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Abstract

A general characterization of connected graphs on n vertices having the maximum possible
independent domination number of �n + 2 − 2

√
n� is given. This result leads to a structural

characterization of such graphs in all but a small 4nite number of cases. For certain situations,
one of which occurs when n is a perfect square, the extremal graphs have a particularly simple
structure.
c© 2003 Published by Elsevier B.V.
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1. Introduction

A subset S of vertices of a graph G is a dominating set if each vertex in the graph
is either in S or is adjacent to some vertex of S. The independent domination number,
i(G), of graph G is the smallest size of a dominating set which also is an independent
set. An extensive discussion of this parameter can be found in [6].
Bollobas and Cockayne [1] proved that i(G)6 n− �(g) + 1− �(n− �(g))=�(g)� for

any connected graph. Favaron [2] maximized the right-hand side of this inequality to
show that for any connected graph i(G)6 n−2

√
n+2, which clearly can be sharpened

to �n−2
√
n+2�. In this paper we restrict our attention to connected graphs and de4ne

a graph to be extremal if it obtains the Favaron bound.
Favaron [2] conjectured that i(G)6 n− 2

√
n�+2� where � is the minimum degree

of G. This conjecture has been proven in the case of �= 2 by Glebov and Kostochka
[4] and for any � by Sun and Wang [7].

A related parameter, total matching, is a collection of edges and vertices of G such
that no two elements of the matching are adjacent or incident. The minimum size of
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a maximal total matching is denoted 	′2(G). Gimbel and Vestergaard [3] showed that,
except for a few small graphs involving an odd number of at most seven vertices, the
minimum size of a maximal total matching in a connected graph obeys the Favaron
bound, i.e. 	′2(G)6 n−2

√
n+2. They also showed that when n=m2 the graph formed

by joining m − 1 pendant vertices to each vertex of a Km achieves this bound. We
shall use GV to designate this class of graphs.
It is not hard to see that the graphs in GV also obtain the Favaron bound for

independent domination number. In particular, if I is an independent set of vertices
which dominate a graph G in GV then I contains at most one vertex in Km. If I
contains no vertex in the Km then I must contain all of the pendant vertices and
|I | = m(m − 1). If I contains one vertex v in the Km then I must contain all of the
(m−1)(m−1) pendant vertices not adjacent to v and |I |=(m−1)(m−1)+1. If m¿ 2
then (m− 1)(m− 1) + 16m(m− 1) and i(G) = (m− 1)(m− 1) + 1=m2 − 2m+2. If
m= 1 then n= 1 and, once again, |I |= 1 = m2 − 2m+ 2. For graphs in GV we have
m=

√
n so m2 − 2m+ 2 = n− 2

√
n+ 2 and the graphs in GV are extremal.

Observation 4 in Section 2 provides a non-structural characterization of extremal
graphs. Theorem 14 of Section 3 provides insight into the structure of extremal graphs
while Theorems 17, 21, and 23 of Section 4 give a structural characterization for all
but a 4nite number of cases.

2. Preliminaries and characterization

We begin with a reformulation of Favaron’s bound. Let G be a graph on n vertices
and m= �√n�. De4ne t by t=1 if (m− 1)2¡n6m2 −m and t=0 if m2 −m+16
n6m2.

Lemma 1. For any n; �n− 2
√
n+ 2�= n− 2m+ 2 + t.

Proof. If t=1, then (m−1)2¡n implies n−2
√
n+2¡n−2(m−1)+2=n−2m+4.

Also, n6m2 − m implies n¡m2 − m + 1
4 = (m − 1

2 )
2 or 2

√
n¡ 2m − 1. Hence,

n− 2
√
n+2¿n− (2m− 1)+2= n− 2m+3. Thus, �n− 2

√
n+2�= n− 2m+3= n−

2m+ 2 + t. If, on the other hand, t = 0, then m2 − m+ 16 n, so 4m2 − 4m+ 1¡ 4n
or 2m− 1¡ 2

√
n. Hence, n− 2

√
n+2¡n− (2m− 1)+ 2= n− 2m+3. Also, n6m2

implies n−2
√
n+2¿ n−2m+2. Thus, �n−2

√
n+2�=n−2m+2=n−2m+2+ t.

By Lemma 1, a graph G is extremal if and only if i(G) = n− 2m+2+ t. We shall
see that the extremal graphs in GV are a special case of a more general structure.
Before proceeding we introduce some terminology.
Let G be a connected graph on n vertices, let I be a maximum independent set in

V (G), and let Gr be the subgraph of G induced by the r=n−|I | vertices in V (G)− I .
Vertices of I will be called outvertices. Observe that any independent dominating set
of G has the form X ∪ (I − N (X )) where X is an independent set of vertices in Gr
and N (X ) denotes the set of vertices in G adjacent to at least one vertex of X . For a
set X ⊆ V (Gr), we de4ne the outneighborhood of X , denoted N ′(X ), to be N (X )∩ I .
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If X is just a single vertex, v, we write N ′(v). The outdegree of a vertex v in V (Gr)
is the size of N ′(v). An independent set M of vertices in V (Gr) is a full independent
set, denoted FIS, if M ∪ (I −N ′(M)) dominates G. Finally, for any vertex v in V (Gr),
let Xv = {x∈V (Gr): N ′(x) ⊆ N ′(v)}. The next lemma shows that there is a sense in
which every vertex in V (Gr) generates an FIS.

Lemma 2. If M is a maximal independent subset of Xv which contains v, then M is
an FIS.

Proof. Observe that N ′(M)=N ′(v). Suppose w is a vertex of G which is not dominated
by any vertex in M , so w �∈ M . If w is in I , then w must be in I −N ′(M). If w is in
Gr , then, since M is maximal and hence a dominating set of Xv, w is not in Xv and
some vertex in N ′(w) must not be in N ′(M). Therefore, either w is in I −N ′(M) or w
is adjacent to a vertex in I−N ′(M). It follows that M ∪ (I−N ′(M)) is an independent
dominating set of G.

For each vertex v∈V (Gr), we 4x a particular maximal independent subset of Xv
which contains v and denote it by M (v). Notice that every independent dominating
set consists of some FIS, M , along with all vertices of I − N ′(M). In the case of
graphs in GV, each vertex of the complete graph, (our Gr), is an FIS. The concept of
full independent sets leads to the characterization of extremal graphs via the following
lemma.

Lemma 3. Let G be a graph on n vertices and let Gr be an induced subgraph of
G such that |V (Gr)| = r and I = V (G) − V (Gr) is a maximum independent set of
vertices in G. For an integer a; i(G)¿ n − a if and only if for every FIS M of
G |N ′(M)|6 |M |+ a− r.

Proof. Suppose i(G)¿ n−a. Let M be an FIS in Gr . By de4nition, M ∪ (I −N ′(M))
is an independent dominating set. Hence |I | − |N ′(M)| + |M |¿ i(G)¿ n − a. Since
|I |= n− r, we have n− r − |N ′(M)|+ |M |¿ n− a or |N ′(M)|6 |M |+ a− r.

Suppose every FIS, M , of V (Gr) satis4es |N ′(M)|6 |M | + a − r. Let D be an
independent dominating set in G and Y = D ∩ Gr . By the independence of D, Y ∪
(I − N ′(Y )) = D; hence, Y is an FIS. By hypothesis, |N ′(Y )|6 |Y | + a − r. Hence
|D| = |Y | + n − r − |N ′(Y )|¿ n − r + r − a = n − a. Therefore, every independent
dominating set has size at least n− a which implies i(G)¿ n− a.

The following characterization is an easy consequence of Lemma 3.

Corollary 4. Let G be a graph on n vertices and let Gr and I be as previously
de8ned. G is extremal if and only if every full independent set M of V (Gr) satis8es
|N ′(M)|6 |M |+ 2m− 2− t − r.

Proof. By Lemma 1, G is extremal if and only if i(G)=n−2m+2+t. Take a=2m−2−t
in Lemma 3 and the result follows.



302 R.C. Brigham et al. / Discrete Mathematics 275 (2004) 299–309

3. Restrictions on the order of Gr for extremal graphs

Corollary 4 characterizes extremal graphs in terms of full independent sets. To obtain
a structural characterization we need to establish bounds on r the order of Gr . The
4rst such bound given in the following lemma is easy but useful.

Lemma 5. If G is extremal, then r6 2m− 2− t.

Proof. For any graph G, a maximum independent set dominates the entire graph.
Consequently, we have i(G)6 n − r. Thus, if G is extremal, n − 2m + 2 + t6 n − r
and the result follows.

We de4ne r to be feasible if and only if r + �n=r�=2m− t. In this section we will
demonstrate that, if G is extremal then r must be feasible. The next lemma shows that
r + �n=r� is never less than 2m− t.

Lemma 6. For any positive integer r; r + �n=r�¿ 2m− t.

Proof. Suppose r+�n=r�¡ 2m−t, so r+�n=r�6 2m−t−1 in which case n=r6 2m−t−
r−1. This leads to the inequalities 0¿ r2−(2m−2)r+n if t=1 and 0¿ r2−(2m−1)r+n
if t=0. Because n¿ (m−1)2 if t=1 and n¿m2−m+1 if t=0, both of the quadratics
in r have negative discriminants. As the coeJcient of r is positive, the inequalities
cannot be satis4ed by any value of r.

Not surprisingly, r is signi4cantly less than n for extremal graphs, as is shown in
the following lemma.

Lemma 7. If G is extremal with n= 9 or n¿ 11, then r ¡n=2.

Proof. We consider two cases depending on the value of t.

1. Assume t=0 which implies (m−1)2+m6 n6m2. If n¿ 11 then m¿ 4. Therefore,
n¿ (m − 1)2 + m − 1 = (m − 1)m¿ 4(m − 1) = 2(2m − 2). Also, by Lemma 5,
r6 2m− 2− t = 2m− 2, hence r ¡n=2. If n= 9, m= 3 and 2m− 2− t = 4; and
again by Lemma 5, r6 4¡n=2.

2. Assume t=1. In this case, n cannot be 9. Thus, n¿ 11 and n2−12n+20=(n−2)(n−
10)¿ 0 implying n2 + 4n+4¿ 16n− 16 or n+2¿ 4

√
n− 1. Using the inequality

(m− 1)2 + 16 n, we have n+ 2¿ 4(m− 1). Therefore, n¿ 4m− 6 = 2(2m− 3).
Once more by Lemma 5, r6 2m− 2− t = 2m− 3 and r ¡n=2.

Before we can show that only feasible values for r yield extremal graphs, we need
several lemmas which describe the outneighborhoods of vertices in Gr .

Lemma 8. If S is an independent set of vertices in Gr , then |S|6 |N ′(S)|.
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Proof. The set S∪ (I−N ′(S)) is independent and so has size no more than |I |=n− r.
Thus, |S|+ n− r − |N ′(S)|6 n− r.

For each vertex v∈V (Gr) recall that M (v) denotes a 4xed FIS containing v as
described following Lemma 2.

Lemma 9. Suppose G is extremal. If v∈Gr and |N ′(v)|= �(n− r)=r�+ q for q¿ 0,
then |M (v)|¿ q+ 1.

Proof. Since N ′(M (v))=N ′(v), we have i(G)=n−2m+2+t6 |M (v)∪[I−N ′(M (v))]|=
|M (v)| + n − r − (�(n − r)=r� + q). By Lemma 6, r + �n=r�¿ 2m − t and the result
follows.

Note that if r+�n=r�¿ 2m−t then we obtain the strict inequality |M (v)|¿q+1. For
any set of vertices P in Gr , it will be convenient to de4ne the exclusive outneighbor-
hood of P, denoted EN ′(P), as the subset of vertices in N ′(P) whose neighborhoods
are contained in P.

Lemma 10. If G is extremal, then |EN ′(P)|6 |P|�(n− r)=r� for any P ⊆ V (Gr).

Proof. We proceed by induction on the size of P. Suppose P={v}. If |N ′(v)|6 �(n−
r)=r�, the result follows. Therefore, assume |N ′(v)|=�(n−r)=r�+q; q¿ 1. By Lemmas
8 and 9, |N ′(M (v)−{v})|¿ |M (v)−{v}|¿ q. All the vertices in N ′(M (v)−{v}) are in
N ′(v) and none of them are exclusive neighbors of v. Therefore, |EN ′(v)|6 |N ′(v)| −
|N ′(M (v)− {v})|6 |N ′(v)| − q= �(n− r)=r�.
Let k¿ 1, assume the result for any set, P ⊆ V (Gr), of size no larger than k, and

consider adding an arbitrary vertex x∈V (Gr) − P. If |EN ′(P ∪ {x})|6 |EN ′(P)| +
�(n − r)=r�, we are done by the inductive hypothesis, so suppose |EN ′(P ∪ {x})| =
|EN ′(P)| + �(n − r)=r� + q; q¿ 1. The vertices in EN ′(P ∪ {x}) which are not in
EN ′(P) must be in N ′(x). Hence, |N ′(x)| = �(n − r)=r� + q + p, where p¿ 0 of the
vertices of N ′(x) have an edge to some vertex of Gr − P as well as to x. By Lemma
9, |M (x)|¿ q+ p+ 1.
Let S be the set of vertices in M (x) − {x} which are not in P and let Q be those

which are in P. By the choice of S, any vertex in N ′(S) cannot be in EN ′(P ∪ {x})
but since N ′(S) ⊆ N ′(x), |N ′(S)|6p. Thus, by Lemma 8, |S|6p which implies that
|Q|¿ q.
Since N ′(Q) ⊆ N ′(x) and x �∈ P, the set N ′(Q) is disjoint from EN ′(P). Thus,

|EN ′(P)|= |EN ′(P−Q)| and |EN ′(P ∪ {x})|= |EN ′(P)|+ �(n− r)=r�+ q= |EN ′(P−
Q)|+�(n−r)=r�+q6 (|P|−q)�(n−r)=r�+�(n−r)=r�+q6 (|P|+1)�(n−r)=r�, where
the 4rst inequality follows from induction and the second from �(n− r)=r�¿ 1.

Lemma 11. Let G be extremal with n= 9 or n¿ 11. If r + �(n− r)=r�¿ 2m− t − 1
then, for any P ⊆ Gr; |EN ′(P)|6 |P|(�(n− r)=r� − 1).
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Proof. Observe that r + �(n− r)=r�¿ 2m− t − 1 is equivalent to r + �n=r�¿ 2m− t
so as was noted following Lemma 9 |M (v)|¿q+1. We parallel the proof of Lemma
10. If P= {v} and |N ′(v)|= �(n− r)=r�+ q; q¿ 0, then |N ′(M (v)−{v})|¿ q+1 so
|EN ′(v)|6 |N ′(v)| − q− 1 = �(n− r)=r� − 1.
Assume that upon adding an arbitrary vertex x to set P, we get |EN ′(P ∪ {x})| =

|EN ′(P)|+ �(n− r)=r�+ q; q¿ 0. Then |N ′(x)|= �(n− r)=r�+ q+p for some p¿ 0
and so |M (x)|¿ q+p+ 2. If S is the set of vertices in M (x)− {x} which are not in
P and Q are those in P, then just as in the previous proof, |S|6p which implies in
this case that |Q|¿ q + 1. Thus, we arrive at the inequality |EN ′(P ∪ {x})|6 (|P| −
q − 1)(�(n− r)=r� − 1) + �(n− r)=r�+ q6 (|P|+ 1)(�(n− r)=r� − 1) where the 4rst
inequality follows from induction and the second by Lemma 7.

Corollary 12. If G is extremal with n¿ 11 or n= 9, then r is feasible.

Proof. By Lemma 6, r+ �n=r�¿ 2m− t. If r is not feasible, then r+ �n=r�¿ 2m− t.
Therefore, by Lemma 11, the entire set V (Gr) can dominate at most r(�(n − r)=r� −
1)¡r((n− r)=r+1− 1)= n− r vertices. However, G is connected so all of the n− r
independent vertices in V (G)− V (Gr) must be dominated by a vertex in V (Gr).

The remaining cases are handled individually.

Lemma 13. If G is extremal with n= 7; 8, or 10, then r is feasible.

Proof. If n = 7 or n = 8, then m = 3, t = 0, and feasible values for r are 2, 3, and
4. If r = 1, G is K1; n−1 and G clearly is not extremal. Furthermore, by Lemma 5,
r6 2m− 2− t = 4. If n= 10, then m= 4, t = 1, and feasible values are 2, 3, 4, and
5. Again, it is clear that r can not be 1 for an extremal graph and, by Lemma 5,
r6 2m− 2− t = 5.

Theorem 14. If G is extremal then r is feasible.

Proof. By examining all graphs with n6 6, as shown in [5], we have found those
which are extremal and observed that r is feasible for each of them. The case n¿ 7
follows by Corollary 12 and Lemma 13.

If we let 	(G) be the independence number of a graph then, for extremal graphs,
	(G) = n − r. Also, by Lemma 1, i(G) = n − 2m + 2 + t. By de4nition r is feasible
if and only if r + �n=r� = 2m − t. These equalities lead to the following corollary to
Theorem 14 which relates i(G) to 	(G).

Corollary 15. If G is extremal then i(G) = 	(G)− �n=(n− 	(G))�+ 2.
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4. Special cases and structural characterizations

When r divides a suJciently large n, we can obtain a strong bound on the outdegree
of any vertex in Gr .

Lemma 16. Suppose G is extremal with n¿ 11 or n=9. If r divides n, then |N ′(v)|6
(n− r)=r for all v∈V (Gr).

Proof. Suppose there is a vertex v∈V (Gr) with |N ′(v)|=(n− r)=r+ q and q¿ 1. By
Lemma 9, |M (v)|¿ q+1. By the connectivity of G, there are at most r−|M (v)|6 r−
(q+1) vertices which can have the vertices in I−N ′(v) as their exclusive neighborhood.
Therefore, by Lemma 10, (r− (q+1))(n− r)=r¿ n− r−|N ′(v)|=n− r− (n− r)=r−q.
Simplifying results in the inequality n6 2r which contradicts Lemma 7.

When n = 9 or n¿ 11, extremal graphs for which r divides n have a unique
structure.

Theorem 17. Assume n= 9 or n¿ 11. If r divides n, then G is extremal if and only
if Gr is complete and each v∈Gr has |N ′(v)|= |EN ′(v)|= (n− r)=r.

Proof. Suppose G is extremal and let v∈V (Gr). We have |N ′(V (Gr) − {v})|6∑
x∈V (Gr)−{v} |N ′(x)|6 (r − 1)(n − r)=r, where the second inequality follows from

Lemma 16. Hence, |I | − |N ′(V (Gr)− {v})|¿ n− r − (r − 1)(n− r)=r = (n− r)=r. By
the de4nition of exclusive neighborhood, |EN ′(v)| = |I | − |N ′(V (Gr) − {v})|. There-
fore, again using Lemma 16 for the 4rst of the following inequalities, we obtain
(n− r)=r¿ |N ′(v)|¿ |EN ′(v)|¿ (n− r)=r. Thus, the inequalities may be replaced with
equalities.
If Gr is not complete then there exist vertices v and w in V (Gr) which are not

adjacent. Taking the union of v, w, and the outvertices not dominated by v or w we
obtain an independent dominating set of size 2 + n − r − 2(n − r)=r = 2 + n − (n −
r)=r − (r + (n− r)=r) = 2 + n− (n− r)=r − (2m− t − 1). Therefore, i(G)6 n− 2m+
2 + t + (1− (n− r)=r). This contradicts G being extremal since n¿ 2r and r divides
n− r imply that (n− r)=r¿ 2.
For the converse, observe that a minimum independent dominating set is formed

from a vertex v of Gr and the (r − 1)((n− r)=r) outvertices not adjacent to v. There
are 1+ (r− 1)(n− r)=r= n− (r+ n=r)+ 2= n− 2m+ t+2 vertices in this dominating
set so G is extremal.

According to Theorem 17, when r divides n then up to isomorphism there is a unique
extremal graph which is obtained by joining (n− r)=r pendant vertices to each vertex
of a Kr . This is precisely the method used by Gimble and Vestergaard to construct the
graphs in GV. As a consequence of the following corollary we see that these graphs
are the only extremal graphs when n= m2.
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Corollary 18. Suppose n=m2 with m¿ 3 or n=m2−m with m¿ 4. Then G is extremal
if and only if Gr is complete and each v∈Gr has |N ′(v)|= |EN ′(v)|= (n− r)=r.

Proof. It is easy to see that the only feasible values for r are r = m if n = m2, and
r = m or r = m− 1 if n= m2 − m. The result follows from Theorem 17.

The following two lemmas show that the structure in the n=m2 case is very similar
to a more general situation and allow us to determine a structural characterization for
most extremal graphs. Indeed, most of the time Gr is complete and each vertex has
outdegree of no more than �(n− r)=r�.
Lemma 19. If G is extremal and m¿ 5, (n¿ 17) no vertex in Gr has outdegree
greater than �(n − r)=r� + 1. Furthermore, if m¿ 5 and some vertex in Gr has
outdegree equal to �(n− r)=r�+ 1, one of the following holds:

(a) n= m2 − m+ 1 and m6 r6m+ 1,
(b) n= m2 − m+ 2 and m6 r6m+ 1,
(c) n= m2 − 2m+ 2 and m− 16 r6m+ 1,
(d) n= m2 − 2m+ 3 and r = m.

Proof. Suppose some vertex, v, in Gr has outdegree �(n − r)=r� + q with q¿ 1. By
Lemma 9, |M (v)|¿ q+1. Let P be the at most r − q− 1 vertices of Gr −M (v). The
outneighborhood of P must include the n− r − �(n− r)=r� − q vertices of I − N ′(v).
Thus, by Lemma 10, it must be true that (r−q−1)�(n−r)=r�¿ n−r−�(n−r)=r�−q.
Since r is feasible and �(n − r)=r� = �n=r� − 1, we obtain (r − q − 1)(2m − r − t −
1)¿ n − 2m + t + 1 − q which can be transformed into the following quadratic in r:
−r2 + (2m − t + q)r − 2mq + qt + 2q − n¿ 0. We note that t = t2 and compute the
discriminant as q2 + (2t + 8− 4m)q+ 4m2 − 4mt + t − 4n.
If t = 0 (which implies n¿m2 − m + 1), this discriminant is non-negative when

q¿ 2m − 4 + 2
√
n+ 4− 4m or q6 2m − 4 − 2

√
n+ 4− 4m. If the 4rst inequality

holds then q¿ 2m− 4+2
√
n+ 4− 4m¿ 2m− 4+2

√
m2 − 5m+ 5¿ 2m− 4+2(m−

3)=4m− 10. By Lemma 5, q¡r6 2m− 2 which implies 2m− 2¿ 4m− 10 contrary
to the assumption m¿ 5. Thus, q6 2m− 4− 2

√
n+ 4− 4m¡ 2m− 4− 2(m− 3)= 2

which implies q= 1.
If t = 1 (which implies n¿m2 − 2m + 2), the discriminant is non-negative when

q¿ 2m− 5+ 2
√
n+ 6− 4m or q6 2m− 5− 2

√
n+ 6− 4m¡ 2m− 5− 2(m− 4)= 3.

Once again, the 4rst inequality leads to a contradiction, so q6 2. However, substituting
t=1 and q=2 along with the condition n¿m2−2m+2 into our original inequality of
−r2+(2m−t+q)r−2mq+qt+2q−n¿ 0, we obtain −r2+(2m+1)r−m2−2m+4¿ 0
which has a negative discriminant when m¿ 5. Hence, once again q= 1.

Finally, we substitute q = 1 into our inequality to obtain −r2 + (2m − t + 1)r −
2m+ t +2− n¿ 0. It is easy to see that the discriminant of this quadratic is negative
if t = 0 and n¿m2 − m + 3 or if t = 1 and n¿m2 − 2m + 4 and hence, in these
cases, there can be no solution. Thus the value of n is restricted to the ones given
in conditions a through d and the corresponding integer solutions of the inequality
provide the speci4ed ranges for r.



R.C. Brigham et al. / Discrete Mathematics 275 (2004) 299–309 307

Lemma 20. If G is extremal, m¿ 5 (n¿ 17), and M is a maximum independent set
in Gr , then |M |6 2. Furthermore, if none of conditions (a)–(d) of Lemma 19 hold
then |M |= 1.

Proof. Choose a maximum independent set, M , in Gr . If |M | = 1, we are done so
assume that |M | = 1 + q; q¿ 1. Then, because any maximal independent set in Gr
is also an FIS, by Corollary 4, |N ′(M)|6 (q + 1) + 2m − 2 − t − r which, because
r is feasible, is equal to �(n − r)=r� + q. As in the proof to Lemma 19, let P be the
r− q− 1 vertices of Gr −M (v). Again, the outneighborhood of P must include the at
least n − r − �(n − r)=r� − q vertices of I − N ′(M), and we have the same quadratic
inequality as in Lemma 19.

Most extremal graphs do not satisfy conditions (a)–(d) of Lemma 19. We immedi-
ately obtain a structural characterization of these graphs.

Theorem 21. If n¿ 17 and none of conditions (a)–(d) of Lemma 19 hold, then G
is extremal if and only if r is feasible, Gr is complete and each vertex, v, of Gr has
|N ′(v)|6 �(n− r)=r�.

Proof. Theorem 14 along with Lemmas 19 and 20 prove necessity. To show suJ-
ciency, let M be an FIS in Gr . The completeness of Gr implies M = {v} for some
vertex v in V (Gr). Therefore, |N ′(M)| = |N ′(v)|6 �(n − r)=r� = |M | + �(n − r)=r� −
1= |M |+2m−2− t− r where the last equality follows from the feasibility of r. Thus,
G is extremal by Corollary 4.

From this theorem we see that when n¿ 17 and none of conditions (a)–(d) of
Lemma 19 hold the general construction of an extremal graph is similar to the con-
struction when r divides n. First join n − r pendant vertices to the vertices of a Kr ,
being careful not to join more than �(n− r)=r� vertices to any particular vertex. Then
add additional edges between the n− r vertices and the vertices of the Kr as long as
|N ′(v)|6 �(n− r)=r� for each v in the Kr . Note that the joined vertices in the resultant
graph do not need to be monovalent. Also, these graphs are not unique up to isomor-
phism for a particular n and r. For example there are two non-isomorphic extremal
graphs with n= 19 and r = 5.
We can also give a structural characterization of graphs which do satisfy condi-

tions (a)–(d) of Lemma 19. Here, the structure of Gr is slightly more complicated as
speci4ed in the following lemma.

Lemma 22. If G is extremal and m¿ 5 (n¿ 17), then either Gr is complete or one
of conditions (a)–(d) of Lemma 19 hold and Gr contains Kr−1 as a subgraph.

Proof. Choose a maximum independent set, M , in Gr . If |M |=1 then Gr is complete
and we are done. Otherwise, by Lemma 20, |M | = 2 and one of conditions (a)–(d)
of Lemma 19 must hold. Suppose Gr does not contain Kr−1 as a subgraph in which
case V (Gr) contains two disjoint sets of independent vertices, {u; v} and {x; y}. These
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sets are maximum independent sets in V (Gr) so each must be an FIS. It follows that
2+ n− r− |N ′({u; v})|¿ n− 2m+2+ t which simpli4es to 2m− t− r¿ |N ′({u; v})|.
Similarly, 2m − t − r¿ |N ′({x; y})|. Let P = V (Gr) − {u; v; x; y} so |P| = r − 4 and
|EN ′(P)|=n−r−|N ′{u; v; x; y}|¿ n−r−2(2m−t−r). Thus by Lemma 10, (r−4)�(n−
r)=r�¿ n− r−2(2m− t− r) or (r−4)�n=r�+4¿ n−4m+2t+2r. If condition (a) of
Lemma 19 holds, then n=m2−m+1, t=0, and r=m or r=m+1. If r=m+1, we see
that �n=r�= �(m2−m+1)=(m+1)�= �(m2 +m− 2m− 2+3)=(m+1)�=m− 1. In this
case, our inequality becomes (m−3)(m−1)¿m2−m+1−4m+2m+2 which reduces
to 4¿m, contradicting m¿ 5. The other seven cases speci4ed by conditions (a)–(d)
of Lemma 19 imply contradictions by similar reasoning and the result follows.

The more complicated structure of Gr for graphs which satisfy conditions (a)–(d)
of Lemma 19 leads to the following more complicated structure theorem for extremal
graphs.

Theorem 23. If n¿ 17 and one of the four conditions of Lemma 19 holds, then G
is extremal if and only if r is feasible, Gr contains Kr−1 as a subgraph, every pair
of independent vertices {v; w} in Gr satis8es |N ′({v; w})|6 �(n− r)=r�+1, and each
vertex, v, of Gr has |N ′(v)|6 �(n − r)=r� + 1 with equality only if v is adjacent to
at most r − 2 vertices of Gr .

Proof. To prove necessity, we suppose G is extremal. Theorem 14 along with Lemmas
22 and 19 imply, respectively, r is feasible, Gr contains Kr−1 as a subgraph, and each
vertex, v, of Gr has |N ′(v)|6 �(n − r)=r� + 1. Suppose v is a vertex of Gr with
|N ′(v)|= �(n− r)=r�+1 and v is adjacent to all of the other r−1 vertices of Gr . Then
v is an FIS with |N ′(v)|= �(n− r)=r�+1¿ �(n− r)=r�+ |v| − 1= |v|+2m− 2− t− r
which contradicts G being extremal by Corollary 4. A similar contradiction is obtained
from any pair of independent vertices, {v; w} in Gr with |N ′({v; w})|¿ �(n−r)=r�+2.

For suJciency, let M be an FIS in Gr . The structure of Gr ensures that |M |6 2.
Suppose |M |=1, so M ={v} for some vertex v in Gr . If |N ′(v)|= �(n− r)=r�+1 then
v is adjacent to at most r− 2 vertices in Gr , so there exists a vertex u in Gr such that
{u; v} is independent. We observe that N ′(u) is not contained in N ′(v) because M is
an FIS; hence, |N ′(u; v)|¿ �n−r=r�+2, a contradiction. Therefore, if M={v} we have
|N ′(v)|6 �(n−r)=r� and |N ′(M)|6 |M |+2m−2− t−r follows just as in the proof to
Theorem 21. If, on the other hand, M = {u; v} then the condition |N ′({u; v})|6 �(n−
r)=r�+ 1 and r being feasible also ensures that |N ′(M)|6 |M |+ 2m− 2− t − r. We
conclude by Corollary 4 that G is extremal.

When one of the four conditions of Lemma 19 holds we can construct the extremal
graphs by 4rst joining n− r pendant vertices to a graph Gr on r vertices that contains
a Kr−1 and then adding additional edges between the k − r vertices and the vertices
of Gr , being careful that each additional edge abides by the bounds of the theorem on
outdegrees and that the 4nal graph is connected. These graphs are also not unique up
to isomorphism for a particular n and r.
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The only extremal graphs not covered by the results in this section or by Theorem
14 are those where r does not divide n and n=7; 8; 10; 11; 13; 14, or 15. Each of these
graphs can be constructed on a case by case basis.
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