Document Number: P0253R1

Date: 2016-03-01
Audience: Library Evolution Working Group
Reply to: Marshall Clow <marshall@idio.com>

Fixing a design mistake in the searchers
interface in Library Fundamentals

Rationale

In N3703 (and previous papers), | introduced the concept of “searchers”, objects that
implement a search algorithm with a common interface. They each take a pattern to
search for in their constructor, and a corpus to search in their operator() method. They
return an iterator to the start of the pattern in the corpus, or end if the pattern is not
found. This is the behavior of std::search as well.

| have come to the conclusion that this is the wrong thing to return. When you are doing
multiple searches in the same corpus, frequently you want to start the next search after
the thing that you just found. You can calculate that information yourself, by advancing
the iterator returned to you the appropriate number of times. But that’s (potentially) an
O(N) operation, and | can imagine (regex) a matcher where the pattern length may not
be fixed.

| believe that the correct behavior here is to have the searchers return a pair of iterators,
denoting the position of the pattern in the corpus. | came to this conclusion while
attempting to write a split algorithm, which separates a sequence into a series, delimited
by a separator. Recovering the end of the matched pattern was a necessity for this
algorithm. See

for a description of the algorithm.

| propose changing the searchers to return the beginning and end of the pattern found.
They already have this information, since they have to traverse the entire pattern in the

corpus to verify that it is a match. | am not proposing that std::experimental::search
return this information, because that would not be compatible with std::search.

Wording changes (relative to N4564)

Change section 4.3.1 [func.searchers.default]:

template<class ForwardIteratorl, class BinaryPredicate = equal to<>>
class default searcher {
public:
default searcher (ForwardIteratorl pat first, ForwardIteratorl
pat last,
BinaryPredicate pred = BinaryPredicate()):;

template<class ForwardIterator2>
ForwardIterator?

operator () (ForwardIterator2 first, ForwardIterator?2 last) const;
private:

ForwardIteratorl pat first ; // exposition only

ForwardIteratorl pat last ; // exposition only

BinaryPredicate pred ; // exposition only
}i

5 Effects: Equivalent to return
std::search(first, last, pat first , pat last , pred);

Change section 4.3.2 [func.searchers.boyer_moore]:

template<class RandomAccesslIteratorl,

class Hash = hash<typename

iterator traits<RandomAccessIteratorl>::value type>,
class BinaryPredicate = equal to<>>

class boyer moore searcher {

public:
boyer moore searcher (RandomAccessIteratorl pat first,
RandomAccessIteratorl pat last,
Hash hf = Hash (), BinaryPredicate pred =
BinaryPredicate());

template<class RandomAccesslterator2>
RandomAccessIterator?

operator () (RandomAccessIterator?2 first, RandomAccesslIterator2 last)
const;

private:
RandomAccessIteratorl pat first ; // exposition only
RandomAccessIteratorl pat last ; // exposition only
Hash hash ; // exposition only
BinaryPredicate pred ; // exposition only

}s

9 Returns: the first iterator i in the range [first,

last - (pat last - pat first))such that for every non- negative integer n less
than pat last - pat first the following condition holds:
pred(* (i + n), *(pat first + n)) != false

. Returns first if
[pat first ,pat last)is empty, otherwise returns last if

no such iterator is found.

Change section 4.3.3 [func.searchers.boyer_moore_horspool]:

template<class RandomAccessIteratorl,

class Hash = hash<typename
iterator traits<RandomAccessIteratorl>::value type>,

class BinaryPredicate = equal to<>>
class boyer moore horspool searcher {
public:

boyer moore horspool searcher (RandomAccessIteratorl pat first,
RandomAccessIteratorl pat last,
Hash hf = Hash(), BinaryPredicate pred =

BinaryPredicate());

template<class RandomAccessIterator2>
RandomAccessIterator?

operator () (RandomAccessIterator?2 first, RandomAccesslterator?2 last) const;
private:

RandomAccessIteratorl pat first ; // exposition only

RandomAccessIteratorl pat last ; // exposition only

Hash hash_; // exposition only

BinaryPredicate pred ; // exposition only
}i
9 Returns: is the first iterator i in the range [first,
last - (pat last - pat first))such that for every non- negative integer n less
than pat last - pat first the following condition holds:
pred(*(i + n), *(pat first + n)) != false

. Returns first if

[pat first ,pat last)is empty, otherwise returns last if

no such iterator is found.

Change section 12.2 [alg.search]:

ZZﬂﬁ%ﬁS:EquﬁHﬂentK)return searcher (first, last) ;

Example

Here’s the implementation of split that | ended up with.

template <typename Iter, typename Searcher, typename OutlIter>
OutIter split(Iter first, Iter last, const Searcher &s, Outlter

out)
{

while (first != last)

{

//
//

}

std::pair<Iter, Iter> found = s(first, last);

*out++ = std::make pair(first, found.first);

if the pattern is found at the end of the input,
output an empty chunk.

if (found.second == last && found.first != found.second)
*out++ = std::make pair(last, last);
first = found.second; // start the next search here

return out;

