obtained from T by removing all the nodes in X : Note that T 0 still satisfies t1; and since
none of the nodes in N was deleted, the following hold.

* vABindsðc;T 0Þ:
* For every cl where, in the corresponding ðil; jlÞ tuple, jl ¼ 0; p %xl

ðsvarsðcÞ¼vðBindsðcl;T 0ÞÞÞ
contains exactly il tuples.

* For every cl where %xl is the empty vector

p %xl
ðsvarsðcÞ¼vðBindsðcl;T 0ÞÞÞ ¼ p %xl

ðsvarsðcÞ¼vðBindsðcl;TÞÞÞ:
More specifically, the relations are either both empty or both contain a single 0-ary tuple. This
is because in the definition of N we picked (in item 2) a tuple from each non-empty relation Ri:
So, if Ri was not empty the projection results in one tuple—the empty tuple.

To show that T 0 has the modulo property, it remains to prove that for every cl where %xl is not the
empty vector, the relations p %xl

ðsvarsðcÞ¼vðBindsðcl ;T
0ÞÞÞ is of size ða
 jl þ ilÞ for some positive

integer a: Rather than computing the exact size of this relation, we will compute the number of
vectors deleted from

p %xl
ðsvarsðcÞ¼vðBindsðcl;TÞÞÞ:

If we show that this number is zero modulo jl ; then we are done.
Observe that since the query is projection-less, each deleted node affects precisely the tuples in

p %xl
ðsvarsðcÞ¼vðBindsðcl;TÞÞÞ in which it appears. The total effect of the deletion of all the nodes in X

is described by the following inclusion–exclusion formula:

nl ¼ m 
 c1l �
m

2

 !

 c2l þ

m

3

 !

 c3l �?þ �

m

jX j

 !,

 c

jX j
l ;

which we explain next. The formula first counts separately for each node in a deletable unit in X

how many tuples are deleted in p %xl
ðsvarsðcÞ¼vðBindsðcl ;TÞÞÞ when the node is removed. Note that

according to the corollary to Ramsey’s Theorem mentioned above, the number of images destroyed
for each node are the same—this is essentially the value of the l entry in the vectors associated with

subsets of X of size 1. Let c1l be this number. Thus the total sum of destroyed images is at most

m 
 c1l : However, this is an overestimate: some tuples, (i.e. those containing two or more nodes in
X ) are counted several times. To fix this we subtract for every pair of nodes the number of tuples in
which the two nodes appear together. There are ðm

2Þ such pairs of nodes, each appearing (again
according to the corollary to Ramsey’s Theorem), in c2l images (where c2l is the value of the l entry

in the vectors associated with subsets of X of size 2). So we deduct ðm
2
Þ 
 c2l : Note that this time we

deducted too much: some tuples (i.e. those containing three or more nodes in X ) were counted
several times. To compensate, we add for every triplet of nodes the number of tuples in which the

three nodes all appear. As above this is ðm
3
Þ 
 c3l ; for some constant c3l : Now again we added too

much so we deduct for the four-or-more images, etc. Since the maximal number of nodes in a tuple
is bounded by jqj the inclusion/exclusion sum can stop when that size is reached.
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Since we chose m to be the number Pl¼1ynjl 
 k! (where k ¼ jqj), each element in the above
sum divides by jl; so the total number nl of Xl assignments that we lost divides by jl: It follows that
T 0 still has the modulo property, which contradicts the minimality of T :
To conclude, we state Ramsey’s Theorem, and the corollary used above.

Theorem 3.13 (Ramsey’s Theorem) (Graham et al. [13], see also Ramsey [26, pp. 7–9]). For all

natural numbers k;m;w there exists a finite number Rðk;m;wÞ such that for every set Y of elements
with jY jXRðk;m;wÞ and every coloring of the family of all the subsets of Y of size k with w colors,
Y contains a subset XCY of size jX j ¼ m where all the subsets of X of size k have the same color.

Furthermore, the number Rðk;m;wÞ is computable but of size non-elementary with respect to
k;m;w: The following variant is an easy consequence of Ramsey’s Theorem.

Corollary 3.14 (Graham et al. [13]). For all natural numbers k;m;w there exists a finite number

R0ðk;m;wÞ such that for every set Y of elements of size jY jXR0ðk;m;wÞ and every coloring of the
family of all the subsets of Y of size pk with w colors, Y contains a subset XCY of size jX j ¼ m

where for all k0pk; all Xs subsets of size k0 have the same color (there may be different colors for
different k0s).

Proof. The proof is by induction on k: For k ¼ 1 the statement follows immediately from Ramsey
theorem. Now, assume correctness for k � 1 (and every m;w). We prove the statement for k:
Define R0ðk;m;wÞ ¼¼ Rðk;m;wÞ for k ¼ 1 and R0ðk;m;wÞ ¼¼ Rðk;R0ðk � 1;m;wÞ;wÞ for k41:
Note that R0ðk � 1;m;wÞ exists by the induction hypothesis and Rðk;R0ðk � 1;m;wÞ;wÞ exists by
Ramsey’s theorem. Now, if jy0jXR0ðk;m;wÞ then, by the definition of R0; for every coloring of
subsets of Y 0 there is some X 0CY 0 of size jX 0j ¼ R0ðk � 1;m;wÞ where all the subsets of size k

have the same color. There is some XCX 0 of size jX j ¼ m where for every k0pk � 1 all the subsets
of size k0 have the same color. But all subsets of size k of X also have the same color since XCX 0

and all subsets of size k of X 0 have the same color. &

Observe that, in the proof above, we simply need to consider each possible vector attached to a
deletable set of units as a color. The number w of available colors is then simply j1 
?
 jn;
k ¼ jqj; and, m ¼ Pl¼1ynjl 
 k!: Now, recall from Corollary 3.12 that every tree T of size larger

than R0ðk;m;wÞ 
 ððjt1j 
 ðjNj þ 1ÞÞjqjÞ has a deletable set of units of size at least R0ðk;m;wÞ;
whose units do not contain any of the nodes in N: The rest follows immediately from Corollary
3.14.
To conclude, recall that in the course of the above proof we made two simplifying assumptions

on the structure of the query q: (1) We assumed for every node cAnodesðqÞ; the tags of c’s children
are all distinct, and (2) we assumed that all the path expressions in q are single labels or
disjunctions of such labels. It is therefore left to remove these restrictions and extend the proof to
the general case.

Repeated tags: Let q be a query and t an output DTD. As in the proof of Theorem 3.3, we
construct from q a query %q by replacing all tags a1;y; ak of children of a node labeled a by distinct
tags b1;y; bk: We also construct from t a new DTD %t by replacing the regular expression ja by
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h�1ðraÞ-b�
1yb�

k where h is the mapping hðbiÞ ¼ ai; 1pipk: It is easy to see that q typechecks with

respect to t iff %q typechecks with respect to %t (the input DTD remains unchanged).
General path expressions: A path expression in non-recursive queries represents a finite union of

simple paths (rather than just a union of single labels, as we assumed so far). We next explain how
the proof can be extended to accommodate those. Consider a node cAnodesðqÞ; whose attached
formula contains such a path expressions. The first step is to take these (unions of) simple paths in
the query and make them, and each of the edges they contain, ‘‘explicit’’, by attaching a new
variable name to each node along those paths. Each conjunct with such a path expression
becomes a disjunction of conjunctions, describing the possible paths and the edges they contain.
Consider for instance the formula below (similar but not identical to Example 2.5).

titleðX0;X1;X2;X3Þ : �X0 catalog:movies j cinema:info X1;

X1 title X2;

X1 director X3;

X3 ¼ ‘‘W :Allen’’:

After transforming the path expression in the first conjunct we obtain the following:

titleðX0;X1;X2;X3Þ : �ððX0 catalog Z1;Z1 movies X1Þ3ðX0 cinema Z2;Z2 info X1ÞÞ;
X1 title X2;

X1 director X3;

X3 ¼ ‘‘W :Allen’’:

Correspondingly, the notion of variables binding is extended in the natural way to contain the
new variables. The only point to note is that since our XML data consists of trees, and each node
is reachable from the root by a single path, in each of the bindings some of the variables may not
have ‘‘real nodes’’ assigned to them (i.e. the variables corresponding to the ‘‘non used’’ paths), but
instead some arbitrarily chosen null value.
Finally, observe that since each tree node uniquely determines its ancestors, the bindings to the

new variables functionally depend on those of the original query variables. It follows immediately
that one can replace the head f ð %xÞ of each formula by f ð %x; %zÞ where %z are the new variables and the
query result will remain the same. For instance, in the above rule we could replace
titleðX0;X1;X2;X3Þ by titleðX0;X1;X2;X3;Z1;Z2Þ without changing the query result.
The resulting query is projection-less and the proof proceeds from here on along the same lines

as above.
This concludes the proof of Theorem 3.6.

4. More on complexity

Theorems 3.2 and 3.3 provide an upper bound of co-nexptime on the complexity of
typechecking non-recursive QL queries with respect to unordered output DTDs, or non-recursive
QL queries without tag variables and star-free output DTDs. However, it remains open whether
this complexity is tight.
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There are significant special cases in which the complexity of typechecking can be brought
down to pspace. We consider the case when the input DTDs are of bounded depth (which implies
that queries are also of bounded depth). This is a restriction of practical interest, since many
applications use shallow DTDs. For example, relational databases can naturally be represented by
DTDs of depth at most 2 (the root has depth zero). We can show the following using the proofs of
Theorems 3.2 and 3.3.

Corollary 4.1. Let S and M40 be fixed. ðiÞ Typechecking non-recursive QL queries with respect to

input DTDs of depth pM and unordered output DTDs is in pspace; ðiiÞ Typechecking non-recursive
QL queries without tag variables with respect to input DTDs of depth pM and star-free DTDs is in

pspace.

Proof. The size of the smallest counterexample is now polynomial in the output, but testing
whether a candidate input is indeed a counterexample requires pspace. &

Once again, it remains open whether the above complexity is tight. To show some lower
bounds, we first make the following remark.

Remark 4.2. It is not so difficult to see that the usual conjunctive queries over a relational schema
can be simulated in QL: Indeed, we only need to specify a tree representation of a database

instance and to translate the conjunctive queries into a QL query. Let %R :¼ R1;y;Rn be a
relational schema, i.e. a set of relation names with associated arities. We specify the tree
representing the database by the DTD t %R as follows: root-R�

1;y;R�
n; for each iAf1;y; ng;

R1-A1;y;Ani
where ni is the arity of Ri; and Ai-e for each Ai: Note that this corresponds to a

standard encoding of the relation R as an XML tree. Let qð %xÞ be a conjunctive query. We can
assume without loss of generality that the relational literals in qð %xÞ contain distinct, non-repeating
variables (all equalities are stated explicitly by equality atoms). Then define qQLð %XÞ as the formula
obtained from qð %xÞ by replacing each occurrence of a literal of the form Riðx1;y;xni

Þ by
X0 Ri Y ;YA1 X1;y;Y Ani

Xni
; and occurrences of literals of the form xi ¼ xj by Xi ¼ Xj: Recall

that X0 is mapped to the root. Further, Y here is a fresh variable; we tacitly assume that Y is a
different variable for every literal Riðx1;y; xni

Þ: For a simple illustration assume R is binary, then

a query qðx1;x2Þ and its encoding qQLðx1;x2Þ are shown below, both in datalog notation:
qðx1;x2Þ’Rðx1; z1Þ;Rðz2; x2Þ; z1 ¼ z2;

qQLðX1;X2Þ’X0 R Y1;Y1 A1 X1;Y1 A1 Z1; X0 R Y2;Y2 A1 Z2;Y2 A2 X2;Z1 ¼ Z2:

We make use of the above translation in proof of the next theorem and in Section 6.

Theorem 4.3. Typechecking non-recursive QL queries without tag variables with respect to input

DTD of depth p2; and unordered output DTDs is:3

3The complexity class Pp
2 is co-np

NP: Recall that dp properties are of the form s14s2 where s1Anp and s2Aco-np:

We refer the reader to [24] for more information.
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(i) co-np-hard for QL queries without conditions on data values;
(ii) dp-hard for QL queries with equalities on data values; and,
(iii) Pp

2-hard for QL queries with equalities and inequalities on data values.

Proof. (i) We reduce validity of propositional formulas to the typechecking problem. Let j be a
propositional formula using variables x1;y;xn: Consider the input DTD

root-A1?yAn?

Ai-e; 1pipn:

A derivation tree of this DTD represents a truth assignment of the propositional variables
x1;y; xn : Ai is present iff xi ¼ 1; for i ¼ 1;y; n:
Consider the query q represented in Fig. 4. The query’s variables are fX ;Yg with X denoting

the root.
The query is basically the identity function, modulo some label renaming , whose sole purpose

is to make the query easier to read: i.e., the query maps an input tree into an isomorphic output
tree. Label Bi is present in the output iff the label Ai is present in the input. We now define the
output type as an SL formula for answer, by checking whether the set of Bi’s in the output
corresponds to a truth assignment that makes j true. More precisely the SL formula is obtained
from j as follows: each positive literal xi is replaced with B¼1

i and each negative literal :xi is

replaced with B¼0
i ; 1pipn; while all other connectives 3;4;: are preserved. For a simple

illustration, if the propositional formula is:

j � ðx13:x2Þ4ð:x13x3Þ4ðx13x23:x3Þ;

then we define the output DTD:

answer-ðB¼1
1 3B¼0

2 Þ4ðB¼0
1 3B¼1

3 Þ4ðB¼1
1 3B¼1

2 3B¼0
3 Þ:

Clearly, j is valid iff q typechecks with respect to t1 and t2:
(ii) The proof is by simultaneous reduction of propositional validity and conjunctive query

containment, which is known to be np-complete. The query consists of the concatenation of two
independent sub-queries, one corresponding to propositional validity and the other to conjunctive
query containment. The subquery corresponding to propositional validity (and its corresponding
SL formula) is the one described in (i). We describe the subquery corresponding to conjunctive
query containment. Consider two conjunctive queries q1ð %xÞ; q2ð %xÞ over relation R of arity k;with
the same set of free variables %x: We take tR as the input DTD where tR is as defined in Remark

4.2. Next, we construct a QL query q as shown in Fig. 5. The formulas q
QL
1 ð %XÞ and Q

QL
2 ð %XÞ are

defined as in Remark 4.2.
Consider some relation instance R and let T be its encoding as a tree. We denote by q1ðRÞ

and q2ðRÞ the answers of q1; q2 on Rðq1ðRÞ; q2ðRÞ are sets of tuplesÞ and denote by qðTÞ the

Fig. 4. The query for propositional validity.
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result of applying q to T (a tree). The tree qðTÞ has a root labeled a and several b-labeled
children, one for each %x in q1ðRÞ: If %x is also in q2ðRÞ then that b node has a child labeled c;
otherwise it has no children. Hence q1ðRÞDq2ðRÞ iff qðTÞ is valid w.r.t. the following un-

ordered output DTD: a-bX0; b-cX1 and, consequently, q1Dq2 iff q typechecks w.r.t. this
output DTD.
The proof of (iii) is by reduction of containment of conjunctive queries with inequalities, which

is known to be Pp
2-complete [27]. The reduction is similar to that of (ii). &

For star-free output DTDs, we can show a pspace lower bound, even without conditions on
data values:

Proposition 4.4. Typechecking non-recursive QL queries without conditions on data values and
without tag variables with respect to input DTD of depth p2 and star-free output DTDs (using FO

sentences) is pspace-hard.

Proof. We use a reduction from the Quantified 3SAT problem, known to be pspace-complete
[12]. Let c ¼ Q1x1yQnxnjðx1;y; xnÞ where QiAf8; (g; 1pipn; and j is an instance of 3SAT
(conjunction of disjunctions of three literals) using variables among x1;y;xn: Consider the input
DTD:

root-X10X11?Xn0Xn1

Xij-e:

1pipn; 0pjp1: Valid input trees correspond to strings of length 2n: Let q be the identity
query, which returns the input tree unchanged (see the proof of Theorem 4.3 for an example
of such a query). Hence the output tree is the same string of length 2n : X10X11X20X21yXn0Xn1:

We construct the output star-free DTD %c such that the output typechecks iff formula c
is true. Recall that a star-free regular expression is a first-order logic formula over the

vocabulary ðo;OXij
Þ; i ¼ 1;y; n; j ¼ 0; 1:We obtain %c from c by replacing recursively every sub-

formula of the form (xia with (yiðOXi0
ðyiÞ3OXi1

ðyiÞ4aÞ and each 8xia with
8yiððOXi0

ðyiÞ3OXi1
ðyiÞÞ-aÞ: Further, we replace each occurrence of xið:xiÞ in j by

OXi1
ðyiÞðOXi0

ðyiÞÞ: Clearly, the size of %c is polynomial in that of c and %c satisfied by strings of
length 2n iff c is true. Since q outputs a string of length 2n; it follows that q typechecks iff c is
true. &

Fig. 5. QL query used in the proof of Theorem 4.3.
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5. Undecidability results

So far, we have shown that typechecking QL queries is decidable under various restrictions on
the query language and output DTD. In particular, all decidability results require non-recursive
QL queries, and output DTDs without specialization. In this section we show that these
restrictions are largely necessary for decidability. Specifically, we show the following:

1. allowing specialization in output DTDs leads to undecidability of typechecking even for highly
restricted queries and DTDs (QL queries with path expressions limited to single symbols, no
inequality tests on data values, no tag variables, unordered input DTDs of depth two, and
unordered output DTDs); and

2. allowing recursive path expressions in QL queries yields undecidability of typechecking even for
very simple output DTDs without specialization.

We also consider a variation of (1), where QL queries are further restricted to use only a limited
form of nesting provided by Skolem functions, but allow disjunction of single labels in path
expressions (i.e., expressions of the form a or a þ b; for a; bAS). Together with the previous
decidability results, these results yields a fairly tight boundary of decidability for typechecking.
The first result shows that allowing specialization in output DTDs quickly leads to

undecidability of typechecking, even under stringent assumptions. We call a QL query
conjunctive if every path expression is a single symbol in S:

Theorem 5.1. Typechecking is undecidable for conjunctive QL queries without tag variables and
without inequality, unordered input DTDs of depth p2; and unordered output DTDs with

specialization.

Proof. The proof is by reduction of the implication problem for functional dependencies (FDs)
and inclusion dependencies (IDs) [5,20]. Assume the relational scheme only consists of one
relation R of some arity k: A functional dependency is a rule of the form X-Y where X and Y

are sets of coordinates, that is, subsets of f1;y; kg: A relation satisfies the FD X-Y if whenever
two tuples agree on X they should also agree on Y : Clearly, every set F id FDs is equivalent to
one where all FDs have singleton right-hand sides. An inclusion dependency is of the form
½i1;y; inD½ j1;y; jn where each ic; jcAf1;y; kg: A relation satisfies the ID ½i1;y; inD½ j1;y; jn
if pi1;y;inðRÞDpj1;y;jnðRÞ: Here, p denotes the usual projection of the relational algebra.
The implication problem for FDs and IDs is a particular instance of the following problem.

Given a set D ¼ f f1; f2;y; fpg of FDs and inclusion dependencies over some k-ary relation R; and
f0 an FD over R; decide whether every relation that satisfies all dependencies in D also satisfies f0:
It is known that the latter problem is undecidable [5,20]. First, we translate every dependency into
containment of conjunctive queries as follows. Let f ¼ X-Y be an FD with X ¼ fi1;y; ing and
Y ¼ f j1;y; jmg: Then define the following conjunctive queries:

q1; f ðxi1 ;y; xin ;xj1 ;y;xjm ; yj1 ;y; yjmÞ’Rðx1;y; xkÞ;Rðy1;y; ykÞ; xil ¼ yi1 ;y; xin ¼ yin ;

q2; f ðxi1 ;y; xin ;xj1 ;y;xjm ; yj1 ;y; yjmÞ’Rðx1;y; xkÞ; xjl ¼ yj1 ;y; xjm ¼ yjm :

Note that q1; f ðRÞDq2; f ðRÞ iff R satisfies f : Here, qðRÞ denotes the set of tuples obtained by
evaluating q on R:
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Let f ¼ ½i1;y; inD½ j1;y; jn be an ID. Then define the following conjunctive queries:
q1; f ðxi1 ;y; xinÞ’Rðx1;y; xkÞ;
q2; f ðxj1 ;y; xjnÞ’Rðx1;y; xkÞ:

Again, note that q1; f ðRÞDq2; f ðRÞ iff R satisfies f : Thus, the implication problem for FDs and

inclusion dependencies is a particular instance of the following problem: given p þ 1 pairs of
queries ðqi; riÞ; i ¼ 0; 1;y; p; decide whether for every relational instance R:

^
i¼1;p

qiðRÞDriðRÞ
 !

) q0ðRÞDr0ðRÞ: ð3Þ

We construct an input DTD t1; a QL query q; and an output DTD t2 (satisfying the restrictions in
the statement) such that q typechecks with respect to t1 and t2 iff Eq. (3) holds for every instance
R: As input DTD we take t1 ¼ tR where tR is as defined in Remark 4.2. The QL query is given in

Fig. 6. Here, each q
QL
i and r

QL
i is constructed from qi and ri as specified in Remark 4.2. The output

DTD t2 is designed to correspond to Eq. (3) and says ‘‘either for every i ¼ 0;y; p; every bi has a
child labeled ci; or there exists some i ¼ 1;y; p such that at least one node labeled bi has no
children’’. This can be expressed as a DTD with specializations in a straightforward way. Indeed,

define the specialized DTD t2 ¼ ðS;S0; t0;mÞ as follows:
S ¼ fa; b0;y; bp; c0;y; cpg;

and

S0 ¼ fa; b00;y; b0p; b
1
0;y; b1p; c0;y; cpg:

Here, b0i and b1i indicate that bi has no child and one child, respectively. The DTD t0 consists of the
rules:

* a-ð
Vp

i¼0ðb1i Þ
X0Þ3ð

Wp
i¼1ðb0i Þ

X1Þ;
* b0i -e; b1i -c¼1i ; ci-e; 0pipp:

The mapping m is defined by mðaÞ ¼ a; for each iAf0;y; pg; mðb0i Þ ¼ mðb1i Þ ¼ bi and

mðciÞ ¼ ci: &

Similar undecidability results can be shown for slightly different combinations of features,
which highlight rather subtle trade-offs. For example, consider the use of nested queries in QL.

Consider a node n in a QL query, labeled by the rule Pð %XÞ’j: Suppose the node n has a child n0

labeled with P0ð %X; %YÞ’j0: The node n0 can be viewed as a nested query, parameterized by

Fig. 6. The QL program q of the proof of Theorem 5.1.
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bindings of %X inherited from its parent n: The language QL adopts a flexible nesting semantics

whereby a node generated by n may appear in the answer for a given binding of %X even if n0 does
not generate any nodes for that binding. This is disallowed in some XML query languages, where
all nodes specified in the query tree must be present in every non-empty answer. We refer
informally to this nesting semantics as ‘‘nesting without optional nodes’’, and to the QL nesting
semantics as ‘‘nesting with optional nodes’’. Note how the proof of Theorem 5.1 crucially relies on
nesting with optional nodes. One might wonder if this is in fact essential to undecidability. We
next show that it is not: undecidability continues to hold even if optional nodes are disallowed, so
long as tag variables are allowed, and the path expressions in formulas may use disjunctions of
single labels.
We formalize next the variant of QL without optional nodes. For each QL query Q; we define

the query Q4 obtained from Q as follows. First, we rename variables so that formulas occurring
in distinct subtrees under the root of Q have disjoint sets of variables. (Recall that the sets of
existential variables of formulas along the same path in the query tree are already disjoint.) Next,
we replace each formula j in a label of a node of Q other than the root by the conjunction of all
formulas occurring in Q: The semantics of Q without optional nodes is then defined as the
semantics of Q4 under usual QL semantics. Clearly, the answer to Q4 on any given input consists
either of the root alone, or all nodes specified in the query tree are present in the answer. As a
simple example consider the input DTD:

root - a

a - b�:

Consider the QL query Q:

root ’ true

j
aðXÞ ’ Z a X

j
bðX ;YÞ ’ X b Y

With the usual QL semantics allowing nesting with optional nodes, Q simply copies its input.
Note that a node a is output even if it does not have a b child. The semantics without optional
nodes would only output a node a if it has at least one b child. The query Q4 enforcing this is:

root’true

j
aðXÞ’Z a X ; X b Y

j
bðX ;YÞ’Z a X ; X b Y

Clearly, Q4 evaluated under usual QL semantics is equivalent to Q evaluated under the no-
optional-nodes semantics.
Note that, by definition, all nodes in Q4 other than the root are labeled with the same formula,

say c: To avoid repeating c at every node, one could adopt an alternative syntax that separates
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the formula from the query tree, such as

where c construct T

where T is Q4 with c dropped from node labels. Thus, node labels specify only the heads of rules,
providing the tag and free variables. Note the similarity with XML-QL syntax using Skolem
functions.
We call a QL program disjunctive if the path expressions in its formulas are of the form a or

a þ b where a; b are single symbols. We can show the following.

Theorem 5.2. Typechecking is undecidable for disjunctive QL queries without optional nodes, with
tag variables, without inequality, unordered input DTDs of depth p2; and unordered output DTDs

with specialization.

Proof. We use again a reduction from the implication problem for functional and inclusion
dependencies [5,20]. However, the straightforward construction used in Theorem 5.1 no longer
works, due to the more restricted semantics disallowing optional nodes. Let R be a k-ary relation,
D a set of FDs and IDs over R; and f an additional FD over R: We assume without loss of
generality that all FDs in D,f f g have singleton right-hand sides. We construct from ðD; f Þ an
unordered input DTD t1; a disjunctive QL query Q with tag variables and without inequality, and
an unordered specialized output DTD t2 such that DFf iff Q4 typechecks with respect to t1 and
t2: In fact, the construction of Q will guarantee that Q and Q4 are equivalent under QL
semantics. In other words, the usual QL semantics of Q coincides with the more restrictive
semantics disallowing optional nodes.
As before, the input DTD will encode the relation R: However, for technical reasons, the input

also represents explicitly the projections of R on certain subsets of its attributes involved in the
FDs or IDs. The query Q together with the output DTD will allow verifying that these
representations are correct. LetF denote the FDs in D,f f g andI the IDs in D: The input DTD
uses the following alphabet:

* root, R; 1;y; k;
* c1yck where the ci are new symbols,
* Fs for each sAF;
* Is; Js for each sAI:

and has the following rules:

root - RX14
V

sAFðFsÞX14
V

sAIððIsÞ
X14ðJsÞX1Þ;

R - 1¼14?4k¼1;
Fs - ði0Þ¼14?4ðinÞ¼1 if s is i1yin-i0;
Is - ði1Þ¼14y4ðinÞ¼14ðc1Þ¼14?4ðcnÞ¼1; and
Js - ð j1Þ¼14?4ð jnÞ¼14ðc1Þ¼14?4ðcnÞ¼1 if s is the ID i1yinDj1yjn;
i - e; 1pipk;
ci - e; 1pipk:
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The additional labels c1;y; cn used in relations associated with IDs are needed for technical
reasons that will become clear later on. The query Q has several subtrees under the root. Their
roots are labeled as follows:

* enc’true
* s’true for each sAD,f f g:

In conjunction with Q; the constraints placed by the output DTD t2 on the subtrees rooted at enc

and s ðsAD,f f gÞ; respectively, will ensure that at least one of the following holds:
* the input does not represent a correct encoding of some non-empty relation R and its
projections;

* some dependency sAD is violated;
* f is satisfied.

This and the equivalence of Q and Q4 imply that Q4 typechecks with respect to t1 and t2 iff
DFf :
We next describe separately the subtrees of Q rooted at enc and each s: The role of the subtree

rooted at enc is to verify whether the input represents a correct encoding of some non-empty
relation R and its projections. We denote by tupðRÞ the set of tuples of data values of the children
of each node labeled R in the input tree, and similarly for tupðFsÞ where sAF: If s is an ID
½i1yinD½ j1yjn; tupðIsÞ denotes the set of tuples of data values of the children labeled i1;y; in of
each node labeled Is; and tupðJsÞ denotes the set of tuples of data values of the children labeled
j1;y; jn of each node labeled Js: The following must hold in a correct encoding:

1. For nodes labeled R; Fs; Is or Js; the tuples of data values of their children with labels among
1;y; k are distinct for different nodes.

2. If s is an FD i1yin-i0; tupðFsÞ ¼ pi0yinðtupðRÞÞ; if s is an ID ½i1yinD½ jnyjn; then tupðIsÞ ¼
pi1yinðtupðRÞÞ and tupðJsÞ ¼ pj1yjnðtupðRÞÞ:

3. If s is an ID ½i1yinD½ j1yjn; for each node labeled by Is; the tuple of data values of its
children labeled by i1yin equals the tuple of data values of the children labeled c1ycn; and
similarly for nodes labeled Js:

Each of (1)–(3) above is tested by a separate subquery sitting under enc. Consider (1). The
subquery ensuring uniqueness of the tuples of data values represented by R is shown in Fig. 7,
where qRðX1;y;XkÞ is the formula

Z1 R Z2;Z2 1 X1;y;Z2 k Xk:

Note that R-no-duplicates always has at least one child R for every binding of %X: This is
compatible with the semantics without optional nodes. The representation of R contains duplicate

Fig. 7. Subquery detecting duplicate tuples.
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tuples iff some node labeled R-no-duplicates has more than one child R: Similar queries are used to
detect duplicate tuples in Fs; Is; and Js:
Next, consider (2). Satisfaction of (2) for each Fs where s is the FD i1yin-i0 is checked by two

queries: the first, represented in Fig. 8, checks whether tupðFsÞDpi0yinðtupðRÞÞ and the second,
represented in Fig. 9, checks the reverse inclusion. Note that in Fig. 8, each node labeled Fs-proj
always has at least one child. The inclusion holds if each node labeled Fs-proj has at least one child
labeled R: In Fig. 9 the symmetric observation holds. Checking (2) is done using similar queries
for relations Is and Js when s is an ID.
Consider (3). Let s be an ID ½i1yinD½ j1yjn: The query verifying (3) for Is is shown in

Fig. 10. Note that (3) is satisfied iff each node labeled Is-copy has precisely 2n children labeled R2n :
A similar subquery verifies (3) for Js:
The portion of the output DTD used to check whether the input represents a correct encoding

of R and its projections uses the following specialized alphabet:

* R;FsðsAFÞ; Is; JsðsAIÞ; R2n ;
* ðencÞ1; and ðencÞ0; signifying that the input is (resp. is not), a correct encoding satisfying (1)–(3)
above;

* ðw-no-duplicatesÞ1 and ðw-no-duplicatesÞ0; meaning that w satisfies (1) (resp. does not satisfy (1)),
where wAfRg,fFs j sAFg,fIs; Js j sAIg;

* ðFs-projÞ1 for FDs s; meaning that the inclusion tupðFsÞDpi0yinðtupðRÞÞ required by (2) is
satisfied, ðFs-projÞ0 meaning that the inclusion is violated, and similarly for ðw-projÞe for IDs s;
wAfIs; Jsg; eAf0; 1g;

* ðR-projÞ1; and ðR-projÞ0; meaning that a converse inclusion to the above is satisfied (resp.
violated);

* for each ID sAI; ðw-copyÞ1 and ðw-copyÞ0; meaning that (3) is satisfied (resp. violated) for
wAfIs; Jsg:

Fig. 8. First subquery checking correct projection encoding.

Fig. 9. Second subquery checking correct projection encoding.

Fig. 10. Subquery checking (3) for Is:
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The specialization mapping is the identity on R; Fs; Is; Js; R2n ; and maps every subscripted
symbol ðaÞe to a; for eAf0; 1g: The rules of this portion of the output DTD are as follows:

* ðencÞ1-cno-duplicates4cprojections4ccopies where:

cno-duplicates ¼ðR-no-duplicatesÞ¼00 4
^
sAF

ðFs-no-duplicatesÞ¼00 4

^
sAI

½ðIs-no-duplicatesÞ¼00 4ðJs-no-duplicatesÞ¼00 ;

cprojections ¼ ðR-projÞ¼00 4
^
sAF

ðFs-projÞ¼00 4
^
sAI

½ðIs-projÞ¼00 4ðJs-projÞ¼00 ;

ccopies ¼
^
sAI

½ðIs-copyÞ¼00 4ðJs-copyÞ¼00 ;

* ðencÞ0-:cno-duplicates3:cprojections3:ccopies;
* ðw-no-duplicatesÞ1-w¼1 and
* ðw-no-duplicatesÞ0-wX2 for wAfRg,fFs j sAFg,fIs; Js j sAIg;
* ðw-projÞ1-RX1 and
* ðw-projÞ0-R¼0 for wAfFs j sAFg,fIs; Js j sAIg;
* ðR-projÞ1-

W
sAF FX1

s 3
W

sAIðIX1s 3JX1
s Þ;

* ðR-projÞ0-
V

sAF F¼0
s 4

V
sAIðI¼0s 4J¼0

s Þ;
* ðw-copyÞ1-ðR2nÞ¼2

n

for sAI; wAfIs; Jsg;
* ðw-copyÞ0-

W
ko2nðR2nÞ¼k for sAI; wAfIs; Jsg;

* w-e for wAfR;R2ng,fFs j sAFg,fIs; Js j sAIg:

We next describe the subqueries and portion of the output DTD checking whether each FD or
ID s is satisfied by R; assuming that the input is a correct encoding of R and its projections. Let s
be an FD i1yin-i0: The query used to verify s is shown in Fig. 11. Clearly, s holds in R iff i1yin
is a key in pi0yinðRÞ: Assuming that the input represents a correct encoding of R and its
projections, s holds iff the data values of the nodes labeled i1yin uniquely determine each node
labeled Fs in the input. This in turn holds iff each node labeled LHSs-key has exactly one child
labeled Fs in the answer to the above query.

Fig. 11. Subquery verifying an FD s:
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Let s be an ID ½i1yinD½ j1yjn: Recall that every input representing a correct encoding
satisfies (3) above for each ID s: Using this property, s can be checked by the query in Fig. 12.
Clearly, R satisfies s iff each node labeled Ic1ycn

s has a node labeled Js:
We next define the portion of the output DTD corresponding to the subtrees of Q rooted at s

for some FD or ID s: The additional symbols in the specialized alphabet are:

* ðsÞ1 and ðsÞ0; meaning that s is satisfied (resp. violated);
* ðLHSs-keyÞ1; ðLHSs-keyÞ0; meaning that the left-hand side of an FD s is a key in Fs (resp. is

not a key);
* ðIc1ycn

s Þ1 and ðIc1ycn
s Þ0; meaning that the projection of Is on c1ycn is included in the projection

of Js on c1ycn (resp. is not).

As before, the specialization maps each symbol ðaÞe to a; eAf0; 1g: The rules for this portion of
the DTD are:

* for each FD s; ðsÞ1-ðLHSs-keyÞ¼00 and ðsÞ0-ðLHSs-keyÞX10 ;

* ðLHSs-keyÞ1-ðFsÞ¼1;
* ðLHSs-keyÞ0-ðFsÞ41;
* for each ID s; ðsÞ1-ðIc1ycn

s Þ¼00 and ðsÞ0-ðIc1ycn
s ÞX10 ;

* ðIc1ycn
s Þ1-ðJsÞX1;

* ðIc1ycn
s Þ0-ðJsÞ¼0;

Finally, the DTD rule for the root is:

root-e3ðencÞ¼10 3
_
sAD

ðsÞ¼10 3ð f Þ¼11 :

The above states that either the input is empty, or it is not a correct encoding of R and its
projections, or at least one dependency in D is not satisfied, or f is satisfied. This ensures that Q

typechecks with respect to t1 and t2 iff DFf : Note that by construction, Q and Q4 are
equivalent. &

We conclude the section by considering QL queries with recursion. All the decidability
results of Section 3 assume non-recursive QL queries. We next show that removing this
restriction immediately causes undecidability of typechecking, even with very simple output
DTDs.

Fig. 12. Subquery verifying an ID s:
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Theorem 5.3. Typechecking is undecidable for QL queries and any output DTD that requires a

nonempty sequence of children under the root.

Proof. We reduce the Post Correspondence Problem (PCP, see. e.g., [14]) to typechecking
a QL query with respect to an output DTD requiring a nonempty sequence of children under the

root. Recall that an instance of PCP is a sequence of pairs ðu1; v1Þ;y; ðuk; vkÞ where ui; viAfa; bgþ:
A solution for the instance is a sequence of indices i1yim; mX1; such that ui1yuim ¼ vi1yvim : It
is well-known that it is undecidable whether a PCP instance has a solution [14]. We
encode a solution to the PCP as a linear data tree (a single path). For simplicity, we represent
the path as a string where to each position is associated a symbol (the label of the node) and a data
value (the data value of the node). We write such a string as b1ðv1ÞybtðvtÞ where the bi are
symbols and the vi data values (which may be omitted). Suppose i1yim is a solution to the PCP,
and ui1yuim ¼ vi1yvim ¼ a1yan: The encoding of the solution is a string x$y# where x and y

specify how a1yan is parsed as ui1yuim ; and vi1yvim ; respectively. For each i; 1pipn; the string
x contains four consecutive positions wðiÞsð j Þijai; where ai occurs within uij and w and s are

distinct tags. Note that there is an unbounded number of i and j values, so these cannot be
represented as tags and are instead represented as data values of the nodes labeled w and s;
respectively. On the other hand, the number of values of ij and ai is bounded, so these can be

represented as tags. The string y is analogous for vi1yvim : As an example, consider the instance of
the PCP:

u1 u2 u3 v1 v2 v3

aba aab bb a abab babba

and its solution 1; 3; 2; 1: Note that u1u3u2u1 ¼ v1v3v2v1 ¼ ababbaababa: The corresponding
encoding is the string (read top-down and left-to-right):

wð1Þsð1Þ1a wð1Þsð1Þ1a

wð2Þsð1Þ1b wð2Þsð2Þ3b

wð3Þsð1Þ1a wð3Þsð2Þ3a

wð4Þsð2Þ3b wð4Þsð2Þ3b

wð5Þsð2Þ3b wð5Þsð2Þ3b

wð6Þsð3Þ2a wð6Þsð2Þ3a

wð7Þsð3Þ2a wð7Þsð3Þ2a

wð8Þsð3Þ2b wð8Þsð3Þ2b

wð9Þsð4Þ1a wð9Þsð3Þ2a

wð10Þsð4Þ1b wð10Þsð3Þ2b

wð11Þsð4Þ1a wð11Þsð4Þ1a

$ #
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The input DTD t1 we use is the following:

root-w w-s s-1þ?þ k

i-a þ b ð1pipkÞ a-w þ $þ#

b-w þ $þ# $-w #-e

The query q is the concatenation of several queries, each of which checks for a violation of the
correct form for the encoding of a solution. Then q typechecks iff every input yields a violation, so
the PCP instance has no solution.
It is easily seen that a tree satisfying t1 whose corresponding string is of the form

wða1Þsðb1Þib1a1ywðanÞsðbnÞibn
an$

wða01Þsðb
0
1Þib01a1ywða0mÞsðb

0
mÞib0ma0m#

is an encoding of a solution to the PCP iff it satisfies the following properties:

1. aiaaj and a0iaa0j for all iaj;

2. a1 ¼ a01;
3. for each ion; if ai ¼ a0i; then iom and aiþ1 ¼ a0iþ1;
4. symmetric to (3) for m and n;
5. for each ið1pipnÞ; ai ¼ a0i;

Note that (1)–(5) imply that n ¼ m;
ai ¼ a0i; 1pipn; and a1yan ¼ a0

1ya0
n;

6. for each fixed bj; the set

fi j wðiÞsðbjÞibj
is a substringg

is an interval ½aj1 ; aj2  of the totally ordered set fa1yang; and aj1yaj2 ¼ uibj
;

7. the property analogous to (6) for b0j and vib0
j

;

8. b1 ¼ b01;
9. for each i1; j1; if bi1

¼ b0j1 and there exists some i24i1; such that bi1
abi2

then there exists some

j24j1 such that b
0
j1
ab0j2 ;

10. symmetric to (9) for b0j1 and bi1
;

11. for each i1; j1; if bi1
¼ b0j1 then bi2

¼ b0j2 where i2 ¼ minfi j i4i1; biabi1
g and j2 ¼

minf j j j4j1; b
0
jab0j1g;

12. for each i; j; if bi ¼ b0j then ibi
¼ ib0j :

The queries making up q check that at least one of (1)–(12) fails. For conciseness, we
denote queries by expressions of the form q ¼ r1:X1yrn:Xn:rnþ1 and a conjunction of
(in)equalities among the Xi that apply to the data values. Here the ri are regular expressions
over the alphabet S ¼ fa; b; $;#;w; s; 1;y; kg: Given a string a1ðv1ÞyamðvmÞ; a binding of q is a
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mapping n from fX1;y;Xng to f1;y;mg such that a1yanðX1ÞAr1; for every

i; 1pion; anðXiÞþ1yanðXiþ1ÞAriþ1; and for some vpm; anðXnÞþ1yavArnþ1: Additionally, the

specified (in)equalities among the data values must hold. Clearly, such queries can be expressed
by QL queries of the form:

answerð Þ
j

witnessðX1;y;XnÞ’X0 r1 X1;X1 r2 X2;y;Xn rnþ1 Z

To illustrate, consider properties (1)–(4). The queries detecting a violation of (1) are �w:X : �
w:Y : � :$; X ¼ Y (recall that (in)equalities apply to the data values) and �:$: � w:X : � w:Y ;X ¼ Y :
The query detecting a violation of (2) is w:X : � :$:w:Y ; XaY : Violations of (3) and (4) are
detected by the following queries:

* �:w:X1:S3:w:Y1: � $: � :w:X2:S3:w:Y2; X1 ¼ X2; Y1aY2 (for two indexes of equal value
occurring before and after $, their successors are not equal);

* �:w:X1:S3:w:Y1: � $: � :w:X2:S3#; X1 ¼ X2 (for two indexes of equal value occurring before
and after $, the first has a successor and the second does not);

* �:w:X1:S3$ � :w:X2:S3:w:Y2; X1 ¼ X2 (for two indexes of equal value occurring before and
after $, the second has a successor and the first does not).

Clearly, (3) and (4) are satisfied iff all queries return the empty answer. The queries used for the
remaining properties are similar. &

6. Typechecking XML views of relational data

In another paper [1], we considered typechecking of transformations mapping relational data
into XML. We briefly discuss the relation between that work and the typechecking of XML-to-
XML transformations investigated in the present paper.
In [1] we investigate the typechecking problem for a family of query languages TreeQLðLÞ

defining mappings from relations to labeled trees. The parameter L is a relational query
language, such as the conjunctive queries, possibly extended with inequalities or negation. The
syntax and semantics of TreeQLðLÞ queries are similar to those of QL, where the queries used in
the query tree belong to L: The typechecking problem is to verify whether, for given query
qATreeQLðLÞ; relational constraints S; and output DTD t; qðIÞAsatðtÞ for each relational
instance I satisfying S:
By Remark 4.2, there is an immediate translation from TreeQLðLÞ queries to QL queries

when the language L is the set of conjunctive queries (CQ). Hence, the typechecking problem
for TreeQLðCQÞ queries in the absence of constraints can be reduced to the typechecking
problem for QL queries. We can conclude that, subject to these restrictions, upper bounds from
the present paper carry over to [1] and lower bounds from [1] carry over to the present setting.
Because of this correspondence, Theorems 4.3 and 5.1 carry over from [1], and Theorem 3.6
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carries over from the present paper to [1]. The proofs of Theorems 4.3 and 5.1 are adapted to
the QL formalism and provided here for the convenience of the reader and to make the paper
self-contained.
Beyond the restricted connection just described, the ability to transfer results between [1] and

the present framework is limited by the significant differences between the two settings. In [1] we
show that typechecking still remains in co-nexptime when negation is added to CQ; with
integrity constraints specified by FOð(�8�Þ formulas, that is, first-order logic formulas of the form
(x1y(xn8y1y8ymj where j is quantifier-free. We also obtain a matching lower bound.
However, negation seems to be required so the lower bound does not transfer to the present
formalism. We did not consider negation in this paper as it is not present in XML transformation
languages while it is a well-accepted extension of conjunctive queries in the relational setting. In
[1], we also consider virtual nodes and more expressive DTDs.
Conversely, the full typechecking problem considered here is not reducible to the setting

in [1]. For example, input DTDs cannot be expressed by the relational constraints con-
sidered in [1]. Furthermore, the language QL cannot be simulated in the languages TreeQLðLÞ
studied in [1], due to the presence of recursion in the form of regular expressions used in QL
queries.

7. Conclusions

The main contribution of the present paper is to shed light on the feasibility of typechecking
XML queries that make use of data values in XML documents. The results trace a fairly tight
boundary of decidability of typechecking. In a nutshell, they show that typechecking is decidable
for XML-QL-like queries without recursion in path expressions, and output DTDs without
specialization. As soon as recursion or specialization are added, typechecking becomes
undecidable.
The decidability results highlight subtle trade-offs between the query language and the output

DTDs: decidability is shown for increasingly powerful output DTDs ranging from unordered
and star-free to regular, coupled with increasingly restricted versions of the query language.
Showing decidability is done in all cases by proving a bound on the size of counterexamples that
need to be checked. The technical machinery required becomes quite intricate in the case of
regular output DTDs and involves a combinatorial argument based on Ramsey’s Theorem. For
the decidable cases we also consider the complexity of typechecking and show several lower and
upper bounds.
The undecidability results show that specialization in output DTDs or recursion in queries

render typechecking infeasible. If output DTDs use specialization, typechecking becomes
undecidable even under very stringent assumptions on the queries and DTDs. Similarly, if
queries can use recursive path expressions, typechecking becomes undecidable even for very
simple output DTDs without specialization.
Several questions are left for future work. We showed decidability of typechecking for regular

output DTDs and queries restricted to be projection free. It is open whether the latter restriction
can be removed. With regard to complexity, closing the remaining gaps between lower and upper
bounds remains open.
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Beyond the immediate focus on typechecking, we believe that the results of the paper provide
considerable insight into XML query languages, DTD-like typing mechanisms for XML, and the
subtle interplay between them.
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