
J.LOGICPROGRAMMING 1991:11:55-84 55 

THE REDUCE-OR PROCESS MODEL FOR 
PARALLEL EXECUTION OF LOGIC PROGRAMS* 

JAXMIKANT V. K.&lit 

D A method for parallel execution of logic programs is presented. It uses 
REDUCE-OR trees instead of AND-OR or SLD trees. The REDUCE-OR trees 
represent logic-program computations in a manner suitable for parallel 
interpretation. The REDUCE-OR process model is derived from the tree 
representation by providing a process interpretation of tree development, 
and devising efficient bookkeeping mechanisms and algorithms. The pro- 
cess model is complete-it produces any particular solution 
eventually-and extracts full OR parallelism. This is in contrast to most 
other schemes that extract AND parallelism. It does this by solving the 
problem of interaction between AND and OR parallelism effectively. An 
important optimization that effectively controls the apparent overhead in 
the process model is given. Techniques that trade parallelism for reducing 
overhead are also described. a 

1. INTRODUCTION 

Symbolic computations have emerged as a significant class of computations in 
recent years. With developments in the fields such as expert systems and problem- 
solving systems, the complexity of such computations has been increasing. Many 
problems in these domains tend to be combinatorially explosive. It can be expected 
that their complexity will entail a parallel execution scheme. 

Address correspondence fo Laxmikant V. KalC, Department of Computer Science, University of 
Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801; telephone (217) 
244-0094. 

Received August 1988; accepted March 1989. 
*Parts of this paper are adapted from a paper presented at the Fourth International Conference on 

Logic Programming, Melbourne, 1987. 
‘This research was supported in part by the National Science Foundation under grant CCR-87-00988. 

THE JOURNAL OF LOGIC PROGRAMMING 

OElsevier Science Publishing Co., Inc., 1991 
655 Avenue of the Americas, New York, NY 10010 0743-1066/91/$3.50 



56 LAXMIKANTV.KALti 

Logic-programming languages are suitable for expressing symbolic computa- 
tions. It is also relatively easy to express parallelism in a logic program. 

This paper describes the development of an efficient scheme for parallel 
evaluation of combinatorially explosive symbolic computations expressed as logic 
programs. There are many research efforts directed at this broad goal. This 
approach is further guided by the following considerations: 

(1) It is generally believed that communication cost is a dominant determinant 
of the performance of a parallel processing system. Therefore it is impor- 
tant, as far as possible, to subdivide the computation into independent 
subtasks. 

(2) Given a logic program, one should strive to extract the maximal possible 
degree of parallelism, subject to the independence requirement above. In 
specific situations, it may be wise to trade some parallelism for a reduction 
in overhead. But if the basic scheme made that compromise, it would not be 
able to exploit another architecture with more processors, for example. 
Instead, methods should be developed for dynamically controlling the 
parallelism to match the resources. That is, the issue of controlling the 
degree of parallelism should be kept orthogonal to the basic scheme that 
extracts the parallelism. 

(3) Broadly, the sources of parallelism in a logic program can be classified as 
AND-parallel and oa-parallel. Both of these sources of parallelism are 
significant in the symbolic computation domain. They must be exploited to 
effectively parallelize a wide range of problems, and also to effectively use a 
large number of processors, when available. Moreover, the two sources 
should be pursued in concert, which involves solving the problems of their 
interaction, to derive the full multiplicative benefit from both forms of 
parallelism. 

The classes of programs that benefit most from our approach include combina- 
torial search computations encountered in, say, problem-reduction-based problem 
solving. There may be many methods for solving a subproblem, and a method may 
involve consistently solving many subproblems. The OR parallelism is typically 
present underneath AND parallel branches in these computations. Symbolic inte- 
gration and many planning problems are examples of problem reduction. Although 
the proposed scheme is meant to work equally well for purely AND-parallel or 
purely on-parallel computations, it is worthwhile keeping this class of computa- 
tions in mind as one of the motivations behind this approach. 

2. REPRESENTATION OF PARALLEL LOGIC COMPUTATIONS 

First, the terminology used in this paper is briefly introduced. 
A logic program consists of a set of Horn clauses. Each clause has the form 

‘L:- Ll,...,L,.', where all of the L~'S are literals. A literal consists of a predicate 
name followed by a parenthesized list of terms. A term can either be a constant or 
a variable or a function symbol fohowed by a parenthesized Iist of terms. Predicate 
names, function symbols, and constants can be quoted strings or identifiers that 
start with a lowercase letter. A variable is any identifier starting with an uppercase 



THEREDUCE-ORPROCESSMODEL 57 

letter. In the above clause, L is the head of the clause, and 'Lo, . . . , L,' is the body 
of the clause. A clause with an empty body is written simply as ‘L.' and is called a 
fact. A clause that is not a fact is called a rule. 

A (possibly empty) set of literals is called a query. The body of a clause C, 
instantiated with the substitution that unifies a literal G and the head of C, is 
called a query for G using clause C. 

The clause ‘L:- L~,..L,.' may be understood to mean “one way to solve L is to 
solve the subproblems L, and.. . and L,." A fact signifies a solved or “true” 
formula. A literal L is solved if there exists a clause C whose head unifies with L, 

and all the literals in the query for L using C are also solved. We define these 
notions of solving and solution more precisely in the next section. 

2.1. The REDUCE-OR Trees 

As many researchers have pointed out [5,141, AND parallelism is an important 
source of parallelism because it frequently, but not always, involves “mandatory” 
actions as opposed to “speculative” ones, and thus relates directly to speedup. (If 
one of the AND-parallel branches fails, the work done in the other branch is 
wasted, and so AND parallelism can also be speculative in some cases.) Schemes for 
exploiting AND parallelism [2,5,17,18,291, whether they deal with OR parallelism or 
not, are typically based on the AND-OR tree [4,28,331 as the representation of logic 
computations. 

There are two types of nodes in an AND-OR tree: AND nodes and OR nodes. Each 
node has a label. OR nodes are labeled with a single literal. AND nodes are labeled 
with a query (i.e. a set of literals). Given a query Q and a logic program P, the 
AND-OR (AO) tree for Q w.r.t. P is recursively defined as follows. The root of the 
tree is an AND node labeled with Q. Each AND node labeled with a query 
{G,, . . , G,,} has n children, which are OR nodes labeled with G,, . . . , G,. Each OR 

node labeled with a literal L has a child AND node labeled with Ql for every clause 
C such that Ql is a query for L using C. The arc from an OR node to an AND node 
is called a match arc and is labeled with the most general unifier of the head of C 
and L. An AND node labeled with an empty query is a Zeuf node. A leaf node results 
from using a fact clause for matching an OR node. In illustrations, we sometimes 
label each leaf node with the corresponding fact. A candidate solution tree for a 
literal G (or a query Q> is a subgraph of the AND-OR tree for G (or Q> such that: 

(1) It includes the root of the AND-OR tree. 

(2) If it includes an AND node A, it also includes all the child nodes of A. 

(3) If it includes an OR node 0, it also includes exactly one child node of 0. 

A consistent solution tree is a candidate solution tree such that the labels of its 
match arcs have a unifiying composition. A query Q is said to be solved if the 
AND-OR tree rooted at Q contains a consistent solution tree. Let S be the 
composition of the substitutions that label the arcs of a consistent solution tree for 
a query Q. The projection of S onto the variables of Q is called a solution to Q. A 
binding is said to satisfy a literal G (or a query Q> if it is a solution to G (or Q). 

Consider the AND-OR tree for the query ‘p(X), q(X,Y)’ shown in Figure 1. 
There are four candidate solution graphs, consisting of nodes {1,2,3,4,6), 



58 LAXMlKANTV.KALk 

AND P(JMX,Y) 1 

4 

p(a) PM q(e,d) q&,4 

FIGURE 1. An AND-OR tree. 

{l, 2,3,4,7), {l, 2,3,5,6}, and 11,2,3,5,7). Of these, only the last one is a consistent 
solution graph, because a, and a, have a unifying composition, providing (X= b, 
Y = e} as a solution to the query. The other solution graphs are inconsistent 
because the substitutions on their match arcs are inconsistent. For example, g1 
and a3 do not agree on the value of X. If the clauses for p or 4 were defined by 
rules, such inconsistencies could occur between arcs that are arbitrarily far apart in 
the tree. Detecting these requires a global check across the whole solution tree. 

In a parallel environment such global checks lead to unacceptable levels of 
communication. Therefore, we wish to constrain our tree models so that each node 
represents a completely described subproblem-to be solved without any refer- 
ence to the nodes in the tree above it. To ensure this, we associate a partial 
solution set PSS with every node in the tree. Each element of this set is a 
substitution that is a solution to the literal or query that labels the node. It must be 
computed using information only from PSSS of the children of the node. 

In our example, this constraint implies that the tree beneath the node for p(X) 
computes a set of bindings for X that satisfy p(X), the tree beneath the node for 
q(X, Y 1 computes a set of bindings for X and Y that satisfy q(X, Y 1, and then a 
relationaZ join of these two sets yields the solutions for ‘p(X), q(X, Y)‘. All the 
consistency checks are thus localized in the join operation. 

With that, though, another problem emerges: the AND-OR trees do not allow 
distinct representation of the true subproblems. Consider the same query 
‘p(X), q(X,Y)’ again. A legitimate, and frequently effective, way to solve this 
query is to solve p(X) first, and to solve q(xi, Z) for every xi that satisfies p(X). 
This allows solutions to p(X) to prune the search space for q. Here the real 
subproblems of the query are p(X), q(x,, 21, q(x,, 21,. , . . This subdivision can- 
not be represented in the AND-OR tree: it has just one node for the literal q(X, Y). 
Therefore, we propose a different representation of logic computations. As it 
faithfully represents the process of reducing a problem to its subproblems, we call 
it the REDUCE-OR tree. This representation was informally described in [193. Its 
formal definition and relationship to other tree representations are examined in 
E231. 

A REDUCE-OR tree consists of REDUCE nodes and OR nodes. See Figure 2 for a 
sample REDUCE-OR tree for the query of Figure 1. Each REDUCE node is labeled 



THEREDUCE-ORPROCESSMODEL 59 

FIGURE 2. A REDUCE-OR tree. 

with a query, and each OR node with a literal. If a REDUCE node is labeled with a 
query Q, every OR child of this node is labeled with an instance of a literal, say L, 
in Q. A substitution S that is a solution to some of the other literals in Q may be 
used to instantiate L. (We say the corresponding OR node inherits the substitution 
S.) To coordinate this, we assume a partial order on the literals in every REDUCE 

node. A concrete way of specifying such an order (in the form of a graph) will be 
discussed in the next section. The OR children corresponding to a literal can inherit 
substitutions only from the OR children corresponding to the predecessor literals in 
the partial order. In the root node of Figure 2, we assume that p(X) precedes 
q(X, Y). The substitutions X= a and X = b produced by the OR child for p(X) 
are thus inherited by the OR children for q(X, Y 1. 

In text, we denote an OR node as O((T,G,PSS), where (+ is a substitution, 
G is a literal, and PSS is a set of substitutions that satisfy G. u serves a book- 
keeping purpose explained shortly. A REDUCE node is represented as 
a(H,{G ,,.. . , G,,),Pss), where H and {G,, . . . , G,) are the instantiated head and 
body of some clause of the program, and PSS is a set of substitutions that satisfy 
(G i, . . . , G,,) and hence H. As in attributed syntax trees, the nodes in REDUCE-OR 
trees have information that is inherited from parents or siblings, and information 
that is synthesized from children. The first two components are inherited, and the 
third component, PSS, is synthesized. 

The REDUCE-OR tree for a query Q, w.r.t. a logic program P, is defined using 
mutually recursive rules as follows. Rules (1) through (3) specify how to build the 
tree, and rules (4) and (5) specify how to collect the PSSS. 

(1) 

(2) 

The root of the tree is RCA, Q, PSS). 

The children of a REDUCE node: Let R(H,{G~, . . . , GJ, PSS) be a 
REDUCE node. If IZ = 0, then it has no children. Otherwise, it has zero or 
more OR children corresponding to each G,, 1 I k I n, as described below. 
(Informally, there is an OR node for solving an ‘instance of G, for each 
substitution that satisfies all the predecessors of G,.) If G, has no prede- 



(3) 

LAXMIKANTV.KALk 

cessors, the REDUCE node has one OR child corresponding to G,: 
o (4, G,, PSS'), where C#J is the e_mpty substitution. Let P,, . . . , P,,, be the 
predecessors of G, in the partial order. (Note: (P,, . . . , PJ c (G,, . . . , G,}.) 
The REDUCE node has one or more OR children Iabeled with an instance of 
Pi for each i, 1 pi I m. Pick one OR child for each i, say o(a,i, P!, PSS{). 
(P,’ is an instance of P,.) From each PSS!, pick one substitution, say 
6i~ PSS{. Let pi= uj.Si and u= Pl’cL2’ ... ‘CLm* For each such choice, if 
the resultant CT is a consistent substitution, then there is a new OR child: 
o((T, uGk, PSS'). That is, the new goal literal is instantiated using a composi- 
tion of one solution to each of its predecessors. CT essentially remembers the 
“context” of the OR node. Without such a u, the root REDUCE node of 
Figure 2 would have no way of knowing that {X = a, Y = e) is not a solution. 

The children of an OR node: Let o(u,G,~ss) be an OR node. For each 
clause of the form ‘Ri :- Qi’ such that pi unifies with G, the OR node has a 
child R(H~, OQi, PSS&. Here Hi = eBi, and 0 is the most general substitution 
to the variables of Hi so that it matches G (i.e., 0gi = rrG for some ~1. 

We now define the PSS of a node in terms of the PSS of its child nodes. 

(4) 

(5) 

Let o(u, G, PSS) be an OR node with children (R(H~, Qi, PSS~)}. Then PSS = 

(6 /6G =p,H,, where pi f PSS~, for some i}. (Informally, any solution to a 
REDUCE node translated via back unification is also a solution to its parent 
OR node.) 

Let R(H,{G~, G2,..., G,), PSS) be a REDUCE node with children 
{o(u/, G/, PSS;)}. Then PSS = {pip =~,~~2~ *** VP,,, where pi=uj*6/ and 
p is consistent for some i, with S/ E PSS{>. (Informally, a consistent composi- 
tion of solutions to each literal of a clause is also a solution to the head of 
the clause.1 

Notice the special case R(H, (1, {0)), i.e., the PSS for a REDUCE node corresponding 
to a fact is a singleton set with a null substitution. 

2.2. The Data Join Graph 

The body of a clause consists of a set of literals. It is not usually efficient to 
compute them all in parallel. Frequently, some partial ordering among the literals 
can be used to solve the query effectively. We assumed such an ordering in the 
definition of the REDUCE-OR tree in the previous section. The effectiveness of a 
specific ordering for a clause may depend on the rest of the program and on the 
query. Some analysis of the rest of the program and of the data dependencies 
within the clause is needed to estimate the best partial order. The data join graph 
(DJG) encodes the recommendation of such analysis, specifying which literals can 
be solved in parallel and which must wait for data from others. Many techniques 
for obtaining such a graph (or a variant) are proposed and being developed by 
researchers [2,10,35]. Here, we are concerned with only what the DJG is. 

Each arc in the graph represents a Iiteral of the clause. Each node denotes a 
joining point for the data produced by the literals on its incoming arcs. Literals on 
the arcs emanating from a node can be evaluated only after the node is triggered. 



THEREDUCE-ORPROCESSMODEL 61 

P(W) r(T,U,Y) 

nwJ) s(T,W) 

FIGURE 3. A data join graph. 

A DJG for the clause 

h(Y,Z):-g(X),p(X,T),q(X,U),r(T,U,Y),s(T,U,Z). (Cl) 

is shown in Figure 3. Here p and q can be executed in parallel, and so can r and 
s, but r and s depend on at least one solution each for p and 4. 

Despite some differences, the. DJG is essentially equivalent to Conery’s data 
flow graphs [4] or the data dependency graphs described by Chang et al. [2]. One 
difference is that we use arcs, as opposed to nodes, to denote literals. The nodes 
denote joining points for data. As shown later, having such explicit join points has 
some bookkeeping advantages for the process model. Another difference is that 
the DJG does not preclude parallel computation of two subgoals that share a 
variable. Such dependent AND parallelism is permitted by the REDUCE-OR trees, to 
cater to the rare situations when it is beneficial, although our emphasis is on 
independent AND parallelism. Conversely, the DJG can encode the dependence on 
pure tests as in generate(X), test(X), process(X, Y 1. Here, we do not want process 
to carry on until test certifies the generated value, but there is no explicit data flow 
from rest to process. Such a dependence can also be encoded in the above schemes 
by adding an extraneous variable that is shared by the test and the process literal. 

Consider the clause body shown in Figure 4. Here, I is assumed to be the input 
variable; p and q compute X and T, respectively, using the value of I. Literals r 
and s use X to produce Y and Z respectively, while t uses Y and T to produce U. 
As the figure demonstrates, the DJGs can encode certain dependencies efficiently 
which cannot be easily encoded in the kinds of graphs used in [l, 8,161. The legal 

clause Body: p&X), q(W), r&,Y), a(W), t(Y,T,U). 

FIGURE 4. A DJG that cannot be expressed using CGEs. 



62 LAXMIKANTV.KALk 

Clause body: p(X,Y), q(X,Z), q(Y,T), q(Z,U), q(W), q(T,Z). 

FIGURE 5. A DJG with null arcs. 

constructs in these systems (such as CGEs and ‘andP’s) lead to “block-structured” 
(or simply “structured”) graphs-constructed with single-entry, single-exit blocks. 
Trying to express the DJG in Figure 4 with such graphs results in loss of AND 
parallelism, as it introduces unnecessary dependencies. This has also been pointed 
out in [31]. For example, using the CGE (conditional graph expression) as defined 
in [16], one may write the clause body as 

Here, ‘&’ denotes parallel subexpressions. However, this expression forces the 
literal s(X, Z) to wait for a solution to q(Z, T), which is unnecessary. When the 
predicates involved are nondeterministic, such graphs lead to even more serious 
performance degradation, as illustrated at the end of Section 3.3.2 with the 
map-coloring example. 

A consequence of using the DJG representation instead of the data flow graphs 
is the presence of null arcs, as illustrated in the DJG of Figure 5. ‘null/O’ can be 
thought as a predicate defined by a single fact. 

As DeGroot and Chang 193 point out, a static dependency graph, fixed at 
compile time, is bound to lose significant parallelism, because it has to be 
conservative in its estimate of which actions can be safely executed in parallel. For 
that reason, the notion of DJG has been extended to conditional DJGs, which are 
described in [20]. In this paper, for clarity, we assume a fixed DJG, obtained at 
compile time or at least before the REDUCE node is created. 

3. THE REDUCE-OR PROCESS MODEL 

Computation of a query Q with respect to a logic program can be viewed as a 
process of growing a REDUCE-OR tree rooted at a REDUCE node labeled with Q. 
There are, of course, many possible ways of growing the tree and managing the 
information at each of the nodes. The process model described in this section 
specifies one particular execution method. This process model was presented in a 
shorter conference paper [21] without the full description of the optimizations, etc. 



THEREDUCE-ORPROCESSMODEL 63 

In this section, we first derive the process model from the tree representation. 
Section 3.1 describes the REDUCE process in detail, and Section 3.2 presents an 
important optimization. Section 3.3 discusses two properties of the model: com- 
pleteness and “full” OR parallelism. The algorithm, particularly the optimizations 
of Section 3.2, are somewhat complex. We would like to caution the reader against 
equating the conceptual complexity of the algorithm described, working in the 
general case, with its computational complexity-viz. the overhead. In Sections 4 
and 5 we give arguments and data to show how the model can be efficiently 
implemented. 

A process is associated with each node of the tree. Thus there are two kinds of 
processes: REDUCE processes and OR processes. We now describe how the informa- 
tion that appears in the tree is stored by the processes. In the tree, the OR nodes 
carry a field which stores a substitution representing its con&t. This field, denoted 
cr, is used only at its parent REDUCE node, for computing the parent’s PSS, and to 
add more child OR nodes to it. Also, this context is shared by many OR nodes, if 
they correspond to AND-parallel branches emanating from a node in the DJG. So it 
is sensible to store this field at the REDUCE process. We attach this information, in 
the form of a tuple of bindings, to the nodes of the DJG. All the tuples attached to 
a node N form a node relation for N. The context of an OR process for a literal L is 
now a tuple in the node relation for the node immediately preceding L in the DJG. 
The OR process receives only a pointer to the context tuple, and this pointer is 
included along with any solutions reported to the REDUCE process. Notice that the 
PSS of the REDUCE node is the same as the node relation of the last node of its 
DJG. 

The PSS of an OR node also gets used only in the parent REDUCE process. So we 
move that up to the parent REDUCE process. PSSS of all the OR nodes for a literal L 

form a literal relation that is attached to the arc corresponding to L in the DJG. 
The entries in the PSS of an OR node are computed using rule (4) of Section 2.1. 

According to that rule, an entry 6, is to be created in the PSS of an OR node for 
every entry pi in the PSS of its child REDUCE node, by solving for ai in 

& * G = pi. H, (1) 

where H is the instantiated head of the clause used in forming the REDUCE node. 
Directly using this rule leads to the following procedure. When a REDUCE process 
finds a solution pi in its PSS, it instantiates the head literal H using pi, forming the 
instantiated literal pi. H. The REDUCE process then sends it up to its parent OR 

process, which can then solve for ai using the equation (1). However, this 
procedure can be optimized. Let p be the head of the clause used. Notice that H 
was obtained from B by unifying k with G [see rule (311. Thus, we have 

(H is the most general instance of G and HI. Substituting for H in the equation 
Cl), we get 

6,.G=p,-a-G. 

Therefore, ai = pi . IT is the most general solution for 0. So, instead of storing the 
instantiated head H, the REDUCE process stores the bindings 7 to the goal 
variables produced during unification. Now, a REDUCE process R can easily 



64 LAXMlKANTV.KALk 

FIGURE 6. Interprocess communication. 

construct the entry ~3~ for the parent OR process’s PSS when it makes an entry (pi) 
in its PSS. The OR process’s PSS is stored in the grandparent REDUCE process R,, so 
R may directly send it 6, as a response to R,. 

With the correlation between the REDUCE-OR tree and the process model 
established, we now describe the process model in detail. 

An OR process, say 0, is given a single goal literal, say G, and a context pointer 
T by its parent REDUCE process, say R. It finds from the program all the clauses 
whose heads unify with G. While unifying a head H with G, it creates two 
substitutions: 0, which is a substitution to the variables of H, and r, which is a 
substitution to the variables of G [see rule (311. When the matching clause is a fact, 
it simply sends 7 as a solution to its parent REDUCE process R. It creates a 
REDUCE process for each matching rule, and passes 8, r, and the DJG for the 
clause. It also passes the process id of the parent REDUCE process, and the context 
pointer T to these processes, so that they can send answers directly to R. It then 
terminates, as it has no part in relaying the solutions to its parent. 

The REDUCE process is more complex, and is fully described in the next section. 
It must first identify all the literals that have no predecessors in the DJG of Q, and 
start an OR process to solve each such literal. It must await responses from these 
processes. For each response received, say R, which is a solution to one of its 
literals, it must check if one or more complete solutions to all literals of Q can be 
constructed using R. If so, it must send all the constructed solutions to the 
(grandparent) REDUCE process. Otherwise, some other literal(s) may have become 
eligible for solution with the arrival of this response. It must create an OR process 
for each such literal. The selection of eligible literals must be constrained by the 
DJG of Q. The selected literals given to the new OR processes must be instantiated 
using rule (2) of Section 2.1. 

An example of processes and their communication patterns is shown in Figure 
6. The communication structure is quite structured. A parent process communi- 
cates with each child only when the child is being created. The REDUCE processes 
communicate to their (grandjparent REDUCE process only when they have a 
solution. The subprocesses are independent to the extent that their computation, 
once started, does not depend on any message or information coming from the 
parent or siblings. 

3.1. The REDUCE Process 

Each REDUCE process, for a query Q, maintains many relations, one for each literal 
arc (called a literal relation) and one for each node (called a node relation) of the 



THEREDUCE-ORPROCESSMODEL 65 

XYZTU XYZTU XYZTU 

FIGURE 7. Relations maintained by the REDUCE process. 

DJG of Q. Figure 7 shows the relations for the DJG of Figure 3. Each relation is 
over the set of all the variables of the clause; if the clause has variables X,, . . . , X,,, 
a tuple T=[T,,..., Z”] in one of the relations represents the substitution 

[Zl/X,, . . . , T,/X,]. The semantics of these relations is as follows: A tuple in a 
node relation (or literal relation) is a substitution that satisfies all the literals 
preceding it in the DJG (including itself, in case of a literal relation). All the 
relations are empty when the process begins. 

When started, a REDUCE process is given the process id of its grandparent 
REDUCE process (say ParentPID), a parent goal number (which represents the 
context), and a substitution rr that expresses the variables in the parent in terms of 
its own variables. The process stores these for use while constructing a response. It 
is also given a DJG together with a tuple of the initial bindings of the variables of 
the literals in the DJG. This tuple is first inserted in the relation associated with 
the first node. The algorithm followed by the REDUCE process is described by the 
pseudocode in Figure 8. The process can be best understood by looking at what 
happens when 

(1) a tuple is inserted in a node relation, 

(2) a response, which is a solution to a literal, arrives, and 

(3) a tuple is inserted in a literal relation. 

Insertion of a tuple Tin a node relation: If the node is not the last node of the 
DJG, an OR process is started for each literal corresponding to an arc emanating 
from that node. The variables of these literals are first instantiated using the 
substitutions from T. A unique goal number (the context) is passed down to each 
OR process being created. All responses from this process include this goal number 
for reference. For each goal number, the REDUCE process remembers (1) the arc 
number of the literal, and (2) a pointer to T, the context tuple that is being 
extended by the new OR process. Figure 9 shows a snapshot of the actions that 
follow the insertion of a tuple in a node-relation for node 3 of the example query 
of Figure 3. 

If the node is the last node, a solution to the query has been found. The values 
of variables from T are used to instantiate a copy of rr, the stored substitution, to 
obtain a substitution tuple R that belongs to its parent’s PSS. A response of the 



66 LAXMIKANTV.KALl? 

PROCESS REDUCE(ParentJTD, Parent_Gnum, Parent_tuple /* I?/, hritxuple/*B*/,DJG) 

/* The DJG corresponds to one of the clauses of the program 

Tuple has values of variables of thii clause as instantiated by the ‘call’ */ 

allocate and initialise the node_relations and literal_relations; 

insertjenode_relation(O,Init~uple); 

repeat forever 

wait_tor_response(R); 

procwsJesponse(R); 

PROCEDURE inrert_.innode_relation(Nodenum,Tuple); 

if lastsode(Nodenum,DJG) 

then Response_tuple = compose(ParentI’uple, Tuple); /* 6i=pi*r */ 

send(ParentPID, Parent_Gnum, Response_tuple); 

else NodeRelations[Nodenum] + NodeRelations[Nodenum] U {Tuple); 

A + successorarcs(Nodenum,DJG); 

for each arc E A, 

G - instantiate( literal(arc,DJG), Tuple); 

Gnum - a unique number; 

Node_tuple[Gnum] * Tuple; arcnum[Gnum] + arc; 

start OR-process(Gnum,G,MyPID); 

PROCEDURE process~eaponse(RM /* response message */) 

Gnum + RM.Parent_Gnum; RJuple + RM.Tuple; 

Arc + arcnum[Gnum]; 

NewTuple + unify(R2’uple, Node_tuple[Gnum]); 

insertjeliteralrelation(New_Tuple,Arc); 

/* extend the context tuple */ 

PROCEDURE inrert_in_literaLrelstion(Tuple,Arcnum) 

LitsralRelations[Arcnum] + LiteralRelations[Arcnum] lJ {Tuple}; 

Node + successor~ode(Arcnum,DJG); 

A +- predecessorarcs(Node,DJG); 

NewTuples + {Tuple} 

for all arcs a E 4 

NewTuples + NewTuples W LiteralRelations[a] 

for each T E NewTuples, 

/* W: relational join */ 

insertinnode_relation(T,Node); 

FIGURE 8. Pseudocode for the basic REDUCE process. 

form (parent goal number, R) is sent to the REDUCE process, ParentPID. The 
REDUCE process then resumes waiting for more responses. 

Arrival of a response: A response includes a goal number and a binding tuple R 
(see Figure 10). The arc number and the tuple T being extended by the response 
R are recalled using the goal number. Note that R has bindings for variables of the 
current REDUCE process because of the way it was constructed. So T and R are 
tuples over the same domain. The tuple T (here [a, -, -, b, cl) is then unified with 
the new tuple R, and the resultant tuple ([a, n, -, b, cl) is inserted in the appropri- 
ate literal relation. Unifying two tuples involves unifying each member in one with 



THE REDUCE-OR PROCESS MODEL 67 

goal #72 

)goala Table 
/- 

4: r(T,U,Y) 

literal: 4 
context: - 
literal: 5 
context: - 

& 

a--bc 
XYZTU 

OR-processes started: 

FIGURE 9. Inserting a tuple in a node relation. 

the corresponding member in the other. When the DJGs enforce independent AND 

parallelism, the unification may be simplified to copying. 
Insertion of a tuple in a literal relation: When a tuple is inserted in a literal 

relation, say R,, it must be checked whether any tuples can be inserted in the 
node relation for the node (say N) that follows the literal. Tuples in a node 
relation denote the bindings that solve all the preceding literals. So the node 
relation associated with node N is a join of all the literal relations for the literals 
immediately preceding N. To update the node relation without duplicating tuples, 
a join of all the literal relations for the preceding literals, excluding R,, and the 
singleton relation consisting of the new tuple is computed. Each tuple of the 
resulting relation is inserted into the node relation for N, triggering all the actions 
associated with insertions into a node relation as described above. Figure 11 shows 
an example situation taken from the processing of the query for (Cl) in Section 
2.2. It illustrates the actions following insertion of a tuple T = [a, -, -, -, c] in the 
literal relation for q. 

Subgoals Table 
r(T,U,Y) 

R, 1 
. 

#72 
literal: 4 
parent: -- a-- c 

a II - b epew tuple created 

R3 

FIGURE 10. Arrival of a response. 



68 LAXMIKANTV.KALi: 

FIGURE 11. Inserting a tuple in a literal relation. 

3.2. An Important Optimization 

We now describe an important optimization that significantly reduces the overhead 
in the REDUCE process. It simplifies the join operation, and permits reductions in 
space usage. We consider it an essential part of the REDUCE-OR process model. 
The main reason for not including it in the description in Section 3.1.1 is 
pedagogical. 

In the basic algorithm, when a tuple is inserted in a literal relation, it is 
“joined” with all the tuples in the other literal relation(s) that join at the same 
successor node. The process of combining two tuples involves first checking if the 
tuples are compatible (i.e. they have the same values for the variables bound in 
both of them) and then copying the bindings to create a combined tuple. For 
example, in Figure 11, when the tuple T was inserted in R,, all the tuples in R, 
were visited, and each checked to see if it has the same value for X (= a) as T. 
Thus, there are two sources of overhead in the basic algorithm: visiting tuples that 
are not useful, and performing the consistency checks. The optimization described 
next makes it possible to visit only the relevant, compatible tuples, and thereby 
also avoids the consistency checks. 

The extended algorithm is best explained by first showing its behavior on a 
simple example. Consider a new DJG being used by a REDUCE process as shown in 
Figure 12. With every tuple inserted in a node relation, several pointers are 
created when the corresponding OR processes are created. In this example, one 
pointer is created corresponding to each of the arcs emanating from the node. (In 
general, there is one pointer for each arc that participates in a join in which this 
node is a common ancestor. See below.) Each pointer points to a list (initially 
empty) of tuples in the literal relations that are to be joined. 

When a response for r is received, the goal number associated with it is used to 
locate the context tuple T. T is then extended to obtain a new tuple T4 using the 
bindings provided by the response. (So far, all the actions have been the same as in 
the basic algorithm of Section 3.1.) T4 is now inserted into the linked list of all 
tuples in R, that are extensions of T, as indicated by the dashed line. (Explicitly 
inserting T4 in relation R, is not necessary now.) To compute the additions to the 



THE REDUCE-OR PROCESS MODEL 69 

FIGURE 12. The optimized algorithm: a simple example. 

joined relation, R,, we do not join T4 with the whole of R,. Instead, we now 
follow the q-pointer from the context tuple T into the linked list of extensions of T 
in R,. This leads us to tuples T, and T6. The join of T4 with T, and that of T4 
with T6 result in two new tuples, T, and T,, in the node relation R,,. The 
complexity of the join operation is now reduced to the minimum. The whole literal 
relation (Rq here) isn’t traversed; only the relevant tuples are visited. In addition, 
if the DJGs ensure independent AND parallelism (i.e., literals that are allowed to 
execute in parallel cannot bind the same variable), there is no need for any 
consistency checks or unifications for the tuples visited. 

In general, the situation can be more complex than that of the above example, 
depending on the structure of the DJGs. The algorithm deals with these situations 
as follows. 

(1) Distant common ancestors: In the previous example, the context tuple T 
also happened to be the common ancestor of tuples in both literal relation 
tuples that were joined. Consider the DJG of Figure 13. Here the common- 
ancestor tuple (T,) is in the relation R,. So, when a response from p 
arrives, its context tuple (T,) does not have a pointer to the linked list of 
relevant tuples in R,. To handle this situation, we require each node-rela- 
tion tuple to carry additional back pointers. Here, the context tuple (T,) in 
the node relation R, carries a back pointer to the common ancestor tuple 
TA. The new tuple T,, can be inserted in the linked list that begins at one of 
the forward pointers at TA. Also, from TA we follow the other forward 
pointer into R, as before, to perform the join. The tuples in the node 



70 LAXMIKANT V. KALJ? 

Rx___, r----- 
I 0 
I 1 
I t 

! 
, R 
, r----R---, 

FIGURE 13. Distant common ancestors 

L_________J L_________A 

FIGURE 14. Multiple common ancestors. 



THE REDUCE-OR PROCESS MODEL 71 

FIGURE 15. Multiple joins with the same common ancestor. 

(2) 

(3) 

(4) 

relations along the path from the common ancestor to the joining node 
simply copy and carry the back pointers. For example, all tuples in the 
relation for node 4 (R,) carry a back pointer to their ancestor tuple in R,. 
Let T4 be a tuple in R,. When a tuple T is inserted in node relation 6 due 
to a response for a goal on the arc from 4 to 6, with T4 as its context tuple, 
the back pointer is copied from T4 into T. 

Multiple common ancestors: Figure 14 shows a DJG where two joining 
literal relation tuples may’have more than one common ancestor. When a 
response for p arrives, its context tuple CT,> is located, and the extended 
tuple CT,,) is constructed. From the context tuple T3 we now follow the 
back pointers to one of the common-ancestor tuples CT,>. This is called the 
primary common ancestor. The extended tuple T,, is inserted in the linked 
list that begins at the primary common ancestor, and the forward pointer 
from there (TO) is followed into the other literal relation CR,), as before. 
While traversing the tuples in the other relation R, via the linked list, it is 
checked if their second common ancestor is the same as that of T,,. If not, 
the tuple is skipped. For example, Tq2’s second common ancestor is T,, 
whereas TP,‘s is TI. So Tq2 is not used. 

Multiple joins with identical common ancestors: Consider the DJG given in 
Figure 15. (This graph arises in a map-coloring problem.) Node 0 is the 
common ancestor of two joins: at nodes 3 and 4. Now, each tuple in node 
relation 0 must keep four forward pointers corresponding to the four literal 
relations that join at these nodes. The operation of the algorithm is 
unchanged. 

Nodes with in-degree larger than 2: This can be handled easily by extending 
the DJG with null arcs so that all nodes have in-degree I 2. Alternatively, 
this situation can be handled dynamically by considering arcs two at a time 
while processing a response. Notice that the common ancestors for each 



72 LAXMIKANTV.KALi 

pair of arcs may be different, even though they all are incident on the same 
node. 

To summarize, each literal-relation tuple carries one pointer to its context 
tuple. Each node-relation tuple may carry several back pointers. Also, several 
forward pointers are carried by node-relation tuples at nodes that are primary 
common ancestors for a join. Notice that which (one of the possibly many) back 
and forward pointers to follow from the tuples while processing a response and 
computing a join can be decided at compile time. 

3.3. Properties of the Process Model 

We now examine the properties of the proposed scheme, and compare it with 
others. Two of its important properties are completeness and “maximal” paral- 
lelism. 

3.3.1. Completeness. Completeness is the ability to produce a solution whenever 
a solution exists, even if the search space is infinite. To isolate the properties of the 
process models from those of the scheduler, let us assume a fair scheduler (that is, 
it guarantees that every process that is ready to execute will be executed eventu- 
ally). The ROPM searches all OR branches in parallel. So every particular solution 
to a given query is guaranteed to be produced eventually. So the ROPM is 
complete (see [20] for a proof). In contrast, the AND-OR process model (AOPM) [5] 
and most of other reported AND-parallel schemes are not complete (however, see 
the discussion at the end of this section). For example, consider the query 
‘p(X), q(Y), r(X,Y)‘, when p and q are infinite relations. Assume that static 
analysis has led to a DJG where p and q generate X and Y, and r tests them. 
Assume r succeeds for the pair (x,, y,) where xg and y, are two solutions to 
p(X) and q(Y). When the ROPM starts the OR processes p(X) and q(Y), each of 
them will eventually return the appropriate component of the solution (x5 and y,), 
by the inductive assumption. When the later of the two responses (say y,) arrives, 
it will be joined with all the preceding responses to the other literal (including x5). 
Obviously, the set of the previous responses at that time is finite, and so the 
ROPM starts the process for r(x5, y,), which eventually succeeds by the same 
inductive assumption. In the AOPM, the OR processes buffer the solutions and 
send them up to the AND process one at a time, on demand. Even if we assume the 
OR processes for p and q receive solutions xg and y, respectively, they may not be 
used by the parent process unless they both happen to be the very first values 
produced. Otherwise (assume, without loss of fairness, that they are both different 
than xg and y,), the parent process receives X and Y values on which r fails, 
which leads it to backtrack into one of the two OR processes. Whichever one it 
backtracks to, it has no chance of success now, as that process will supply an 
infinite stream of values all of which will fail in r. The same example demonstrates 
incompleteness of other schemes related to Conery’s AOPM [S, 17,30,421 and also 
that of Epilog [40]. The sync model does not have explicit backtracking; however, 
its synchronization mechanism forces it to be trapped into infinite branches 
without producing solutions, as illustrated by a different example [221. The 
PEPSys scheme [39] may produce a solution for these examples, but it depends on 



THEREDUCE-ORPROCESSMODEL 73 

whether it has created a backtrack point or a branch point for the OR nodes for p 
and q. With backtrack points, it is incomplete. 

There is a tradeoff involved here. Fairly searching many OR branches in parallel 
requires much storage and/or extra computation. So even a complete evaluation 
scheme may not be able to produce a particular solution if it runs out of resources. 
For problems with finite search spaces, an incomplete scheme may be preferred if 
it is more efficient. We believe that the evaluation scheme should not sacrifice 
completeness in anticipation of lack of resources, since otherwise it would not be 
able to produce all solutions even when resources are available. Also, a fair 
scheduler is not infeasibly inefficient. For example, one can use the depth-first 
iterative deepening techniques [271, which, under reasonable assumptions, find any 
specific solution in at most twice as much time, and with highly efficient space 
usage. 

3.3.2. “Full” OR Parallelism. In this subsection, we show how the ROPM 
exploits all of the available OR parallelism in a logic program. We then compare 
the degree of parallelism obtained by the ROPM and some other schemes. 

Any two actions (unifications) that belong to different branches of the SLD tree 
(OR tree) are said to be or+parallel. A scheme exploits full OR parallelism if it can 
execute any two such actions in parallel. 

Pure oa-parallel schemes such as those described in [3,15,37,38] develop the 
OR tree, and obviously are able to exploit full OR parallelism. However, by ignoring 
independent AND parallelism, they not only miss that parallelism, but also create a 
potentially large amount of redundant work. In processing a query of the form 
‘p(X), q(Y), 4X, Y)‘, where p and q are independent generators of X and Y, a 
pure oa-parallel scheme calls q(Y) once for each solution of p(X)! This redun- 
dant computation must be avoided either by catching the results from previous 
calls, or by incorporating AND parallelism. However, adding deterministic AND 

parallelism alone to an OR-parallel system will not eliminate this problem, as 
illustrated by the same example. As P and Q are nondeterministic predicates with 
multiple possible solutions, such systems will not execute them in parallel. 

In the context of an AND-parallel system, subtle interactions between AND and 
OR parallelism as exploited by a specific scheme may lead to loss of parallelism. We 
now define three different forms of OR parallelism, as a refinement that helps 
distinguish between different approaches. Note that all three forms are just 
manifestations of OR parallelism in different contexts; in particular, a purely 
oa-parallel system exploits all three forms. 

Consider the query ‘gen(X>, test(X)‘. Assume that gen is the producer of X, 
and may have multiple solutions. 

(1) 

(2) 

Different clauses for gen can be explored in parallel, exploiting OR paral- 
lelism underneath the literal gen(X). This is an example of literal-level OR 
parallelism. 

Independent of whether this parallelism is exploited or not, one may start 
test(x,) for a value xi returned by gen in parallel with gen looking for more 
solutions for X. This is called pipeline purullelism. Notice that it is a form of 
OR parallelism because searching for the second value of X belongs to a 
different branch of the OR tree than the one that tests the first value. 



74 LAXMlKANTV.KALk 

(3) In addition, if two different X-values have already been returned by gen, 
one may start testing [test(x,) and test&), say] them in parallel. This 
parallelism between multiple instances of the consumer literal is called 
consumer-instance parallelism. 

It is easy to see that the ROPM exploits all three forms of OR parallelism. The 
OR processes start the REDUCE processes for all the matching clauses in parallel, 
leading to “literal-level OR parallelism”. Returned values immediately lead to 
starting consumer literal processes, irrespective of whether other instances have 
already been started. Thus it exploits both pipeline and consumer-instance paral- 
lelism. In the AOPM, only one value is returned to the parent AND process. If the 
second value is ready (at the OR process), it misses consumer-instance parallelism. 
The AOPM does exploit the other two forms. Also, Conery [7] has recently 
developed a method that splits the parent AND process when there are bindings 
available in the OR process and there are idle processors, thus exploiting con- 
sumer-instance parallelism. The sync model [29] also prevents full exploitation of 
consumer-instance parallelism, as the sync signals form a barrier which prevents 
solutions to earlier literals from being used to instantiate new consumer processes. 
The Epilog system of Wise as described in [40,41] is interesting in this respect. In 
the above example, it waits for all the solutions to gen to arrive, and then spawns 
all test instances in parallel. Thus it exploits consumer-instance parallelism, but 
leaves the pipeline parallelism unexploited. 

The PEPSys model [39] does exploit all three sources of parallelism, with a 
different process model based on modification of the OR tree. However, the 
backtrack points are established dynamically (depending on load), which may cause 
a loss of parallelism and lead to duplication of work (see [39] for details). This is a 
tradeoff, because the backtrack points are more efficient than parallel branches, 
which incur scheduling overhead. Only extensive performance studies can tell 
whether the possibility of duplication is compensated by the efficiency gained. 

The following program is a “synthetic benchmark” (adapted from [22]) to test 
how a given scheme handles the interaction of AND and OR parallelism, and 
whether it can extract consumer-instance parallelism: 

Program I (h'IlUS-AND-OR-Z). 

:- gen(X), test(X,Y). 

gen(X):- g(P,, 1, D,,X). 

g(P,,M,M,X):-p(M,Xl), busy_work(PA,X1,X). 

g(PA, M,N,X):- M <N, Mid is (A4 + N/2, Ml is Mid + 1, 

g(P,,M,Mid,Xl), dP,,Ml,N,X2), 

X is J%,~~. 

p(M,M). 

p(M,N):-iV is M+ 1. 

test(X,Y):- busy_work(N,Xl,Y), q(Y). 

Busy-work is simply a sequential predicate of time proportional to its first 
parameter. The generate phase fans out into DA AND-parallel calls to g in a 



THE REDUCE-OR PROCESS MODEL 75 

TABLE 1. Degree of extracted parallelism 

Pure 
AND 

Pure AOPM 
OR unmodified ROPM 

litmus-AND-OR-2 

&queens 

Generate phase 
Test phase 
Maximum 
Average 

Da 2 
2D.4 

DA zD, 
1 1 PA 

28 4544 28 26400 
= 16.9 2245 = 16.9 11670 

divide-and-conquer fashion. Each leaf of this AND tree picks one of two possible 
values nondeterministically via p and processes it using busy-work. These values 
are combined in an arbitrary algebraic expression EX1,X2 involving Xl and X2. 
Thus it generates 2D~ possible values for X. The parallelism exploited by different 
schemes in both phases of computations is shown in Table 1. Notice that for a 
purely on-parallel scheme the concurrency during the AND phase would have been 
2D~ if the redundancy were not eliminated as explained in the previous paragraph. 
Also, each invocation of the first clause for g results in two parallel calls to 
busy-work in the ROPM, for the two values returned by p. Thus the ROPM 
creates 20, parallel tasks during this phase. The AOPM and the sync model 
serialize the two busy work calls and create DA parallel tasks. 

Frequently, recurs&r compounds the OR parallelism of a computation. A 
generic example of such a computation is provided by the following program: 

solve(Selected,Selected) :- finished(Selected). 

solve(Selected, [First IRest]) :- gen(First), test(Selected,First), 
solve([FirstISelected],Rest). 

This program represents a multistage decision process typically used in solving 
many combinatorial problems. A simple example is a program for solving the 
well-known nonattacking-queens problem: At each stage, one chooses position of 
the queen in the current row, tests if it attacks any queens already placed, and if 
not, extends the solution further. This program also features AND parallelism in the 
test: A new queen can be tested for “no attack” with each one of the selected 
queens in parallel. The table shows the maximum and average parallelism obtained 
from this program by different schemes. Note that we considered checking a pair 
of queen positions for “no attack” a single operation while computing the entries 
in the table, rather than counting each individual test within that check. It is 
worthwhile pointing out that the AND parallelism in this example is speculative in 
nature. If the test fails for one pair of queens, there is no need to test the other 
pairs. In this particular example, it may be advantageous to ignore the AND 

parallelism. However, in general in multistage decision-process computations one 
frequently finds the generation of alternative steps (gen) to be nonspeculatively 
AND-parallel. 

As another example, consider the following top-level query for finding a prime 
number that can be expressed as a sum of a Fibonacci number and a perfect 
number: 

?- fib( F,lOOO), perfect( P,30), Q is F + P, isPrime( Q). 



76 LAXMlKANTV.KALi: 

fib generates values for F up to 1000 in on-parallel fashion; perfect is similar. For 
the given limits, an oa-parallel system (without resulting catching) finishes execu- 
tion in 162 time units with the maximum parallelism of 560. The ROPM, exploiting 
AND parallelism between fib and perfect, performs the computation in 126 time 
units with a maximum parallelism of 67. Thus, the ROPM does less work and 
finishes first. With result caching, an oa-parallel system will perform about the 
same amount of work as the ROPM, but will sequentialize the calls to fib and 
perfect, thus leading to a longer time to completion. (These figures were obtained 
using the ROPM interpreter, and assuming one time unit per resolution.) The 
AOPM obtains the same degree of maximum parallelism (67) in this program (due 
to the OR parallelism within generation of Fibonacci and perfect numbers), but 
completely sequentializes the calls to isPrime, which constitute the bulk (more 
than half) of this computation. So it finishes execution in approximately 1800 time 
units. Note that the faster time for ROPM than for AOPM is obtained with 
identical grain size. The ROPM creates additional parallelism not by dividing the 
computation into finer granules than the AOPM, but by executing in parallel those 
processes (such as isPrime) that are executed sequentially by AOPM. 

The ROPM is particularly suited for such problems, where there is OR paralel- 
lism underneath AND-parallel branches (fib and perfect) and there may be depen- 
dences among subproblems. Most of the current set of approaches in parallel logic 
programming, which are purely on-parallel, or purely AND-parallel, or stream- 
parallel, are limited in their use in such domains. Proposals for adding a simple 
form of AND parallelism-that between determinate literals which would produce 
at most one solution-are also not pertinent here. Such problems occur frequently 
in AI computations. For example, consider the problem of plan construction. In its 
pure formulation, its goal is to produce a course of action. At each step in the 
planning process, an action from multiple alternatives has to be selected. For each 
such decision, many possible contingencies may exist. Subplans for each such 
contingency have to be produced recursively. The latter is the AND-parallel part. 
Some methods for achieving a (sub)goal of a plan may require production of plans 
for multiple subgoals with possible resource constraints and other dependences 
between them. This is another source of AND parallelism in such problems. The 
recursive nature of the plan construction process results in intertwining of AND and 
OR parallelism. 

The REDUCE-OR process model can exploit arbitrary DJGs. Systems that permit 
only structured DJGs cannot use arbitrary DJGs with multiple common ancestors, 
such as the one in Figure 14, or those with multiple joins (Figure 15). The inability 
to exploit such DJGs may seem like just a small sacrifice of AND parallelism for the 
sake of simplicity and efficiency. In fact, in combination with nondeterminism, the 
limited DJGs lead to substantial redundant computation. A natural graph for 
expressing the query in Figure 15 with structured DJGs (which merges node 1 with 
2, and node 3 with 4) leads to about 9 times as many calls as the one in Figure 15. 
(Even the best possible structured graph makes 3 times as many calls.) Schemes 
described in [8,16,39] assume structured DJGs. In most of them, it appears 
possible to extend them to exploit arbitrary DJGs, and our analysis indicates that 
they should be so extended. 

In summary, the ROPM successfully extracts “full” OR parallelism from pro- 
grams, in addition to the AND parallelism. Its ability to handle arbitrary (possibly 



THEREDUCE-ORPROCESSMODEL 77 

unstructured) graphs also enhances its parallelism, and ensures that it need not do 
redundant work. Given that many current multiprocessors have only a few proces- 
sors, one may ask whether it is worthwhile attempting to exploit large parallelism. 
However, large-scale parallel processors are becoming commercially available. A 
1024-processor Ncube hypercube has been used successfully by researchers on 
numerical problems [131. Shared-memory machines with thousands of processors 
have also been designed [12] and prototyped [34]. In any case, the process model 
should extract maximal parallelism, and leave the problem of accommodating a 
small system to the resource allocation algorithms. Of course, the degree of 
parallelism must be balanced against the overhead incurred in obtaining it. In fact, 
the ROPM can achieve this higher degree of parallelism at marginal increase in 
overhead over other parallel-process models for logic programs. This partly due to 
the optimizations of Section 3.2, strategies for controlling overhead described in 
the next section (in particular, the scheduling strategy), and implementation 
techniques cited in Section 5. 

4. FLEXIBLE CONTROL OF OVERHEAD 

The total number of processes created by the ROPM is no more than that for the 
AND-OR process model (AOPM), at least while executing all-solutions programs. 
Also, with the optimization of Section 3.2, the amount of work in a REDUCE 

process is of the same order as that in the corresponding AND process of the 
AOPM. However, the number of processes in existence at a given point in time 
may be much larger in the ROPM than in the AOPM. Also, the amount of storage 
needed within a REDUCE process may be larger, because it pursues consumer- 
instance parallelism. Techniques for controlling this space overhead, which some- 
times trade away the parallelism, are now presented. 

4.1. Completion Detection 

A REDUCE process does not need to detect failure or completion of its child 
processes to ensure its correctness. Nevertheless, significant saving can be obtained 
by detecting these. When a REDUCE process detects that all its child processes have 
terminated and all the messages sent by them are received and processed, it can 
terminate itself, thus releasing resources such as memory. This is very important 
for combinatorially explosive computations such as search and some divide-and- 
conquer computations. Although the number of active processes and messages can 
be kept proportional to the depth of the computation tree, the “dead” processes 
can consume exponential space, if not recovered. A simple completion-detection 
algorithm is described in [201. An efficient version of this has been developed and 
used in an interpreter for the ROPM. 

A related, but more difficult, problem is that of terminating useless computa- 
tion. When, for example, one of the AND-parallel branches fails, i.e. completes 
without producing any solution, the other branch carries out futile work. Terminat- 
ing such computations is quite tricky in an asynchronous parallel system. We have 
a few schemes for solving this problem, which have been tested in other non- 
PROLOG computations. They have not been implemented in the interpreter. 



78 LAXMIKANTV.KALi 

Note that completion detection by itself (without termination of useless computa- 
tion) is quite powerful and effective in controlling space usage. 

4.2. Limiting Active Tuples 

When the overhead needs to be reduced even at the cost of partial loss of 
parallelism, we may pursue only one binding for each variable at a time as follows: 
Each node relation has at most one active tuple (which may now be removed from 
the node relation and merged with an actiuatim record of the clause). Multiple 
responses for a subgoal are stored without firing any new subgoals. A tuple T in a 
node relation fails if there are no active goals with T as their context tuple. The 
failure-detection algorithm determines when a goal becomes inactive, based on the 
“failure” and “done” responses from the child processes. Only when a tuple fails 
is another tuple from the corresponding node relation activated, resulting in firing 
of OR processes for each literal immediately following the node in the DJG. The 
tradeoff involved in this decision is the balancing of the loss of parallelism with the 
reduction in the overhead. The clauses for which this technique is applied behave 
exactly the same way as in Cone& AND-OR process model [4]. Many optimizations 
can be carried out for this special case. For example, as there is only one tuple in 
each relation, all tuples may be combined in a single tuple, and bindings trailed as 
in a sequential implementation. 

An interesting generalization of the above technique is to let the number of 
active tuples in a node relation be limited to some fixed number (as opposed to just 
one). At one extreme, with the number = 1, this results in the same behavior as 
the technique above, while at the other, it behaves exactly like a pure REDUCE 

process, generating maximal parallelism. Thus this mechanism can be used to 
control the degree of parallelism finely. This strategy is also not implemented in 
the interpreter, for reasons given below. 

4.3. Scheduling Strategy 

The scheduling strategy can also be used to control the creation of processes. A 
simple strategy of processing responses before processing new goals and using a 
stack discipline for selecting messages (goals or responses) for execution can be 
quite effective in many situations. For example, when the program is purely 
AND-parallel or purely OR-parallel, the stack discipline tends to minimize the 
memory requirement. We find this strategy effective enough that the techniques of 
the previous subsection are not needed in most situations. In programs with both 
kinds of parallelism interacting, this simple strategy does control memory usage 
effectively, but does not minimize the time to first solution. We are developing a 
priority-based scheme j261 for dealing with this situation. In addition to improving 
the time to first solution, it also reduces memory usage beyond the strategy 
mentioned above, 

4.4. Throttling Down 

If the above techniques prove inadequate in a specific situation, the following 
strategy, which uses a memory-sensitive mode, can be employed. In this mode, 



THEREDUCE-ORPROCESSMODEL 79 

both REDUCE and OR processes behave somewhat differently, as described below. 
The relative priorities of processes are also affected in this mode. 

(1) 

(2) 

(3) 

An 

Each OR process, when started, has a high priority. It first checks if there are 
any clauses matching its goal at all. If not, it sends a failure response and 
terminates. Otherwise, it selects only facts that match its goal, sends the 
corresponding solutions to its parent process, and then decreases its prior- 
ity. In this low-priority status, it will later start the REDUCE processes for the 
matching clauses that are not facts. 

A REDUCE process may have many responses that it needs to process. In this 
mode, a REDUCE process scans the list of responses, and selects the failure 
responses for processing. A REDUCE process processing a failure response 
runs at a higher priority. The rationale behind this strategy is that a failure 
response may trigger termination of some of its subprocesses, and possibly a 
failure of the REDUCE process itself, thus freeing their resources. 

The REDUCE processes, in this mode, constrain AND parallelism. When a 
tuple is inserted in a node relation, instead of starting OR processes for all 
literals dependent on the node, it starts them one at a time, starting the 
second only after the first has finished, and so on. Notice that this behavior 
is different than making the DJG sequential. If the DJG were sequential, 
the second of the two independent literals will be unnecessarily solved 
multiple times, once for every solution of the first one. Here, it is called only 
once, but the call is delayed until there are solutions to the first one. 

extreme form of control over memory space can be obtained by simply 
destroying some process, say P, and all its descendents. The parent of process P 
must adjust its data structures so that it will re-create P eventually. Notice that by 
our definition of the REDUCE-OR tree, computation of each node is affected only by 
the nodes in its own subtree. So this strategy does not affect the correctness of the 
algorithm. However, a thrashing-like behavior in which the same processes get 
killed and re-created endlessly is possible. 

5. ONGOING WORK ON EFFICIENT IMPLEMENTATION 

The process model in its full generality requires dynamic creation of many 
processes, handling of messages between them, management of the tuple relations, 
and so on. Even though it seems clear that it may lead to increased parallelism, it 
is reasonable to ask whether it can be efficiently implemented, particularly when 
compared with existing highly efficient sequential implementations. In this section, 
we briefly discuss why we believe that an efficient implementation is possible, 
listing pertinent issues and how we propose to solve them, and citing some of our 
recent results. 

In Section 3, for simplicity of presentation, we ignored the issue of how variable 
bindings are represented in the ROPM. Conceptually, it suffices to assume that 
full copies of argument terms are created and sent down to OR processes when 
they are created, and full copies are made when solutions are returned. Although a 
straightforward interpretation of the process model description in previous sec- 
tions would lead to such a scheme, it will clearly be very inefficient for programs 



80 LAXMIKANTV.KALk 

with complex data structures. A more sophisticated binding environment is essen- 
tial for an efficient implementation. We have developed [24] a binding-environ- 
ment scheme which builds on Lindstrom’s early scheme [32]. It is similar to 
Conery’s closed environments [6] in its basic approach, in that it deals with a 
non-stack-based environment, and is suitable for message-passing machines as well 
as shared-memory ones. The worst-case performance for the ROPM and the 
binding environment occurs when large terms with deeply embedded logical 
variables are passed as arguments or results. We plan to work on developing 
techniques to improve the performance in such cases. 

Creation and management of processes and messages is another source of 
overhead. A system for machine-independent parallel programming called the 
chare kernel simplifies this task considerably. The process-model implementation 
does not specify where the processes are to execute, or any other machine-specific 
details. The kernel’s run-time support system handles dynamic load balancing, 
scheduling, etc. We found this separation of concerns quite useful in developing 
the interpreter cited below. The process creation is also quite efficient-about 200 
microseconds-in the chare kernel. The dynamic load-balancing scheme can 
balance a large number of small-grained tasks and, according to our simulation as 
well as real machine experiments (on a 64-node iPSC/2 hypercube), is scalable to 
large multicomputers [25]. 

An interpreter for the ROPM has been written atop the chare kernel in the c 
programming language. It accepts annotated logic programs and produces all 
solutions. The optimizations described in Section 3.3 have not been incorporated 
in the interpreter. The performance figures mentioned earlier in the paper were 
obtained by using this interpreter running on a uniprocessor simulating infinite 
processors. The interpreter runs on a variety of multiprocessors, including a 
message-passing machine (an iPSC/2 hypercube) and shared-memory ma- 
chines such as an Alliant FX/8, a Sequent Symmetry, an Encore Multimax, and 
ORACLE, a multiprocessor simulator that models many interconnection topologies 
with varying numbers of processors. 

The implementation techniques used in the interpreter and the kernel, and 
their performance analyses, are beyond the scope of this paper. However, the early 
performance results [36] are encouraging. For example, the interpreter, running 
with the parallel code on one processor (Encore Multimax), takes about 34.9 
seconds to compute 17th Fibonacci number (using the naive algorithm), compared 
to 34.4 seconds taken by the SBProlog interpreter on the same machine. The 
Quintus PROLOG interpreter takes 9.5 seconds on a Sun 3/60, which is about 
twice as fast as the Multimax. Thus our interpreter performance is comparable 
with SBProlog, and has roughly half the speed of Quintus. Performance on the 
6-queens problem (21.7 seconds compared with 20.7 seconds for SBProlog, both on 
the Multimax, and 5.8 seconds for Quintus on a Sun 3/60) also confirms these 
ratios. As we do expect to pay some overhead due to our process model, this 
performance seems satisfactory for an interpreter. With eight processors, our 
interpreter finishes the Fibonacci computation in 5.1 seconds (speedup 6.84) and 
the 6-queens in 3.2 seconds (speedup 6.78). On Intel’s iPSC/2 hypercube with 
eight processors, the time goes down from 15.5 seconds on one processor to 3.1 on 
eight, for the Fibonacci computation. The speedup tends to saturate beyond that, 
due to the small problem size and small grain size. We expect that with grain-size 



THEREDUCE-ORPROCESSMODEL 81 

control (see below), and with a better memory management scheme which will 
allow running larger problems on the interpreter, even the interpreter perfor- 
mance will scale up to large distributed-memory machines. 

In recent years, it has been conclusively demonstrated that sophisticated compi- 
lation leads to a substantial improvement in performance of sequential logic-pro- 
gramming systems. The parallel systems are certainly not an exception [ll, 151. In 
addition to eliminating interpretive overhead, compilation allows one to specialize 
the code for each clause and call. Major savings can be obtained by identifying 
(using static analysis) situations where the full strength of the most general 
algorithm is not needed, and simplifying code accordingly. For example, if static 
analysis can determine that all calls in a particular clause return at most one 
solution each, a REDUCE process for that clause need allocate only one tuple, 
whereas the general algorithm would maintain multiple singleton relations. An- 
other example: There may be many messages waiting for a REDUCE process. With 
some additional synchronization it is possible to execute them in parallel. As there 
is synchronization overhead, such an algorithm should be applied only to the 
clauses that are likely to benefit from it. 

A compiler for the ROPM is being developed. One source of complexity was 
the fact that we could not use any significant part of the extensive body of work on 
the Warren abstract machine (WAM), which has been used successfully for 
sequential PROLOG as well as many parallel PROLOG systems. This is due to 
the fact that most of the assumptions in the WAM about the context in which it 
operates are invalid in the ROPM. The binding environment, unification algo- 
rithm, term representation, run-time process management system, process model 
with tuples in relations, etc. are quite different from those found in sequential as 
well as many parallel systems. All the requisite algorithms have been developed, 
and a prototype compiler is being tested. The preliminary performance data 
indicates that the performance of compiled programs will be on par with those 
compiled with SBProlog and within a small factor of Quintus on uniprocessors. 
(For example, the Fibonacci(l7, N) computation takes 3.8 seconds on the Multi- 
max, compared with 3.1 seconds for SBProlog and 0.58 seconds for Quintus on a 
Sun 3/60). As compilation improves the efficiency, the time spent on process 
management starts to become disproportionately large compared to the actual 
work inside the processes. Fortunately, this proportion can be effectively con- 
trolled by using grain-size control, i.e. using sequential execution techniques 
without any process creation etc. within portions of programs which are not worth 
exploring in parallel. 

It should be noted that the ROPM does not need a finer grain size to obtain a 
higher degree of parallelism. For example, in the query for finding prime numbers 
that can be expressed as a sum of a Fibonacci and a perfect number (Section 
3.3.2), even if we assume that each subgoal of the top level REDUCE process is 
lumped into a sequential process, the ROPM will lead to more parallelism than do 
AND-OR and other similar models, because it computes multiple isPrime literals in 
parallel. 

The sources of overhead are thus controlled. Management of tuples and 
relations is carried out efficiently using the optimization in Section 3.2, a binding 
environment scheme that obviates the need to form full copies of arguments most 
of the time, and a low-overhead memory management scheme (for managing 



82 LAXMIKANTV.KALl? 

tuples and dynamically constructed terms). The chare kernel provides very efficient 
process creation, message passing, and load balancing. Further, the remaining 
overhead is amortized with grain-size control, as the “processes” inside the 
sequentialized grain do not incur any significant overhead beyond the usual 
sequential execution cost. 

6. SUMMARY 

We have developed a viable scheme for parallel execution of logic programs. As its 
distinguishing feature, the scheme captures parallelism between multiple instances 
of consumer literals. Such parallelism is known to be important in many AI 
computations. Unlike the single-binding schemes that consider only one binding 
for each variable at one time, and thus support AND parallelism and a limited form 
of OR parallelism, our process model tackles the problems of combining them, and 
thus fully exploits the OR parallelism also. 

We have developed techniques that make the overhead of our scheme manage- 
able, and that allow a flexible and dynamic tradeoff between concurrency and 
overhead. Implementations on real multiprocessors exist. Enhancements including 
compilation with relevant static analysis are planned for the near future. 

The implementation work cited in Section 5 is being carried out with graduate students B. Ramkumar, 
W. Shu, and V. Saletore. I am grateful to David S. Warren for his encouragement, support, and 
guidance. Finally, I would like to thank the anonymous referees for their comments and suggestions. 

REFERENCES 
1. Carlsson, M., Danhof, K., and Gverbeek, R., A Simplified Approach to the Implemen- 

tation of AND parallelism in an oa parallel environment, in: International Conference on 
Logic Programming, Seattle, 1988. 

2. Chang, J., Despain, A. M., and DeGroot, D., AND Parallelism of Logic Programs Based 
on a Static Data Dependency Analysis, in: Digest of Papers, IEEE Compcon, Feb. 1985, 
pp. 218-225. 

3. Ciepielewski, A., and Haridi, S., A formal model for or-parallel execution of logic 
programs, in: R. E. A. Mason ted.), Information Processing, Elsevier Science, 1983, pp. 
299-305. 

4. Conery, J. S., The AND/OR Process Model for Parallel Interpretation of Logic Pro- 
grams, Ph.D. Thesis, Univ. of California, Irvine, June 1983. 

5. Conery, J. S. and Kibler, D. F., AND-parallelism and non-determinism in Logic Pro- 
grams, New Generation Comput. 3~43-70 (1985). 

6. Conery, J. S., Binding Environments for Parallel Logic Programs in Nonshared Memory 
Multiprocessors, in: Proceedings of the 1987 Symposium on Logic Programming, San 
Francisco, Sept. 1987, pp. 457-467. 

7. Conery, J. S., Personal communication, June 1988. 
8. DeGroot, D., Restricted AND-Parallelism, in: Proceedings of the International Conference 

on Fifth Generating Computing Systems, Nov. 1984, pp. 471-478. 
9. DeGroot, D. and Chang, J., A Comparison of Two AND-Parallel Execution Models, in: 

Proceedings of AFCET Znformatique Congress on Hardware and Software Components 
and Architectures for the Fifth Generation, Mar. 1985. 



THE REDUCE-OR PROCESS MODEL 83 

10. 

11. 

12. 

13. 

14. 
15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

Debray, S. K., Automatic Mode Inference for Prolog Programs, in: Proceedings of the 
Third Symposium on Logic Programming, Salt Lake City, Sept. 1986. 

Disz, T., Lusk, E., and Overbeek, R., Experiments with oRParallel Logic Programs, in: 
Proceedings of Fourth International Conference on Logic Programming, Melbourne, May 
1987. 

Gottlieb, A., Grishman, R., Kruskal, C. P., McAuliffe, K. P., Rudolph, L, and Snir, M., 
The NYU Ultracomputer-Designing an MIMD Shared Memory Parallel Computer, 
IEEE Trans. Comput. C-32:2 (Feb. 1983). 

Gustafson, J. L. and Montry, G. R., Programming and Performance on a Cube-Con- 
nected Architecture, presented at Compcon 88. 

Halstead, R., Parallel Symbolic Computing, Computer, 19:8 (Aug. 1986). 
Hausman, B., Ciepielewski, and Haridi, S., OR Parallel Prolog Made Efficient on Shared 
Memory Multiprocessors, in: Proceedings of the 1987 Symposium on Logic Programming, 
San Francisco, Sept. 1987, pp. 69-79. 

Hermenegildo, M. V. and Nasr, R. I., Efficient Management of Backtracking in 
AND-parallelism, in: E. Shapiro (ed.), Proceedings of Third International Logic Program- 
ming Conference, London, July 1986, pp. 40-54. 

Hermenegildo, M. V., An Abstract Machine Based Execution Model for Computer 
Architecture Design and Efficient Implementation of Logic Programs in Parallel, Ph.D. 
Thesis, Univ. of Texas at Austin, 1986. 

Hermenegildo, M. V., Relating Goal Scheduling, Precedence, and the Memory Man- 
agement in AND Parallel Execution of Logic Programs, in: Proceedings of Fourth 
International Conference on Logic Programming, Melbourne, Australia, May 1987, pp. 
556-575. 

Kale, L. V. and Warren, D. S., A Class of Architectures for Prolog Machines, in: 
Proceedings of the Conference on Logic Programming, Uppsala, Sweden, July 1984, pp. 
171-182. 

Kale, L. V., Parallel Architectures for Problem Solving, Doctoral Thesis, Dept. of 
Computer Science, SUNY, Stony Brook, Dec. 1985. 

Kale, L. V., Parallel Execution of Logic Programs: The REDUCE-OR Process Model, in: 
Proceedings of Fourth International Conference on Logic Programming, Melbourne, May 
1987, pp. 616-632. 

Kale, L. V., Completeness and Full Parallelism of Parallel Logic Programming Schemes, 
in: Proceedings-1987 Symposium on Logic Programming, IEEE, Sept. 1987, pp. 
125-133. 
Kale, L. V., A Tree Representation for Parallel Problem Solving, in: Proceedings of 
AAAZ, Morgan Kaufman, St. Paul, Aug. 1988. 

Kale, L. V., Ramkumar, B., and Shu, W., A Memory Organization Independent Binding 
Environment for AND and OR Parallel Execution of Logic Programs, in: The Joint 
International Conference/Symposium on Logic Programming, Seattle, 1988, pp. 
1223-1240. 

Kale, L. V., Comparing the Performance of Two Dynamic Load Distribution Methods, 
in: Proceedings of the International Conference on Parallel Processing, St. Charles, Aug. 
1988. 

Kale, L. V. and Saletore, V., Obtaining First Solutions Fast in Parallel Problem Solving, 
Report UIUCDCS-R-88-1481, Dept. of Computer Science, Univ. of Illinois, Urbana- 
Champaign. 

Korf, R. E., Depth-First Iterative Deepening: An Optimal Admissible Tree Search, 
Artif. Zntell. 27:97-109 (1985). 

Kowalski, R., Logic for Problem Soluing, Elsevier North-Holland, New York, 1979. 

Li, P. P. and Martin, A. J., The Sync Model: A Parallel Execution Method for Logic 
Programming, in: Proceedings of the Third Symposium on Logic Programming, Salt Lake 
City, Sept. 1986, pp. 223-234. 



a4 LAXMIKANT V. KALk 

30. 

31. 

32. 

33. 
34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 
42. 

Lin, Y., Kumar, V., and Leung, C., An Intelligent Backtracking Algorithm for Parallel 
Execution of Logic Programs, in: Proceedings of the Third International Conference on 
Logic Programming, London, July 1986, pp. 55-68. 
Lin, Y. and Kumar, V., An Execution Model for Exploiting AND Parallelism in Logic 
Programs, New Generation Comput. 5(4):393-425 (1988). 
Lindstrom, G., OR Parallelism on Applicative Architectures, in: Proceedings of the 
Second International Logic Programming Conference, Uppsala, Sweden, July 1984, pp. 
159-170. 
Nilsson, N. J., in: Principles of Artificial Intelligence, Tioga Publishing, 1980. 
Pfister, G. F., Brantley, W. C., George, D. A., Harvey, S. L., Kleinfelder, W. J., 
McAuliffe, K. P., Melton, E. A., Norton, V. A., and Weiss, J., ‘The IBM Research 
Parallel Processor Prototype (RP3): Introduction and Architecture/ presented at Inter- 
national Conference on Parallel Processing, 1985. 
Reddy, U.S., On the Relationship between Logic and Functional Languages, in: D. 
DeGroot and G. Lindstrom (eds.), Logic Programming: Functions Relations and Equa- 
tions, 1985. 
Shu, W., Ramkumar, B., and Kale, L. V., Implementation and Performance of a 
Parallel Prolog Interpreter, Report UIUCDCS-R-88-1480, Dept. of Computer Science, 
Univ. of Illinois, Urbana-Champaign, IL 61801, Dec. 1988. 
Warren, D. H. D., OR Parallel Execution Models of Prolog, in: Proceedings of the 1987 
International Joint Conference on Theory and Practice of Software Development, Pisa, 
Italy, 1987, pp. 243-259. 
Warren, D. H. D., The SRI Model for Or-Parallel Execution of Prolog-Abstract 
Design and Implementation Issues, Invited Paper, in: Proceedings of the 1987 Sympo- 
sium on Logic Programming, San Francisco, Sept. 1987, pp. 92-102. 
Westphal, H. and Robert, P., The PEPSys Model: Combining Backtracking, AND and OR 

Parallelism, in: Proceedings of the 1987 Symposium on Logic Programming, San Fran- 
cisco, Sept. 1987, pp. 436-448. 
Wise, M. J., A Parallel Prolog: The Construction of a Data Driven Model, in: 
Proceedings of the 1982 Conference on Lisp and Functional Programming, 1982, pp. 
56-66. 
Wise, M. J., Prolog Multiprocessors, Prentice-Hall International Editions, 1986. 
Woo, N. and Choe, K., Selecting the Backtrack Literal in the AND Process of the 
AND /OR Process Model, in: Symposium on Logic Programming, Salt Lake City, 1986. 


