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Combinatorial problems with a geometric flavor arise if the set of all binary sequences of a
fixed length n, is provided with the Hamming distance. The Hamming distance of any two
binary sequences is the number of positions in which they differ. The (outer) boundary of a se:
A of binary sequences is the set of all sequences outside A that are at distance 1 from some
sequence in A. Harper [6] proved that among all the sets of a prescribed volume, the ‘sphere’
has minimum boundary.

‘We show that among all the sets in which no pair of sequences hav: distance 1, the set of all
the sequences with an even (odd) number of 1’s in a Hamn.ng ‘sphere’ has the same
minimizing property. Some related results are obtained. Sets with more general extremal
properties of this kind yield good error-correcting codes for multi-terminal channels.

1. Preliminaries

The set of all binary sequences of a fixed length, n, say, is often looked at as a
metric space, with the distance of any two sequences being the number of
positions in which they differ. This is known as Hamming distance. Formally, set
X ={0, 1}. Then X" is the set of all binary sequences of length n The Hamming
distance d(x,y) of any two sequences xe X", ye X" is

n
dx,y):= Y lx—yl, wherex=X; " X, Y=Y Vu
i=1

For two subsets A and B of X", the distance d(A, B) is defined correspondingly as
the smallest distance d(x, y) between any pair of sequences x€ A, y€B. (The same
set X" is usually interpreted as the family of all the subsets of a given set of n
dlstlnct elements. Then every binary sequence is considered as the characteristic
functlon ofa pamcular subset. Further, the Hamming distance of two sequences is
the cardinality of the symmetric difference of the subsets they represent.)

This set-up leads to interesting problems in combinatorics that have a certain
geometric flaver. Our aim is to generalize a result of Harper [6] which can be
considered as a discrete analogue of the isoperimetric problem of classical

geometry.
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For every positive mteger d mtroduoe the operatxon I"? on subsets of ‘K" For
AcX" I'MA is the set of those elements in X" that are at dist:nce at most d from
some element of A. Thus

A :={x:xc X" d{{x}, A)ysd}.:

Clearly, MA =T'(I""'A). In ﬁamcular, for!f' —-l“:ktﬁ:e:" set TA-A is called the
outer boundary of A. The set I'*{x} is called a Hammmg sphere with radius d and
center x. This kind of Hamming sphere have volumes lI“‘{x}l that are equal to

Al g

For a number k that is between these sums of binomial coefficients for d and
d+1, say, the Ha:mnmg sphere w:th volume k and center x’ will be defined as an
arbitrary k-element subset of I‘"“{x} containing I'*{x}. Harper [6] proved that
among all the subsets ACX" of given cardinality (‘volume”), the cardinality of the
outer boundary (‘surface”) is minimized by a Hamming-sphere. Recently, a very
nice simple proof of Harper’s result was: fmmd by Frankl and Fiiredi {S]. In their
fomulat:on the result says that '

Theorem H. To any subsets A and B of X" there exists a Hamming sphere, A,
centered at the all-zero sequence and another one, B, centered at the all-one
sequence such that

Al=(Al, |B|=|Bl, dAB)=dAB). 2)

This means that two ‘antipodal’ Hamming spheres are more distant than any
pair of sets with the same pair of cardinalities. (In order to see that this implies
Harper’s Ttesult, consider an arbitrary set A and choose B to be complement of
(’A. Then d(A,18)=2. Theorem H y;ves us Hamming spheres A, B such that
Jd(A,B)=2 and |A|=|A], Iﬁl -—|B| 2"~|I'A|. Thus T'A and B are disjoint, and
we have

|FA{=<2"-|B|=2"~|B|=|TAl.

The otnc, .mphcatlon can be shown smularly)

Harpcr s prooi is sunple and settles the lsoperlm'* tric problem for cardmahtles k
of form (3) 0, Lookmg at the: problem more closely, \)however one sees that if k
cannot be wntten mto the form (1) not all the Hammmg sphen.s have the same
outer bounary. Harpers Theorem 1 in [6] actually describes an algorithm that
yields }[anmmg, spher&s of mmunum outer boundary for arbitrary volumes k.
Tmplicit in his re; sultisa rather sunp1e proof of a well-known result of Kruskal and
Katona. In fact, the latter is needed to calculate the cardinality of the minimum
outer boundary. (For various proofs of the Kruska-Katona theorem, cf. Kruskal
[9], Katna [7], and Eckhofi-Wegner [4].) In order to quote Kruskal-Katona
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theorem, observe first that

Lemma K. For any given positive integers m and p the number m has o representa -

()

such that
aQ>a, > >q,=r=1.

creover this representation is unique.

Formula (3) is called the p-canonical representation of m. Kruskal introduced a
function F, setting

Fm, p)z(p‘:pl)+(:p—_;)+' ' '+(ra—'1)’ @

where the a,’s are the same as in (3). (Notice thai formula (4) gives F(m. p) in its
(p —1)-canonical representation whenever r>1 in (3).)
Denote by W,, the set of all binary sequences with exactly p 1’s, i.c.,

W, :={x: xeX", i x; =p}.

i=1

Kruskal proved that

Theorem K. For any A<W, with |A|=m one has [FANW,_,|=F(m, p), and
this lower bound is optimal.

For léter purposes, we include here a lemma of Eckhoff and Wegner [4] that
gives a recursive relation for Kruskal’s function.

Lemma EW
F(mgy+m,, p)<max[mg, F(m,, p)]+ F(my, p—1). (5)

Combining the results of Harper and Krustal one arrives at the more precise
result of Katona [8]. First we need his

Lemma HK. Any integer m with 0 <m <2" has a unique representation

_(n n n a‘,:_l)_ (ap,-z) (a,) ,
={")+ EE + + oot 6
" (n) (n—l) +(p') (p'—l p -2 r ©

such that
n>a, >a, > >a.=r=l,

and this representatior is unique.



“This lemma is an easy consequence of Lemma K. In (6); p' is the unique in‘eger
for whiCh :

. 3 ("); <'=§_1() R | -

Further, the right-hand side of (6) is the sum of o ?) and trhe (p -1)-canonical

ol s R My Tatmen ~alle 1‘\ tha m_ 'unnnl]ntl’ nnun-nn ]l wawm -
l(:p'u:zwntuuuu oL m=— “izp \i/e Mlvua VAL ULV T TR RrsUTIIL e lcylwnu

tation of m. Introduce now

Boamen A >

Kp'- 1) e

Clearly, if m satisfies (7), then

oo Lk )

The isoperimetric property of the Hammmg sphere amounts to

‘Theorem HK. Given any positive integer m with m <2“, the cardinality of the outer
boundary of any m-element subset of X" is at least G(m,n)—m. Further,
G(m, n)—m is the exact cardinality of the outer boundary of a certain Hamming
sphere.

The minimum is achieved for a Hamiing sphere in 1 hich the sequences having
maximum distance from the center are chosen to yield the exact minimum in the
Kruskal-Katona theorem: However, an m-element set having minimum boundary
is not necessarily a Hamming sphere. An example is given in Appendix B.

Katona also proved the following: Write

W RALS K RATE A

+,(p apdl i)+(P and—z 2)4. . ‘+(r ‘_"_d) | ©)

where the a’s are as in (6). The understandmg is that in (9) we omit thc terms for
wluch r'<d. Then we have.. :

Theorem XIH. Given any pos:twe mteger m with m<2", the: cardinality of the
d-Hamming nelghborhoed T"A of sets AcX" satisfying JAl=m is at least
G4(m, n). Further, the minimum is achteved by a certain Hammmg sphere

Various g;emeralnzanon of Theorem KH play an interesting role in information
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theory. Katona’s paper [8] was motivated by an asymptotic answer to a prob-
abilistic generalization of the isoperimetric problem given by Margulis [10],
Ahlswede-Gacs—-Korer [1), cf. also Csiszar-Korner [3].

2. Results

In this paper we are concerned with purely combinatorial generalizations of the
isoperimetric problem. The nature of our generalization is to look for the set
AcX" that minimizes the size of the outer boundary (or more generally, of the
d-neighborhood) for a fixed |A|, within a restricted family of subsets of the set of
all binary sequences, X".

These problems arise naturally in an information-theoretic context. In their
attempt to devise good error correcting codes for the so-called broadcast channel,
Bassalygo et al. [2] needed an estimate on the smallest possible size of the
d-neighborhood of e-error correcting codes A with given size (A set A<X" is an
e-error correcting code if any two elements of A have Hamming distance strictly
greater than 2e).

For any set A <X", define the hole-diameter, d(A), of A to be the minimum
distance among different elements of A. Motivated by the above, we ask

Problem. Given positive\ integers d', d<n and m <2", what is the smallest
possible size of the d-neighborhood of sets A< X" with hole-diameter d’ and
|Al=m.

The case of d'=1 and arbitrary d is settled by the Harper-Kruskal-Katona
result: Theorem KH. It is clear that if d' is large enough with respect to d, then
the problem is essentially solved. Namely, if d’' =2d + 1, then the elements of any
set A with hole diameter at least d’' have disjoint d-neighborhoods, and therefore

IF“A|=|A| i}; (':)

The only open question in such a case is to decide how big |A| can be. The laiter is
a very difficult open problem in coding theory, cf. McEliece et al. [12] and the
book of MacWilliams-Sloane [11].

In what follows, we will solve the above problem for an arbitrary a in the case
d'=2. More precisely, we will prove the corresponding generalizations of
Theorems H and HK.

We will say that A is a pure-parity set if the sum Y., x; of the coordinates has
the same parity for every element x=(x,x, - * * x,,) of A. We shall say that A is an
odd- (even-) parity set it this parity is odd (even). An odd- (even-) parity
Hamming sphere is simply the largest odd (even) set contained in a Hamming
sphere. A puré-parity Hamming sphere is either an odd- or an even-parity
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I-lammmg sphere The coreof ous resultsis

"l‘heorem l.. '1"0 every pair of szubsm, A, B .of. X" where A is of pure-parity and 8.
is arbitrary, there exists a pure-parity Hammmg sphere A havmg the same parity as
Aandaset B such that :

A= lAL IB'I -8, d(a’, B’)?d(A B}

- The pr v,,:iexttb:s theorem. is based on the ideas of Frankl and Fiiredi [5]. Using
the Kmska!—lﬁam, theorem;: Theorem : 1 allows: us -to' determine the smailest

cardinality of the outer boundary -of any pure»panty set.of prescnbed cardmahty
To this end, we note S :

Lenmang 1. Any posnwe muger m w:th ms2""hasa umque representauon in the

form - :
om= C:)+(nn2)+(n 2k+2)+”" - 0w
(,:"';;:)+(,;“::f,:~ Y oty

with n>a,_». >a,,_,,k_1> >a, =s=1. Furthér, m has a wiique representation
in the form : :

m =(n-'z1).'-(nvf‘-3);‘!” ' '+(n—;l+1)+;m"’ | | ‘ (11a)

"”_ { bn-"l 1 ) ( bn-—Zl-z ) e ,bt
il U M n-21-2)7 ) (11b)

with n>b,‘.,2;_1>b ..7_(..2> >ﬁ >t>1

where

Call (10) the n-matched representation of m, and (11) the n-mismatched
represe,. tion of m. Set

*(m, n) (n 1) n 3) (n -2k + 1) * F(m""f_ 2k)’
¢**(m, n) (:)+ ‘ " ﬁ ) (n :z'li)+»F(m"; n ~20-1).
Note that - - |

} y ( -2k ,v.’);_(an—2k1) . (as ,
Fom', 2") \n-2k 1) \n—2-2)*" )

e (e (8
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In the next section, we show that

Lemma 2. For every m<2""!, we have
@*(m, n) = @™*(m, n).

It is easy to see that, for every m <2""!, there exists an m-element subset A of
X" of either odd or even parity such that TA—A has ¢*(m, n) = ¢**(m, n)
clements. Let ¢(m, n) denote the minimum cardinality of the outer boundary of
m-element subsets of X" with hole-diameter at least two, i.e.

¢(m, n):= min [FTA-A|.
lAl=m
d(A)=2

We shali prove that ¢(m, n) = ¢™*(m, n) = ¢**(m, n). We need one more lemma.

Lemma 3. If A, has minimum outer boundary among all m-element subsets of X
with‘ hole-diameter greater than or equal to two, i.e. |Aj|=m, d(Ag)=2, and
ITAg— Aol = @(m, n), then all elements of A, have the same parity.

Theorem 2. For evzry m<2""!, we have

e(m, n) = @*(m, n)=¢**(m, n).

We shall present two proofs to Theorem 2. One proof, which uses Theorem 1,
the above lemmas, and the Kruskal-Katona theorem is presented in the next
section. The other proof, which uses the Eckhoff-Wegner technique [4], is
presented in Appendix A.

We remark here that ¢*(m, n) is exactly the size of the outer boundary of an
even-parity Hamming sphere whose outermost layer is chosen according to the
Kruskal-Katona scheme. Hence such an even-parity Hamming sphere achieves
minimuam outer boundary ¢(m, n). Similarly, there are odd-parity Hamming
spheres that achieve minimum outer boundary ¢**(m, n) = ¢(m, n). Extending
our previous results, we obtain

Theorem 3. Given any positive integer m <2"~', the cardinality of the d-Hamming
neighborhood ' A of any set A<X", |A|=m, and d(A)=2, is at least

n n n ' 1+ ap_ax )
(n)+(n-—l)+ +(n-—2k+2—d)+(n—2k——d+1

l+an——2k-—1) (1*'05)
+(n-—2k-—d oo s—d+1

wheneter d<1 and the coefficienis a;’s are uniquely determined by the n-matched
representation (10) of m.
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We remark here that the minimuin can be achieved by u certain pure-parity
Hamming sphere A, and tha this minimum neighborhood size can be expressed
as!

M4 Ay = G,_l(m +¢m, ), n).

Finally, we generalize the symmetric Frankl-Fiiredi theorem 1o sets with pre-
scribed. hole-chamemr %

'lheowm 4. To any wo subsezs A and B of X" satis fymg d(A)<2 d(B) <2 there
exist two pure-parity Hamming spheres A,, centerea! a 0 and B,, centered at 1,
such that

Aol =|Al, IBoI—IBI and  d(A,, Bo)=d(A, B).

In the case when we impose different bounds on the hole-diameter of A. and B,
the situation becomes more complex. The basic problem is that that the 1-
nexghborhood TA of a pure-panty Hamming sphere A is not necessarily a
Hamming sphere, for it may have two incomplete layers. Therefore, the syr.met-
ric resu’s cannot be generahzed without imposing some condition on the
cardinalities of A and B. ‘To do so, let us consider, for any m=<2""", both the
odd- and even-parity Hamming spheres with m elements. To each of them we
consider the smallest (ordinary) Hamming sphere with the same center in which it
is contained. It is clear that the sizes of these ordinary Hamming spheres are the
same for all odd- (even-) p~mty Hammmg spheres Denote the smaller of the two
sizes by C(m, n). We have

Theorem S. To a pair of subsets A and B of X" satisfving d(A)=2, there exist a
pure-parity Hamming sphere, A,, and an ordinary Hammirg sphere, l!o, such that

Al =Al, IBJj=|Al, and d(Ao,Bo)=d(A,B) (12)
if and only if d:=d(A, B) satisfies
" C(Al, n)+G,_1(B}, ny<2". (13)

An interesting problem would be to generalize the previous results to cases
where d(A) or d(B)=3.

3. Proofs

Proof of Theorem 1. With this proof, we shall take advantage of the natural
correspondence between binary n-vectors (or binary n-sequences) and subsets of
N={1,2,...,n}. Let x==(x, %,,...,X,) be a binary n-vector, then the corres-
pondirg set is A ={ieN:x =1}. Therefore, within this proof, A and B are
considerec scts of subsets (e.g. A, B) of N, instead of sets of binary n-vectors. The
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Hammin;: distance between n-vectors, d(x, y), carries over to become symmetric
differenc:: of sets, d(A, B). If an n-vector x corresponds to the subset A of N,
then wt(x) =|A|. These conventions enable us to develop a Frankl-Fiiredi-type
proof.

Consider all the pairs {(A, A*): AeA, A*¢A, A* has the same parity as
members of A, and |A|<|A*]}. If no such pair exists, then A is a pure-parity
Hamming sphere centered at N (i.e. centered at the all-one vector), and we are
done. Otherside, let us choose a pair (A, A*) with minimum Hamming distance
d(A, A*'. Assume this pair is (A,, A¥). Note that d(A,, A¥) is a positive even
number. Set

U=A()—A’(l;, V=A3—A0, lUl<|V|.
For the two sets U and V, define the following two operations (Up and Down):

U(A)_ A'—U+V, if UCA, VﬂA_=¢, A—U+V¢A,
1A, otherwise
-V+ if VeB, UNB=0, B-V+U¢B,
pE)={E -V KV / ¢
» B, otherwise

It is clear that the mappings U and D are one-to-one and thus |U(A)|={Al,
|D(B)| = iB|, further |JU(A)|=|A|. Also note that, for every A €A, U(A) has the
same parity as A. Since U(A) = A§, the application of U strictly increases the
quantity Y 4.4 |A]. In the sequel, we will show that d(U(A), D(B)) =d(A, B), and
thus the repeated joint applications of U and D finally lead to a pure-parity
Hamming sphere A’ having the same parity as A, and an arbitrary set B’ with the
claimed properties.

Consider two subsets, Ac€A, BeB, and write A’:=U(A), B':=D(B). If
AeUA)NA and BeD(B)NB, then clearly A'=A, B'=B, and d(A’, B')=
d(A, B). Similarly, if A’cU(A)—A, B'eD(B)-B, then A'=A-U+V, B'=
B-V+Jand d(A’, B)=d(A, B)=d(A, B). This settles the cases of two old and
two new sets.

If one set is new and the other unchanged, e.g.

A'=U(A)eVTA)—-A, BeD(B)NB,

then A'=A-U+YV.

If VeBand U ﬂB @, then B has not been changed to a smaller set by the
operation D only because B=B-V+U)eB. Thus d(A’,B)=d(A, B)=
d(A,B).

If the condition (Ve B, UNB =§) is not satisfied and U=, then Vg .3.
Further A, A¥ and A,, A¥ have the same parity, thus the minimality condition
on (A, A% implies |V]|=2. Let V={v,,v,}. There are two cases, VNB ={ or
|VNB|=1. In the former case we have

d‘A',B)=d(A+V,B)=d(A, B)+|V|=d{(A,B)+2.
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In t)he latter mse we have SRR I %
| d(ALB)=d(A+V,B)=d(A,B)>dAB). o
Fmally 1f 1%|l)1<|V| aud_ 1thel qondmon (VCB UnB C&) is not satisﬁed

. ‘é-(U--)+(v-v) “then JA| =|A"> 4|
) I‘he deﬁnitmn of Ag thus:implies A €.A. Furthermore,

byl if neB and | ; ¢ B On the other hand:if we adjoin the
element v to (A - -u) then d(A —n, B) increases by 1 if v¢ B and decreases by 1 if
veB. Combrmng all altuamns, we obtam , _

d(A' B) d(A Ta+y, B)Bd(A, B)>d(A B) O

Proof of LLemma 1. We: ehall prove the uniqueness of the first repr&sentanon
only. The other case is similar. First, observe that

() )+ (- )
""é(n'zzk’r “2k-1 n-2k) "
_‘Going back to (L('ia), it is casy to oonvmoe oneaelf that there exists a unique k
sat:sfymg

S : n o
=m<
=0 ('l 2!) m” ‘S‘, (n 21)
prowded that m<2"”1 . '

Aacordmg to the Kruskal—-katona ‘result (Lemma K in the first section of this
paper), m’ has an unique (n—2kj-canonical representation,

(e (a,.‘.u-, -
" 2k Tn2ie-) T

With @y >a, g > - >a,>s= 1, Furthermore we have n> a,,_z,c because

m'<( " )
- \n—-2k/

Combining the above arguments, we have shown that m has a unique represen-
tation in the form (10) D ,

Proof of Lemma 2. Invokmg Pascal’s ldemlty on the first k binomial coeﬂicnents
of the n-matched representatlon, (10) of m, we obtam

{n— 1) (n—-l) (n .1;) L ( n—-1 ) |
"f« B ALY 5 WIS Ll TR I
n—1 ,(aau—z'k‘ ( A2k -1 ) o (as) . '
+ b . “o s
(n 2k+1)+ n-2k) \n-2k-1)* ") (14)

By defisition, (14) is Katona s (n—1)-bounded representation of m.
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Invoking Pascai’s identity on the first [ terms of the n-mismatched representa-
tion of m, i.e. (11), we obtain

_ n-l) (n-—l) ( n—1 ) (n—l
m (n~1 -2)" a1 T -
bnwzl—l) (bn—2!«2) e (bl)
+(n—2b4.+ n—20-27""""\¢) | (15)

Again, (15) is Katona’s (n—1)-bounded representation of m. By Lemma HK in
the first section, the (n—1)-bounded representation of m is unique. Therefore,
(14) and (15) are identical.

Hence the:e are two possible cases. In one case we have

k=1l s=t a,=n—1,

a;=b, fors<sis=n-2k-i.
In the other case, we have

k=1+1, s=t b, 51=n-1,

a=b fdrssisn—Zk.

In either case, we can invoke Pascal’s identity and verify easily that ¢™(m, n)=
¢**(m,n). O

Proof of Lemma 3. Partition A, into (A ug, Acven), Where A yy (Acyen) consists of
odd- (even-) parity members of A,. We wish to show that either Ajuq Or Aoye, 1S
empty.

Assume that neither A_sq nor A, is empty and let d(A g4, Acven) =2a+1. We
have a =1 because d(¢ip) =2. There exist X,qq in Aggg ANd Xeyepn iN Agven Such that
the two vectors differ in only the bit positions iy, iy, ..., iz+1- Let Ajys be
obtained from A,y by inverting the ijth, irth,..., and i, sth bits. Then
AluNAyn=0, Aj=AlwUA.., has pure even-parity, |Ag|=|A¢/=m, and
|IFALyl =|T'Agadl- Let x* be obtained from x.44 by inverting the i th, i5th, .. ., and
the iy th bits. Then x*elAleuNTA.., Hence |[FAgG|<|TAlul+|TAcvenl=
|TA gd] + 1M Acvenl = T'Ay). But A, is assumed to have minimum outer boundary,
hence the desired contradiction is obtained. [

Proof of Theorem 2. For convenience assume that n is even. Also, let

n n n ,
—1 . v » _‘. i
m '(n)+(n-—2)+ +(n—2k+2) m,

v A2 An2k -1 (a,‘
o + PP +
m (n—2k +(n—2k—1 t)

where n>a, o > Gnok1>" " . =t=10
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By Lemma 3, it suffices to show that
*(m,n)= mm [TA—Al
Let A, be the m-elemeht subset of X" ‘which contams
(1) all even-weight vectors of welght between n ~2k+2and n mcluswely, and

(2) m’ vectors of weight n 2k chosen awordmg to Kruskal’s scheme.
Then we have

'PA“ A""’(n 1) (n 3) (¢-2';<+1)+F('""”"2k)

=g™*(m, n).
Therefore ¢*(m, n) ?(p(m n).

On: the other hand, let°A, be an m-element subset of X" consisting of even
vectcrs and have minimum boundary, ie. [FA;—A)|=¢(m,n). Let
B,:=X"-TA,. Applying Theorem 1 to A, and B,, we obtain an even-parity
Hamming sphere A, and a set B, with d(Az, B.)=d(A,,B,) =2. Therefore,
Bzc X - I‘Az and ‘Bz|<2“ "lI'Az‘<2" ""erl‘ = ‘BI‘ By Theorem 1, !Aﬂ ——|A2‘
| By} == |B,|. Therefore |F'A,—A,|=¢(m, n), i.e. A, also has minimum boundary.
Comparing A, to the corresponding A, which has the same center and the same
number of layers as A, but the outermost layer is chosen according to the
Kruskal-Katona scheme to. minimize boundary, we have [FA,|=|TAgl, or
o(m, n)=¢*(m,n). O

Prool of Theorem 3. Let A, be an even-parity Hamming sphere with the given
size whose outermost layer is chosen according to the Kruskal-Katona scheme.
Then we have

\re (Ao)f =M {T'Ag) = Gu-1(IT'Ao, )
o= Gd-—ldr AL ")<|rd (A)‘

for any other m-element set A.. The ﬁrst equality is obvious. The inequalities
Miaw from Theorem 2, resp. Theorem KH. The second equality also becomes
apparem .. *er the following algebraic manipulaticns.

rad=C1 G2 g G5)
o)+ ()
* \n ol (nal—".:;;t‘—lz)+ Tt (s f1-31)
= (:)+ (n f l)+ ot (,n ’*- 2"1’; + 1) * (ln-f' ékk)

1+an-2k—1)’ (1+as) |
+ . o 8
(n—-2k-1 LAY
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With n=1+a, 5 >1+a, 5> ->1+a,>s>1, the above form is the
unique n-bounded representation of |I"Aq| promised by Lemma HK. Further since

e L W T S W
I (A0) n n-1 Tt n-2k+2--d * n~2k---d+1}
-2 -1 as
+(n—2k—d)+ +(s—-d+1)
Ay, -2k  OGpak .. a,
+(n—2k—d)+(n—2k—l—d)+ +(s—d)

=(:)+(n21)+' ' '+(n—-2k':-2~d)

1+ an 2 (1 +an——2k—l) 1+a,
+ +. ..
(n—2k-—d+1 n—2k—d, M —»-d+1)’

we have, by definition, '
I (Ao)l = Ga—(T'Agl, n). O

Lenuma 4. Let A and B be pure-parity subsets of X". There exist pure-parity
Hamming spheres A, and B, centered at 1 and 0 respectively and having the
same parity as A and B respectively such that |Ao|=|Al, |By=|B|, and
d{Ay, By)=d(A,B).

Proof. Consider the set of pairs

{(A,A%): AcA, A*¢A, |A|<|AY,
A¥ has the same parity as members of A}
and
{(B, B¥): BeB, B*¢B, |B|>|B*,
B* has the same parity as members of B}.

If there are no such pairs, then A is a 1-centered, and B a 0-centered, pure-parity
Hamming sphere and we are done.

Otherwise, et us choose a pair (A, A¥) or (B, B¥) with minimum Hamming
distance d(A, A*) or d(B, B¥).

Without loss of generality, assume this minimum pair is (Ao, A3). Then defining
the two operations (Up and Down) as in the proof of Theorem 1, we can follow

through the rest of Theorem 1 without any change. Thus this lemma is proved.
O

Proof of Theorem 4. As in the proof of Theorem 1. the natural correspondence
between subsets of N={1,2, ..., n} and binary n-vectors is used.

Let d = d(A, B). Partition A into (Agven, Acaa) and B into (B.. .., Boad), Where
ALven, Boven consist of even-parity vectors and Ay, Boga Of odd-parity vectors.
Assume first that d is even. We have d(Acven Beven)s d(Aoad> Bosd)=d,



nnw, ¢ because d(A), dB)=2. Let
, : Th ngA' and ll’ are both pure parity sets and
|A’|=|Al, lB'! Inl, : d(A', B)=d.

Now we use Lemma 4 on A’ and B’ to eomplete the proof. The case when d is
odd can be proved sumlarly o

In order to prove the last theorem, We need yet another technical result:

Lemma 5. C(m,n) ts the nummum cardmaluy of an ordinary Hammmg sphere
that contains a pure-parity Hammmg sphere of m elements.

Proof. Let A be any m-element pure-parity Hammmg sphere, ‘and let S be the
smallest (ordinary) Hamming sphere containing A. We propose to show that there
£xists some pure-parity. H ning sphere A with the same center as S, such that
AcAcS. This mphe&the lemma L

Without loss of generality, assume A odd-panty Let the center of A be ¢ and
that of S be 0. Let w=wt(c), and let the vectors on the outmost layer of S have
weight k. If w is even, then let A consist of all vectors of weight 1,3,...,k in S.
If w is odd, then let A consist of all vectors of weight 0,2,...,kin S. In either
case, Aisa pure-parity Hammmg phene centered at 0 satlsfymg AcAcS. O

Finally, we provide a

x.50f of Theorem S. Let A be a pure-parity Hamming sphere centered at 1 with
its outermost layer chosen according to the Kruskal-Katona scheme (i.e. choose
the vectors * ith the lowest possible lexicographiv: ‘orders). The parity of A is
chosen so th.t its minimum containing Hamming sphere, which has cardinality
C(lAl, n), is also centered at 1. Let B be a Hamming sphere centered at 0 whose
outermost layer contains vectors with the highest possible lexnoographlc order. If
|A] and |B} satisfy (13), then d(A, B) satisfies (12).

To prove the converse implication, suppose that there ex:st a Hamming sphere
B, and a pure-parity Hamming sphere A, satisfying (12). By Theorem KH,

'rdwlno'?Ga—t(lnoL n. ..
Furtkei by {emma 5,
X" ~I""'Bo|=C(|Adl, n).

{Combining the two inequalities, we obtain the theorem. [
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Appendiz A. Another proof of Theorem 2

This proof takes rescmblance to Katona’s proof of Harper’s Theorem. In’
_particular, Eckhoff-Wegner’s Lemma (Lemma EW in this text) is used. The proof
goes by induction based on a recursive inequality for ¢*(m, n). We shall re-
peatedly consider two arbitrary integers, my>0, m, >0, along with the expan-
sions (¢ Lemma 1):

m:(n—-l +(n—1)+_”+( n—-1 m?
°“\n-1/"\n-3 n-21+1)7 Mo

m_(n-—l +(n—1 +_._+( n—1 )+ ,
"\n-2 n—4 n-2k+2)" ™

v _ [ @n-21-1 an_212 R
m°“(n—21—1)+(n—21-2)+ +(s)’

’ bn -2k ( bn -2k—-1 (bt)
= *_ PR
" (n—2k n-2k—-1)7 T\,

where

with
n—-1>ay_2-1>a,_ 22> ">a,=s=1,
n—=1>b, 5 >b, 21> - >b=t=1.

Note that my—mg has ! terms, m; —m; has k—1 terms, and

, n—1 , (n-—l)
m°<(n—2l—1) and m;< n-2k/

Lemma Al: if k=1 or k=1+1, then we have
@*(mo+m,, n) <max[m; @*(my, n—1)) + max{m,; ¢*(me, n—1)}.
Proof. If k =1, then we have

m0+ml==(n)“‘-( " )+---+( " )+m(’,+m;
n n—2 n—2k+2

where my+mi<(,."%). Therefore we have

@*(mo+m n)=( " )4( " )+---+( " )
o n-1/ \n-3 n—2k+1

+ F(my-+my, n—2k).
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Lemma EW implies F(mgo+mi, n- 21)S.max[mo,1"(m1,n 2k)]+F(mo, n-
2k 1) Thus

*(mo + mx,

+(1t 3)+ +( -,-2)‘.,,1 “'max[mo,F(m,,n 2k,]

n—1) (n-1) ) Fm? n— _‘“
+(n_2 +(n 4}+ | m_ 10, n—2k —1)

=max[mo; *(in,, n—1)]+¢*(mo, n—1),
implying the lemma. [J ‘.

The case k =i+1 is similar.
Lensna A2: ¢*(m, n) is non-decrcasing in m.
Proof. Str;ightforward. 0
Lenuma A3:
@*(mo+m,, n) <max[mg; ¢*(m,, n—1)]+maxm,; ¢*(mo, n - 1)].

Proof. If k=1 or I+1, we are done by Lemma Al. If k>1+1, we have
9o*(m,, n—1)=m, and m,=¢*(my, n—1). Let

e () )

2“\u-1/"\n-3 n—-2k+3) M

Note that ¢*(m,, n—1)=m, and m,=¢*(m,, n—1). By Lemma Al we have
@*(my+my, n)y<max[m,; ¢*(m,, n—1)]+max[m,; ¢*(my, n—1)]

=@*(my, n—=1)+m,.
By Lemma A2 we have

@*(mo+my, B)<@*(m,+my, n)
s¢*(m;,n—1)+m,
<=max[mo; ¢*(my, n — 1)14-max[m,; ¢*(my, n—1)1.
The case k<1 is similar. [J
Lenanz Ad. For any m, 0=m<2""", there exist nonnegative my, and m,, my+
m;=m such that

e{m, n)=max{mg; ¢(m, n—1)]+max[r ; ¢(mg, n—1)]. .

Proof. Let A, |A|=m, have minimum boundary, i.e. |[[A — A| = ¢(m, n). Partition
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A into A, and A, where members of A, have their first bit zero and members of
A, have first bit 1. Similarly, partition T'A—A into B, and B,. Let m,=|A,|,
m, =|A,|, then my+m,=m.

Let us introduce some notations. L=t ¥ denote the (n — 1)-vector obtained from
the n-vector x by deleting the first vit. Let Ag, A}, B), B; be obtained by deleting
the first bit of every vector in Ay, A,, B,, B,, respeczively. Note that [Aj| =|A,),
‘{A“'}"—“ella “B('l‘zin:h ‘B;'|=‘Bl|9 and AO’ Ah BO’ B‘IC{O’ 1}“, A(')’ A;s B(')’ Bic
0,1}

For any 4y’ e 'Ay— A, we have y € B and F'Aj—~Aj<Bj. From this we have
|Bol=|TA{--Agl=¢(my, n—1). For any X €A}, we have X eB;, and A|<B,.
Hencz {Bg==]|A{] = m,. Therefore, we have

Bol =max{m,; ¢(mo, n—1)].
Similarly, we have

B3| =maxlmg; ¢(m,, n—1)].
Since ¢(m, n)=|{FA—A|=|Bo|+|B,| =|Al|+|B}|, we have proved the lemma. T
Proof of Theorem 2. The inequality o(m, n)<<¢*(m, n) is straightforward. We
shall prove ¢(m, n)=¢*(m, n) by induction on n.

The case n=1 is trivial. Assume ¢(m,i)=¢*(m, i) for all i <n. Combining
Lemmas 3 and 4, we have

¢*(m,n)<e(m,n). O

Appendix B

In this appendix, we present an m-element set which has minimum boundary
G(m, n) but is not a Hamming sphere. Assume

0 ) R W
m= + e+ L) Em
n n—1 p
rn':—:(a"'"l +(a"'—2)+. . .+/a"l)
p-1)" \p -2 \r

with n>a,_,>a, ,>:+ >a,2r =1 Further, assume a, ,<n-1and ¢;>1>
1. Let m’'=m"+m" where

where

m' = (ap"l_l) ¥ (ap"z—ﬁ'l)*_. . .+(a"_'l)’ ' {B1)
p!_l pl_2 rl
" __ ap'—l.—l)_*,(apl_z—ul\_‘_. . .+(a7'_1 (B2)
m ( =2 -3 ) r-1/ ‘
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Note that a,’,,-1>a,,._z-‘1> >a,.-lar and r- 131 80 (Bl) is the

N ,_,1_1_1‘) ( ay2—1 fa;"—"l)'
+(p,__ Y o Wiy b +(r'—d
+(r = 1 (pap-z ~1 (a,. 1)‘
P' d 2 Y—d—1
n‘ : n ] .o n
«—(ll).}‘(ll )+ ‘ +(0'—‘d)~ . L
al’-'l ) (p‘tup_.z ( ay )
-1 ' -d =2, T \p—d,

= Ga(m, ")-

Hence: A has minimum boundary.

On the other hand, A is not a Hamming sphere. To see this, suppose A is a
Hamming spher:. Then A must consist of n—p’+1 complete layers and m’
elemerts on the (n—p’+2)-th layer from its center. (The center itself i is. consi-
dered the first layer.) Consider the possible poisition of the center x,. It is not 1
for: them ~ would not be a Hammmg sphere. And if wi(xo) =n—2, then there
exists sor ie y, wi(y)= =p', suth that d(x ,:y)an -p'+2 and A would not be a
nuomir g sphere. This leaves the last possibility that wt(xo)- n—1. But in this
case, th re are (;}) vectors of weight p’ which are at distance n ~p+1 from x,.
Since m’'<(3-}) as assumed earlier, wi(x,)# n—1. Therefore, A 'is not a Ham-
ming sphere.

au
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