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Abstract

The game domination number of a (simple, undirected) graph is de0ned by the following
game. Two players, A and D, orient the edges of the graph alternately until all edges are
oriented. Player D starts the game, and his goal is to decrease the domination number of the
resulting digraph, while A is trying to increase it. The game domination number of the graph G,
denoted by �g(G), is the domination number of the directed graph resulting from this game. This
is well de0ned if we suppose that both players follow their optimal strategies. We determine the
game domination number for several classes of graphs and provide general inequalities relating
it to other graph parameters. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A dominating set of a digraph G̃ is a set S of vertices such that for every vertex
v �∈ S there exists some u ∈ S with ũv ∈ E(G̃). The domination number �(G̃) of G̃ is
de0ned as the cardinality of the smallest dominating set.
We de0ne a ‘domination parameter’ of an undirected graph G as the domination

number of one of its orientations, determined by the following two player game. Play-
ers A and D orient the unoriented edges of the graph G alternately with D play-
ing 0rst, until all edges are oriented. Player D (frequently called the Dominator) is
trying to minimize the domination number of the resulting digraph, while player A
(Avoider) tries to maximize the domination number. This game gives a unique number
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depending only on G, if we suppose that both A and D play according to their optimal
strategies. We call this number the game domination number of G and denote it by
�g(G).
As the domination number of any orientation of a graph is at least as large as the

domination number of the graph itself, we clearly have �(G)6 �g(G). Also �g(G)6
DOM(G), where DOM(G) denotes the maximal domination number among all
orientations of G. This parameter was examined in [6].
Similar orientation games with diHerent goals for the players were introduced and

discussed in [1,3–5].
In Section 2 we determine the game domination number for several classes of graphs

including complete graphs, complete bipartite and tripartite graphs, paths and cycles.
Then we obtain sharp lower and upper bounds for the game domination number of
trees in terms of the smallest degree that is at least three.
Finally, in Section 4 we prove several inequalities, relating the game domination

number to other graph parameters such as the number of vertices and edges, inde-
pendence number and two-domination number. We establish a Nordhaus–Gaddum-
type upper bound for the sum of the game domination number of a graph and its
complement.
For additional results on related domination parameters we refer the reader to two

excellent books [8,9].

2. Examples

In this section we determine the game domination number for a few classes of
graphs. These elementary examples enable the reader to gain a feel for the parameter;
also, some of the examples will be needed in the sequel.

Example 2.1. For the complete graph Kn on n¿ 4 vertices, we have �g(Kn) = 2.

Proof. Let us see 0rst why �g(Kn) ¿ 2, i.e. why one vertex cannot dominate the
oriented graph. Player A can clearly avoid a source in K4, and if n ¿ 5 then there
exists a collection of n edge-disjoint paths of length 2, one centered at each vertex (see
[4]). Whenever D orients one of these edges from the central vertex, A can orient the
other edge of the corresponding path towards the central vertex. Thus the in-degree of
each vertex becomes at least one.
On the other hand, �g(Kn)6 2 since the dominator can pick two vertices, u and v,

say and then reply to each move w̃u by ṽw, and to each move w̃v by ũw. This strategy
ensures that {u; v} becomes a dominating set of the resulting digraph.

Note, that in Example 2.1 the dominator made use of very few edges. The same
idea can be applied for much sparser graphs.
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Example 2.2. Let G be a graph on n ¿ 4 vertices containing all but one edges of a
copy of K2; n−2. Then �g(G) = 2. Also, if G contains a set S of s vertices such that
every vertex not in S has at least 2 neighbors in S, then �g 6 s.

Example 2.3. Let Kn;m denote a complete bipartite graph with n 6 m vertices in the
two partite sets, then

�g(Kn;m) =




�(m+ 1)=2� if n= 1;

2 if n= 2;

3 if n= 3; 4 or 5;

4 otherwise:

Example 2.4. If G is a complete k-partite graph (k ¿ 3) with at least three vertices
in each partite class, then �g(G) = 3.

Now, we turn to some sparser graphs that (as expected) have larger game domination
numbers. They also show that the game domination number can be much larger than
the domination number. The reader is encouraged to verify the statement of the next
example.

Example 2.5. For the three-dimensional cube Q3 and the Petersen graph P we have
�g(Q3) = 3 and �g(P) = 4.

Example 2.6. For a path Pn on n vertices we have �g(Pn) = �n=2�.

Proof. The vertices of the path can be partitioned into �n=2� sets of disjoint edges and
possibly one single vertex. Each of these sets can be dominated by one of its vertices
regardless of the orientation of the edges, showing �g(Pn)6 �n=2�.

For the lower bound, A would like to prevent D creating many vertices that dominate
both their neighbors. Although A cannot do this, he can easily achieve that no even
numbered vertex (with the vertices of the path labeled with 1; 2; : : : ; n from left to
right) dominates three vertices (including itself). Indeed, whenever D orients an edge
out of an even vertex, A immediately orients the other edge in.
This strategy results in an oriented path, where to dominate the �n=2� odd vertices

we must choose �n=2� vertices, as no vertex will dominate two odd vertices.

Example 2.7. For a cycle Cn on n vertices, �g(Cn) = �n=2�.

Proof. We show 0rst thatD can achieve an orientation with domination number �n=2�. In-
deed, following his second move D can make sure that there is a vertex dominating both
of its neighbors. The remaining n−3 vertices can be partitioned into �(n−3)=2� inde-
pendent edges (with possibly one single vertex), and these vertices will be dominated
by �(n− 3)=2� vertices regardless of the orientation. Thus �g(Cn)6 n=2.
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On the other hand, player A can force the dominating set to be as big as �n=2� using
the same idea as in case of paths: he labels the vertices by 1; 2; : : : ; n, and ensures that
no even vertex dominates both of its neighbors. Then, to dominate the �n=2� odd
vertices we need at least �n=2� vertices, giving �g ¿ �n=2�.

Our next example is a family of less natural graphs, this result will be used later.

Example 2.8. Let G be a ‘lollipop’ on n vertices formed by an even cycle with a tail
(a single path) attached to one of its vertices. Then �g(G) = �n=2�.

Proof. To prove that �g(G)6 �n=2�, write v for the vertex of degree 3, and u for its
neighbor on the path. The dominator D starts the game with ṽu, and in his second move
also orients an edge away from v. Thus, v dominates 3 vertices (including itself), and
as the cycle is even, the remaining vertices can be partitioned into a matching (with
possibly a singleton), showing that �g(G)6 �n=2�. The lower bound can be shown as
in the previous examples.

First, it seems that by adding edges to a graph we cannot increase its game domi-
nation number. Indeed, this is clearly the case if we add an even number of edges to
a graph. However, rather surprisingly, this does not hold if we add exactly one edge
to our graph.

Example 2.9. Let G be obtained from the complete bipartite graph Kt;4 (t ¿ 6)
as follows. Let Kt;4 = K(M;N ) with M = {e; f; g; : : : ; z}, N = {a; b; c; d}), and
G = Kt;4 + ab+ cd− dz. Then �g(G) = 2, while �g(G + dz) = 3.

Proof. Player D has an easy strategy to 0nish the game with a two-element dominating
set: he starts with ãz, then he ensures that every vertex in M is dominated by at
least one vertex of {a; d} and one vertex of {b; c}. Whenever A plays ab or cd, the
dominator orients the other so that either {a; d} or {b; c} becomes the dominating set.
Hence �g(G)6 2.

What about �(G + dz)? Playing the game on G + dz, the Avoider can force the
Dominator to be the 0rst to orient an edge in N . Clearly, the only way D could
end up with a dominating set of size 2 is to use two independent vertices of N :
{a; c}; {a; d}; {b; c} or {b; d}. The strategy of A will be to try to dominate some of
these pairs from vertices of M , making them impossible to become dominating sets.
He cannot ‘kill’ all of the four possible dominating pairs, but at least two disjoint pairs
he can. Whenever D orients the 0rst edge of N , A can orient the other so that none of
the four possible pairs could dominate the graph. We leave it to the reader to verify
that D cannot do any better by orienting an edge of N before A ‘kills’ two of the
possible dominating pairs.

The ‘jump’ can be larger than one, as a little modi0cation of the previous example
shows us.
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Example 2.10. If G is the same as in the previous example, (k − 1)(G+ dz) +G has
game domination number 2k and adding only one edge to the graph, k(G + dz) has
game domination number 3k.

We believe, that this is the biggest possible jump: if �g(G)6 2k then �g(G+ab)6 3k.

3. Trees

First, we shall derive a sharp lower bound for the game domination number of trees,
then we look for upper bounds in terms of diHerent parameters.

Theorem 3.1. For any tree T on n vertices

�g(T )¿
⌈n
2

⌉
:

Proof. We apply induction on the number of vertices. We clearly need �n=2� vertices
to dominate if n6 3.

To proceed with the induction, if n ¿ 4 we need to 0nd either a vertex with at
least two leaves attached to it or a leaf attached to a vertex of degree two. One of
these always exists, we might for example consider a vertex v and the longest path
starting from v. This path ends in a leaf and the previous vertex has either degree two,
or another leaf adjacent with it. The two cases are essentially the same, and we shall
discuss only one in detail.
Suppose that there are two leaves u and v attached to a vertex w. Player A could

play the game in T −{u; v} according to his strategy resulting in a domination number
at least �(n − 2)=2�. Whenever D orients one of the edges adjacent to u or v, A
immediately orients the other edge from the leaf. Thus two of the three vertices u; v; w
are needed in the dominating set. At least another �(n− 2)=2� − 1 vertices are needed
from the rest of the graph, giving no dominating set smaller than �n=2�.

Theorem 3.2. Let T denote a tree on n vertices that is not a path; and let d denote
the smallest degree in T that is at least three. Then

�g(T )6 min
{⌊

n
2
+

n− 2
2(d− 1)

⌋
;
⌊
2
3
n
⌋}

;

where the � 2
3n� bound takes over the other only if d= 3.

Proof. We need to provide a strategy for player D resulting in a digraph with small
domination number. Suppose that the tree has k vertices of degree at least d. An easy
counting argument shows that k 6 �(n− 2)=(d− 1)�. We orient the edges so that the
digraph we obtain has a small dominating set containing these k vertices.
Note, that the remaining n − k vertices of T can be partitioned into paths attached

to the k vertices of large degree. We claim that these vertices can be dominated by
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�(n− k)=2� vertices in addition to the k vertices of degree at least d. Indeed, a path of
even length 2l contains l independent edges and a dominating set of size l regardless
of the orientation. Thus all D needs to take care of are the odd paths. But a path of
length 2l+ 1 starting from a dominating vertex v can easily be dominated by another
l vertices if D takes the 0rst move (he dominates the 0rst vertex from v), and by
l + 1 vertices otherwise. As D starts the game, he is able to make the 0rst move in
at least half of the odd paths dominating the vertices on odd paths by at most half
of them.
Thus, we have a dominating set of the resulting digraph of size

�g(T )6 k +
⌊
n− k
2

⌋
=
⌊
n+ k
2

⌋
6

⌊
n
2
+

n− 2
2(d− 1)

⌋
:

If d=3, then we do not put every vertex of degree three or larger into the dominating
set. Instead, we partition the vertices of T into stars of at least two vertices (the
existence of such a partition is obvious by induction). Player D can easily dominate
a star K1; r with � 2

3 (r + 1)� vertices even if A starts the orientation, unless r = 3. In
K1;3 two vertices will dominate if D starts the game and three if A does. Thus, the
strategy of D is to make use of a star-partition: he starts in a K1;3 (if there is any)
then plays in the same star as A, except if he chooses another K1;3. Then D does the
same, ensuring that at least half of the three-stars will be dominated by two vertices,
which in average gives a dominating set of size at most 5=8¡ 2=3 of the vertices in
these stars. This strategy provides a domination number at most � 2

3n� in the resulting
digraph.

Note, that both bounds in the previous theorem are sharp, for example if T is
constructed from a path of k vertices with d−1 or d−2 leaves attached to each vertex
such that each of the k vertices has degree d¿ 4. Then �g(T )=�n=2+(n−2)=2(d−1)�
as A can always orient edges from leaves to the central vertices.
For d = 3 consider a tree of three levels. The 0rst level has only one vertex of

degree k + 2, the next level has k vertices of degree 3 and two leaves, and the third
level contains 2k leaves. It is easy to check, that this tree has game domination number
2n=3, showing that the second part of the theorem is also sharp.
Let us spell out one of the inequalities in the previous proof, which gives a slightly

stronger version of the theorem.

Corollary 3.3. If T is a tree on n vertices with k ¿ 1 vertices of degree at least 3;
then

�g(T )6
⌊
n+ k
2

⌋
:

We summarize our results for trees in the following inequalities. Note, that the
general upper bound could have been improved a lot for special trees.



N. Alon et al. / Discrete Mathematics 256 (2002) 23–33 29

Corollary 3.4. For any tree T we have⌈
1
2
n
⌉
6 �g(T )6

⌊
2
3
n
⌋
:

Corollary 3.5. For any connected G we have

�g(G)6
⌊
2
3
n
⌋
:

4. Inequalities

First, we shall give a lower bound for the game domination number of a graph in
terms of its maximal degree. This corresponds to the easiest basic inequality on the
domination number: �(G)¿ n=(%+ 1).
During our game A orients half of the edges and he might succeed in decreasing

the out-degree of each vertex to about %=2. This prompts us to make the following
conjecture.

Conjecture 4.1. For any graph G with n vertices and maximal degree %; we have
�g(G)¿ 2n=(1 + o(1))%.

We have not been able to prove this conjecture, but the following somewhat weaker
result is an improvement on the trivial lower bound �g(G)¿ �(G)¿ n=(%+ 1).

Theorem 4.2. If G is a graph with n vertices and maximal degree %; then

�g(G)¿
⌈

4n
3%+ 7

⌉
:

Proof. The goal of A is to ensure that the out-degree of any vertex is at most (3%+
3)=4. We can add edges to the graph, until it becomes a 2k-regular multigraph G′,
with 2k = % or %+ 1 depending on the parity of %.
As shown by Tarsi [13], this graph G′ has a k-system, i.e. n edge-disjoint k-stars, one

centered at each vertex of the graph. Corresponding to these, there are n edge-disjoint
stars in G, each with at most k edges, centered at diHerent vertices, and at any vertex
v, at most k of the incident edges do not belong to the star centered at v.
The strategy of A is to orient an edge of the same star, in which D made his

previous move, into the central vertex. Hence, each vertex will have out-degree at
most �(3%+ 3)=4�, and dominate at most �(3%+ 7)=4� of the n vertices.

Note, that when we provided strategies for D to obtain upper bounds for the game
domination number we usually did that by 0nding a small set S of vertices dominating
every other vertex at least twice, and thus ensuring that at least one of those edges
can be oriented by D out of S, making S a dominating set of the resulting digraph.
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The concept of multiple domination was introduced by Fink and Jacobson [7]. They
call a set S k-dominating if every vertex of V − S is adjacent to at least k vertices in
S. The k-domination number, �k(G), is the minimal cardinality of a k-dominating set.
Our argument above shows that �g(G) 6 �2(G). This gives the following immediate
bounds, by some of the results on two-domination numbers in [7,12].

Theorem 4.3. For any graph G: �g(G)6 �2(G)6 '2(G)6 2'0(G).

In the inequality above, '0(G) denotes the independence number of G, and '2(G)
is the two-independence number, i.e. the maximal cardinality of a set I of the vertices
such that the graph spanned by I has maximal degree at most 1. The complete graph
shows that the inequality is sharp: �g(Kn) = 2'0(Kn) = 2.

Theorem 4.4. If the minimal degree )(G)¿ 3; then �g(G)6 �2(G)6 n=2.

For G = tK4 we have �g(G) = 2t; v(G) = 4t, so both inequalities are sharp in
Theorem 4.4. We have seen the game domination number of trees to fall between n=2
and 2n=3. Clearly, the proof implies that this upper bound holds for any connected
graph, as player D can concentrate his attention on a spanning tree of the graph (if
player A moves outside of the spanning tree, D continues to orient tree edges accord-
ing to his strategy). The following theorem improves the upper bound for graphs with
minimal degree at least two.

Theorem 4.5. If a graph G has minimal degree at least 2; then �g(G)6 �n=2�.

Proof. Our goal is to 0nd a large one-factor in the graph and use those edges to
dominate the pairs of vertices by one of them regardless of their orientation. If G has
a complete matching, this gives us a dominating set.
Suppose 0rst that n= 2k + 1 odd, and there is a matching of size k, containing the

edges (v1; u1); : : : ; (vk ; uk), leaving only one more vertex for v to dominate. From the
minimal degree condition, v is connected to a vertex of the matching, say v1. If u1 is
also connected to v, then the proof is done, as the resulting triangle vv1u1 can easily
be dominated by one vertex if D starts the game. Otherwise u1 is connected to another
vertex of the matching, say v2. Following this algorithm we build an alternating path
vv1u1v2u2 : : : ui until ui is connected to a previous vertex on this alternating path. If
this vertex is v or uj, then we end up with an odd cycle and a matching (we might
need to change the matching edges along the alternating path up to the cycle) and
0nish with a dominating set of size at most n=2 as before in Example 2.7. Finally, if
ui is attached to a vertex vj on the path, then we have an even cycle with an odd path
attached to it, and some independent edges of the original matching, and we can easily
get the desired dominating set by Example 2.8.
We shall call a component odd (even), if its order is odd (even). Now we suppose

that a maximal matching of G covers all but t ¿ 2 vertices. By the extended version of
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Tutte’s theorem there is a set S of s vertices such that after deleting S from the graph
we shall get s+ t odd components. Choose S to be maximal among all such sets. Note,
that S might be empty, if G was not connected and had exactly t odd components.
We shall use this S to dominate the graph.
First note, that there exists a complete matching in every even component of G− S

(as there is a matching covering all but t vertices of the graph). We claim that if U is
an odd component of G − S and u ∈ U , then U − {u} also has a complete matching.
Otherwise it has a cut set K with k vertices leaving at least k + 2 odd components
in U − {u}, since U had an odd number of vertices. But then S ∪ {u} ∪ K would be
a cut-set of order s + k + 1 giving s + t + k + 1 odd components, contradicting the
maximality of S.
The strategy of D is simple: he ensures that the s+ t odd components of G− S will

be dominated ‘ePciently’, i.e. by less than half of their vertices plus the vertices of S.
To show how this can be done we need to distinguish three types of odd components
in G − S depending on the numbers of edges connecting them to S.
First, there may be some isolated components, which must be odd components of

G with all but one vertex covered by the matching. It is easy to see that these can be
dominated by half of their vertices if D manages to start the game in at least half of
them. He starts in one, and starts another isolated component every time A does so,
achieving his goal.
Second, there are odd components attached to S with at least two edges, but these

can be dominated from S by orienting one of those edges out of S, and using the
complete matching on the remaining part of it.
Third, there are odd components attached to S by only one edge between S and a

vertex v in the odd component. In this case either D is able to orient the bridge from
S toward v or if A has done this, he starts the game in the component and succeeds
exactly like above when we had an almost complete matching missing only vertex v.
Note, that in that argument we did not use the fact that v has degree at least two (that
might not hold here), this was only needed for the vertices of the matching.
Even if we have to choose every vertex of S into the dominating set, it cannot be

larger than

s+
n− s− s− t

2
=
n− t
2

¡
⌊n
2

⌋
;

completing the proof.

This theorem is sharp as the examples of cycles with n vertices show. The upper
bound for the game domination number can be further strengthened if the minimal
degree is larger using a probabilistic argument.

Theorem 4.6. For every graph G=(V; E) with n vertices and minimum degree )¿ 2
and for every real number p between 0 and 1; �g(G)6 np+2n(1−p))+1+n)p(1−p)).
Therefore; �g(G)6 (1 + o(1))n ln()+1)=)+1; where the o(1)-term tends to zero as
) tends to in>nity; and the above the estimate is tight; up to the o(1) error term.
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Proof. By Theorem 4.3 it suPces to prove that there is a set S of at most np+2n(1−
p))+1 + n)p(1 − p)) vertices of G, such that each vertex not in S has at least two
neighbors in S. To prove the existence of such an S let X be a random set of vertices
of G obtained by choosing each vertex v ∈ V , randomly and independently, to be a
member of X with probability p. Let us 0x arbitrarily some set N (v) of precisely
) neighbors of each vertex v ∈ V , let Y denote the set of all vertices v such that
neither v nor any member of N (v) lies in X , and Z will denote the set of vertices u
such that precisely one member of N (u) is in X . The expected cardinalities of X; Y
and Z are, respectively, np, n(1−p))+1 and n)p(1−p)). Moreover, by adding to X
two arbitrarily chosen neighbors of u for each u ∈ Z , we obtain a set S of cardinality
|X |+2|Y |+|Z | such that each vertex not in S has at least 2 neighbors in S. By linearity
of expectation the expected cardinality of S is np+ 2n(1− p))+1 + n)p(1− p)) and
hence there is such a set of cardinality at most this quantity. For large ) we can
choose p= (ln )+ ln ln ))=) and check that for this choice of p the resulting set S is
of cardinality at most n ln()+ 1)=()+ 1) + O(nln ln )=)), as needed.
The tightness of the estimate follows easily from the fact that the game domination

number is always at least as large as the domination number of the graph and the
well-known fact that there are undirected graphs with n vertices and domination number
(1 + o(1))n ln()+ 1)=()+ 1) where the o(1)-term tends to zero as ) tends to in0nity
(see for example the discussion following Theorem 2:2 on p. 7 in [2]).

In 1956 Nordhaus and Gaddum [11] established sharp bounds on the sum and product
of the chromatic numbers of a graph and its complement. Similar results have been
found for several parameters, including the following due to Jaeger and Payan [10].

Theorem 4.7. If G is a graph of order n; then �(G) + �( QG)6 n+ 1 and this bound
is sharp.

We establish a sharp Nordhaus–Gaddum-type inequality for the game domination
number of a graph and its complement.

Theorem 4.8. For a graph G with n vertices; �g(G) + �g( QG) 6 n + 2. Furthermore;
the bound is sharp.

Proof. If the minimum degrees of G and QG are at least two then by Theorem 4.5,
�g(G) + �g( QG) 6 n. Hence, we may assume that )( QG) 6 1. Then )(G) ¿ 2, other-
wise we have a vertex of degree at least n − 2 in the complement as well, and the
dominator D can use these two vertices to dominate almost half of both the graph and
its complement, which results in dominating sets whose sum of sizes is at most n+ 2
even if we have chosen every remaining vertex into the corresponding dominating set.
Suppose now that )( QG) 6 1 and )(G) ¿ 2. Thus there is a vertex v in G with

degree at least n−2. If another vertex u of G has degree at least n−2, then �g(G)6 3
as using u, v and possibly one more vertex as dominating set, D can dominate G. On
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the other hand, if there exists an edge in QG, then �g( QG)6 n− 1, otherwise we need n
vertices to dominate QG, but two vertices suPce to dominate G, providing the desired
bound in either case.
We remain with the case when d(v)¿ n−2 and d(u)6 n−3 for every u �= v. Then

by Theorem 4.5 player D can dominate in QG with �g( QG) 6 �(n − 1)=2� + 1 vertices
by adding v to the dominating set. Also, using the star of G centered at v, player D
can easily dominate G by �(n− 2)=2�+ 2 vertices. Hence �g(G) + �g( QG)6 n+ 2.

The complete graph Kn shows that this bound is sharp: �g(Kn) = 2 and
�g( QKn) = n.

We believe that the inequality in Theorem 4.8 can be strengthened for connected
graphs.

Conjecture 4.9. If both G and QG are connected graphs with n vertices; then �g(G) +
�g( QG)6 2

3n+ 3.

If true, this inequality is sharp, as shown by a tree of order n with game domination
number 2

3n (see Section 3).
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