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1. INTRODUCTION 

In an earlier paper [ 11, results on model reduction of large scale systems 
were given using a multivariate linear regression scheme. The purpose of this 
note is to present these results in another form, based upon a singular value 
decomposition approach, which is more efficient computationally. 

Consider an &h-order linear system S, defined by 

S,:i=Ax+Bu (1) 

where x is the n-dimensional state vector, A is an n X n system matrix, and u 
is a p-dimensional input vector. Let z be an m-vector (m < n) related to x by 

z = C.U. (2) 

In model reduction, it is desirable to find an mth-order system S, described 
by 

S,:i=Fz+Gu. (3) 

The m x n matrix C in Eq. (2) is the aggregation matrix and S, is the 
aggregated system or the reduced model. It is easy to show that G = CD and 
that F must satisfy the matrix equation 

FC = CA. (4) 

Equation (4) defines an overspecified system of equations for the unknown 
matrix F, and hence F must be approximated. In [ 11, a multivariate linear 
regression scheme is used to yield a “best” approximation for F in the form 

#= CACT(CCT)-‘, 
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where T and -1 denote matrix transpose and matrix inverse, respectively. 
The rank of C is assumed to be m. The result given by Eq. (5) is interpreted 
as a linear, unbiased, minimum-variance estimate of F and its form agrees 
with that given by Aoki [2], following an ad hoc procedure. 

In addition, the covariance of P is found to be 

cov(vecf)=u2[(CCT)-‘@I,) (6) 

and it is shown in [l] that this covariance matrix can be used for model 
reduction error assessment. In Eq. (6), the Kronecker product @ and the 
“vet” operator are defined as 

PO Q= IPij Ql (7) 

vet(P) = (P, P, . ..I’. (8) 

where P and Q are matrices of arbitrary dimensions and P, is the kth 
column of matrix P. 

2. SINGULAR VALUE DECOMPOSITION 

From the computational point of view, it is desirable to circumvent the use 
of matrix inverses in Eqs. (5) and (6), particularly for systems having large 
aggregation matrices. In what follows, this is accomplished through the use 
of matrix singular value decomposition (SVD) [ 54 1, which has found useful 
application in linear least-squares problems. 

The SVD concept gives the Moore-Penrose pseudo-inverse of C as 

c+ = VAUT (9) 

where U and I’ are unitarv matrices whose columns are the eigenvectors of 
matrices DDT and DTD, respectively, and 

nxn 

where u, >,a,> . . . > u,,, > 0, called singular values, are the nonnegative 
square roots of the eigenvalues of D’D. A discussion of this decomposition 
and its properties can be found in Stewart [ 5 1. 
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Now, Eq. (4) gives 
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E= CAC+ 

and, using SVD, we can write 

P= CA(VAUr). 

The matrix C can also be written in the form 

(11) 

(12) 

D = UZVT (13) 

where 
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(14) 

and we have 

3 = UZ VTA VA UT. (15) 

Compared with Eq. (5), either Eq. (12) or Eq. (15) provides a more ,. 
efftcient method of computation for F due to elimination of the matrix 
inverse. 

Similarly, advantages are realized in the calculation of cov(vec E). 
Following the SVD scheme, 

(DDT)-’ = (DT)+ D+ 

= (UAVT)(VAUT) 

= UA2UT. 

Equation (6) now takes the form 

cov(vec P) = a2[UA2UT @I,], 

which is clearly of a simpler structure than Eq. (6). 

(16) 

(17) 
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