W10 Type or Not to Type:
Quantifying Detectable Bugs
N Javascript

/heng Gaot*, Christian Bird*, Earl Barr+

+University College London, *Microsoft Research

Static Typing vs. Dynamic Typing

=

=

Static Typing vs. Dynamic Typing

q
=
Early Detection

=

Metaprogramming

Static Typing vs. Dynamic Typing

=

Early Detection

=

Engine of the Web

s dynamically typed;

JavaScript has a large set of long-running projects.

Engine of the Web

IS dynamically typed;

has a large set of long-running projects.
3,599,113 JavaScript repos on GitHub

JavaScript

Static Typing for JavaScript

facebook

Static Typing for JavaScript

m Microsoft — TypeSCrlpt

facebook < flow

d q ¢—

O,

)

D g —

C

e ~
O o <+—
Q s

g Q.

=

S .
— g+

O &%

)

G

-

)

O

®

1

d g ¢
0
)
-
C
O
O
Q s
®)
=
>
_l
O &
©
N
[®
©
1

£
S ¢
o
.JT
Q
|
S —
S +—

d g ¢
0
)
-
C
O
O
Q s
®)
=
>
_l
O &
©
N
[®
©
1

£
S ¢
o
.JT
Q
|
S —
S +—

Had Static Typing been Used ...

Central Finding

Central Finding

19%

Central Finding

Bug Life Cycle

Bug Life Cycle

findNoderiandie)s ReactNatveAtiibutePayloadss X & m -
44 type NestedNode = Array<NestedNode> | Object | numbe:

indNodeHandie s rcenderersn..
1/ Tracks renoved keys
var renovedkeys = null.
var renovedKeyCount =

function defaultdiffer(prevProp: mixed, nextProp: mixed): boolean {
if (typeof nextProp !== ‘object’ || nextProp === nuil) {

/7 Scalars have already been checked for equality

return true;

¥ else {

1/ For objects and arrays, the default diffing algorithm is a deep compare
return deepDiffer(prevProp, nextProp);

¥

function resolveObject (idOr0bject: number | Object)
if (typeof 1dorobject === ‘nusber’)
return ReactNat ivePropRegistry.getByID(idOr0bject);

return idr0bject;
ReactNativeComponentTre...
ReactNativeContainerinfojs

ReactatieEvantEittrjs OUTUT DEOCOWOLE TemmA Ferbybpeorten @ A X

0,6)
@6
3,6)
@8,

© () ypes’ e. (60, 36)

Bug Life Cycle

4 opsnsorrons
findNodeHandlejs srcenderers.

RoactNatioAtbutoPayiosds - eact

findlodetandlels ReactNativeAtiibutePayloadss X & m -
s

45
D I
48 var removedKeyCount = 0;

» node_moduies 9 '
4 randerers 50 function defaultDiffer(prevProp: mixed, nextProp: mixed): boolean {
bt 51 if (typeof nextProp “object” || nextProp wuil) { 1
b art 52 // Scalars have already been checked for equality
» dom 53 return true;
4 native 54 }else{ 1
B 55 1/ For objects and arrays, the default diffing algorithm is a deep compare
v 56 return deepDiffer(prevProp, nextProp);
57 !
58) !
59 1
60 function resolveObject(idOrObject: number | Object): Object {
61 1if (typeof idOrObject === 'number') { 1
62 return ReactNativePropRegistry.getByID(idOrObject);
6
64 return idorobject; i
65)
66
67
FROBLEMS OUTPUT DEUGCONSOLE TERMNAL Fifer by ype or text 8 A x

©) type. 15 i

© (s type ai i
© () typo alases’ can only be used n a1 fle. (33, 6)

©) e, fle. (38, 6)

,59)
1 fle. (60, 36)

New File
New Window

#N
43N

Open... #0
Open Recent >

Save As...
Save All X #S

Auto Save

Revert File
Close Editor BqW
Close Folder ($K F)

ReactDOMFBE

o1}
61
62
63
64
65
66
67
68
69

Bug Life Cycle

eoe RoactNatioAtbutoPayiosds - eact
EvLomR findlodetandlels ReactNativeAtiibutePayloadss X Q@ m -
ey 44 type NestedNode = Array<NestedNode> | Object | number;

indNodeHandiejs scenderesin. 45 d
ResciNBINSARBSPRYRAGIEEL| 16 // Tracks removed keys
« wencr 47 var removedkeys = null;
b s 48 var removedKeyCount = 0;
» node moduies 4 '
« rendorers 50 function defaultDiffer(prevProp: mixed, nextProp: mixed): boolean {
» _tesis_ 51 if (typeof nextProp !== ‘object’ || nextProp === null) { !
52 11 Scalars have already been checked for equality
53 return true;
56 delsed !
> _mocks_ 55 1/ For objects and arrays, the default diffing algorithm is a deep conpare
» Zueste_ 56 return deepDiffer(prevProp, next?rop);
creneRsaciNativeCompon.. 57
fndNodeHandiejs 58)
ativemethodshticinjs =
. NalvoMethodsMXUUISIS 69 function resolveObject (idOr0bject: number | Object): Object {
fescthize 61 if (typeof idOrobject == ‘number’) { |
RoaciNativeBaseCompone.. B

6
ReactNativeBridgesventplu .
B :; R return idr0bject;

ReacttiveComponentTre.
ReactNativeContainerinfo s @

I
RescvotuntEmiorje | PROBEMS OUTPUT DEBUGCONSOLE TERMNAL Fikar by tpe o fext a8 A x
ReactativeFesturerlags o ses can ony b used n a1 . (30,6)

ReactiativeFiber s

push

ReactNativeFiberErorDial..)
ReactNativeFiberHostCom... © (] type afsses’can only be used n 3 13 fle. (38, 6)
ReactNativeGiobalRespond... © (] “type alases’can only be used n a 15 fle. (44, €]

©) ypos’ flo. (50, 34)

©) ypes’ s fle. (50, 51)

© s types’ 5. (50, 59)

© () ypos’ ina ts i, (60, 36)

edit-time
bugs

Edit Selection View

New File 38N
New Window N

Go Debug

ReactDOMFBE
Open... #0 (o] 1
Open Recent > 61
62
63
64
65

66
Revert File 67
Close Editor #BW
Close Folder (3K F) 68
b MOcKS ’ 69

Save As...
Save All \#S

Auto Save

Bug Life Cycle

eoe [——————
@ EXPLORER findNodeHandle.js ReactNativeAttributePayloadJs X @ m -
T 44 type Nestedode = ArrayeNestedode> | Object | nunver;
findNodeHandle js src/renderers/n. a5 I|
FENAARBAPHIORE] 15 // Tracks removed keys
+ er 47 var removedKeys = null;
+ isomorstic 48 var removedkeyCount = 0;
et a {
+ renderers 50 function defaultbiffer(prevProp: mixed, nextProp: mixed): boolean {
» _tests_ 51 if (typeof nextProp !== 'object' || nextProp null) { 1
e 52 // Scalars have already been checked for equality
» dom 53 retn true;
“ native 54 }else { 1
S S5 // For objects and arrays, the default diffing algoritha is a deep compare y
+ Dest S return deepbiffer(prevProp, nextprop);
aomRsseatecompon.. 57} '
fiaNodetiandiess B o |
NatvellthodsMtins e H
] . NativeMethodsMXNUISSS 69 function resolveObject (idor0bject: number | Object): Object {
Bakatisieo 61 if (typeof idOrObject “number®) { |
RescaivesseCompone.. oo
RescatieBrcgesventl {
RencOlaeSrOeEvnPll- 64 return dd0r0bject; i
Reactvatvecomponenttre.. 03 |
ReactNativeContainerinfo s o8
@
Renciuaivetomtorys | FOMES OUTT OfUGCONRLE TEWNAL Fier by e ot 8~ x
. ResctateFeatueFlageis O U]ty sses”can oy be usedin s fle. (30, 6)
Reactaterierss © () type alnss'can oly be useina.t e, (31,61
ResctateriartiosCom.. O U] "ype alinses”can oy b usdin s e, (35, 6)
ReactatheClobalspond. O U]ty alisest can oy b usacin s e (4, 6)
© 05 e 50,30
© s e st 50,51
© 5 e, (50,59)
© (s e fie 60,30)

edit-time
bugs

Edit Selection

File View Go Debug

New File 38N

RELEASE New Window 438N

Open. #80
Open Recent

ReactDOMFBE
o]7) 1
61
62
63
64
65
66
67
68
69

Save As...
Save All

Auto Save

Revert File
Close Editor #BW
Close Folder (3K F)

—MOCKS_

Bug Life Cycle

Bug Life Cycle

public bugs

Type System Detectable

Definition (ts-detectable): Given a static type system
ts, a bug Is ts-detectable when

1.

adding or c
program co
onalineaf

nanging type annotations causes the
ntaining the bug to fail to type check

IX changes.

Problem

When the type of b is nullable numbe r, annotating

var a = b + 1;

o

var a:boolean b + ;

‘trivially” triggers a type error.

Consistency

Definition (Consistency): The added or changed
type annotations are consistent with a fixed version of
the program containing the bug f, it they carried to f
type check, and the type of every annotated term is a
supertype of that term’s type when an oracle
precisely annotates it in .

Type System Detectable

Definition (ts-detectable): Given a static type system
ts, a bug Is ts-detectable when

1. adding or changing type annotations causes the
program containing the bug to fail to type check
on a line a fix changes;

2. the new annotations are consistent with a fixed
version of the program containing the bug.

N o W -

Example of Detection

// addNumbers in JavaScript
function addNumbers(x, y) {
return x + vy,

}
console. log(addNumbers(3, "0"));

Error-free in JavaScript,
and unexpectedly displays
an string, 30

// addNumbers 1in Typ

eScript
function addNumbers(y {

return x + y;
}

console.log(addNumbers(3, "0"));

L N SR S I S T

TypesScript throws the
following error:

t.ts(5,27): error TS2345: Argument of type 'string’ is not
assignable to parameter of type ’'number’.

Research Question

What percentage of public bugs are detectable
under Flow or TypeScript?

Experiment Overview

—Projects

Link .
Issues—p ! . Candidates®»
Identification

Buggy

Annotated Type
_.’
Programs

Programs Checking o

Commit Logs

_ Detectable Bugs
GitHub Filter Annotate

Corpus Collection

—Projects

Link .
Issues—p ! . Candidates
Identification

Annotated
Programs

Buggy
Programs

Commit Logs

GitHub Filter | Annotate

Type

Checking

No-»

Detectable Bugs

Corpus Collection

» What is the sample size”

» How to identity public bugs?

Corpus Collection

» What is the sample size”

» How to identity public bugs?

Sample Size Calculation

3,910,969 X2NP(1 - P)
closed bug e 4 384 bugs
reports d?(N — 1) + X?P(1 — P)

s: sample size

X2: a constant for the confidence level of 95%
N: population size, 3910969

P: population proportion, 0.5

d: degree of accuracy, 0.05

Corpus Collection

» What is the sample size”

» How to identity public bugs?

Bug ldentification

—]
Bug
| Identification

T

—

Annotated Type
Programs Checklng No-»

Detectable Bugs

! e Candidates® BU88Y
| Identification Programs

GitHub Fllter Annotate

|

Bug ldentification

—— —

Bug
|dentification

—

Fix
|dentification

—

—

Bug ldentification

Parents are

buggy

Fix
|dentification

E——

Bug
| Identification

L;_‘I__:-;,_*I__:-;,

——

Fix |[dentification

Extract Commit
Hashes

Extract Issue
Numbers

Linked Fix
Candidates

Fix |[dentification

Extract Commit
Hashes

E"I\tlra“b'jsue Linked Fix
UL Candidates

These candidates may

Include commits that add
features or refactor.

Subjects

general bugs

/ public bugs

ts-detectable

\

Subjects

general bugs

oublic bN

ts-detectable
bugs

Subjects

general bugs

oublic bN
fixed

public

bugy

ts-detectable
bugs

Subjects

general bugs

public bugs

ts-detectable
bugs

Size Statistics of the Corpus

Max Min Mean Median

Project 1144440 32 18117.9 1736
Fix 270 1 16.2 6

The sizes are In lines of code.

Methodology

Project Version History w

Researcher

Methodology

buggy . .fixed
pPo version Pi-1 'version Pn

Project Version History w

Researcher

Methodology

___ buggy . _fixed
Po version Pi-1 'version Pn

travel back in time

Project Version History

Methodology

:

Pi-1
[
w Check out pi-1

Methodology

:

Pi-1
L
w Gradually annotate pi.1

Methodology

a is the annotation function

a(pi-1)

Dn
o
w Type check a(pi-1)

Annotation

I_ - = =
Projects .
' Type
Issues—p L.lnk . Candidates Buggy I nnotated P . No-»
Identification prog’amf Programs Checking
Commit Logs

_ Detectable Bugs
GitHub Filter Annotatel

| — — — 4

Annotation

\ 4
gradually possibly
add type check detected? detectable?

annotation

explain justify
annotations undetectable

Projects
Type
Issues— Fink Candidates Buggy I nnotated yp _—
Identification PrOgramp rograms Checking
Commit Logs

Detectable Bugs

GitHub Filter Annotatel

—_—- = d

Annotation

\ 4
gradually 0ossibly
add type check detected? sleteeizlale

annotation

We do not fully annotate
the program; we rely on

gradual typing to locally, explain justify

minimally annotate the annotations undetectable
patched region.

- - -
I

|

——Projects . . |
Issues—p L_mk . Candidates P Buggy |

Identification rogramg |

T Commit Logs |

-

|
GitHub Filter : Annotatel

Detectable Bugs

Annotation Sources

———————————————— ——————————— — e ———————

project

bug fixes bug reports documentation

Expert Source

\

|
t ot |l

Problem

{x:0, z:1};
.Y; // the error is y does not exist on t
.Z;

Problem

What is the type of

variable t?

{x:0, z:1};
> // the error is y does not exist on t

|y
t ot |l
e

Problem

What is the type of

variable t?

Seems to be
{X: number, z: number}?
t = {x:0, z:1};
= t.y; // the error is y does not exist on t
= t.z;

Problem

What is the type of

variable t?

Seems to be
{X: number, z: number}?
t = {x:0, z:1};
= t.y; // the error is y does not exist on t
= t.z;

Not necessarily!

Problem

What is the type of

variable t7 Seems to be

{X: number, z: number}?

t

{x:0, z:1};
// the error is y does not exist on t

Not necessarily!

|
t ot |l
e

Problem

What is the type of
variable t?

Seems to be
{X: number, z: number}?

t.x = t.y; // the error is y does not exist on t
t.z

Not necessarily!

Now becomes
{X: number | string, z: numberj.

Type Shims

A set of type bindings for the free identifiers that
1). Is consistent with but

2). may not exist in

a fixed version of the program containing the bug.

Shim Example

<
()]
N
t

{x:0, z:1};
.v: // y does not exist on t
.Z;

o+
X
|
t |l

TL.X =

This shim is
consistent, as T

annotate

interface T {
X:any;

must be the z:any;

supertype.)

Annotation Quality

we add the same annotations to p;

Po pi-1 Pn

[
i

84% of the annotated fixed versions type check.

Results

collected bugs 400
Flow- TypeScript-
detectable detectable
3 3

Both Flow and TypeScript detect 15% of the collected
bugs; the confidence range is [11.5%,18.5%], at a
95% confidence level.

iImplications

“Thats shocking. If you could make a change to the
way we do development that would reduce the
number of bugs being checked in by 10% or more
overnight, thats a no-brainer. Unless it doubles
development time or something, we'd do it.”

- An engineering manager at Microsoft

Experimental Artefacts

OVERVIEW METHODOLOGY RESULTS CASE STUDY CONTACT

overview MeTHopolLocy [ELCIURENN cAsE STUDY CONTACT

RESULTS

To Type or Not to Type: Quantifying What we have discovered

Detectable Bugs in JavaScript

“Token Tax Time Tax (s)

Mean Median Mean Median
Flow 17 2 2314 133
: I N mmm - TypeScript 2.4 2 3068 262
. - - f.f*ff«“’g’(f"‘fx@f"“
ow

TSC Flow&TSC Flow | TSC Flow & ~TSC ~Flow &TSC

& 8883
v238BEEEEE

Histogram of TC-Detectable Bugs Histogram of Undetectability Annotation Effort
OVERVIEW
B collected bugs 400
peScript, What developers say
these static type systems provide? Flow- TypeScript-
Leveraging JavaScript project histories, we select a fixed bug and check out the code just prior to the fix We manually add type detectable detectable
annotations to the buggy code and test whether Flow and TypeScript report an error on the buggy code, thereby possibly prompting a
developer i i i i rted “That’s shocking. If you could make a change to the way we dc that he ber of
Evaluating static type systems against public bugs, which have survived testing and review, is conservative: it understates their / bugs being checked in by 10% or. ight, that's a no-brainer. Unless it double time or
effectiveness at detecting bugs during private development, not to mention their other benefits such as facilitating code 3 3 something, wed do it
i i ion. Despite thi i our central finding is that both static type systems
Tpescript L5 An Engineering Manager, Microsoft
.
"A scientifically true effect can be regularly reproduced by anyone who carries out the appropriate experiment in the way prescribed.”
METHODOLOGY
Assessment Annotation Facilitator
b ed
po T rioAP Pl Po
The complete assessment on the 400 bugs.
. . (]
Project Version History
Researcher CASE STUDY
o . Some bugs are worth closer inspection. Based on three criteria we select bugs for further manual assessment: ones whose TypeScript- or Flow-detectability differs
! e among the three "raters", ones whose TypeScript- and Flow-detectability differ, and ones that are TypeScript-detectable under version 2.0 but not under 1.8.
experiment. Please click here for a detailed discussion.
Corpus Collection
Disagreement Flow vs. TypeScript TypeScript 1.8 vs. 2.0
We seek to construct a corpus of bugs that i ive and sufficiently larg istical inference. As
Extract Commit w evi i is the main dif which i ling. We cannot sample

Issue
Pages

Hashes

bugs directly, but rather commits that we must classify into fixes and non-fixes. Why fixes? Because a fix is often

TypeScript 2.0 was released during this study, giving us the

labelled h, its iggy ion i p: \ter-rater agreement, each rater needed to make 160 iffer i i Flow PP y
relevant to the bug. To identify bug-fixir its, we consider only i for de in total, 80 for TypeScript il and ipt in terms of their ability ially pr null and undef ined . Prior to 2.0, all types were nullable
bug report references in commit messages and commit ids (SHAS) in bug reports. This heuristic is not only noisy; it for ility. 138 of these isi i in TypeScript. TypeScript 2.0 added the compiler option ——

et Linked Fix ith bias in proje i fasii issing i i labelled. i introduced. Flow and TypeScript both catch a nontrivial strictNullChecks ,which makes most types nonnullable.

c Candidates We used On 19/08/2015, I inwhic portion of public bugs. In our i orpus and found in increa:
P lsen Izt for] ipt proj i i We set ‘while another deems it unpreventable. Of the 22 Wi i of 58%, T ipt
For. e forthemina . N .
5 level and confidence interval to 95% and 5%, respectively. The calculation showed that a sample of 384 bugs was, disagreements, 12are strong. Sonly TypeScript TypeSaript 1.8,
history, and search for them in the project’s issues. S0
the list of Studied bugs Studied bugs Studied bugs

http://ttendency.cs.ucl.ac.uk/projects/type_study/index.html

http://ttendency.cs.ucl.ac.uk/projects/type_study/index.html

Research Question

What is the percentage of public bugs that
are detectable under Flow or TypeScript?

o °
I P Link candidatesh Buggy Annotated Type .
ssues tes e o : No
Identification Programs Programs Checking
Commit Logs™
\:‘\”‘ ‘-‘.41“'4

GitHub

Experiment Overview

Detectable Bugs

Methodology

a is the annotation function

Po alpi1) pi Pa

[] I
Project Version History
Type check a(pi-1)

http://ttendencyv.cs.ucl.ac.uk

Results
collected bugs 400
Flow- TypeScript-
detectable detectable
3 3

The confidence range for both Flow and TypeScript
is [11.5%,18.5%)], at a 95% confidence level.

rojects/t

e_studv/index.html

http://ttendency.cs.ucl.ac.uk/projects/type_study/index.html

