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Combinatorial problems with a geometric flavor arise if the set of all binary sequences of a 
fixed len@h n, is provided with the Hamming distance. The Hamming dkcunce of any two 
binary sequences is the number of positions in which they differ. The (outer) boundary of a set 
A of binary sequences is the set of ail sequences outside A that are at distance 1 Erom some 
sequence in A. Harper [6] proved that among all the sets of a prescribed volume, the ‘sphere’ 
has minimum boundary. 

We show that among all the sets in which no pair of sequences havz distance 1, the set of all 
the sequences with an even (odd) number of k’s in a Hamn‘ing ‘sphere’ has the same 
minimizing property. Some related results are obtained. Sets with more general extremal 
properties of this kind yield good error-correcting codes for multi-terminal channels. 

1. prelirrrmhraries 

The set of all binary sequences of a fixed length, n, say, is often looked at as a 
metric space, with the distance of any two sequences being the number of 
positions in which they differ. This is known as EIamn&g distance. Formally, set 
X ={O, 1). Then X” is the set of all binary sequences of length n The Hamming 
distance d(s, y) of any two sequences XE x‘, YE X” is 

4x, Y) := f Ixi - nl, wherex=q-•-G, y=yl-y,,. 
i= 1 

For two subsets A and B of X”, the distance d(A, B) is defined correspondingly as 
the smallest distance d(x, y) between any pair of sequences x E A, y E B. (The same 
set X” is usually interpreted as the family of all the subsets of a given set of n 
distinct elements. Then every binary sequence is oonsidered as the characteristic 
function of a particular subset. Further, the Hamming distance of two sequences is 
the ca@nality of ‘the symmetric difference of the subsets they represent.) 

This set-up leads to interesting problems in combinatorics that have a certain 
geometric flavor. Our aim is to generalize a result of Harper [6] which can be 
considered as a discrete analogue of the isoperimetric problem of classical 
geometry. 
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For every positive integer d intrxxluce the operation 1”’ on subsets of X’. For 
ACIIP, I*A is the sat of those elements in r that are at distance at most d from 
some element of A.. Thus 

d n a1 i=O i 

. (2) 

For a number k that,+ between these sums of binomial coeficients for d and 
d + 1, say, the ‘HamGng sphere w&h v&me k and center a’ wiU be defined as an 
arbitrary k&ement subsetsof P+‘~I}, containing r’(x). Harpez [6] proved that 
among allI the sub&+ Ac]lr” of given c&dim&y (‘volume’), the cardinahty of the 
outer boundary (‘&face’) is n&Cmizd by a Hamming-sphere. Recently, a very 
nice simple proof of -Harper’s result was-found by*EranM and Fiifedi [S]. In their 
formulation, the r&s& I&@ that ' 

'lbommr Ii, To my subsets A and B of x” them exists a Hamming sphere, A, 
centered at the aken, sequ2nce and cutother one, Is, centered at the ail-one 
mpe?u!e such that 

@I =(Al, , @I = IBl, 4&&WA,B). (2) 

This anears ihat two ‘antipodal’ Hating spheres are more distant than any 
pair of sets with the same *pair of cardinaUt&. (In order to see that this implies 

H;Q&s ‘result, oonsider an arbitrary set A and choose ‘B to be complement of 
i-A. Then d(A, 18) = 2. Theorem H Qve~ us Hamming spheres .A, & such that 
#A, a) ia2 and &I = IAl, lOI= IBl= 2” - IrAl. Thus I% and 0 are disjoint, and 
we have 

The otnt, 3@ication c+n be shovn similarly.) 
Hzqer’s m! is simple -and settles the &operimetric problem for cardinahties k 

of form (2) s ‘*Looking & the: _i+blern more closely, sowever, one sees that if k 
cannot I& w&en into the form (l),, not aU the Hzmming spheres have the same 
outer bouMary. Harper’s Theorem 1 in [6] actually describes an algorithm that 
yields EI(anmh~~ spheres of minimum outer bound&y for arbitrary vohunes k. 
Implicit in his result F a. _r&her‘simpIe proof of a‘well-known result of Kr&al and 
Katona. In fact,, the ratter is “&edeo to calculate the,cardinality of the minimum 
outer ~wndary. (For various proofs of the Kruska-Katona theorem, cf. Kruskal 
[9& KaT 3~ [II, and Eckhoff-Wegner [4].) In order to quote Kruskal-Katona S, 
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theorem, observe fhst that 

ti K. For any given positive integers m and p thle number m has a representa- 
tion 

m=(;)*(;$+*. l +(“;) (3) 

such that 

"p-p-1' l **>a,at21. 

Skreouer this representation is unique. 

Formula (3) is called the p-canonical representation of m. Kruskal introduced a 
function F, setting 

(4) 

where the u/s are the same as in (3). (Notice that formula (4) gives F(m.. p) in its 
(p - 1).canonical representation whenever r > 1 in (3).) 

Denote by W,., the set of all binary sequences with exactly p l’s, i.e., 

wp:= 
( 
x:xeX”, t q=p . 

i= 1 I 

Kruskal proved that 

Theorem K. For any AC Wp with IAl = m one has [r4 nWp_,l 2 F(m, p), and 

toOk lower bound is optimal. 

For later purposes, we include here a lemma of’ Eckhoff and Wegner [4] that 
gives a recurGve relation for Kruskal’s function. 

LemmaEw 

F(m+ml, p)“maxh, F(m, p)l+F(m, P- 1). (5) 

Combining the results of Harper and Krustal one arrives at the more precise 
result of Katona [S]. First we need his 

Lemu~ HHL Any integer m with Q < m < 2” has a unique representation 

such that 
n>a,,_l>a,t_2>= l +a+r’H, 

and this representation is unique. 



“,.,* -. .)i.- 

c() itv’ si 
sm< e 0 is+‘-1 i 

l 

Further, the r&ht-hand side of (6) is the sti, Of z=,, ($&nO tlhe.(p’- l)-canonical 
fqresentation of rn-~J+ 3 (“3. KatOna calls (6) the n-boultded’ canornical repmqz- 
zatiionl of m. Ir@oduce now 

G(my n) : = (;)+(,11)+. l .-i.(P,:I)+(;~;) 

~ i 
+(+&-$. . .+(,F1): 

C%arly, if m satisfies (7), then ’ 

($1 

‘The isoperimetric prclperty Of the Hammingt sphere amounts to 

W IMI. Given any positive integer m with m < 2”‘, the car&a&y of the ozdter 
borrndary of any m-element subset of x” is at least G(m, n)- m. Further, 
G(,m, n) - m I& the exact cardinality of the outer, boundary of a certuin Hammilog 
s&4?&?. 

‘The minimum is achieved for a Hamming sphere in 33ch the sequences having 
maximum distance from t%e center are chosen to yield the exact minimum in the 
&t&al-titinra theorem. However, an m-element set having minimum boundary 
k not nemiarily a HGamming sphere. An example is given in Awndix B. 

Katona also pri3ved the following: Write 

. . 
where the u’s are as in (6). The understanding is that in (9) we omit the terms for 
which r’ SC d. Then we have 

glmeopenr r&H. Given any posit@e ineger Xv with m < 2”, tk2 qardinality of the 
d43amming neighbOrhOOd, ‘PA, of ‘i&s ‘A&X” satisfying IAl = m is at least 
Gd(m, n). Fwiher, the minimum is achieved by a cerrtain Hamming sph&. 

Various generalization of Theorem KXI play an &cresting ‘rOle in information 
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theory. Katona’s paper [S] was motivated by an asymptotic 
abilistic generalization of the isoperimetric problem given 
Ahlswede-Gacs-Kijrner [I], cf. also Csisz&r-Khmer [3]. 

2. Rem&s 

151 

answer to a prob- 
by Margulis [lo], 

In this paper we are concerned with purely combinatorial generalizations of the 
isoperimetric problem. The nature of our generalization is to look for the set 
A cX” that minimizes the size of the outer boundary (or more generally, of the 
d-neighborhood) for a fixed IAf, within a restricted family of subsets of the set of 
all binary sequences, x”. 

These problems arise naturally in an information-theoretic context. In their 
attempt to devise good error correct;irrg codes for the so-called broadcast channel, 
Bassalygo et al. [2] needed an estimate on the smallest possible size of the 
d-neighborhood of e-error correcting codes A with given size (A set A c X" is an 
e-error correcting code if any two elements of A have Hamming distance strictly 
greater than 2e). 

For any set AC x”, define the hole-diameter, d(A), of A to be the minimum 
distance among different elements of A. Motivated by the above, we ask 

ProMem. Given positive integers d’, d c n and m < 2”, what is the smallest 
possible size of the d-neighborhood of sets AcX” with hole-diameter d’ and 

IAI = m. 

The case of d’ = 1 and arbitrary d is settled by the Harper-Kruskal-Katona 
result: Theorem KH. It is clear that if d’ is large enough with respect to d, then 
the problem is essentially solved. Namely, if d’ 2 2d + 1, then the elements of any 
set A with hole diameter at least d’ have disjoint d-neighborhoods, and there:fore 

The only open question in such a case is to decide how big IA\ can be. The latter is 
a very’ difficult open problem in coding theory, cf. McEliece et al. [ 121 and the 
book of MacWilliams-Sloane [ 111. 

In what follows, we will solve the above problem for an arbitrtiy a’ in thy case 
d’ = 2. More precisely, we will prove the corresponding generalizations of 
Theorems H and HK. 

We will say that A is a pure-pa&y set if the sum CFz 1 4 of the coordinates has 
the same parity for every element x = (xlxz l l l x,,) of A. We shall say that AL is an 
odd - (even -) purity set if this parity is odd (even). An odd - (even -) pcwit~~ 
Hamming sphere is simply the largest odd (even) set contained in a Hamming 
sphere. A pure-parity Hamming sphere is either an odd- or an even-parity 



with nh&,._~>a&&l~’ “w P a, as a 1. Furt?wr, m has u unique representation 

in the fom4 

Where 

CalI (10) the n-matchi qwwent&on of m, and (11) the n+-mismatched 
rqrbseL::tiorr 0f m. Set 

Note that 
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In the next section, we show that 

Lemma 2. For amy m ST-‘, we hue 

Q”(V8, n) = Q**(m, n). 

It is easy to see that, for every m G 2”-l, there exists an m-element subset A of 
X” of either odd or even parity such that rA-A has ~*(m, n) = Q**(m, n) 
elements. Let ~tm, n) denote the minimum cardinality of the outer boundary of 

m-element subsets of x” with hole-diameter at least two, i.e. 

Q(??t, n):= min IDA-~1. 
IAl=m 

d(A)392 

we shall prove that ~(m, n) = cp*(m, n) = ~**(m, n). we need one more lelmma. 

Lemrrma 3. If & has minimum outer boundary among all m-element subsets of XF 
with hole-diameter greater than or equal to two, i.e. l&l = m, d(&) 32, and 
jrA,-Aoi = q(m, n), then all elements of & have the same parity. 

WrexU 2. For every m <2”+, we have 

cp(m, n) = Q*(m, n) = qP*(m, n). 

We shall present two proofs to Theorem 2. One proof, which uses Theorem 1, 
the abre lemmas, and the Kruskal-Katona theorem is presented in the next 
section. The other proof, which uses the Eckhoff-Wegner technique [d], is 
presented in Appendix A. 

We remark here that cp*(m, n) is exactly the size of the outer boundary of an 
even-patity H amming sphere whose outermost layer is chosen according to the 
Kruskal-Katona scheme. Hence such an even-parity Hamming sphere achieves 
minimum outer boundary 4(m, n). Similarly, there are odd-parity Hamming 
spheres that achieve minimum outer boundary Q**(m, n) = (ptm, n). Extending 
our prelrious results, we obtain 

Theore~a 3. Given any positive integer nr ~2”-l, the cardinal&y of the d-Humming 
neighborhood rdA of any set A c X”, IAl = m, and d(A) 32, is at least 

whenaier d s 1 and the coe#.cients h’s are uniquely determined by the n -matchedi 
represeMafion (10) of m. 



We xemark here that the minimum can be achieved by I.I cce’rt$in pure-*parity 
Hamming sphere Ao, ad thi thaw c&nimum nei&?xzhood size can be expressed 
as 

l&l = IAl, &II = IBl, and d(&, BJ a d(A,. B). 

In the case when we impose di@erent bounds on the hole-diameter-of i and B, 
the situation becoqes more Icclmplex. The basic problem is that that th? I- 
n~ghrsood I’A, ,of a pure-parity. H amming sphere A is not necessarily a 
Hamming sphere, for it may have @IWO incomplete layeru;. Therefore, the syxmet- 
ric resu$’ cannot be generalized without imposing some condition on the 
lcardinalities of A and B. To ldo so, let us consider, for any m =S 2”-l, both the 
add- and even-parity Hamming spheres with m elements. To each of them we 
consider the smallest (ordinary) Hamming sphere ftith the same center in which it 
is contained. It is c1~1* that the sizes of these ordinary Hamming spheres are the 
same for all odd- (even-) ptity Hammin g spheres. Denote the smaller of the two 
sizx~ by C(m, n). We have: 

a 5. TO a pair #of s&sets A and B of TC satisfyin;% 8(A) ~2, &me exist a 
pure-parity Hammikg sphex, &, and an ordinary Harnrn~~~g sphere, B,, such that 

IAOI = IAL l!bl = IAl, ared d&, Bd a d(A, 19 (12) 
if d only if d := d(A, Bj satis@ 

C(\A\, n)+ G,_.p(lBl, 91) ~2”. (13) 

An interestmg problem would be to generalize the previous results to cases 
where d(A) or d(B)*3. 

PmBfof 1. With this proof, we shall talce advantage of the natural 
conespondence between binary n-vectors (or binary n-sequences) and subsets of 
N=(l,2,. .., oz). Let x == (Xl, x2, . . . , x,,) be a binary n-vector, then the corres- 
pond& : c% % A = {i E !N: x, = 1). Therefore,, wit!tia this lproof, A and B are 
cmsidex~ sts of subseti (e.g. A, B) of N, instead of sets of binary n-vectors. The 
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Hamming: distance between n-vectors, d(x, y), carries over to become symmetric 
difference.: of sets, &A, B). If an n-vector x corresponds to the subset A of ZV, 
then wt(rc) = IAl., These conventions enable us to develop a Frankl-Fiiredi-type 
proof. 

Consider all the pairs ((A, A*): A EA, A* $A, A* has the same parity as 
members of A, and lA(< IA*\]. If no such pair exists, then A is a pure-parity 
Hamming sphere centered at N (i.e. centered at the all-one vector), and we are 
done. Otherside, let us 
d(A, A*]*. Asswme this 
number. Set 

choose a pair (A, A*) with minimum Hamming distance 
pair is (A,, Ag). Note that d(A,, A:) is a positive even 

U=Ao-A;, V=A;r-AO, IW=lVL 
For the two sets U and V, define the following two operations (Up and Down): 

if UcA, VfX!=$3, A-U+V$A, 
otherwise 

ifVc.B, UnB=@, B-V+Ug!B, 
otherwise 

It is clear that the mappings U and D are one-to-one and thus Ill( = IAl, 
ID(B)1 = iBl, further IlU(A)I alAI. Al so note that, for every A EA, W(A) has the 

same parity as A. Since U(A,) = A:, the application of U strictly increases the 
quantity LEA I AI. In the sequel, we will show that d(U(A), D(B))>d(A, B), and 
thus the repeated joint applications of U and D finally lead to a pure-parity 
Hamming sphere A’ having the same parity as A, and an arbitrary set B’ with the 
claimed properties. 

Consider two subsets, A E A, B E B, and write A’ : = U(A), B’ : = D(B). If 
AEU(A)nA and BED(B)nB, then clearly A’=A, B’=B, and d(A’,B’)a 

d(A,B). Similarly, if A%U(.A)-A, WED(B)-B, then A’=A-U+V. IS’== 

B - V+ ~3 and d(A’, B’) = d(A, B) 3 d(A, B). This settles the cases of two old and 
two new sets. 

If one set is new and the other unchanged, e.g. 

A’=U(A)&,A)-A, BED(B)nB, 

then A’=A-U-i-V. 

If VC B and U n B = 8, then B has not been changed to a smaller set by the 
operation D only because B=(B-V+U)EB. Thus d(A’,B)=d(A,&a 

d(A, B). 
If the condition (Vc B, U n B = $4) is not satisfied and U = 8, then V$3. 

Further A0 c A: and AO, A$ have the same parity, thus the minimality condition 
on (A,, A g) implies I VI = 2. L.et V = {vl, IQ. There are two cases, V f~ B = PI or 
I V 17 BI = 1. In the former case we have 

d+Y, B) = d(A + V, B) = d(A, IX‘) + 1 VI 2 d(A, 



’ &A', 3) L d(A,;+ !i 3) = d(A, B)ad(A, B). ’ 
.’ 

l%uMDfd . S+ We Aall prove ithe uniqueness of the tit representation 
only. The other case is similzit. First, observe that 

, Going back ,to (%a), it jii e+y to conyince oneself that there exists a unique k 
aati#yGtg 

/, 
, ” ’ 

prov+d, $at m 5 2”“‘. 
r 

Acxxm%g~ to the' Kruskal%atonairesuit (Lemma I(; in the Grst section of this 
paper), m’ ha3 an unique (n -2k&canonical representation, 

Combining the above arguments, we have showri that m has a unique represen- 
tation iin the form (10). III 

M& of Le!&m IE’ ltivoking Pascal’s identity on rhe first k tjmomial coefficients 
of the n-matched representation., (lo), of m, we obtain 

_=t~~~)~(~~~)+(:-:)+**~+(~~~~2) 

+(,~~~1)+~~~~)+~~~~-“1>+. l l +(;) (14) 

By deC%n, (14) is Katona’s (n - l)-boundeQ representation of m. 



157 

Invoking Pascal’s identity on the first I tersms of the n-mismatched representa- 
tion of m, i.e. (11), we obtain 

Again, (IS) is Katona’s (n - l)-bounded reprlesentation of m. By Lemma HK in 
the first section, the (n! - l)-bounded representation of m is unique. Therefore, 
(14) and (15) are identical. 

Wence thece are two possible cases. In one: case we have 

k = I, s = t, a,,_2k = n - 1, 

q=b8, for sG<n-2k-l. 

h the o’ther case, we have 

k=l+l, s==t, b,,-21-1=n-l, 

a, =b& for sei<n-2k. 

In either case, we can invoke Pascal’s identity and verify easily that rp*(m, n) = 
q**(m, n). Cl 

mf of Lemrarr 3. Partition & into (&, &.J, where & (4ven) consists of 
odd- (even-) parity members of &. We wish to show that either &d or bVen is 

empty* 
Assume that neither & nor Aeve,., is empty and let d(&, 4=,) = 2a + 1. We 

have Q 2 1 because d(&J Z= 2. There exist podd in & and sven in Aeven such that 
the two vectors differ in only the bit positions il, iz, _ . . , i20+1. Let A& be 

obtained from & by inverting the i,th, . . and ia_@ bits. Then 

&ddn4wl = 8, & =A&&&_ has ptue even-parity, j&1 = l&l = m., and 
Ir&l= II’&,& Let x* be obtained from x&d by inverting the ilth, i2th, . aI . , and 
the i&h bits. Then x* E lX& n l2&~. Hence [r&l c Irk/+ Irk.,,,[ = 

Ir&ddl f li’lAevenl = I-oh But &I is assumed to have minimum outer boundary, 
hence the desired contradiction is obtained. Cl 

hroof of ‘IlI~~rem 2. For convenience assume that n is even. Also, let 



I3yr Lemma 3,4t sIlf3kes to show that 

Q*(;PPI, ~2) = min IDA -A\. 
lAl=m 
A ewn 

Let & be the m-tkement~subset ‘of &jwhich cpntains: 
(1) all even-weight vectors of vkight between n - 2k + 2 and rt inclusively, and 
(2) m’ vectors of weight 10 -2k chosen according to Kruskal’s scheme. 

Then WG have 

Therefore cp*(m, n):arq(m, n). 
=Q*(m, d. 

&t the other hand, let AI be an mAelement subset of x” consisting of even 
VectC~rs and have minimum boundary, i.e. \rAl -A,1 =Q(m, n). ht 
B, := lzy(” -l-A,. Applying Theorem 1 to Al and B1, we obtain an even-parity 
Hamming sphere A2 and a set Bz with d(A2, B2)S d(A,, IB,) = 2. Therefore, 
~,c:JY”-~A~~~~~B~\~~“-I~A~\~,~~-I~A~I=\B~I. ByTheorem 1, \AJ=l&[, 
lBtl =:: l&l. Therefore lrAz-A21 =Q(m, n), i.e, AZ also has minimum boundary. 
&qxuing A2 to the corresponding & which has the same center and the s3me 
number of layers as A2 but the outermost Dyer is chosen according to the 
I&usl&-Kamna scheme. to ,minimize boundary, we have IrA,I ~lIX& or 

’ Q(,m, n)aq*(rn, n). 0 

Prr& of a 3. Let & be an even-parity Hamming sp’here with the given 
size whose outermost layer is chosen according to the KrusE;al-Katona scheme. 
Then we have 

for any other m-element. set A,, The first equality is obvious. The inequalities 
Yrqw from Theorem 2, resp, Tkxxem KH. The second equality also becomes 
apparent Zer the following algebraic manipulatkbls. 
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With n~1+an_2k>li-4r-2k-1). * +l+a,>sad, the above form is the 
unique n-bounded represent;ltion of II&l promised by Lemxna HIS. Further since 

1 

we have, by definition, i 

huma 4. Let A and B be pure-purity subsets of X”. There exist pure-parity 
Hanming spheres & and &, centered at 1 and 0 respectively CHKI having the 
same p&y us A and 16 respectiveZy such that l&l = IAI, lBOl = IBI, tztzd 

4&, Bo) 2 4A, B). 

Proof. Consider the set of pairs 

and 

{(A, A*): A EA, A* $A, IA\ <IA*\., 
A* has the same parity as members of A:) 

((B, B”): B EB, B*&B, lI31>1I?*1, 
B* has the same parity as members of HI). 

If there are no such pairs, then -4 is a l-centered, and B a O-centered, pure-parity 
Hamming sphere and we axz done. 

otherwise, let us choose a pair (A, A*) or (8, B*) with minimum Hamming 
distance d(A, A*) or d(B, B*). 

Without loss of generality, assume this minimum pair is (A,, A:). Then defining 
the two operations (Up and Down) as in the proof oE Theorem 1, we can follow 
through the rest of Theorem 1 without any change. Thus this lemma is proved. 

Cl 

Ro& of Theorem 4. As in the proof of Thleorem I. the natural correspondence 
between subsets of N = { 1,2, . . . , n} and binary n-vectors is used. 

bf d =&A, B). Partition A into (Lv,,, b) and B into (B,,,:,, 
A,va,, B,v,, consist of even-parity vectors and &, of odd-parity vectors. 

Assume first that d is even. We have d(A, d@ouM~ Bodd) 3 d? 



d(A), d(lB)a2. Let 

pure parity sets and 

wI=w? i#c’I=\& ct(ti,B’)%i. 

Now we use Lkmma’4 on A’ and B’ to complete the pnmf. The case when d is 
odd can be proved similarly. tJ 

In order to prove the last theorem, we need yet another technical result: 

Lganra 5. C(m, 82) is the minimum c&fin&y of un or&wy Hamming sphere 
that contains a pwe-pcuity Htmnming sphm of m eiernents. I 

w Let A be any m-element pure-parity Hamming sphere, and let S be the 
smallest (+inqry) Hqunu@g-sphere_mztitining A. We -propose to show that there 
&sts some pureparity &mm&ng sphere A with the same center as S, such that 
AdkS. T’his,@G:.the lemma, 

Without loss of generality, assume A odd-parity. Let the center of A be c and 
that of S be 0. Let w = WC(C), and let the vectors on the outmost layer of S. have 
weight k. If w is even, then let A consist t)f all vectors of wei&t 1,3,, . . , k in S. 
If w is odd, then let A consist of all vectors of weight 0,2,. . . , k in S. In either 
case, A is a pureqxuity Hamming sphere centered at 0 satisfying A c A c S. Cl 

Finally, we provide a 

~JC* of a 5. Let A be a pure-parity Hamming sphere centered at 1 with 
its oufermkpyt layer chosen according to ‘the ICrusk~lGatoaa scheme (i.e. choose 
the vectors y %h the lowest possible lexicograph+~ orders). The parity of A is 
chosen so tU *its minimurn containing Hamming sphere, which has cardinal@ 
C(w, n), is also centered at 1. Let I8 be a Hamming sphere centered at 0 whose 
outermost layer contz&s V~&OIY+ with the highest possible iexicographic order. If 
w and m1 satisfy (¶3), then d(A,RS) satisfies (12). 

To prove the convkrse implication, suppose that there exist a Hamming sphere 
BO and a pure-parity Hammin g sphere & satisfying (X2). By Theorem KH, 

lr”‘-+Bol~ Gi-,(~I, d. *, 

Furtbe~ by Lemma 5, 

(Z - r”i-‘EI,I 3 C(I&l, n). 

timbining the two inequalities, we obtain the theorem. Cl 
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This proof takes res~~mblance to Katona’s proof of Harper’s Theorem. In ’ 
particular, Eckhoff-Wegner’s Lemma (Lewna EW in this text) is used. The proof 

. goes by induction basej on a recursive inequality for q*(m, n). We shall re- 
peat&y consider two arbitrary integers, nnO> 0, m 1 Xl, along with the expan- 
sions (c: Lemma 1): 

with 

~--f>~_-21_l~~_21--2>~ l +a,~sH, 

n-l>b,,_2k>b,,-Zk--l>. l +b,wal. 

Note that ~n,- rn; has 1 terms, ml - rrri has k - 1 tlerms, and 

LenmraAl: Ifk=lork=l+l, the1twehaue 

q*(mo-t ml, n) smax[mo; #(ml, n - 1)j t max[ml; <~*(rn~, n - l)]. 

mf. If k - I, then we have 

mo+ml_t)--(,1,)+* l *+(n_-k+2)+m6+m; 
where I$ + rn; < (,_!‘&). Therefore we have 

+ F(rn/,-+- mi, n -2k). 



implying the lemma. Cl 

Thecase k=i+l issimilar. 

W ~4% cp*(m, n) is non-&rGasing in m. 

RUM& Straightfoxward. ti3 

4p*(mo + ml, n) smax[mo; tp*(ml, n - l)]+maxl[ml; q*(mo, n - l)]. 

FM& If &=I or 1+1, we are done by Lemma Al. If k>Z+l, we have 
@(ml, n - lj a m. and ma B p*(mo, n - 1). Let 

Note that q*(ml, n-l)am2 and ml~q*(m2, n- 1). By Lemma Al we have 

$Ymp+mI, n)smdm2; q*iml, n- l)]+mz=fml; q*(m*, n-l)] 

=(9”(ml, n-l)-kmI. 

By lemma A2 we have 

qP(mo + ml, PO) G~“(rn~+ ml, n‘) 

G rp*(ml, n - 1) 9 mc, 

smax[mo; <p*(ml, n - ljft-m&m,; <P”(mo, n -l)]. 

The case kCZ is similar. c7 

=L~XUUM A4 Fi.w any m, 0~ m 62”-l, htw exist nonnegative m. and ml, mo+ 
ml=m such that 

fig (m, n PmaxCmo; cp(ml, n - l)]+rrtax[m tf, Q(mo, n - l)]. 

. Let A, IAl = m, have minimum Iboundiary, i.e. frA- 
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A into & and Al where members of & have their tit bit zero and members of 
A1 have first bit 1. Similariy, partition rA- A into BO and B,. Let m,, = l&,1, 
ml -IAll, then mO+ ml, = m. 

Let us introduce some notations. L:t x’ denote the in - l)-vector obtained from 
the n-vector x by deleting the first Gt. Let A&, A;, B;, Bi be obtained by deleting 
the first bit of every vector in &, A,, BO, WI, respecTively. Note that I.&I = I&l, 

IA;1 = \AI~, IBj = IB& IB;l = IBJ, and &, Al, B,,, Bl= (0, I}“, A& A;, B& 1; = 
(0, I)“‘? 

For any 4~’ E rAE, -A& we have y’ E B& and rA;, -Ah c B& From this we have 
IB&I>-jl”& --A+<p( m,., n - 1). For any x’EA~, we have x’ EB& and Ai c B;I. 
Hencz iBh\ 3 \&I = ml. Therefore, we have 

IBAl ~max[ml; cp(mo, n - l)]i. 

Similarly, we have 

IB;l amax[m.,; q(mI, n - l)]. 

since <p(m,n)=Ir~--~l=\B~l+lB~l=I~(+IB~l, we have provedthe lemma. Cl 

3M0f of flreorem 2. The inequality cp(m, n) < q*(m, n) is straightforward. We 
shall prove cp(m, n)+~*(m, n) by induction on n. 

The case n = 1 is trivial. Assume &I, i) - q*(m, i) for all i <n. Combining 
Lemmas 3 and 4, we have 

q*(m, n)scp(m, ii). 0 

AppedixB 

In this appendix, we present an m-element set which has minimum boundary 
G(m, n) but is not a Hamming sphere. Assume 

where 

with n>t+.,g_,>sa_2>- l l >arl>r “1. Further, assume q,~_,<n--1 ?nd cPi>i> +- 

1. Let ticI = m”+ nt”’ where 

(Bl) 



Hence A has minimum tmundary. 
On the other hand, A is not a IGmming sphere. To see this, suppose A is a 

Hanxxing sphe~. Then A must consist of n - p’+ 1 complete layers and m’ 
el~erits 0111 the (n - p’ + 2)~th layer from its center. me center itself %a con& 
dered ri.he first @xx.) Consider the possible poisition of the center Q. It is not 1 
fbr$hg~L wmkbo$,b 9 Haqmi~g,~+e~rn. And if,~&&n+, @en there 
exisfs SW 1~: y, wt@) = p’, such t&t : d@, gj_p.n - p’+ 2,. qnq A yuJ+. ngt be a 
h;x~i~ g sphere. This leaves the last possibility that wt(ro) = n - 1. But in this 
case, fi +xe are 6::) vectors of weight p’ S*kb are at distance n”-p + 1 from ‘fo. 
Since ml’ C c@Z:) as assumed earlier, w&J f n - 1.. Therefore, A is not a Ham- 
ming sp\kre. 
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