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Abstract 

This paper addresses coordinated attitude control problem for multiple rigid bodies. Based on graph theory and 
Lyapunov stability theory, distributed coordinated attitude control laws are designed. The proposed control laws 
guarantee that each rigid body attains desired time-varying attitude and angular velocity while maintaining attitude 
synchronization with other rigid body. Furthermore, attitude tracking and synchronization without angular velocity 
measurements and with input constraints is also discussed.  
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1. Introduction 

Distributed coordinated attitude control problem for multiple rigid bodies has been the interest of many 
researchers. Different from centralized control schemes in which there is an object plays center body to 
control all the rigid bodies, there requires no central station in distributed control schemes. Therefore, 
when employing distributed coordinated control schemes, advantages such as flexible scalability, 
robustness and easy maintenance can be obtained. 

Recently algebraic graph theory which was actively used in dealing with simple dynamic model such 
as single or double integrator dynamics [1-4] has been applied in analyzing formation flying spacecraft or 
rigid bodies in general [5-7]. In [8], distributed attitude synchronization problem for multiple spacecraft 
through local information exchange is studied. In [9], distributed attitude synchronization and tracking 
problem in the presence of a time-varying reference state is addressed. The coordinated attitude control 
law utilizing the Laplacian matrix of the associated communication graph of multiple rigid bodies was 
proposed in [10]. 
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In [8-10], the control schemes adopted full-state feedback controls that utilize both attitude and angular 
velocity measurements. But the assumption of availability of the angular velocity measurement is not 
always satisfied because of either cost limitations or implementation considerations. Therefore, the study 
of attitude control without angular measurements has become an interested issue. In [11], a behavioral 
approach was used for attitude synchronization without angular velocity measurement. In [12], authors 
presented a solution to the problem of tracking relative attitude in a leader-follower spacecraft formation 
without angular velocity measurements. In [13], authors proposed a passivity based control law for 
distributed attitude synchronization under undirected communication graph.  

Another important problem encountered in practice of the control system design is the control input 
constraints. Whenever the saturation occurs in the input of the control system, the system's dynamic 
performance goes bad even may cause the whole close loop instable. Coordinated attitude control for 
multiple rigid bodies is addressed in the circumstance that input constraints and angular velocity 
immeasurements exist simultaneously [14, 15]. 

In this paper, we propose distributed coordinated attitude control laws for multiple rigid bodies. First, 
full-state feedback attitude coordinated control law is designed that guarantee attitude synchronization 
and tracking. Second, we extend our results to solve the attitude synchronization without desired 
trajectory. And then, output feedback attitude coordinated control laws are designed without angular 
velocity measurements and in the presence of control input constraints. Throughout the paper, the 
communication flow among rigid bodies is assumed to be both fixed and undirected. 

The rest of this paper is organized as follows. In Section 2, we introduce some background on the 
attitude dynamics of multiple rigid bodies and graph theory. In Section 3 main results on attitude 
synchronization are derived and finally conclusions follow in section 4. 

2. Background and preliminaries 

2.1. Rigid body attitude dynamics 

Consider a group of N rigid body with the equations of motion given by 
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where 3 3
i

×∈RJ  is the constant, positive-definite, symmetric inertia matrix; 3
i ∈Rω  is the angular 

velocity vector of the body frame with respect to the inertial frame, expressed in the body frame; 3
i ∈Ru  

is the control torque; 3
i ∈Rσ  denotes the MRP that represents the orientation of the body frame with 

respect to the inertial frame. 
Assume the desired trajectory is given by diσ  that represent the orientation of the desired frame and 

diω  that is the angular velocity of the desired frame. 
The attitude tracking error are defined by iδσ  and angular velocity tracking error is given by 

( )i i i diδ δ= −ω ω R σ ω   (3) 

where ( ) ( ) ( )T
i i diδ =R σ R σ R σ is the rotation matrix from the desired frame to the body frame. 

The overall attitude tracking error dynamics is obtained by differentiating (3) with respect time as the 
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following 

( )i i iδ δ δ=&σ G σ ω   (4) 

( ) ( ) ( )( ) ( ) ( ) ( )i i i i i di i i i i di i i i i di i i di iδ δ δ δ δ δ δ δ× ×= − + + + − +& &J ω ω R σ ω J ω R σ ω J ω R σ ω R σ ω u  (5) 

The objective of our work is to design distributed control algorithms for multiple rigid bodies with or 
without angular velocity measurements and input constraints such that attitude synchronization and 
tracking can be guaranteed, i.e., i di→σ σ , ( ) ( )i j dijt t− →σ σ σ , i di→ω ω , ( ) ( )i j dijt t− →ω ω ω , as 
t →∞ , where dijσ  and dijω  are the desired relative attitude and relative angular velocity between the ith 
rigid body and the jth rigid body. Also we extend our results to solve the attitude synchronization without 
desired trajectory, i.e., ( ) ( )i jt t→ →σ σ 0 , ( ) ( )i jt t→ →ω ω 0 , as t →∞ . 

2.2. Graph theory 

For an N rigid bodies system, there is information interchange among rigid bodies. We assume that 
information flow among rigid bodies is fixed and undirected and is described by the graph { },G = V E . 

{1,2, , }N= LV  is the set of nodes and ∈ ×E V V  is set of edges. An edge ( , )i j  in an undirected graph 
denotes that node i and node j can obtain information from one another. The weighted adjacency matrix 

[ ] n n
ijA a ×= ∈ �  of a graph G  is defined as 0iia =  and 0ija >  if ( , )i j ∈E . The Laplacian matrix 

[ ] n n
ijL l R ×= ∈  of a graph G  is defined as  

i

ii ij
j N

l a
∈

= ∑  and ,    ij ijl a i j= − ≠ . A graph is called connected if 

for any two nodes there exists a set of edges that connect the two nodes. 

3. Control Law Design 

In this section, we consider distributed coordinated attitude control problem for multiple rigid bodies. 
We first develop full-state feedback control law and the result is stated in the theorem 1. Then we give the 
output feedback control law without angular velocity measurements and with input constraints. The main 
result is stated in the theorem 2.  

Theorem 1: For the system given by (4)~(5), using the following control law 
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if the undirected graph is connected and control gains satisfy 
1

3
N

pi ij
j

k a
=

≥ ∑ , then i di→σ σ , 

( ) ( )i j dijt t− →σ σ σ , i di→ω ω , ( ) ( )i j dijt t− →ω ω ω , as t →∞ . Where ija  is the ( , )i j th  entry of the 
weighted adjacency matrix A  associated with the communication graph G . 

Proof: Consider the Lyapunov function candidate 
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where 1 2[ , , ]T T T T
nδ δ δ δLσ = σ σ σ . 

The time derivative of V  is given by 
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Substituting (6) into (8), we obtain 
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where 1 2[ , , , ]T T T T
nδ δ δ δLω = ω ω ω . 

Note that 0 ( ) (0)V t V≤ ≤ < ∞ . In addition, we can verify that V&&  is bounded. Using Barbalat’s lemma 
[16], this implies that limt V→∞ = 0& . Therefore, it follows that iδ →ω 0  and 3( )T L Iδ δ⊗ →ω ω 0 , as 
t →∞ . Hence we have i di→ω ω , ( ) ( )i j dijt t− →ω ω ω . 

Since 3( )L I⊗  is positive semidefinite, if follows that 3( )L I δ⊗ →ω 0 , which implies that 

i jδ δ→ω ω . Therefore we can conclude that ( ) ( )i jt tδ δ→ →ω ω 0 , or equivalently i di→ω ω , 
( ) ( )i j dijt t− →ω ω ω . 
Form (5) and (6), using the above results we get 
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Define as 1
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=

= +∑G σ , 3( )ij ijp t a I= − . We can rewrite (10) in matrix form as 

( )P t δ →σ 0 . Noting that 
1

3
N

pi ij
j

k a
=

≥ ∑ , we see that ( )P t  is strictly diagonally dominant and therefore 

has full rank, which implies that ( )tδ →σ 0 . Therefore, we can conclude that i di→σ σ , 
( ) ( )i j dijt t− →σ σ σ  asymptotically. 
In the following corollary, a distributed control algorithm is given to show that attitudes of multiple 

rigid bodies are able to converge to the origin without desired trajectory. 
Corollary 1: For the system given by (1)~(2), using the following control law 
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if the undirected graph G  is connected and control gains satisfy 
1

3
N

pi ij
j

k a
=

≥ ∑ , then ( ) ( )i jt t→ →σ σ 0 , 

( ) ( )i jt t→ →ω ω 0 , as t →∞ . 
Using the same proof procedure as for Theorem 1, it can been proved that ( ) ( )i j jit t T→ − →σ σ 0 , 
( ) ( )i j jit t T→ − →ω ω 0 , as t →∞ . 
Next we give the bounded output feedback control algorithm without angular velocity measurements 

and with input constraints. To facilitate the control laws design we make the following definition and 
assumptions. 

Definition 1: A saturation function is denoted by strictly increasing continuously differentiable 
function with the properties: (1) (0) 0sat = and ( ) 0sat >x x for 0≠x ; (2) ( ) 1sat ≤x for ∈ �x ; (3) 

sat∂
≥

∂
( )

0
x

x
. 

Assumption 1: For the inertia matrix iJ , there exists 0MiJ > , such that || ||i MiJ≤J . 
Assumption 2: diω  and di&ω  are bounded, there exists 1 0υ > , 2 0υ > , such that 1| ||di υ≤ω , 2| ||di υ≤&ω . 
Theorem 2: For the system given by (4)~(5), using the following control law 

( )
1

( ) ( ) ( ) ( )

( ( ) ) ( ) ( )

N
T T

i i ij i j i pi i di mi i i
j

i di i i di i i di

a k k sat

R R R

δ δ δ δ δ δ

δ δ δ
=

×

= − − − + − +

+ +

∑u G σ σ σ G σ σ A z σ

σ ω J σ ω J σ ω&
 (12) 

i mi i iδ= − +&z A z σ   (13) 

if the undirected graph G  is connected and control gains satisfy 
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then i di→σ σ  , ( ) ( )i j dijt t− →σ σ σ , i di→ω ω , ( ) ( )i j dijt t− →ω ω ω , t →∞ , Ω { :|| || }u i i Miu∈ = ≤iu u u . 

Where 3
i ∈z R , , , 0pi di mik k >A , and 3

1 2 3( ) [ ( ) ( ) ( )]Tsat sat sat satζ ζ ζ= ∈ζ R for 3∈ζ R . 
Proof: Consider the Lyapunov function candidate 
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The time derivative of V  is given by 
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Substituting (12) and (13) into (16), we obtain 
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1 1
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Because 0V ≥  and 0V ≤& , δ iσ  and i&z  are all uniformly bounded. It is easy to establish that i&&&z  is 
uniformly bounded, in other words, uniform continuity for i&&z . Since limt i→∞ =&z 0 , and using Barbalat’s 
lemma, we obtain limt i→∞ =&&z 0 . 

Also i mi i δ= + iz A z σ&& & & . We can get iδ →&σ 0 . From (4) implies limt iδ→∞ → 0ω  since ( )iG δσ  is 
nonsingular for all iδσ . Furthermore, through Barbalat's lemma we conclude that iδ → 0&ω . 

Using the above results, the error dynamics (5), with (12) reduces to 

1
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Note that (18) can be written in matrix form as 

3 3( )pi nk I I L I δ⊗ + ⊗ → 0σ   (19) 

We see that is strictly diagonally dominant and therefore is full rank, which in turn implies that 
iδ → 0σ . Finally we can conclude that i di→σ σ , ( ) ( )i j dijt t− →σ σ σ , i di→ω ω , and 
( ) ( )i j dijt t− →ω ω ω , as t →∞ . 

On the other hand, from 1iδ ≤σ , 
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≤ + + + +∑u . Finally we can conclude that Ωu∈iu  if condition (14) 

holds. 
In order to prove that attitudes of rigid bodies are able to converge to the origin without desired 

trajectory, we proposed the control algorithm stated the following corollary. 
Corollary 2: For the system given by (1)~(2), using the following control law 
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if the undirected graph G  is connected and control gains satisfy
1

1 1 3
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+ + ≤∑ , then 

( ) ( )i jt t→ →σ σ 0 , ( ) ( )i jt t→ →ω ω 0 , as t →∞ , Ω { :|| || }u i i Miu∈ = ≤iu u u . Where 3
i ∈ �z , 

, , 0pi di mik k >A . 
The proof procedure of Corollary 2 is the same as for Theorem 2, therefore we will not go into. 

4. Conclusion

We address the problem of coordinated attitude control for multiple rigid bodies. Distributed 
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coordinated attitude control schemes are presented to guarantee attitude synchronization and tracking, one 
is the state feedback control scheme, and the other is the output feedback control scheme. And we extend 
both results when no desired trajectory required. The global asymptotic stability of closed-loop system is 
shown through Lyapunov analysis.  
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