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The Baxter number Bn can be written as Bn = ∑n
k=0 Θk,n−k−1 with
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These numbers have first appeared in the enumeration of so-called
Baxter permutations; Bn is the number of Baxter permutations
of size n, and Θk,� is the number of Baxter permutations with k
descents and � rises. With a series of bijections we identify several
families of combinatorial objects counted by the numbers Θk,� .
Apart from Baxter permutations, these include plane bipolar
orientations with k + 2 vertices and � + 2 faces, 2-orientations of
planar quadrangulations with k + 2 white and � + 2 black vertices,
certain pairs of binary trees with k + 1 left and � + 1 right leaves,
and a family of triples of non-intersecting lattice paths. This last
family allows us to determine the value of Θk,� as an application
of the lemma of Lindström Gessel–Viennot. The approach also
allows us to count certain other subfamilies, e.g., alternating Baxter
permutations, objects with symmetries and, via a bijection with
a class of plane bipolar orientations, also Schnyder woods of
triangulations. Most of the enumerative results and some of the
bijections are not new. Our contribution is mainly in the simplified
and unifying presentation of this beautiful piece of combinatorics.
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1. Introduction

This paper deals with combinatorial families enumerated by either the Baxter numbers or the sum-
mands Θk,� of the usual expression of Baxter numbers. Many of the enumeration results have been
known, even with bijective proofs. Our contribution to these cases lies in the integration into a larger
context and in simplified bijections. We use specializations of the general bijections to count certain
subfamilies, e.g., alternating Baxter permutations, objects with symmetries and Schnyder woods of
triangulations.

This introduction will not include definitions of the objects we deal with, nor bibliographic ci-
tations, which are gathered in notes throughout the article. Therefore, we restrict it to a kind of
commented table of contents.

2. Maps, quadrangulations, and orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995

Planar maps are defined, as well as subfamilies such as 2-connected maps and quadrangulations.
Some combinatorial structures are also defined: plane bipolar orientations for 2-connected maps, and
separating decompositions (edge-partitions into 2 non-crossing spanning trees) for quadrangulations.
A well-known bijection between 2-connected maps and simple quadrangulations is recalled, which
extends to a bijection between plane bipolar orientations and separating decompositions.

3. From separating decompositions to twin pairs of binary trees . . . . . . . . . . . . . . . . . . 998

Separating decompositions induce book embeddings on two pages of the underlying quadrangu-
lation. These special book embeddings decompose into pairs of plane trees. These trees come with a
special embedding with the nodes aligned, which we call an alternating layout. The alternating layout
is used to define the fingerprint of the tree as a specific binary word. We characterize the pairs of
plane trees associated with separating decompositions as those with reversed fingerprints. Such pairs
are called twin pairs of plane trees.

4. Bijections for Catalan families: the combinatorics of fingerprints . . . . . . . . . . . . . . . 1001

Using a specific embedding of binary trees with the leaves aligned, we define fingerprint and
bodyprint for a binary tree. Twin pairs of binary trees are defined as those with reversed fingerprints.
The geometric embeddings of plane trees and binary trees are set in correspondence, yielding a bijec-
tion between plane trees and binary trees that preserves the fingerprint. This also ensures that twin
pairs of plane trees are in bijection with twin pairs of binary trees.

Fingerprint and bodyprint yield a bijection between binary trees with k “left” leaves and � “right”
leaves and certain pairs of non-intersecting lattice paths. The lemma of Lindström Gessel–Viennot
allows us to identify their number as the Narayana number N(k + � − 1,k).

5. Four incarnations of twin pairs of trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004

Twin pairs of binary trees are shown to be in bijection to certain rectangulations and to triples of
non-intersecting lattice paths. Via the lemma of Lindström Gessel–Viennot this implies that there are
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twin pairs of binary trees with k+1 left and �+1 right leaves. The bijections of previous sections yield
a list of families enumerated by the number Θk,� , including plane bipolar orientations, separating
decompositions, 2-orientations of quadrangulations, and rectangulations.

6. Baxter permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007

We prove bijectively that Θk,� counts Baxter permutations with k descents and � rises. The bi-
jections involve the Min- and Max-tree of a permutation and the rectangulations from the previous
section. Some remarks on the enumeration of alternating Baxter permutations are added.

7. Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012

The bijections between families counted by Θk,� have the nice property that they commute with
a half-turn rotation. This is exploited to count symmetric structures.

8. Schnyder families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
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Schnyder woods and 3-orientations of triangulations are known to be in bijection. We add a bi-
jection between Schnyder woods and bipolar orientations with a special property. Tracing this special
property through the bijections, we are able to find the number of Schnyder woods on n vertices via
Lindström Gessel–Viennot. This reproves a formula first obtained by Bonichon.

2. Maps, quadrangulations, and orientations

A planar map, shortly called a map, is a connected graph (possibly with loops and multiple edges)
embedded in the plane with no edge-crossing. Two maps are considered the same if the embeddings
are isotopic. A map M has more structure than a graph, in particular M has faces, which are the
connected components of the plane split by the embedding. The unique unbounded face is called the
outer face (also called the infinite face) of M . The edges and vertices are called outer or inner according
to whether they are incident to the outer face or not. An angle of M is a triple a = (v, e, e′) made of
one vertex v and two edges incident to v and consecutive around v . The face in the corresponding
sector is the incident face of a. A rooted map is a map with a distinguished edge, called the root,
directed so as to have the outer face on its left. The origin of the root is called the root-origin and the
end of the root is called the root-end. A plane graph is a rooted map without loops or multiple edges,
and a plane tree is a plane graph with a unique face.

Definition 2.1. A plane bipolar orientation is a pair O = (M, X), where M is a rooted map and X is
an acyclic orientation of M , such that the unique source (a vertex with only outgoing edges) is the
root-origin s, and the unique sink (a vertex with only incoming edges) is the root-end t .

A map is called 2-connected if it is loopless and has no separating vertex. It is well known that, if
(M, X) is a plane bipolar orientation, then M is 2-connected. Conversely any rooted 2-connected map
admits at least one bipolar orientation (this statement holds more generally with “graphs” instead of
“maps”).

Note. Plane bipolar orientations yield geometric representations of graphs in various flavors (visi-
bility [39], floor planning [33,27], straight-line drawing [40,20]). The thesis of Ossona de Mendez is
devoted to studying their beautiful properties and applications [14]; see also [13] for a detailed sur-
vey.

A map is bipartite if its vertices can be partitioned into black and white vertices such that every
edge connects a black vertex with a white vertex. Bipartite plane graphs are always assumed to be
endowed with their unique vertex bipartition such that the root-origin is black. Quadrangulations are
plane graphs with all faces of degree four. It is well known that quadrangulations are the maximal
plane bipartite graphs, that is, any edge-addition either breaks bipartiteness or planarity.

Definition 2.2. A separating decomposition is a pair D = (Q , Y ) where Q is a quadrangulation and Y
is an orientation and coloring of the edges of Q with colors red and blue such that:

(1) All edges incident to s are ingoing red and all edges incident to t are ingoing blue.
(2) Every vertex v �= s, t is incident to a non-empty interval of red edges and a non-empty interval

of blue edges. If v is white, then, in clockwise order, the first edge in the interval of a color is
outgoing and all the other edges of the interval are incoming. If v is black, the outgoing edge is
the clockwise last in its color (see Fig. 1).

Let M be a rooted 2-connected planar map; the quadrangulation of M is the following rooted
map Q : The set of vertices of Q is V M ∪ F M , the union of the sets of vertices and faces of M . The
edges of Q correspond to incidences between a vertex and a face of M . Note that Q naturally inherits
a planar embedding from M; see Fig. 2 (ignore the edge orientations and colors here). The faces of
Q are in bijection to the edges of M , each face of Q is a quadrangle, hence, Q is a quadrangulation.
The 2-connectivity of M implies that Q is a simple graph.
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Fig. 1. Edge orientations and colors at white and black vertices. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. From a plane bipolar orientation to a separating decomposition. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

Fix a two-coloring of Q so that the black vertices of Q correspond to the vertices of M and the
white vertices of Q correspond to the faces of M . As root-origin of Q choose the root-origin s of M .
The root-end of M , which is denoted t , is the vertex opposite to s in the outer face of Q . The two
extremities s and t of the root of M are also called the special vertices of Q .

This classical construction can be enriched in order to transfer a plane bipolar orientation O =
(M, X) into a separating decomposition of Q . The construction, based on two facts about plane bipo-
lar orientations is illustrated in Fig. 2.

Fact V. Every vertex v �= s, t of G has exactly two angles where the orientation of the edges differ.

Fact F. Every face f of G has exactly two angles where the orientation of the edges coincide.

For every vertex of the quadrangulation Q different from those corresponding to special vertices
of M , Facts V and F specify two distinguished edges: On one case, at a vertex v �= s, t in M we
can distinguish the left and the right of the two special angles. The edge incident to v in Q that
corresponds to the left special angle is the outgoing blue edge, the edge that corresponds to the right
special angle is the outgoing red edge. On the other case, at a face f of M we have the source and
the sink vertices. The edge in Q between f and the source is the red outgoing edge of the vertex f
in Q , and the edge between f and the sink is the blue outgoing edge of f . The rules are illustrated
in Fig. 3. It is easily verified that they yield a separating decomposition of Q .

Conversely, starting from a given separating decomposition on Q we obtain the unique bipolar
orientation on G inducing Q by using the rules backwards: At a vertex v the two outgoing edges
of Q split the edges of M into two blocks: the block where Q may have blue edges is the block of
incoming edges in the bipolar orientation, the edges of the other block are the outgoing edges in the
bipolar orientation. We skip the proof that this indeed yields a bipolar orientation and summarize:

Proposition 2.3. (See de Fraysseix, de Mendez and Rosenstiehl [13].) Plane bipolar orientations with � + 2
vertices and k + 2 faces are in bijection with separating decompositions with � + 2 black vertices and k + 2
white vertices.



S. Felsner et al. / Journal of Combinatorial Theory, Series A 118 (2011) 993–1020 997
Fig. 3. The transformation for a vertex and a face of a rooted map. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)

Note. The two Facts V and F have been rediscovered frequently, they can be found, e.g., in [13,33,39].
Actually, plane bipolar orientations can be defined via properties V and F. The bijection of Proposi-
tion 2.3 is a direct extension of [13, Theorem 5.3].

We end this section with a digression. We show that separating decompositions are just a colorful
version of a simpler structure, 2-orientations.

Let Q be a quadrangulation with n faces. Since all faces of Q have degree four, the number of
edges of Q is twice the number of faces. Hence, from Euler’s relation |V | − |E| + |F | = 2, the number
of vertices of Q is n + 2.

Definition 2.4. An orientation of the edges of a quadrangulation Q is a 2-orientation if every vertex,
except s and t , has outdegree two.

Double-counting the edges of Q ensures that s and t are sinks in every 2-orientation.

Theorem 2.5. (See de Fraysseix and de Mendez [11].) Separating decompositions and 2-orientations of a quad-
rangulation Q are in bijection.

From the proof we obtain an additional property of a separating decomposition:

(3) The red edges form a tree directed towards s, and the blue edges form a tree directed towards t .

The trees span all of V \ {s, t} and the respective sinks are s and t .

Note. De Fraysseix and Ossona de Mendez [11] defined a separating decomposition via properties (1),
(2) and (3), i.e., they included the tree-property into the definition. In [11] it is also shown that every
quadrangulation admits a 2-orientation.

Proof. Forgetting the coloring, a separating decomposition clearly yields a 2-orientation. For the con-
verse we need to find the color of an edge. Define the left–right path of an edge (v, w) as the directed
path starting with (v, w) and taking a left-turn in black vertices and a right-turn in white vertices.

Claim A. Every left–right path ends in one of the special vertices s or t.

Proof. Suppose a left–right path closes a cycle. Let C be a simple cycle of a left–right path. Since Q is
bipartite the length of C is an even number 2k. The cycle C has an interior and an exterior. Consider
the submap RC of Q in the interior of C , including C . If r is the number of vertices in the interior
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Fig. 4. A quadrangulation Q with a separating decomposition S , and the 2-book embedding induced by the equatorial line of S .
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

of C , then RC has r + 2k vertices and Euler’s formula implies that RC has 2r + 3k − 2 edges. However,
when we sum up the outdegrees of the vertices we find that k vertices on C contribute 1 while all
other vertices contribute 2, which gives a total of 2r + 3k. This is a contradiction. �

Color an edge red if its left–right path ends is s and color it blue if the path ends in t . We show
that this coloring obeys the conditions of a separating decomposition.

Claim B. The two left–right paths starting at a vertex do not meet again.

Proof. Suppose that the two paths emanating from v meet again at w . The two paths form a cycle
C of even length 2k with r inner vertices. By Euler’s formula the inner quadrangulation RC of C has
2r + 3k − 2 edges. Split C into the two directed left–right paths B and B ′ from v to w . From the
left–right rule it follows that if all black vertices on B have an edge pointing into the interior of C ,
then all white vertices on B ′ have this property. From this it follows that there are at least k −1 edges
pointing from C into its interior. Hence, there are at least 2r +3k−1 edges. This is a contradiction. �

Consequently, the two outgoing edges of a vertex v receive different colors. It follows that the
orientation and coloring of edges is a separating decomposition. �

In Section 8 we use this and some previous bijections to give an independent proof for a beautiful
formula of Bonichon [5] for the number of Schnyder woods on triangulations with n vertices.

3. From separating decompositions to twin pairs of binary trees

An embedding of a graph is called a 2-book embedding if the vertices are arranged on a single line
so that all edges are either below or above the line. As we show next, a separating decomposition S
easily yields a 2-book embedding of the underlying quadrangulation Q .

Define a bicolored angle of S as an angle of Q delimited by two edges of different colors (one
red and one blue). With a little case analysis (working with the rules given in Definition 2.2) one
easily shows that each inner face f of Q has exactly two bicolored angles. Define the separating curve
for f as a simple curve inside f connecting the two vertices incident to the bicolored angles of f .
Define the equatorial line L of S as the union of all separating curves of inner faces. The definition
of a separating decomposition implies that each inner vertex of Q has degree two in the equatorial
line, while s and t have degree zero and the two white vertices of the outer face have degree one
(see Fig. 4). This implies that the equatorial line is the vertex-disjoint union of a path and possibly
a collection of cycles spanning all the vertices in V \ {s, t}.

Lemma 3.1. Given a quadrangulation Q endowed with a separating decomposition S, the equatorial line of S
consists of a single path that traverses every inner vertex and every inner face of Q exactly once. In addition,
L separates the blue and the red edges.
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Proof. Assume that the equatorial line L has a cycle C . Consider a plane drawing of Q ∪ C . The cycle
C splits the drawing into an inner and an outer part, both special vertices s and t being in the outer
part. The red edges of all vertices of C emanate to one side of C while the blue edges go to the other
side. Therefore, it is impossible to have a monochromatic path from a vertex v ∈ C to both special
vertices. With property (3) of separating decompositions, it thus follows that there are no cycles, so
the equatorial line is a single path. We have already noted that L spans all the vertices in V \ {s, t}
and traverses every inner face. The result follows. �

To produce a 2-book embedding, stretch the equatorial line as a straight horizontal line such that
the lower halfplane contains all red edges and the upper one contains all blue edges of S . This can
be done with a homeomorphism of the plane, so that the drawing remains crossing-free. Finally use
another homeomorphism to move s and t onto the equatorial line so that s is the leftmost vertex and
t is the rightmost one on the line; see Fig. 4, where the equatorial line is represented by the crooked
curve in the left picture.

Definition 3.2. An alternating layout of a plane tree T with n + 1 vertices is a non-crossing drawing of
T such that its vertices are placed at different points of the x-axis and all edges are embedded in the
halfplane above the x-axis (or all below). Moreover, for every vertex v it holds that all its neighbors
are on one side, either they are all left of v or all right of v . In these cases we call the vertex v
respectively a right or a left vertex of the alternating layout. Finally, the root-origin and the root-end
have to be the two extremal points on the axis.

An alternating layout of a plane tree is uniquely determined by the placement of the root-origin
(left/right) and the choice of a halfplane for the edges (above/below). We denote the four choices
with symbols, e.g., ↙ denotes that the root-origin is left and the halfplane below; the symbols ↖,
↗ and ↘ represent the other three possibilities. By induction on the height, one easily shows that
if the root-origin is at the left extremity then all vertices at even height (colored black) are left and
all vertices at odd height (colored white) are right. And similarly if the root-origin is at the right
extremity then the vertices at even height are right and the vertices at odd height are left.

By convention, if the four outer vertices of a quadrangulation in clockwise order are (s, v, t, v ′),
then the blue tree has root-origin t and root-end v , and the red tree has root-origin s and root-end v ′ .

Proposition 3.3. The 2-book embedding induced by a separating decomposition yields simultaneous alternat-
ing layouts of the red tree and the blue tree, that are respectively ↙ and ↗.

Proof. This follows directly by induction on the height of each tree, using the local rules in Defini-
tion 2.2. See also Fig. 4 for an example.

Note. A proof of Proposition 3.3 was given by Felsner, Huemer, Kappes and Orden [17]. These authors
study what they call strong binary labelings of the angles of a quadrangulation. They show that these
labelings are in bijection with 2-orientations and separating decompositions. In this context they find
the 2-book embedding; their method consists in ranking each vertex v on the spine of the 2-book
embedding according to the number of faces in a specific region R(v). The original source for a 2-
book embedding of a quadrangulation is [12], by de Fraysseix, Ossona de Mendez and Pach. General
planar graphs may require as many as four pages for a book embedding, Yannakakis [41].

Alternating layouts of plane trees in our sense were studied by Rote, Streinu and Santos [34] as
non-crossing alternating trees. Gelfand et al. [23] call this class of trees standard trees; they show that
these trees are a Catalan family. In [34] connections with rigidity theory and the geometry of the
associahedron are established.

As we have seen a separating decomposition yields a pair of plane trees, but, which pairs of trees
arise this way? To answer this question we introduce the notion of fingerprints. The full answer to
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Fig. 5. A tree, the numbering and the ↙-alternating layout.

this question is given below in Theorem 3.6. As far as we know this theorem is new. It has the merit
of translating problems on 2-orientations into problems on two not too dependent trees.

The unique ↙-alternating layout of T , is obtained by starting at the root and walking clockwise
around T , thereby numbering the vertices with consecutive integers according to the following rules:
The root is numbered 0 and all vertices in the color class of the root receive a number at the first
visit while the vertices in the other color class receive a number at the last visit. Fig. 5 shows an
example. Rules for the other types of alternating layouts are:

↖-Layout: walk counterclockwise, root class at first visit, other at last visit.
↗-Layout: walk counterclockwise, root class at last visit, other at first visit.
↘-Layout: walk clockwise, root class at last visit, other at first visit.

The ↙-fingerprint, denoted α↙(T ), of a rooted plane tree T , is a 0,1 string which has a 1 at
position i (αi = 1) if the ith vertex in the ↙-alternating layout of T is a left vertex; otherwise, if
the vertex is a right vertex then αi = 0. The ↙-fingerprint of the tree T from Fig. 5 is α↙(T ) =
1010001010000110. Other types of fingerprints are defined by the same rule. For example the ↗-
fingerprint of the tree in Fig. 5 is α↗(T ) = 1001111010111010. With the numbering from Fig. 5 this
corresponds to the vertex order 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0.

In any of the four layouts, the first vertex is a left vertex and the last one a right vertex. Therefore,
a fingerprint has always a 1 as first entry and a 0 as last entry. A reduced fingerprint α̂↙(T ) of a tree
T is obtained by omitting the first and the last entry from the corresponding fingerprint. For a 0,1
string s we define ρ(s) to be the reverse string and s to be the complemented string. For example: if
s = 11010, then ρ(s) = 01011, s = 00101, and ρ(s) = ρ(s) = 10100.

Lemma 3.4. For every tree T one has α↙(T ) = ρ(α↗(T )) (and α↖(T ) = ρ(α↘(T ))).

Proof. Take the ↗-alternating layout of T and rotate it by 180◦ . This results in the ↙-alternating
layout. Observe what happens to the fingerprint. �
Definition 3.5. A pair (S, T ) of rooted, plane trees whose reduced fingerprints satisfy α̂↙(S) = α̂↗(T ),
or equivalently α̂↗(S) = ρ(α̂↗(T )), is called a twin pair of plane trees.

Theorem 3.6. There is a bijection between twin pairs of plane trees (S, T ) on n vertices and separating de-
compositions of quadrangulations on n + 2 vertices.

Proof. The mapping from separating decompositions on n+2 vertices to twin pairs of plane trees was
already indicated. To recapitulate: a separating decomposition yields a 2-book embedding (Proposi-
tion 3.3). The 2-book embedding induces a simultaneous alternating layout of the red tree S+ and the
blue tree T + . Every non-special vertex v �= s, t is a left vertex in one of the trees S+ and T + and right
vertex in the other one (Proposition 3.3). In terms of fingerprints this reads α↙(S+)+0 = 1 + α↗(T +).
Trees S and T are obtained by deleting the left child of the root in S+ and the right child of the root
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Fig. 6. A twin pair of plane trees (S, T ). The ↗-alternating layout of T + and the ↙-alternating layout of S+ properly adjusted.
The induced separating decomposition of a quadrangulation. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

in T +; they are both leaves and correspond to the two non-special outer vertices of Q . Since trees S
and T satisfy α̂↙(S) = α̂↗(T ), (S, T ) is a twin pair of plane trees.

The inverse map is illustrated with an example in Fig. 6. Let (S, T ) be a twin pair of plane trees.
Augment both plane trees S and T by a new vertex, which is made the rightmost child of the root.
Let S+ and T + be the augmented trees, whose vertices at even height are colored black and vertices
at odd height are colored weight. Note that α̂↙(S+) = 0 + α̂↙(S) and α̂↗(T +) = α̂↗(T ) + 1. Since
the first entry of a non-reduced fingerprint is always 1 and the last one is always 0 it follows that
α↙(S+) + 0 = 1 + α↗(T +).

Consider the ↙-alternating layout of S+ and move the vertices in this layout to the integers
0, . . . ,n. Similarly, the ↗-alternating layout of T + is placed such that the vertices correspond to the
integers 1, . . . ,n + 1. At every integer 0 < i < n + 1, a vertex of S+ and a vertex of T + meet. We
identify them. As a consequence of the complemented fitting of the fingerprints, a pair of identified
vertices are of the same color, hence the graph Q = S+ ∪ T + is bipartite. Note that every non-special
vertex is a left vertex in one of the layouts and a right vertex in the other. Hence, a pair uv can be an
edge in at most one of S and T , otherwise u would have a neighbor on its right in both S and T . Thus
Q is simple, bipartite and planar. Since Q has 2n edges and n + 2 vertices, it follows from the Euler
formula that it has n faces. The count of edge-face incidences implies that Q is a quadrangulation.
Finally, the edges of T + are colored blue and oriented to the root-origin t of T + , and the edges of S+
are colored red and oriented to the root-origin s of S+ . This yields a separating decomposition on Q ,
with T + as blue tree and S+ as red tree. �
4. Bijections for Catalan families: the combinatorics of fingerprints

Vertices of plane trees are partitioned into leaves and inner nodes, depending on whether the de-
gree is one or greater than one. Let r be the root-origin of a plane tree. In our context a binary tree is
a plane tree such that each inner node v �= r has degree 3 and r has degree 2. In other words, when
drawing the tree in a top-to-bottom manner with r at the top, each inner node has two children. The
fingerprint of a binary tree T is a 0,1 string which has a 1 at position i if the ith leaf of T is a left
child, otherwise, if the leaf is a right child the entry is 0. In Fig. 7 the tree T on the right side has
α(T ) = 1011101011110010. The reduced fingerprint α̂(T ) is obtained by omitting the first and the last
entry from α(T ). Note that the first entry is always 1 and the last one is always 0.

Proposition 4.1. There is a bijection T → B which takes a plane tree T with n vertices to a binary tree B with
n leaves such that α̂↗(T ) = α̂(B).

Proof. The bijection makes a correspondence between edges of the plane tree and inner nodes of the
binary tree; see Fig. 7. Embed T with vertices on the integers from 0 to n. With an edge i, j of T
associate an inner node xij for B , which is to be placed at (

i+ j
2 ,

j−i
2 ). Draw line segments from the

vertex (i,0) to xij and from ( j,0) to xij . Doing this for every edge of T results in a drawing of the
binary tree B .
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Fig. 7. An ↗-alternating tree T and the binary tree B . (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

Fig. 8. A binary tree with reduced bodyprint β̂ and reduced fingerprint α̂. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

The converse is even simpler. Every inner node x of the binary tree gives rise to an edge connecting
the leftmost leaf below x to the rightmost leaf below x. �
Note. Binary trees with n + 1 leaves, as well as plane trees with n + 1 vertices, are counted by
the Catalan number Cn = 1

n+1

(2n
n

)
. Catalan numbers are found in The On-Line Encyclopedia of Integer

Sequences [37] as sequence A000108. Stanley [38, Exercise 6.19] collected 66 Catalan families.

Although the subject is well-studied, we include a particular proof showing that binary trees are
a Catalan family. Actually, we prove a more refined count related to Narayana numbers. The proof is
used later in the context of Baxter numbers.

To start with, we associate another 0,1 string with a binary tree T . The bodyprint β(T ) is obtained
from a visit to the inner nodes of T in in-order; that is β(T ) = (β(T L), βx, β(T R )) when T L and T R are
the left and right subtrees of the inner node x. The entry of βx is a 1 if node x is a right-child or it is
the root. If the node is a left-child, then βx = 0. Note that if the tree T is drawn such that all leaves
are on a horizontal line, then there is a one-to-one correspondence between inner nodes and the
gaps between adjacent leaves: the gap between leaves vi and vi+1 corresponds to the least common
ancestor of vi and vi+1. Conversely, an inner node x corresponds to the gap between the rightmost
leaf in the left subtree of x and the leftmost leaf in the right subtree of x. This correspondence
maps the left-to-right order of gaps between leaves to the in-order of inner nodes. Since the root
contributes a 1, the last entry of the bodyprint of a tree is always 1. Therefore, it makes sense to
define the reduced bodyprint β̂(T ) as β(T ) minus the last entry. Fig. 8 shows an example.

Lemma 4.2. Let T be a binary tree with k left leaves and n − k + 1 right leaves. The reduced fingerprint α̂(T )

and the reduced bodyprint β̂(T ) both have length n − 1. Moreover:
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Fig. 9. Illustrations for the proof of Lemma 4.2. The pair (vi , x j) is in M . (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

(1)

n−1∑
i=1

α̂i =
n−1∑
i=1

β̂i = k − 1, (2)

j∑
i=1

α̂i �
j∑

i=1

β̂i for all j = 1, . . . ,n − 1.

Proof. Consider a drawing of T where every edge has slope 1 or −1, as in Fig. 8. The maximal
segments of slope 1 in this drawing define a matching M between the k left leaves, i.e., 1-entries of
α(T ), and inner nodes which are right-children including the root, i.e., 1-entries of β(T ). The left part
of Fig. 9 indicates the correspondence. The reduction α̂ (resp. β̂) has exactly one 1-entry less than α
(resp. β). This proves (1).

For (2), let v0, v1, . . . , vn be the set of leaves in left-to-right order and let x1, . . . , xn be the in-
order of inner nodes. Note that vi determines αi and xi determines βi . Let (vi, x j) be a pair from
the matching M defined above; hence, αi = 1 and β j = 1. Since vi is the leftmost leaf below x j and
the gap corresponding to x j starts at the rightmost vertex v j−1 of the left subtree of x j , we find that
i � j − 1. This gives a matching between the 1-entries of α and the 1-entries of β , with the property
that the index of the 1-entry of α is always less that the index of the mate in β .

To conclude the inequality for the reduced strings we have to address another detail: the mate of
the root in M is the leaf v0, which is not represented in α̂, and there is a leaf whose mate in M is
the last inner node xn , which is not represented in β̂ . Consider the ordered sequence x j0 , x j1 , . . . , x js

of all vertices on the rightmost branch of T , such that x j0 is the root r and x js = xn . The right part
of Fig. 9 may help to see that in M we have the pairs (v0, x j0 ), (v j0 , x j1 ), . . . , (v js−1 , xn); in particular
α0 = α j0 = · · · = α js−1 = 1 and β j0 = β j1 = · · · = βn = 1. Hence, we can define a matching M ′ which is
as M except that v0 and xn remain unmatched and the pairs (v ji , x ji ) with 0 � i � s − 1 are matched.
This matching M ′ between the 1-entries of α̂ and the 1-entries of β̂ has the property that the index
of the 1-entry of α̂ is always at most the index of the mate in β̂ . This proves (2). �
Definition 4.3. Let

〈n
k

〉
be the set of cardinality

(n
k

)
consisting of all 0,1-strings of length n with exactly

k entries 1. For σ ,τ ∈ 〈 k+�
k

〉
we say that τ dominates σ , denoted τ �dom σ , if

∑ j
i=1 τi �

∑ j
i=1 σi for

all j = 1, . . . ,n.

Theorem 4.4. The mapping T ↔ (β̂, α̂) is a bijection between full binary trees with k + 1 left leaves and �+ 1
right leaves and pairs (β̂, α̂) of 0,1 strings in

〈 k+�
k

〉
with α̂ �dom β̂ .

Proof. From Lemma 4.2 we know that reduced body- and fingerprint have the required properties. To
show that the mapping T ↔ (β̂, α̂) is a bijection we use induction.

First note that α̂ = 0�1k implies β̂ = α̂, and that there are unique trees with these reduced finger-
and bodyprints.

If α̂ has a different structure, then there is an i such that α̂i−1α̂i = 10. Decompose α̂(T ) =
α̂′ α̂i−1 α̂i α̂′′ and β̂(T ) = β̂ ′ β̂i β̂ ′′ and define α̂∗ = α̂′ δ α̂′′ and β̂∗ = β̂ ′ β̂ ′′ , where δ = 1 if β̂i = 0

and δ = 0 if β̂i = 1. Depending on the value of δ = β̂i , this can be interpreted as either having re-
moved the two entries β̂i = 1 and α̂i−1 = 1 or the two entries β̂i = 0 and α̂i = 0 from α̂ and β̂ . It
is easy to check that α̂∗ �dom β̂∗ . By induction there is a unique tree T ∗ with n leaves such that
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(β̂(T ∗), α̂(T ∗)) = (β̂∗, α̂∗). Making the ith leaf of T ∗ an inner node with two leaf children yields a
tree T with (β̂(T ), α̂(T )) = (β̂, α̂).

It remains to show that T is the unique tree with (β̂(T ), α̂(T )) = (β̂, α̂). To see this note that in
such a tree the leaves vi−1, vi are a left leaf followed by a right leaf. The leaves vi−1 and vi are
children of the inner node xi , the value β̂i = 1 or β̂i = 0 depends on whether xi is itself a left or a
right child. Hence pruning the two leaves vi−1 and vi we obtain the tree T ∗ considered above. �

An up-right lattice path from (0,0) to (�,k), is a path in the square lattice using only steps to
the right (addition of (1,0) to the current position) and steps up (addition of (0,1) to the current
position). There is a natural correspondence between 0,1 strings σ ∈ 〈 k+�

k

〉
and up-right lattice paths

from (0,0) to (�,k): it takes an entry 1 into a step to the right and an entry 0 to a step up.
This correspondence yields of a correspondence between pairs (σ , τ ) ∈ 〈 k+�

k

〉
with τ �dom σ , and

pairs (Pσ , Pτ ) of non-intersecting, i.e., vertex disjoint, lattice paths, where Pσ is from (0,1) to
(k, � + 1) and Pτ is from (1,0) to (k + 1, �). This yields a new formulation for Theorem 4.4:

Theorem 4.5. There is a bijection between binary trees with k + 1 left leaves and � + 1 right leaves and pairs
(Pβ, Pα) of non-intersecting up-right lattice paths, where Pβ is from (0,1) to (�,k + 1) and Pα is from (1,0)

to (� + 1,k).

The advantage of working with non-intersecting lattice paths is that now we can apply the lemma
of Lindström Gessel–Viennot [24].

Theorem 4.6. The number of binary trees with k + 1 left leaves and � + 1 right leaves is

det

((k+�
k

) (k+�
k−1

)
(k+�

k+1

) (k+�
k

)
)

= 1

k + � + 1

(
k + � + 1

k

)(
k + � + 1

k + 1

)
.

This is the Narayana number N(k + � + 1,k + 1). Our bijections imply
∑n−1

k=1 N(n,k) = 1
n

( 2n
n−1

) = Cn;
this well-known formula can also be derived as an easy application of Vandermond’s convolution. The
following proposition summarizes our findings about Narayana families.

Proposition 4.7. The Narayana number N(k + � + 1,k + 1) counts

• plane trees with k + 1 left vertices and � + 1 right vertices in the alternating layout,
• binary trees with k + 1 left leaves and � + 1 right leaves,
• pairs (σ , τ ) of 0,1 strings in

〈 k+�
k

〉
with τ �dom σ ,

• pairs (P1, P2) of non-intersecting up-right lattice paths, where P1 is from (0,1) to (k, � + 1) and P2 is
from (1,0) to (k + 1, �).

Note. Narayana numbers can be found in The On-Line Encyclopedia of Integer Sequences [37] as
sequence A001263. The Narayana numbers (actually, a q-analogue of them) were first studied by
MacMahon [29] and were later rediscovered by Narayana [31]. Stanley [38, Exercise 6.36] recommends
to look for decompositions into subsets counted by Narayana numbers in Catalan families. The notion
of fingerprints is implicit in Dulucq and Guibert [15]. The combination with the bodyprint and the
related bijections are new, according to our knowledge.

5. Four incarnations of twin pairs of trees

After the Catalan and Narayana digression we now come back to twin pairs of trees. We use the
bijections encountered during the digression to give some other interpretations of twin pairs of plane
trees.
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Fig. 10. A twin pair of binary trees and the associated rectangulation. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)

Definition 5.1. A pair (A, B) of binary trees whose fingerprints satisfy α̂(A) = ρ(α̂(B)) is called a twin
pair of binary trees.

Theorem 5.2. There is a bijection between twin pairs of plane trees on n vertices and twin pairs of binary trees
with n leaves.

Proof. Let (A, B) be a twin pair of binary trees. Apply the correspondence from Proposition 4.1 to
both. This yields trees S and T such that α̂↗(S) = α̂(A) and α̂↗(T ) = α̂(B). From α̂(A) = ρ(α̂(B)) we
conclude α̂↗(S) = ρ(α̂↗(T )) which is the defining property for twin pairs of plane trees. �

The next incarnation of twin pairs of plane trees is in terms of dissections of a square.

Definition 5.3. Let X be a set of points in the plane and let R be an axis-aligned rectangle which
contains X in its open interior. A rectangulation of X is a subdivision of R into rectangles by non-
crossing axis-parallel segments, such that every segment contains a point of X and every point lies
on a unique segment.

We are mainly interested in rectangulations of diagonal sets, i.e., of the sets Xn−1 = {(i,n − i): 1 �
i � n − 1}. In this case the enclosing rectangle R can be chosen to be the square [0,n] × [0,n].

From a twin pair of binary trees on n vertices we can construct a rectangulation of Xn−2: Let
(S, T ) be a twin pair of binary trees such that both trees are drawn with the same scale, ±45◦ degree
slopes, and leaves on the x-axis. Rotate tree T by 180◦ and adjust them such that the leaves match
accordingly. This yields a tilted rectangulation of Xn−2. Fig. 10 shows an example. Conversely, cutting
a rectangulation along the diagonal yields a twin pair of binary trees.

The following theorem follows from the above discussion.

Theorem 5.4. There is a bijection between twin pairs of binary trees with n leaves and rectangulations of Xn−2 .

Note. Hartman et al. [26] and later independently de Fraysseix et al. [12] prove that it is possible to
assign a set of internally disjoint vertical and horizontal segments to the vertices of any bipartite map
G such that two segments touch if, and only if, there is an edge between the corresponding vertices.
A proof of this result can be given along the following lines. From G we obtain a quadrangulation
Q by adding edges and vertices. Augment Q with a 2-orientation and trace the mappings from 2-
orientations via twin pairs of plane trees to a rectangulation of a diagonal point set. The horizontal
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Fig. 11. A twin pair of trees binary and its triple of non-intersecting lattice paths. The fingerprint and its path are emphasized.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

and vertical segments through the points are a touching segment representation for Q . Deleting some
and retracting the ends of some other segments yields a representation for G . A similar observation
was made by Ackerman, Barequet and Pinter [1].

Next, we map twin pairs of binary trees to triples of non-intersecting lattice paths. The map is
based on the fingerprint and bodyprint of a binary tree, and the lattice paths associated to them.

Recall that the bijection from Theorem 4.5 maps a binary tree T with k + 1 left and � + 1 right
leaves to a pair (Pβ(T ), Pα(T )) of non-intersecting up-right lattice paths, where Pβ(T ) is from (0,1)

to (�,k + 1) and Pα(T ) is from (1,0) to (� + 1,k).
A point reflection at (0,0) followed by a translation by (� + 2,k) maps (Pβ(T ), Pα(T )) to the pair

(P∗
α(T ), P∗

β(T )) of non-intersecting up-right lattice paths, where P∗
α(T ) is from (1,0) to (�+ 1,k) and

P∗
β(T ) is from (2,−1) to (� + 2,k − 1).

Let (S, T ) be a twin pair of binary trees with k + 1 left and � + 1 right leaves. Consider the
triple (Pβ(S), Pα(S), P∗

β(T )). We know that Pβ(S) and Pα(S) are non-intersecting. Since by defini-
tion α̂(S) = ρ(α̂(T )), it is easy to see that P∗

α(T ) = Pα(S). Therefore, we also know that Pα(S) and
P∗

β(T ) are non-intersecting. Since the first two of these paths uniquely determine S and the last two
uniquely determine T we obtain, via a translation of the three paths by one unit up, the following
theorem (see Fig. 11).

Theorem 5.5. There is a bijection between twin pairs of binary trees with k + 1 left leaves and � + 1 right
leaves and triples (P1, P2, P3) of non-intersecting up-right lattice paths, where P1 is from (0,2) to (k, � + 2),
P2 is from (1,1) to (k + 1, � + 1), and P3 is from (2,0) to (k + 2, �).

Again we can apply the lemma of Lindström Gessel–Viennot.

Theorem 5.6. The number of twin pairs of binary trees with k + 1 left leaves and � + 1 right leaves is

det

⎛
⎝

(k+�
k

) (k+�
k−1

) (k+�
k−2

)
(k+�

k+1

) (k+�
k

) (k+�
k−1

)
(k+�

k+2

) (k+�
k+1

) (k+�
k

)
⎞
⎠ = 2

(k + �)!(k + � + 1)!(k + � + 2)!
k!(k + 1)!(k + 2)!�!(� + 1)!(� + 2)! = Θk,�.

The number Θk,� has some quite nice expressions in terms of binomial coefficients, e.g., Θk,� =
2

(k+1)2(k+2)

(k+�
k

)(k+�+1
k

)(k+�+2
k

)
or Θk,� = 2

(n+1)(n+2)2

(k+�+2
k

)(k+�+2
k+1

)(k+�+2
k+2

)
. The total number of twin

binary trees with n + 2 leaves is given by the Baxter number
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Bn+1 =
n∑

k=0

Θk,n−k,

whose initial values are 1,2,6,22,92,422,2074,10754. The next proposition collects families that
are, due to our bijections, enumerated by Θ-numbers.

Proposition 5.7. The number Θk,� counts

• triples (P1, P2, P3) of non-intersecting up-right lattice paths, where P1 is from (0,2) to (�,k + 2) and
P2 is from (1,1) to (� + 1,k + 1) and P3 is from (2,0) to (� + 2,k),

• twin pairs of binary trees with k + 1 left leaves and � + 1 right leaves,
• rectangulations of Xk+� with k horizontal and � vertical segments,
• twin pairs of plane trees with k + 1 left vertices and � + 1 right vertices in the alternating layout,
• separating decompositions of quadrangulations with k + 2 white and � + 2 black vertices,
• 2-orientations of quadrangulations with k + 2 white and � + 2 black vertices,
• plane bipolar orientations with k + 2 faces and � + 2 vertices.

Note. In 2001 R. Baxter guessed and checked [3, Eq. 5.3] that plane bipolar orientations are counted
by the Θ-numbers. His verification is based on algebraic manipulations on generating functions of
2-connected planar maps weighted by their Tutte polynomials.

The concept of twin pairs of binary trees is due to Dulucq and Guibert [15]. They also give a
bijection between twin pairs of binary trees and triples of non-intersecting lattice paths. The bijection
also uses the fingerprint as the middle path, the other two are defined differently. In [16] they extend
their work to include some more refined counts. A very good entrance point for more information
about Baxter numbers is The On-Line Encyclopedia of Integer Sequences [37, A001181].

Fusy, Schaeffer and Poulalhon [22] gave a direct bijection from separating decompositions to triples
of non-intersecting paths in a grid. Similarly as in this article, they obtain the triple of paths from a
triple of words encoding the blue tree and the red tree. However, as opposed to ours, their encoding
breaks the symmetry between the blue and the red tree, since they associate two words with the
blue tree and one word with the red tree.

Ackerman, Barequet and Pinter [1] also have the result that the number of rectangulations of Xn
is the Baxter number Bn+1. Their proof is via a recurrence formula obtained by Chung et al. [9]. They
also show that for a point set Xπ = {(i,π(i)): 1 � i � n} to have exactly Bn+1 rectangulations it is
sufficient that π is a Schröder permutation, i.e., a permutation avoiding the patterns 3−1−4−2 and
2−4−1−3. They conjecture that whenever π is a permutation that is not Schröder, the number of
rectangulations of Xπ is strictly larger than the Baxter number.

In contrast to the nice formulas for the number of 2-orientations of quadrangulations on n vertices,
very little is known about the number of 2-orientations of a fixed quadrangulation Q . In [19] it
is shown that the maximal number of 2-orientations a quadrangulation on n vertices can have is
asymptotically between 1,47n and 1,91n . To our knowledge, the computational complexity of the
counting problem is open.

6. Baxter permutations

Definition 6.1. The max-tree Max(π) of a permutation π is recursively defined. The basis is the unla-
beled one-node tree Max(∅). Otherwise write π as π = πleft, z,πright, where z is the maximum entry
of π . Then Max(π) has root labeled z, left subtree Max(πleft) and right subtree Max(πright). Fig. 12
shows an example.

The min-tree Min(π) is defined similarly but with z being the minimum entry of π .

The max-tree of a permutation is a binary tree. The ith leaf vi of Max(π) from the left corresponds
to the adjacent pair (πi−1,πi) in the permutation π . Leaf vi is a left leaf if, and only if, (πi−1,πi) is
a descent, i.e., if πi−1 > πi . A dual characterization holds for Min(π): The ith leaf yi of Min(π) from
the left is a left leaf if, and only if, (πi−1,πi) is a rise, i.e., if πi−1 < πi .
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Fig. 12. The trees Max(π) and Min(ρ(π)) associated with π = 1,7,4,6,3,2,5. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

Fig. 13. The bottom-to-top relation of a rectangulation R, an admissible ranking of R and the associated admissible permu-
tation with max- and min-trees. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

With these definitions and observations and recalling that ρ(π) denotes the reverse permutation
of π we obtain:

Proposition 6.2. For a permutation π of [n − 1] the pair (Max(π),Min(ρ(π))) is a pair of twin binary trees.

Identifying a twin pair of binary trees (S, T ) with a rectangulation R, it is easy to characterize all
permutations π such that (Max(π),Min(ρ(π))) = (S, T ). Consider two orders on the rectangles of R:
the left-to-right order is the total ordering of the rectangles according to their intersections with the
x-axis. The bottom-to-top order, is the partial order obtained as transitive closure of the relation →
on rectangles, where r → r′ iff r and r′ are adjacent and r′ is either top-right or top-left of r along
the adjacency-segment. The bottom-to-top order is denoted (R,�). A ranking for R is a labeling of
the n rectangles of R with distinct labels in [1 . . .n]. The rectangle labeled k is denoted R(k). With
each ranking one associates the permutation π such that, for i ∈ [1 . . .n], π(i) is the label of the
ith rectangle in the left-to-right order. A ranking is called admissible for R if it is a linear extension
of the bottom-to-top order. Accordingly, permutations associated with admissible rankings are called
admissible permutations for R, see Fig. 13. The permutations that are mapped to R are exactly the
admissible permutations for R.

The generic procedure to generate admissible rankings for R, i.e., linear extensions of the bottom-
to-top order (R,�), is as follows: “At each step i, for i from n to 1, calling L the set of rectangles
already labeled and U the set of rectangles not labeled, pick a rectangle that is maximal in (U ,�)

and assign label i to it”.

Definition 6.3. A Baxter permutation is a permutation which avoids the pattern 2–41–3 and 3–14–2.
That is, π is Baxter if there are no indices i < j, j + 1 < k with π j+1 < πi < πk < π j nor with π j+1 >

πi > πk > π j .

Theorem 6.4. (See Dulucq and Guibert [15].) There is a bijection between twin binary trees with n leaves and
Baxter permutations of [n − 1].
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Fig. 14. Generating a Baxter permutation from a rectangulation. The final state shows the permutation with its min- and max-
trees. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

The proof of this theorem actually just requires the proof of one property. Indeed, from the above
discussion characterizing the pre-images of a twin pair of binary trees, we just have to show that
every rectangulation R has exactly one admissible permutation that is Baxter. We will show that to
generate an admissible Baxter permutation for R there is a unique choice for the maximal element
of (U ,�) in each step of the above mentioned generic procedure. This implies that the admissible
Baxter permutation for R is unique.

Definition 6.5. For each step i from n to 1 of the generic procedure generating admissible rankings,
the good rectangle r is the unique maximal rectangle in (U ,�) satisfying the following conditions.

• If i = n then r is the unique maximal rectangle of (R,�).
• If i < n and the south-corner of R(i + 1) is a (a left child in tree T ), then r is the next

maximal element of U to the left of R(i + 1).
• If i < n and the south-corner of R(i + 1) is a (a right child in tree T ), then r is the next

maximal element of U to the right of R(i + 1).

An example for the execution of the procedure with the choice of the good rectangle at each step
is shown in Fig. 14. In the figure the arrows are placed at the south-corner of the rectangle that was
numbered last and point to the direction where the next number is to be placed.

Note that at each step, the boundary between the set L of already labeled rectangles and the set U
of still unlabeled rectangles is a sequence s1, . . . , sk of segments of slopes alternatively +1 or −1, and
such that the interior of each segment si , 1 � i � k, intersects the horizontal axis of the rectangulation
R (calling horizontal axis of R the line passing by all points of R). This property (easy to show by
induction) has to be kept in mind when reading the proofs of the next two lemmas.

Lemma 6.6. The choice of the good rectangle at each step yields a Baxter permutation.

Proof. Let us show that the algorithm does not produce the pattern 2–41–3 (one proves similarly
that it does not produce 3–14–2). Let 1 � a < b < c < d � n. Going for a contradiction we assume that
there are rectangles R(b), R(d), R(a), R(c) in this order from left-to-right, with R(d) immediately to
the left of R(a) on the horizontal axis. Choose c minimal with this property and consider the moment
at which R(c) gets labeled, see Fig. 15 (where p is the south tip of R(c)).

At that step let L be the set of already labeled rectangles (rectangles R(i) with i � c) and U the
set of not yet labeled rectangles (rectangles R(i) with i < c). In the sequence s1, . . . , sk of segments
forming the boundary between L and U , let si be the one that has R(d) on its left and R(a) on its
right when meeting the horizontal axis of R. Since R(d) ∈ L and R(a) ∈ U , si has slope +1. Let r be
the rectangle whose north-tip is the top extremity of si . Then r is a maximal element of U (for the
bottom-to-top order) that is weakly to the right of R(a). Since r is left of R(c), the good rectangle
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Fig. 15. A situation as discussed in the proof of Lemma 6.6.

Fig. 16. The situation when R(k) is to the right of R(k + 1).

R(c − 1) at step c − 1 is weakly to the right of r. Hence R(c − 1) is weakly to the right of R(a). But
a < b < c, so R(c −1) �= R(a) so R(c −1) is (strictly) to the right of R(a). We conclude that b,d,a, c −1
form a forbidden pattern 2–41–3, which is impossible by minimality of c. This is the contradiction.

A symmetric argument shows that there is no pattern 3–14–2. Hence the permutation is Baxter.

Lemma 6.7. If at some step of the labeling procedure, the chosen maximal element of U is not the good rect-
angle, then the output permutation σ is not Baxter.

Proof. Consider a labeling scenario (as usual call R(i) the rectangle labeled at step i for each n �
i � 1) where at some step k the chosen rectangle R(k) is not the good one, and let r = R(b) be the
good rectangle at that step; note that b < k since R(b) will be treated after R(k). Clearly k < n since
there is only one choice for R(n) at the first step. Call L the set of rectangles labeled before step
k (rectangles R(i) with i > k) and U the set of rectangles labeled from step k (rectangles R(i) with
i � k). We treat the case where the south tip p of R(k + 1) is a (the case can be treated
similarly).

First assume that R(k) is to the right of R(k + 1), see Fig. 16. Call S the longest segment of slope
+1 in R that contains p. At the intersection of S with the horizontal axis of R, let R(a) be the
rectangle to the right of S and R(d) the rectangle to the left of S on the horizontal axis. An important
observation is that the west-tip w of R(a) is at the bottom end of S (otherwise there would be a
rectangle with w as north tip, and this rectangle would be strictly below the horizontal axis of R,
which is impossible). Hence, as shown in Fig. 16, R(a) is strictly smaller than r = R(b) in the bottom-
to-top order, which implies that a < b. Hence we have a < b < k < k + 1 � d (where k + 1 � d because
R(k + 1) is the most recently treated element in L); and the left-to-right order of the rectangles is
R(b), R(d), R(a), R(k) (see Fig. 16), which implies that b,d,a,k form a forbidden pattern 2–41–3.

Now assume that R(k) is to the left of R(k + 1), see Fig. 17. In the sequence s1, . . . , sk of segments
forming the boundary between U and L, let S be the one of slope +1 and with top extremity the
north-tip of r. At the intersection between S and the horizontal axis of R, let R(d) be the rectangle
to the left of S on the horizontal axis, and R(a) the rectangle to the right of S on the horizontal
axis. Note that R(a) �= R(k) since they have different north-tips. Also R(k + 1) �= R(d) since they have
different south-tips. Since R(k + 1) is the most recently treated element in L we have d > k + 1. Since
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Fig. 17. The situation when R(k) is to the left of R(k + 1).

the first treated element from U will be R(k) we have a < k. Moreover the left-to-right order of these
rectangles is R(k), R(d), R(a), R(k + 1) (see Fig. 17). Hence k,d,a,k + 1 from the forbidden pattern
2–41–3.

Symmetrically one shows that if the south-tip p of R(k + 1) is a it yields a forbidden pattern
3–14–2 (again distinguishing whether R(k) is left or right of R(k + 1)).

Lemmas 6.6 and 6.7 ensure that exactly one admissible permutation is Baxter for every given
rectangulation, which concludes the proof of Theorem 6.4. We obtain:

Proposition 6.8. The number Θk,� counts

• twin pairs of binary trees with k + 1 left leaves and � + 1 right leaves,
• Baxter permutations of k + � + 1 with k descents and � rises.

Note. Baxter numbers first appeared in the context of counting Baxter permutations. Chung, Graham,
Hoggatt and Kleiman [9] found some interesting recurrences and gave a proof based on generating
functions. Mallows [30] found the refined count of Baxter permutations by rises (Proposition 6.8).
The bijection of Theorem 6.4 is essentially due to Dulucq and Guibert [15,16]. Their description and
proof, however, does not use geometry. They also prove Proposition 6.8 and some even more refined
counts, e.g., the number of Baxter permutations of [n] with � rises and s left-to-right maxima and t
right-to-left maxima.

A permutation (a1,a2, . . . ,an) is alternating if a1 < a2 > a3 < a4 > · · · , i.e., each consecutive pair
a2i−1,a2i is a rise and each pair a2i,a2i+1 a descent. Alternating permutations are characterized by
the property that the reduced fingerprints of their min- and max-trees are alternating, i.e., of the
form . . . 0,1,0,1,0,1, . . . and in addition, to ensure that the first pair is a rise, the first entry of
the reduced fingerprints of the max-tree is a 0. Due to this characterization we obtain the following
specialization of Theorem 6.4:

Lemma 6.9. Twin pairs of binary trees with an alternating reduced fingerprint starting with a 0 and alternating
Baxter permutations are in bijection.

Let T be a binary tree with n leaves and with an alternating reduced fingerprint starting with a 0.
Note that a 10 subsequence in a fingerprint corresponds to a pair of leaves attached to the same inner
node. Thus, the leaves of T (except the last one if n odd) come as pairs of children of inner nodes.
Pruning these paired leaves we obtain a tree T ′ with n − � n

2 � leaves. From T ′ we come back to T by
attaching a new pair of leaves to each of the first � n

2 � leaves of T ′ . Using this kind of correspondence
we obtain two bijections (see Fig. 18):

• a bijection between alternating Baxter permutations of [2k − 1] and pairs of binary trees with k
leaves, and
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Fig. 18. Alternating Baxter permutations and pairs of trees.

• a bijection between alternating Baxter permutations of [2k] and pairs of binary trees with k and
k + 1 leaves.

Theorem 6.10. The number of alternating Baxter permutations on [n − 1] is Ck−1Ck if n = 2k, and Ck−1Ck−1
if n = 2k − 1.

Note. Theorem 6.10 was obtained by Cori et al. [10]. They gave a nice bijection between alternating
Baxter permutations and shuffle of parenthesis systems. The theorem was reproved by Dulucq and
Guibert [15] as a specialization of their bijection between Baxter permutations and twin pairs of
binary trees. In [25] it is shown that alternating Baxter permutations with the property that their
inverse is again alternating Baxter are counted by the Catalan numbers.

In recent work of Bonichon, Bousquet-Mélou and Fusy [7] a direct bijection between Baxter per-
mutations and plane bipolar orientations was given. Their procedure consists in drawing segments in
the diagrammatic representation of a Baxter permutation so as to form an embedded plane bipolar
orientation.

7. Symmetries

The bijections we have presented have the nice property that they commute with the half-turn
rotation, which makes possible to count symmetric combinatorial structures. The first structures we
have encountered are 2-orientations. Given a 2-orientation O , exchanging the two special vertices
{s, t} of O clearly yields another 2-orientation, which we call the pole-inverted 2-orientation of O and
denote by ι(O ). A 2-orientation is called pole-symmetric if O and ι(O ) are isomorphic.

Considering the associated separating decomposition, the blue tree of O is the red tree of ι(O )

and vice versa. Accordingly, a 2-orientation is pole-symmetric if, and only if, the blue tree and the
red tree are isomorphic as rooted trees, in which case the separating decomposition is called pole-
symmetric as well. Such a symmetry translates to half-turn rotation symmetries on the associated
embeddings. Indeed, as the two trees composing the separating decomposition are isomorphic, so are
their alternating embeddings and so are the two binary trees that compose the associated twin pair
of binary trees, in which case the twin pair is called symmetric. To integrate the main observations:

Lemma 7.1. A 2-orientation, resp. a separating decomposition, is pole-symmetric if, and only if, the associated
twin pair of binary trees is symmetric.

Clearly, a 2-book embedding and a rectangulation are stable under the half-turn rotation that
exchanges the two special vertices, if and only if the corresponding separating decomposition is pole-
symmetric.

Considering bipolar orientations, the effect of the half-turn symmetry of a separating decomposi-
tion on the associated plane bipolar orientation is clearly that the orientation is unchanged when the
poles are exchanged, the directions of all edges are reversed, and the root-edge is flipped to the other
side of the outer face (in fact, it is more convenient to forget about the root-edge here). Such bipolar
orientations are called pole-symmetric.
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Lemma 7.2. A bipolar orientation is pole-symmetric if, and only if, the associated 2-orientation, resp. separat-
ing decomposition, is pole-symmetric.

We next turn to Baxter permutations. Given a permutation π of 1,2, . . . ,n let π be the permu-
tation obtained by exchanging i with n − i + 1 in the one-line representation. A permutation with
π = ρ(π) is called symmetric. Another way to state this is that a permutation π is symmetric if its
0–1 matrix is invariant under half-turn rotation. Consider the rectangulation R(π) associated to π as
in Section 6. The rectangulation corresponding to π is obtained from R(π) by a reflection along the
x-axis. The rectangulation corresponding to ρ(π) is obtained from R(π) by a reflection along the y-
axis. Hence, the rectangulation corresponding to ρ(π) is obtained from R(π) by a half-turn rotation.
From the bijection between rectangulations and Baxter permutations we thus obtain:

Lemma 7.3. A Baxter permutation is symmetric if, and only if, the associated rectangulation is invariant under
half-turn rotation if, and only if, the associated twin pair of binary trees is symmetric.

Next we turn to the encoding by a triple of paths. Recall that, in a twin pair (T , T ′) of binary trees,
the reduced fingerprints satisfy the relation α̂(T ) = ρ(α̂(T ′)). Hence, a symmetric twin pair (T , T )

has the property that the reduced fingerprint of T satisfies α̂(T ) = ρ(α̂(T )), i.e., α̂ is a palindrome.
Equivalently, if T has k + 1 left leaves and � + 1 right leaves, the up-right lattice path P2 = Pα(T )

from (1,1) to (k + 1, � + 1), as defined in Section 5, is stable under the point-reflection πS at S :=
(k/2 + 1, �/2 + 1). The other two paths in the triple (P1, P2, P3) of non-intersecting lattice paths
correspond to two copies of the bodyprint of T read respectively from (0,2) to (k, � + 2) for P1
and from (� + 2,k) to (2,0) for P3. Therefore the whole triple (P1, P2, P3) is stable under the point
reflection πS . Such a triple of paths is called symmetric. We have:

Lemma 7.4. A triple (P1, P2, P3) of paths is symmetric if, and only if, the associated twin pair of binary trees
is symmetric.

Proposition 7.5. Let Θ
�
k,�

be the number of symmetric non-intersecting triples of up-right lattice paths
(P1, P2, P3) going respectively from (0,2), (1,1), (2,0) to (k, � + 2), (k + 1, � + 1), (k + 2, �).

(i) If k and � are odd, then Θ
�
k,�

= 0.
(ii) If k and � are even, k = 2κ , � = 2λ, then

Θ
�
k,�

=
∑
r�1

2r3

(κ + λ + 1)(κ + λ + 2)2

(
κ + λ + 2

κ + 1

)(
κ + λ + 2

κ − r + 1

)(
κ + λ + 2

κ + r + 1

)
.

(iii) If k is odd and � is even, k = 2κ + 1, � = 2λ, then

Θ
�
k,�

=
∑
r�1

2r3 + (λ − r + 1)r(r + 1)(2r + 1)

(κ + λ + 1)(κ + λ + 2)2

(
κ + λ + 2

κ + 1

)(
κ + λ + 2

κ − r + 1

)(
κ + λ + 2

κ + r + 1

)
.

(iv) If k is even and � is odd, k = 2κ , � = 2λ + 1, then

Θ
�
k,�

=
∑
r�1

2r3 + (κ − r + 1)r(r + 1)(2r + 1)

(κ + λ + 1)(κ + λ + 2)2

(
κ + λ + 2

κ + 1

)(
κ + λ + 2

κ − r + 1

)(
κ + λ + 2

κ + r + 1

)
.

Proof. By definition, (P1, P2, P3) is stable under the point-reflection πS at S := (�/2 + 1,k/2 + 1).
In particular, P2 is stable under πS , so that P2 has to pass by S . This can only occur if S is on an
axis-coordinate, i.e., k/2 or �/2 are integers. Therefore Θ

�
k,�

= 0 if both k and � are odd.
If k and � are even, k = 2κ and � = 2λ, the half-turn symmetry ensures that (P1, P2, P3)

is completely encoded upon keeping the part P ′
1, P ′

2, P ′
3 of the paths that lie in the half-plane
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Fig. 19. A pole-symmetric separating decomposition and the corresponding symmetric combinatorial structures: 2-book em-
bedding, twin pair of binary trees, plane bipolar orientation, Baxter permutation, triple of paths. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)

{x + y � xS + yS}, i.e., the half-plane {x + y � κ + λ + 2}. The conditions on (P1, P2, P3) translate
to the following conditions on the reduced triple: (P ′

1, P ′
2, P ′

3) is non-intersecting, has same start-
ing points as (P1, P2, P3), the endpoint of P ′

2 is S , and the endpoints of P ′
1 and P ′

3 are equidistant
from S , i.e., there exists an integer r � 1 such that P ′

1 ends at (κ + 1 − r, λ + 1 + r) and P ′
3 ends at

(κ +1+r, λ+1−r). Hence, up to fixing r � 1, (P ′
1, P ′

2, P ′
3) form a non-intersecting triple with explicit

fixed endpoints, so that the number of such triples can be expressed using Lindström Gessel–Viennot
determinant formula. The expression for Θ

�
k,�

follows.
If k is odd and � is even, k = 2κ + 1 and � = 2λ, the triple (P1, P2, P3) is again completely en-

coded by keeping the part (P ′
1, P ′

2, P ′
3) of the paths that lie in {x + y � xS + yS}, i.e., the half-plane

{x + y � κ + λ + 5/2}. The difference with the case where k and � are even is that P ′
1, P ′

2, P ′
3 are

not standard lattice paths, as they end with a step of length 1/2. Similarly as before, the conditions
on (P1, P2, P3) are equivalent to the properties that (P ′

1, P ′
2, P ′

3) are non-intersecting, have the same
starting points as (P1, P2, P3), P ′

2 ends at S , and P ′
1, P ′

3 end at points that are equidistant from S on
the line {x + y = xS + yS} and have one integer coordinate, i.e., there exists an integer m � 2 such
that P ′

1 ends at (xS −m/2, yS +m/2) and P ′
3 ends at (xS +m/2, yS −m/2). Notice that, upon discard-

ing the last step, the system (P ′
1, P ′

2, P ′
3) is equivalent to a triple of non-intersecting up-right lattice

paths (P ′
1, P ′

2, P ′
3) with starting points (0,2), (1,1), (2,0), and endpoints that are either of the form

(κ + 1 − r, λ + 1 + r), (κ + 1, λ + 1), (κ + 1 + r, λ + 1 − r) if m is even, m = 2r, or are of the form
(κ + 1 − r, λ+ 1 + r), (κ + 1, λ+ 1), (κ + 2 + r, λ− r) if m is odd, m = 2r + 1. In each case, the number
of triples has an explicit form from the formula of Lindström Gessel–Viennot. The expression of Θ

�
k,�

follows. Finally, notice that the set of symmetric non-intersecting triples is stable under swapping
x-coordinates and y-coordinates, yielding the relation Θ

�
k,�

= Θ
�
�,k . Thus the formula for Θ

�
k,�

when k
is even and � is odd simply follows from the formula obtained when k is odd and � is even. �

The whole discussion on symmetric structures is summarized in the following proposition and
illustrated in Fig. 19.

Theorem 7.6. The number Θ
�
k,�

counts

• pole-symmetric 2-orientations with k + 1 white vertices and � + 1 black vertices,
• pole-symmetric separating decompositions and 2-book embeddings with k + 1 white vertices and � + 1

black vertices,
• symmetric twin pairs of binary trees with k + 1 left leaves and � + 1 right leaves,
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Fig. 20. Schnyder’s edge coloring rule. (For interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)

• rectangulations of Xn with k horizontal and � vertical segments, which are invariant under half-turn
rotation,

• symmetric Baxter permutations of k + � + 1 with k descents and � rises,
• pole-symmetric plane bipolar orientations with k inner faces and � non-pole vertices.

8. Schnyder families

As we have shown in previous sections, Baxter numbers count 2-orientations on quadrangula-
tions and several other structures. We now turn to a family of structures, Schnyder woods, which are
equinumerous with 3-orientations of plane triangulations. Actually, the relation of Schnyder woods
and 3-orientations is very similar to the relation of separating decompositions and 2-orientations. In
both cases the coloring of an edge in the richer structure can be recovered by following a unique path
that leads to one of the special vertices, see Theorems 8.3 and 2.5.

Consider a plane triangulation T , i.e., a maximal plane graph, with n vertices and three special
vertices a1,a2,a3 in clockwise order around the outer face.

Definition 8.1. An orientation and coloring of the inner edges of T with colors red, green and blue is
a Schnyder wood if:

(1) All edges incident to a1 are ingoing red, all edges incident to a2 are ingoing green and all edges
incident to a3 are ingoing blue.

(2) Every inner vertex v has three outgoing edges colored red, green and blue in clockwise order. All
the incoming edges in an interval between two outgoing edges are colored with the third color;
see Fig. 20.

Definition 8.2. An orientation of the inner edges of T is a 3-orientation if every inner vertex has
outdegree three.

From the count of edges it follows that the special vertices ai are sinks in every 3-orientation.
Clearly, forgetting the colors of edges in a Schnyder wood yields a 3-orientation. In the next theorem
it is shown that the two structures are actually equivalent. This resembles the equivalence between
separating decompositions and 2-orientations described in Theorem 2.5.

Theorem 8.3. (See de Fraysseix and de Mendez [11].) Let T be a plane triangulation with outer vertices
a1,a2,a3 . Schnyder woods and 3-orientations of T are in bijection.

Given an edge e which is incoming at v , we can classify the outgoing edges at v as left, straight
and right. Define the straight-path of an edge as the path which always takes the straight outgoing
edge. A count and Euler’s formula shows that every straight-path ends in a special vertex. The special
vertex where a straight-path ends determines the color of all the edges along the path. It can also be
shown that two straight-paths starting at a vertex do not meet again. This implies that the coloring
of the orientation is a Schnyder wood.

From this proof it follows that the local properties (1) and (2) of Schnyder woods imply:
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(3) The edges of each color form a tree rooted at a special vertex and spanning all the inner vertices.

Recall that in the case of separating decompositions we also found the tree decomposition being
implied by local conditions (see item (3) after Theorem 2.5).

Note. Schnyder woods were introduced by Schnyder in [35] and [36]. They have numerous applica-
tions in the context of graph drawing, e.g., [2,6,28], dimension theory for orders, graphs and polytopes,
e.g., [35,8,18], enumeration and encoding of planar structures, e.g., [32,21]. The connection with 3-
orientations was found by de Fraysseix and Ossona de Mendez [11].

The aim of this section is to prove the following theorem of Bonichon.

Theorem 8.4. (See Bonichon [5].) The total number of Schnyder woods on triangulations with n + 3 vertices is

Vn = Cn+2Cn − C2
n+1 = 6(2n)!(2n + 2)!

n!(n + 1)!(n + 2)!(n + 3)!
where Cn = 1

n+1

(2n
n

)
is the Catalan number.

Before going into details we outline the proof. We first show a bijection between Schnyder woods
and a special class of bipolar orientations of plane maps. We trace these bipolar orientations through
the bijection with separating decompositions, twin pairs of trees and triples of non-intersecting paths.
Two of the three paths turn out to be equal and the remaining pair is a non-crossing pair of Dyck
paths. This implies the formula.

Note. The original proof, Bonichon [5], and a more recent simplified version, Bernardi and Boni-
chon [4], are also based on a bijection between Schnyder woods and pairs of non-crossing Dyck paths.
In [4] the authors also enumerate special classes of Schnyder woods. Fusy, Schaeffer and Poulalhon
have a bijection from Schnyder woods to a special class of separating decompositions and a bijec-
tion from these separating decompositions to pairs of non-crossing Dyck paths. They show that their
bijection equals the bijection from [4]. Our proof yields a different bijection.

Little is known about the number of Schnyder woods of a fixed triangulation. In [19] it is shown
that the maximal number of Schnyder woods a triangulation on n vertices can have is asymptotically
between 2,37n and 3,56n . As with 2-orientations, the computational complexity of the counting
problem is unknown.

Recall that by Fact F, after Definition 2.2, the boundary of every inner face of a planar bipolar
orientation consists of two directed paths starting at the face-source and joining at the face-sink. The
right side of the face is the right of the two paths when looking from the face-source to the interior
of the face.

Proposition 8.5. There is a bijection between Schnyder woods on triangulations with n + 3 vertices and plane
bipolar orientations with n + 2 vertices having the special property:

(�) The right side of every bounded face is of length two.

Proof. Let T be a triangulation with a Schnyder wood S . With (T , S) we associate a pair (M, B),
where M is a subgraph of T and B a bipolar orientation on M . The construction is in two steps. First,
we delete from the graph the edges of the green tree in S and the special vertex of that tree, i.e., a2,
as well as the two outer edges incident to a2. The resulting map is M . Then we revert the orientation
of all blue edges and orient the edge {a3,a1} from a3 to a1, this is the orientation B . Fig. 21 shows
an example.

The orientation B has a3 as unique source and a1 as unique sink. To show that it is bipolar it is
enough to verify properties V and F (cf. the note after Proposition 2.3). Property V requires that at a
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Fig. 21. A Schnyder wood and the corresponding bipolar orientation. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)

Fig. 22. From a generic face in S to B and back. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)

vertex v �= s, t the edges partition into non-empty intervals of incoming and outgoing edges, this is
immediate from the edge coloring rule (2) in Definition 8.1 and the construction of B .

For property F, consider a bounded face f of M . Suppose that f is of degree > 3, then there
had been some green edges triangulating the interior of f . The coloring rule for the vertices on the
boundary of f implies that these green edges form a fan, as indicated in Fig. 22. Otherwise there
would be a vertex with two outgoing green edges or a vertex with adjacent incoming and outgoing
green edges; both are impossible. Starting from the green edges, we conclude that each edge on the
left side of f is red and upward pointing or blue and downward pointing. Hence, in B these edges
form a directed path and the neighbors of the tip vertex of the green edges are the unique source
and sink of f . This also implies that the right side of f is of length two, i.e., property (�).

If f is a triangle, then two of its edges are of the same color, say red. The coloring rule implies
that these two edges point to their common vertex, whence the triangle has unique source and sink.
Since the transitive vertex of f has a green outgoing edge in S , it is on the right side and (�) also
holds for f .

For the converse mapping, consider a pair (M, B) such that (�) holds. From property V it follows
that every vertex v �= s, t has a unique face where it belongs to the right side. This allows us to
identify the red and the blue outgoing edges of v . Since every edge except the (s, t) edge is on the
right side of some face, the procedure determines a color for all these edges. Moreover, at v the
leftmost incoming edge is blue and all the other incoming edges are red. The coloring of outgoing
edges at v is dual, the leftmost is red and all the others are blue. Insert the green edges so that they
triangulate faces of degree more than three and connect vertices on the rightmost s–t path to the
additional outer vertex a2. The green edges form a tree rooted at a2. Finally, revert the orientation
of the blue edges. This yields a coloring and orientation of the edges of the triangulation obeying
properties (1) and (2) from Definition 8.1. Hence, we could reconstruct the unique Schnyder wood
compatible with the data given by (M, B). This proves the bijection. �

Given a plane bipolar orientation (M, B) with n + 2 vertices and the (�) property, we apply the
bijection from Proposition 2.3 to obtain a quadrangulation Q with a separating decomposition. Prop-
erty (�) in (M, B) is equivalent in Q to

(�′) Every white vertex (except the rightmost one) has a unique incoming edge in the blue tree.



1018 S. Felsner et al. / Journal of Combinatorial Theory, Series A 118 (2011) 993–1020
Fig. 23. From a Schnyder wood to a pair of non-intersecting Dyck-paths. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

In particular, it follows that there is a matching between vertices v �= s, t and bounded faces of M ,
hence, in Q there are n + 2 black and n + 1 white vertices.

The separating decomposition of Q yields twin pairs of alternating trees with n + 1 black and n
white vertices (Theorem 3.6). From the twin pair of alternating trees we get to a pair of twin bi-
nary trees with n + 1 black and n white vertices (Theorem 5.2). This pair of trees yields a triple
of non-intersecting paths (Theorem 5.5). Fig. 23 shows an example of the sequence of transforma-
tions.

From (�′) we get some crucial properties of the fingerprint and the bodyprints of the blue tree T b

and the red tree T r .

Fact 1. If we add a leading 1 to the reduced fingerprint α̂, then we obtain a Dyck word; in symbols
(10)n �dom 1 + α̂.

Proof. It is better to think of 1 + α̂ as the fingerprint αb of the blue tree after removal of the last 0.
Property (�′) implies that there is a matching between all 1’s and all but the last 0’s in the αb , such
that each 1 is matched to a 0 further to the right. �
Fact 2. The fingerprint uniquely determines the bodyprint of the blue tree, precisely βb = 1 + α̂.

Proof. From (�′) it follows that αb
i = 1 implies βb

i+1 = 0. Since αb has n entries 1 and βb has this

same number of 0’s, it follows that βb is determined by αb . �
Let α∗ = 1+ α̂ and β∗ = 1+ β̂r ; then (10)n �dom α∗ �dom β∗ . We omit the proof that actually every

pair (α∗, β∗) of 0,1 strings from
〈 2n

n

〉
with these properties comes from a unique Schnyder wood on

a triangulation with n + 3 vertices. Translating the resulting bijection with strings into the language
of paths we obtain:

Theorem 8.6. There is a bijection between Schnyder woods on triangulations with n + 3 vertices and pairs
(P1, P2) of non-intersecting up-right lattice paths, where P1 is from (0,0) to (n,n), P2 is from (1,−1) to
(n + 1,n − 1), and the paths stay weakly below the diagonal, i.e., they avoid all points (x, y) with y > x.

For the actual counting of Schnyder woods we again apply the lemma of Lindström Gessel–
Viennot. The entry Ai, j in the matrix is the number of paths from the start of Pi to the end of
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P j staying weakly below the diagonal. The reflection principle of D. André allows us to write these
numbers as differences of binomials.

Proposition 8.7. The number of Schnyder woods on triangulations with n + 3 vertices is

det

( (2n
n

) − ( 2n
n−1

) ( 2n
n+1

) − ( 2n
n−2

)
( 2n

n−1

) − ( 2n
n−2

) (2n
n

) − ( 2n
n−3

)
)

= 6(2n)!(2n + 2)!
n!(n + 1)!(n + 2)!(n + 3)! .
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