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1. Introduction

Metrized graphs are finite graphs equipped with a distance function on their edges. For a metrized
graph Γ , the tau constant τ(Γ ) is an invariant which plays important roles in both harmonic analysis
on metrized graphs and arithmetic of curves.

Chinburg and Rumely [7] introduced a canonical measure µcan of total mass 1 on a metrized graph
Γ . The diagonal values of the Arakelov–Green’s function gµcan(x, x) associated with µcan are constant
on Γ . Baker and Rumely called this constant ‘‘the tau constant’’ of a metrized graph Γ , and denoted it
by τ(Γ ). In [2, Conjecture 14.5], they posed a conjecture concerning the existence of a universal lower
bound for τ(Γ ). We call it Baker and Rumely’s lower bound conjecture.

Baker and Rumely [2] introduced a measure valued Laplacian operator ∆ which extends Laplacian
operators studied earlier in [7,20]. This Laplacian operator combines the ‘‘discrete’’ Laplacian on a
finite graph and the ‘‘continuous’’ Laplacian −f ′′(x)dx on R. In terms of spectral theory, the tau
constant τ(Γ ) is the trace of the inverse operator of ∆ with respect toµcan when Γ has total length 1.

The results in [21], [8, Chapter 4] and [9] indicate that the tau constant has important applications
in arithmetic of curves such as its connection to the Effective Bogomolov Conjecture over function
fields.

In the article [10], various formulas for τ(Γ ) are given, and Baker and Rumely’s lower bound
conjecture is verified for a number of large families of graphs. It is shown in the article [11] that this
conjecture holds formetrized graphswith edge connectivitymore than 4; and that proving it for cubic
graphs is sufficient to show that it holds for all graphs.
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Verifying the Baker and Rumely’s lower bound conjecture in the remaining cases or showing a
counter example to this conjecture, and finding metrized graphs with minimal tau constants, are
interesting and subtle problems. However, except for some special cases, computing the tau constant
for metrized graphs with large number of vertices is not an easy task. In this paper, we will give a
formula for the tau constant of Γ in terms of the discrete Laplacian matrix L of Γ and its pseudo-
inverse L+. In particular, this formula leads to an algorithm for computing τ(Γ ) whose complexity is
at the order of matrix inversion.

In Section 2, we recall several facts about the metrized graphs, the Laplacian operator ∆, the
canonical measure µcan and the tau constant τ(Γ ). In particular, we note that metrized graphs can
be interpreted as electric circuits: circuit reduction theory plays an important role in this paper. At
the end of Section 2, we give several formulas for the tau constant. In Section 3, we introduce the
discrete Laplacian matrix L of a metrized graph. We recall some of the properties of L and L+. We
start Section 4 with a remarkable relation between the resistance on Γ and the pseudo-inverse of the
discrete Laplacian on Γ [3]. We then derive several new identities by combining this relation with
results from Sections 2 and 3. Finally, we express the canonical measure in terms of L and L+, and
obtain our main result which is the following theorem.

Theorem 1.1. Let L = (lp q)v×v be the discrete Laplacian matrix of a metrized graph Γ , and let L+
=

(l+p q)v×v be its pseudo-inverse. Suppose pi and qi are the end points of edge ei of Γ for each i = 1, 2, . . . , e,
where e is the number of edges in Γ . Then we have

τ(Γ ) = −
1
12

−
ei∈E(Γ )

lpiqi


1
lpiqi

+ l+pipi − 2l+piqi + l+qiqi

2

+
1
4

−
q,s∈V (Γ )

lqsl+qql
+

ss +
1
v
trace (L+).

Up to now, the tau constant has been known for only a few graphs (see [2, pg 273] for a summary
of the results from [16]). Theorem 1.1 yields a much faster algorithm for computing the tau constant
as compared with the one used in [16].

We prove Theorem 1.1 at the end of Section 4. In Section 5, we give two explicit examples for the
computations of τ(Γ ) andµcan, and compute the tau constant for several classes of molecular graphs.
We used Mathematica [19] for these computations.

Note that there is a 1–1 correspondence between the equivalence classes of finite connected
weighted graphs, the metrized graphs, and the resistive electric circuits. If an edge ei of a metrized
graph has length Li, then we have that the resistance along ei is Li in the corresponding resistive
electric circuit, and that the weight of ei is 1

Li
in the corresponding weighted graph. The identities

that we establish for metrized graphs in this paper are also valid for electric circuits, and they have
equivalent forms for weighted graphs.

The results in this paper are improved versions of those given in [8, Sections 5.1, 5.2, 5.3 and 5.4].

2. The tau constant of a metrized graph

A metrized graph Γ is a finite connected graph whose edges are equipped with a distinguished
parametrization. In particular, Γ is a one-dimensional manifold except at finitely many ‘‘branch
points’’. One can find other definitions of metrized graphs in [17,7,2,20,1].

A metrized graph can have multiple edges and self-loops. For any given p ∈ Γ , the number of
directions emanating from pwill be called the valence of p, and will be denoted by υ(p). By definition,
there can be only finitely many p ∈ Γ with υ(p) ≠ 2.

A vertex set for a metrized graph Γ is a finite set of points V (Γ ) in Γ which contains all the points
with υ(p) ≠ 2. It is possible to enlarge a given vertex set by adjoining additional points of valence 2
as vertices.

Given a metrized graph Γ with vertex set V (Γ ), the set of edges of Γ is the set of closed line
segments with end points in V (Γ ). We will denote the set of edges of Γ by E(Γ ). However, we will
denote the graph obtained from Γ by deletion of the interior points of an edge ei ∈ E(Γ ) by Γ − ei.

We denote #(V (Γ )) and #(E(Γ )) by v and e, respectively. We denote the length of an edge
ei ∈ E(Γ ) by Li. The total length of Γ , which will be denoted by ℓ(Γ ), is given by ℓ(Γ ) =

∑e
i=1 Li.
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Let Zh(Γ ) be the set of all continuous functions f : Γ → C such that for some vertex set V (Γ ),
f is C2 on Γ \ V (Γ ) and f ′′(x) ∈ L1(Γ ). Baker and Rumely [2] defined the following measure valued
Laplacian on a given metrized graph. For a function f ∈ Zh(Γ ),

∆x(f (x)) = −f ′′(x)dx −

−
p∈V (Γ )

−
v⃗ at p

dv⃗ f (p)


δp(x). (1)

See [2] for details and for a description of the largest class of functions for which a measure valued
Laplacian can be defined.

In [7], a kernel jz(x, y) giving a fundamental solution of the Laplacian is defined and studied as a
function of x, y, z ∈ Γ . For fixed z and y it has the following physical interpretation:whenΓ is viewed
as a resistive electric circuit with terminals at z and y, with the resistance in each edge given by its
length, then jz(x, y) is the voltage difference between x and z, when unit current enters at y and exits
at z (with reference voltage 0 at z).

For any x, y, z in Γ , the voltage function jz(x, y) on Γ is a symmetric function in x and y, which
satisfies jx(x, y) = 0 and jx(y, y) = r(x, y), where r(x, y) is the resistance function on Γ . For each
vertex set V (Γ ), jz(x, y) is continuous on Γ as a function of all three variables. As the physical
interpretation suggests, jz(x, y) ≥ 0 for all x, y, z in Γ . For proofs of these facts, see [7], [2, sec. 1.5
and sec. 6], and [20, Appendix]. The voltage function jz(x, y) and the resistance function r(x, y) on a
metrized graph were also studied in [1,10].

For any real-valued, signed Borel measure µ on Γ with µ(Γ ) = 1 and |µ|(Γ ) < ∞, define
the function jµ(x, y) =


Γ
jζ (x, y) dµ(ζ ). Clearly jµ(x, y) is symmetric, and is jointly continuous in

x and y. Chinburg and Rumely [7] discovered that there is a unique real-valued, signed Borel measure
µ = µcan such that jµ(x, x) is constant on Γ . The measure µcan is called the canonical measure.
Baker and Rumely [2] called the constant 1

2 jµ(x, x) the tau constant of Γ and denoted it by τ(Γ ).
The Arakelov–Green’s function gµcan(x, y) equals jµ(x, y) −

1
2 jµ(x, x), so this definition coincides with

the one in the introduction.
The following theorem gives an explicit description of the canonical measure µcan.

Theorem 2.1 ([7, Theorem 2.11]). Let Γ be a metrized graph. Suppose that Li is the length of edge ei and
Ri is the effective resistance between the end points of ei in the graph Γ − ei. Then

µcan(x) =

−
p∈V (Γ )


1 −

1
2
v (p)


δp(x) +

−
ei∈E(Γ )

dx
Li + Ri

,

where δp(x) is the Dirac measure.

Here is a function-theoretic expression for τ(Γ ).

Lemma 2.2 ([2, Corollary 14.3]). Let {λ1, λ2, λ3, . . .} be the set of eigenvalues of the Laplacian ∆ with
respect to the canonical measure µcan, that is, the set of eigenvalues of ∆ acting on the space of piecewise
C2 functions f satisfying


Γ
f dµcan = 0. Then

ℓ(Γ ) · τ(Γ ) =

∞−
n=1

1
λn

.

In particular, if ℓ(Γ ) = 1, then τ(Γ ) is the trace of the inverse operator to ∆ with respect to µcan.

Here is another expression for τ(Γ ).

Lemma 2.3 ([16]). Given a metrized graph Γ , if r(x, y) is its resistance function, then for each x ∈ Γ

τ(Γ ) =
1
2

∫
Γ

r(x, y)dµcan(y).

Yet another description of τ(Γ ) is as follows.

Lemma 2.4 ([2, Lemma 14.4]). For any fixed p ∈ Γ , we have τ(Γ ) =
1
4


Γ
( d
dx r(x, p))

2dx.
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Fig. 1. Circuit reduction of Γ − ei with reference to pi , qi and p.

Remark 2.5. Let Γ be any metrized graph with resistance function r(x, y). If we enlarge V (Γ ) by
adjoining additional points p ∈ Γ with υ(p) = 2, the resistance function does not change, and thus
τ(Γ ) does not change by Lemma 2.4.

Note that τ(Γ ) is an invariant of the metrized graph Γ , which depends only on the topology and
the lengths of the edges of Γ .

Let Γ − ei be a connected graph for an edge ei ∈ E(Γ ) of length Li. Suppose pi and qi are the end
points of ei, and p ∈ Γ − ei. By applying circuit reductions, we can transform Γ − ei into a Y-shaped
graph with the same resistances between pi, qi, and p as in Γ − ei. More details on this can be found
in [10, Section 2]. Since Γ −ei has such a circuit reduction, Γ has the circuit reduction as illustrated in
Fig. 1 with the corresponding voltage values on each segment, where ĵx(y, z) is the voltage function in
Γ − ei. Throughout this paper, we will use the following notation: Rai,p := ĵpi(p, qi), Rbi,p := ĵqi(pi, p),
Rci,p := ĵp(pi, qi), and Ri is the resistance between pi and qi in Γ − ei. Note that Rai,p + Rbi,p = Ri for
each p ∈ Γ . When Γ − ei is not connected, if p belongs to the component of Γ − ei containing pi we
set Rbi,p = Ri = ∞ and Rai,p = 0, while if p belongs to the component of Γ − ei containing qi we set
Rai,p = Ri = ∞ and Rbi,p = 0.

By computing the integral in Lemma 2.4, one obtains the following formula for the tau constant.

Proposition 2.6 ([16]). Let Γ be a metrized graph, and let Li be the length of the edge ei, for i ∈

{1, 2, . . . , e}. Using the notation above, if we fix a vertex p we have

τ(Γ ) =
1
12

−
ei∈Γ


L3i + 3Li(Rai,p − Rbi,p)

2

(Li + Ri)2


.

Here, if Γ − ei is not connected, i.e. Ri is infinite, the summand corresponding to ei should be replaced by
3Li, its limit as Ri −→ ∞.

The proof of Proposition 2.6 can be found in [10, Proposition 2.9].Wewill use the following remark
in Section 4.

Remark 2.7. It follows from Lemma 2.4 and Proposition 2.6 that
∑

ei∈E(Γ )

Li(Rai,p−Rbi,p)
2

(Li+Ri)2
is independent

of the chosen vertex p ∈ V (Γ ).

Let pi and qi be the end points of the edge ei as in Fig. 1. It follows from parallel and series circuit
reductions that

r(pi, p) =
(Li + Rbi,p)Rai,p

Li + Ri
+ Rci,p, and r(qi, p) =

(Li + Rai,p)Rbi,p

Li + Ri
+ Rci,p. (2)
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Therefore, r(pi, p) − r(qi, p) =
Li(Rai,p−Rbi,p)

Li+Ri
, and so−

ei∈ E(Γ )

Li(Rai,p − Rbi,p)
2

(Li + Ri)2
=

−
ei∈ E(Γ )

(r(pi, p) − r(qi, p))2

Li
. (3)

Proposition 2.8. Let Γ be a metrized graph with the resistance function r(x, y), and for each edge
ei ∈ E(Γ ), let ei be parametrized by a segment [0, Li], under its arc-length parametrization. Then for
any p ∈ V (Γ ),

τ(Γ ) = −
1
4

−
q∈V (Γ )

(υ(q) − 2)r(p, q) +
1
2

−
ei∈ E(Γ )

1
Li + Ri

∫ Li

0
r(p, x)dx.

Proof. We have τ(Γ ) =
1
2


Γ
r(p, x)dµcan(x), by Lemma 2.3. Hence by Theorem 2.1,

τ(Γ ) =
1
2

−
q∈V (Γ )


1 −

1
2
υ(p)

∫
Γ

r(p, x)δq(x) +

−
ei∈ E(Γ )

1
Li + Ri

∫ Li

0
r(p, x)dx.

This gives the result. �

Lemma 2.9. Let pi and qi be end points of ei ∈ E(Γ ). For any p ∈ V (Γ ),−
ei∈ E(Γ )

Li(Rai,p − Rbi,p)
2

(Li + Ri)2
=

−
ei∈ E(Γ )

Li
Li + Ri

(r(pi, p) + r(qi, p)) −

−
q∈V (Γ )

(υ(q) − 2)r(p, q).

Proof. We first note that r(x, p) =
(x+Rai,p)(Li−x+Rbi,p)

Li+Ri
+ Rci,p if x ∈ ei. By Lemma 2.4, 4τ(Γ ) =

Γ
( d
dx r(x, y))

2dx. Integrating by parts, we obtain

4τ(Γ ) =

−
ei∈ E(Γ )


r(p, x) ·

d
dx

r(p, x)
Li

0
−

−
ei∈ E(Γ )

∫ Li

0
r(p, x)

d2

dx2
r(p, x)dx. (4)

Since d2

dx2
r(p, x) =

−2
Li+Ri

if x ∈ ei, the result follows from Proposition 2.8 and Eqs. (2) and (4). �

Chinburg and Rumely [7, page 26] showed that−
ei∈E(Γ )

Li
Li + Ri

= e − v + 1. (5)

3. The discrete Laplacian matrix L and its pseudo-inverse L+

Throughout this paper, all matriceswill have entries inR. To have awell-defined discrete Laplacian
matrix L for a metrized graph Γ , we first choose a vertex set V (Γ ) for Γ in such a way that there are
no self-loops, and no multiple edges connecting any two vertices. This can be done by enlarging the
vertex set by considering additional valence 2 points as vertices whenever needed. We will call such
a vertex set V (Γ ) adequate. If distinct vertices p and q are the end points of an edge, we call them
adjacent vertices.

Given a matrix M, let MT , tr(M) and M−1 be the transpose, trace and inverse of M, respectively.
Let Iv be the v × v identity matrix, and let O be the zero matrix (with the appropriate size if it is not
specified). Let J be the v × v matrix whose entries are all 1’s.

A matrix M is called doubly centered, if both row and column sums are 0. That is, M is doubly
centered iff MY = O and YTM = O, where Y = [1, 1, . . . , 1]T .

LetΓ be ametrized graphwith e edges andwith an adequate vertex set V (Γ ) containing v vertices.
Fix an ordering of the vertices in V (Γ ). Let {L1, L2, . . . , Le} be a labeling of the edge lengths. Thematrix
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A = (apq)v×v given by

apq =

0 if p = q, or p and q are not adjacent
1
Lk

if p ≠ q, and p and q are connected by an edge of length Lk

is called the adjacency matrix of Γ . Let D = diag(dpp) be the v × v diagonal matrix given by
dpp =

∑
s∈V (Γ ) aps. Then L := D − A is called the discrete Laplacian matrix of Γ . That is, L = (lpq)v×v

where

lpq =


0 if p ≠ q, and p and q are not adjacent

−
1
Lk

if p ≠ q, and p and q are connected by an edge of length Lk

−

−
s∈V (Γ )−{p}

lps if p = q.

The discrete Laplacian matrix is also known as the generalized (or the weighted) Laplacian matrix in
the literature.

Example 3.1 ([9, Remark 3.1]). For anymetrized graphΓ , the discrete Laplacianmatrix L is symmetric
and doubly centered. That is,

∑
p∈V (Γ ) lpq = 0 for each q ∈ V (Γ ), and lpq = lqp for each p, q ∈ V (Γ ).

In our case, Γ is connected by definition. Thus, the discrete Laplacian matrix L of Γ is a (v × v)
matrix of rank v − 1 if the adequate vertex set V (Γ ) has v vertices. The null space of L is the
one-dimensional space spanned by [1, 1, . . . , 1]T . Since L is a real symmetric matrix, it has real
eigenvalues. Moreover, L is positive semi-definite. More precisely, one of the eigenvalues of L is 0 and
the others are positive. Thus, L is not invertible. However, it has generalized inverses. In particular, it
has the pseudo-inverse L+, also known as the Moore–Penrose generalized inverse, which is uniquely
determined by the following properties:

(i) LL+L = L, (iii) (LL+)T = LL+,

(ii) L+LL+
= L+, (iv) (L+L)T = L+L.

A v × v matrix M is called an EP matrix if M+M = MM+. A necessary and sufficient condition
for M to be an EP matrix is that Mu = λu iff M+u = λ+u, for each eigenvector u of M. Another
characterization of an EP matrix M is that MX = O iff MTX = O, where X is also v × v. Any symmetric
matrix is an EP matrix [6, pg 253].

The matrix L has the following properties:

(i) L and L+ are symmetric, (iii) L and L+ are EP matrices,
(ii) L and L+ are doubly centered, (iv) L and L+ are positive semi-definite.

For a discrete Laplacian matrix L of size v × v, we have the following formula for L+ (see [15, ch
10]):

L+
=


L −

1
v
J
−1

+
1
v
J (6)

where J is of size v × v and has all entries 1.

Remark 3.2. Since L+ is doubly centered,
∑

p∈V (Γ ) l
+
pq = 0, for each q ∈ V (Γ ). Also, l+pq = l+qp, for each

p, q ∈ V (Γ ).

We use the following lemma and its corollary, Corollary 3.4, frequently in the rest of this article.

Lemma 3.3 ([13, Equation 2.9]). Let J be of size v × v as above and let L be the discrete Laplacian of a
graph (not necessarily having equal edge lengths). Then LL+

= L+L = I − 1
v
J.
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Lemma 3.3 was obtained by Gutman and Xiao (see [12, Lemma 3]) when L arises from a graph
having edges of equal length 1.

Corollary 3.4. Let Γ be a metrized graph and let L be the corresponding discrete Laplacian matrix of size
v × v. Then for any p, q ∈ V (Γ ),

−
s∈V (Γ )

l+pslsq =


−

1
v

if p ≠ q

v − 1
v

if p = q.

See [15], [6, ch 10], [4,14] for more information about L and L+.

4. The discrete Laplacian, the resistance function, and the tau constant

In this section, we will obtain a formula (see Theorem 4.10) for the tau constant in terms of the
entries of L and L+. Our main tools will be a remarkable relation between the resistance and the
pseudo-inverse L+ (Lemma 4.1 below), properties of L and L+ given in Section 3, the results from
Section 1 concerning metrized graphs, and the circuit reduction theory.

Lemma 4.1 ([3,5], [13, Theorem A]). Suppose Γ is a graph with the discrete Laplacian L and the resistance
function r(x, y). Let H be a generalized inverse of L (i.e., LHL = L). Then we have

r(p, q) = Hpp − Hpq − Hqp + Hqq, for any p, q ∈ V (Γ ).

In particular, for the pseudo-inverse L+ we have

r(p, q) = l+pp − 2l+pq + l+qq, for any p, q ∈ V (Γ ).

Lemma 4.1 shows that the pseudo-inverses can be used to compute the resistance r(p, q) between
any p, q in Γ . Namely, we choose an adequate vertex set V (Γ ) containing p and q. Then we compute
the corresponding pseudo-inverse, and apply Lemma 4.1. Similarly, the following lemma shows that
the pseudo-inverses can be used to compute the voltage jp(q, s) for any p, q and s in Γ .

Lemma 4.2 ([9, Lemma 3.5]). Let Γ be a graph with the discrete Laplacian L and the voltage function
jx(y, z). Then for any p, q, s in V (Γ ),

jp(q, s) = l+pp − l+pq − l+ps + l+qs.

Corollary 4.3. Let Γ be a graph with the discrete Laplacian matrix L having the pseudo-inverse L+. Then
for any p, q ∈ V (Γ ), we have l+pp ≥ l+pq.

Proof. By Remark 3.2 and Lemma 4.2,
∑

s∈V (Γ ) jp(q, s) = v · (l+pp − l+pq) for any p and q in V (Γ ). Thus
the result follows from the fact that jp(q, s) ≥ 0 for any p, q, s ∈ Γ . �

Recall that we use Li for the length of edge ei ∈ E(Γ ) and Ri for the resistance between the end
points of ei in the graph Γ − ei. The following lemma expresses an important term for computing
τ(Γ ) in terms of L and L+.

Lemma 4.4. Let L be the discrete Laplacian matrix of size v × v for a graph Γ . Let pi and qi be the end
points of edge ei for any given ei ∈ E(Γ ). Then−

ei∈E(Γ )

LiR2
i

(Li + Ri)2
=

4(v − 1)
v

tr (L+) −

−
p,q∈V (Γ )

lpql+ppl
+

qq − 2
−

p,q∈V (Γ )

lpq(l+pq)
2.
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Proof. First, we use Example 3.1 to obtain

−
p,q∈V (Γ )

lpq(l+pp)
2

=

−
p∈V (Γ )

(l+pp)
2

 −
q∈V (Γ )

lpq


= 0. (7)

Using Corollary 3.4,

−
p,q∈V (Γ )

lpql+pql
+

pp =

−
p∈V (Γ )

l+pp

 −
q∈V (Γ )

lpql+pq


=

v − 1
v

· tr (L+). (8)

Then −
ei∈E(Γ )

LiR2
i

(Li + Ri)2
=

−
ei∈E(Γ )

1
Li

(r(pi, qi))2, since r(pi, qi) =
LiRi

Li + Ri
.

= −

−
ei∈E(Γ )

lpiqi(l
+

pipi + l+qiqi − 2l+pi,qi)
2, by Lemma 4.1

= −
1
2

−
p,q∈V (Γ )

lpq(l+pp + l+qq − 2l+pq)
2, as lpq = 0 if p, q are not adjacent

= −
1
2

−
p,q∈V (Γ )

lpq(l+pp + l+qq)
2
+ 2

−
p,q∈V (Γ )

(lpq(l+pp + l+qq)l
+

pq − lpq(l+pq)
2)

= −

−
p,q∈V (Γ )

lpql+ppl
+

qq +

−
p,q∈V (Γ )

(4lpql+ppl
+

pq − 2lpq(l+pq)
2), by Eq. (7).

Thus, the result follows from Eq. (8). �

Next, we will have several lemmas concerning identities involving the entries of L and L+.

Lemma 4.5. Let L be the discrete Laplacian matrix of a graph Γ . Then for any p ∈ V (Γ ),−
q,s∈V (Γ )

lqs(l+qq − l+ss)(l
+

qp − l+sp) = −2
−

q,s∈V (Γ )

lqsl+qql
+

sp.

Proof. By using Example 3.1, for any p ∈ V (Γ ),

∑
q,s∈V (Γ )

lqsl+qql
+
qp =

∑
q∈V (Γ )

l+qql
+
qp

 ∑
s∈V (Γ )

lqs


= 0. (9)

Using Example 3.1 and Eq. (9) for the second equality,−
q,s∈V (Γ )

lqs(l+qq − l+ss)(l
+

qp − l+sp) =

−
q,s∈V (Γ )

(lqsl+qql
+

qp − lqsl+qql
+

sp − lqsl+ss l
+

qp + lqsl+ss l
+

sp)

= −

−
q,s∈V (Γ )

(lqsl+qql
+

sp + lqsl+ss l
+

qp).

This is equivalent to what we wanted. �

Lemma 4.6. Let L be the discrete Laplacian matrix of size v × v for a graph Γ , and let pi, qi be the end
points of ei ∈ E(Γ ). Then for any p ∈ V (Γ ),

l+pp =
1
v
tr(L+) +

−
ei∈E(Γ )

Li
Li + Ri

(l+ppi + l+pqi) −

−
q∈V (Γ )

υ(q)l+pq,

l+pp =
1
v
tr(L+) −

−
ei∈E(Γ )

Ri

Li + Ri
(l+ppi + l+pqi).
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Proof. We use Lemma 2.9 for the first equality below and Lemma 4.1 for the second equality below.
For any p ∈ V (Γ ),−

ei∈E(Γ )

Li(Rai,p − Rbi,p)
2

(Li + Ri)2
=

−
ei∈E(Γ )

Li
Li + Ri

(r(pi, p) + r(qi, p)) −

−
q∈V (Γ )

(υ(q) − 2)r(p, q)

=

−
ei∈E(Γ )

Li
Li + Ri

(l+pipi + l+qiqi − 2(l+ppi + l+pqi − l+pp))

−

−
q∈V (Γ )

(υ(q) − 2)(l+qq − 2l+pq + l+pp)

= 2l+pp +

−
ei∈E(Γ )

Li
Li + Ri

(l+pipi + l+qiqi − 2(l+ppi + l+pqi))

−

−
q∈V (Γ )

((υ(q) − 2)l+qq + 2υ(q)l+pq)

by Eq. (5) and the fact that
−

q∈V (Γ )

(υ(q) − 2) = 2e − 2v. (10)

If we sum equation (10) over all vertices and apply Example 3.1, we obtain−
s∈V (Γ )

−
ei∈E(Γ )

Li(Rai,s − Rbi,s)
2

(Li + Ri)2
= 2 · tr(L+) + v ·

−
ei∈E(Γ )

Li
Li + Ri

(l+pipi + l+qiqi)

+ v ·

−
q∈V (Γ )

(υ(q) − 2)l+qq. (11)

On the other hand, by Remark 2.7,−
ei∈E(Γ )

Li(Rai,p − Rbi,p)
2

(Li + Ri)2
=

1
v

−
s∈V (Γ )

−
ei∈E(Γ )

Li(Rai,s − Rbi,s)
2

(Li + Ri)2
. (12)

Hence the first equality in the lemma follows from Eqs. (10)–(12). Then the second equality in the
lemma follows from the first equality and the fact that−

q∈V (Γ )

υ(q)l+pq =

−
ei∈E(Γ )

(l+ppi + l+pqi). �

Lemma 4.7. Let L be the discrete Laplacian matrix of a graph Γ . Let pi and qi be end points of ei ∈ E(Γ ).
Then −

q,s∈V (Γ )

lqsl+qql
+

ss = −
1
2

−
q,s∈V (Γ )

lqs(l+qq − l+ss)
2

=

−
ei∈E(Γ )

1
Li

(l+pipi − l+qiqi)
2

≥ 0.

Proof. By Eq. (7),
∑

q,s∈V (Γ ) lqs(l
+
qq − l+ss)

2
= −2

∑
q,s∈V (Γ ) lqsl

+
qql

+
ss . This gives the first equality in the

lemma. Then the second equality is obtained by using the definition of L. �

Theorem 4.8 below expresses the first term in the formula for τ(Γ ) from Proposition 2.6 in terms
of the entries of L and L+. This theorem combines the technical lemmas above, and it will be used in
the proof of Theorem 4.10.

Theorem 4.8. Let L be the discrete Laplacian matrix of size v × v for a metrized graph Γ . Let pi and qi be
end points of edge ei ∈ E(Γ ), and let Ri, Rai,p, Rbi,p and Li be as defined before. Then−

ei∈E(Γ )

Li(Rbi,p − Rai,p)
2

(Li + Ri)2
=

4
v
tr(L+) −

1
2

−
q,s∈V (Γ )

lqs(l+qq − l+ss)
2.
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Proof. Note that for each p ∈ V (Γ ), the following equality follows from Example 3.1:−
q,s∈V (Γ )

lqs(l+qp)
2

=

−
q∈V (Γ )

(l+qp)
2
−

s∈V (Γ )

lqs = 0. (13)

By Corollary 3.4, for each p ∈ V (Γ ),−
q,s∈V (Γ )

lqsl+qql
+

sp = l+pp −
1
v
tr(L+). (14)

Similarly, by Corollary 3.4 and Remark 3.2, for any p ∈ V (Γ ) we have−
q,s∈V (Γ )

lqsl+qpl
+

sp = l+pp. (15)

Hence for each p ∈ V (Γ ),−
ei∈E(Γ )

Li(Rbi,p − Rai,p)
2

(Li + Ri)2
=

−
ei∈E(Γ )

1
Li

(r(pi, p) − r(qi, p))2, by Eq. (3)

= −

−
ei∈E(Γ )

lpiqi(−2l+ppi + l+pipi + 2l+pqi − l+qiqi)
2, by Lemma 4.1

= −
1
2

−
q,s∈V (Γ )

lqs(−2l+pq + l+qq + 2l+ps − l+ss)
2

= −
1
2

−
q,s∈V (Γ )

lqs(l+qq − l+ss)
2
+ 2

−
q,s∈V (Γ )

lqs(l+qq − l+ss)(l
+

pq − l+ps)

− 2
−

q,s∈V (Γ )

lqs(l+pq − l+ps)
2

= −
1
2

−
q,s∈V (Γ )

lqs(l+qq − l+ss)
2
− 4

−
q,s∈V (Γ )

lqsl+qql
+

sp

− 2
−

q,s∈V (Γ )

lqs(l+pq − l+ps)
2, by Lemma 4.5

= −
1
2

−
q,s∈V (Γ )

lqs(l+qq − l+ss)
2
− 4

−
q,s∈V (Γ )

lqsl+qql
+

sp

+ 4
−

q,s∈V (Γ )

lqsl+pql
+

ps, by Eq. (13).

= −
1
2

−
q,s∈V (Γ )

lqs(l+qq − l+ss)
2
− 4


l+pp −

1
v
tr(L+)


+ 4(l+pp),

by Eqs. (14) and (15).

This gives the result. �

Lemma 4.9 below expresses the second term in the formula for τ(Γ ) from Proposition 2.6 in terms
of the entries of L and L+.

Lemma 4.9. Let L be the discrete Laplacian matrix of a metrized graph Γ . Suppose pi and qi are end points
of edge ei. Then−

ei∈E(Γ )

L3i
(Li + Ri)2

=

−
ei∈E(Γ )

1
Li

(Li − l+pipi + 2l+piqi − l+qiqi)
2.
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Fig. 2. Γ with V (Γ ) = {1, 2, 3} and with an adequate vertex set {1, 2, 3, 4, 5, 6, 7}.

Fig. 3. Fusene graphs.

Proof. Since LiRi
Li+Ri

= r(pi, qi) for each ei ∈ E(Γ ), we have

−
ei∈E(Γ )

L3i
(Li + Ri)2

=

−
ei∈E(Γ )

1
Li


Li −

LiRi

Li + Ri

2

=

−
ei∈E(Γ )

1
Li

(Li − r(pi, qi))2.

Then the result follows from Lemma 4.1. �

Our main result is the following formula for τ(Γ ).

Theorem 4.10. Let L be the discrete Laplacian matrix of size v × v for a metrized graph Γ , and let L+ be
its Moore–Penrose pseudo-inverse. Suppose pi and qi are end points of ei ∈ E(Γ ). Then we have

τ(Γ ) = −
1
12

−
ei∈E(Γ )

lpiqi


1
lpiqi

+ l+pipi − 2l+piqi + l+qiqi

2

+
1
4

−
q,s∈V (Γ )

lqsl+qql
+

ss +
1
v
tr(L+),

τ (Γ ) = −
1
12

−
ei∈E(Γ )

lpiqi


1
lpiqi

+ l+pipi − 2l+piqi + l+qiqi

2

−
1
4

−
ei∈E(Γ )

lpiqi(l
+

pipi − l+qiqi)
2
+

1
v
tr(L+).

Proof. By Proposition 2.6, for any p ∈ V (Γ )

τ (Γ ) =
1
12

−
ei∈E(Γ )

L3i
(Li + Ri)2

+
1
4

−
ei∈E(Γ )

Li(Rbi,p − Rai,p)
2

(Li + Ri)2
.

Thus the first equality in the theorem follows from Lemma 4.9, Theorem 4.8 and Lemma 4.7. Then the
second equality follows from Lemma 4.7. �

Corollary 4.11. Let L be the discrete Laplacian matrix of size v × v for a graph Γ . Then we have
τ(Γ ) ≥

1
v
tr(L+).
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Fig. 4. Sierpinski graphs.

Table 1
The tau constants for the fusene graphs listed in Fig. 3.

Mathematica name Vertex Edge Genus Tau constant

{Cycle, 6} 6 6 1 1
12

∼= 0.0833333

{Fusene, {2, 1}} 10 11 2 67
924

∼= 0.0725108

{Fusene, {3, 1}} 13 15 3 179
2940

∼= 0.0608844

{Fusene, {3, 2}} 14 16 3 671
9792

∼= 0.0685253

{Fusene, {3, 3}} 14 16 3 671
9792

∼= 0.0685253

{Fusene, {4, 1}} 16 19 4 485
8892

∼= 0.0545434

{Fusene, {4, 3}} 17 20 4 277
4564

∼= 0.0606924

{Fusene, {4, 2}} 18 21 4 19907
299628

∼= 0.0664391

{Fusene, {4, 4}} 18 21 4 79
1188

∼= 0.0664983

{Fusene, {4, 5}} 18 21 4 19907
299628

∼= 0.0664391

{Fusene, {4, 6}} 18 21 4 19907
299628

∼= 0.0664391

{Fusene, {4, 7}} 18 21 4 19907
299628

∼= 0.0664391

Table 2
The tau constants for the Sierpinski graphs listed in Fig. 4.

Mathematica name Vertex Edge Genus Tau constant

{Sierpinski, 2} 6 9 4 19
324

∼= 0.058642

{Sierpinski, 3} 15 27 13 125
2916

∼= 0.0428669

{Sierpinski, 4} 42 81 40 110273
3280500

∼= 0.0336147

{Sierpinski, 5} 123 243 121 20903107
738112500

∼= 0.0283197

Next, we will express µcan in terms of the discrete Laplacian matrix and its pseudo-inverse.

Proposition 4.12. For a given metrized graph Γ , let L be its discrete Laplacian, and let L+ be the
corresponding pseudo-inverse. Suppose pi and qi denote the end points of ei ∈ E(Γ ). Then we have

µcan(x) =

−
p∈V (Γ )


1 −

1
2
v (p)


δp(x) −

−
ei∈E(Γ )

(lpiqi + l2piqi(l
+

pipi − 2l+piqi + l+qiqi))dx.

Proof. The result follows from Theorem 2.1, Lemma 4.1, and the fact that r(pi, qi) =
LiRi
Li+Ri

for each
ei ∈ E(Γ ). �

Theorem 1.1 (equivalently Theorem 4.10) and Eq. (6) yield an algorithm for computing τ(Γ ) and
µcan whose computational complexity andmemory consumption are at the level of amatrix inversion.
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Table 3
The tau constants for the fullerene graphs listed in Fig. 5.

Mathematica name Vertex Edge Genus Tau constant

{Fullerene, {26, 1}} 26 39 14 7355009
310441950

∼= 0.0236921

{Fullerene, {30, 1}} 30 45 16 8469668299
376900322940

∼= 0.0224719

{Fullerene, {36, 1}} 36 54 19 9458767
457228800

∼= 0.0206872

{Fullerene, {36, 5}} 36 54 19 1870203361309
89834777091072

∼= 0.0208183

{Fullerene, {40, 19}} 40 60 21 51201373387
2580599234400

∼= 0.0198409

{Fullerene, {42, 29}} 42 63 22 90912940434424
4612386087287433

∼= 0.0197106

{Fullerene, {42, 39}} 42 63 22 4125154143737
212106260089332

∼= 0.0194485

{Fullerene, {44, 37}} 44 66 23 21405369093991
1114465134182400

∼= 0.0192069

{Fullerene, {44, 62}} 44 66 23 884769233189201
44890049931959232

∼= 0.0197097

{Fullerene, {44, 63}} 44 66 23 312505972215103
16243272520993287

∼= 0.0192391

{Fullerene, {44, 66}} 44 66 23 11494830502198
596035416363453

∼= 0.0192855

{Fullerene, {44, 75}} 44 66 23 3799664631422701
198451222848853128

∼= 0.0191466

{Fullerene, {60, 1}} 60 90 31 206820207359384351
11254873744888870140

∼= 0.0183761

{Fullerene, {70, 4085}} 70 105 36 577119823897247737
35801159217650251425

∼= 0.0161201

{Fullerene, {80, 6877}} 80 120 41 3160741321
204906240000

∼= 0.0154253

Table 4
The tau constants for the Archimedean graphs listed in Fig. 6.

Mathematica name Vertex Edge Genus Tau constant

CuboctahedralGraph 12 24 13 9
256

∼= 0.0351563

SmallRhombicuboctahedralGraph 24 48 25 665041
22579200

∼= 0.0294537

SnubCubicalGraph 24 60 37 155391917
4335648768

∼= 0.0358405

TruncatedCubicalGraph 24 36 13 97
3456

∼= 0.0280671

TruncatedOctahedralGraph 24 36 13 50735
2032128

∼= 0.0249664

IcosidodecahedralGraph 30 60 31 6101
216000

∼= 0.0282454

SmallRhombicosidodecahedralGraph 60 120 61 9956707537
395646768000

∼= 0.0251656

TruncatedDodecahedralGraph 60 90 31 16211
810000

∼= 0.0200136

TruncatedIcosahedralGraph 60 90 31 960971207
56610576000

∼= 0.0169751

5. Examples

In this section, we compute the tau constant and the canonical measure for somemetrized graphs.
First we give two explicit examples.

Example 5.1. Let Γ be a complete graph on five vertices where each edge length is equal to 1
10 , and

so ℓ(Γ ) = 1. Then Γ has the following discrete Laplacian matrix and pseudo-inverse:

L =


40 −10 −10 −10 −10

−10 40 −10 −10 −10
−10 −10 40 −10 −10
−10 −10 −10 40 −10
−10 −10 −10 −10 40

 and
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Fig. 5. Fullerene graphs.

Table 5
The tau constants for the zero-symmetric graphs listed in Fig. 7.

Mathematica name Vertex Edge Genus Tau constant

{CubicTransitive, 41} 24 36 13 28849
1168128

∼= 0.0246968

{CubicTransitive, 47} 26 39 14 575018035
24613480476

∼= 0.0233619

{CubicTransitive, 51} 28 42 15 1601541769
72592693992

∼= 0.022062

{CubicTransitive, 52} 28 42 15 27228427
1194965352

∼= 0.022786

GreatRhombicuboctahedralGraph 48 72 25 2434001017
127209139200

∼= 0.0191339

GreatRhombicosidodecahedralGraph 120 180 61 123570761111647883
8587673220814128000

∼= 0.0143893

L+
=
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.

Thus, we obtain τ(Γ ) =
23
500 by applying Theorem 4.10. Moreover, by Proposition 4.12,

µcan(x) = −

−
p∈V (Γ )

δp(x) + 6
−

ei∈E(Γ )

dx.

Example 5.2. Let Γ be a metrized graph illustrated as the first graph in Fig. 2, where the edge lengths
are also shown. Note that ℓ(Γ ) = 1. Since Γ with the set of vertices V (Γ ) = {1, 2, 3} has a
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Fig. 6. Archimedean graphs.

self-loop and twomultiple edges, we need to work with an adequate vertex set to have the associated
discrete Laplacian matrix. This can be done by adjoining two additional points on each self-loop, and
one additional point on eachmultiple edge, to the vertex set. The newmetrized graph is illustrated by
the second graph in Fig. 2. Aswe knowby Remark 2.5 that the new length distribution for the self-loop
and the multiple edges will not change τ(Γ ). Now, Γ has the following discrete Laplacian matrix L
and pseudo-inverse L+ respectively:

27 0 −9 0 0 −9 −9
0 27 −9 0 0 −9 −9

−9 −9 36 −9 −9 0 0
0 0 −9 18 −9 0 0
0 0 −9 −9 18 0 0

−9 −9 0 0 0 18 0
−9 −9 0 0 0 0 18

 and
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Fig. 7. Zero-symmetric graphs.
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.

Finally, applying Theorem4.10 gives τ(Γ ) =
23
324 . By Proposition 4.12,wehave the following canonical

measure for Γ : µcan(x) = −
1
2δp1(x) −

1
2δp2(x) − δp3(x) + 3

∑
ei∈E(Γ ) dx.

In the rest of this section, we use Mathematica’s GraphData function [18] to obtain the plots and
adjacency matrix of several classes of graphs having various topologies and symmetries. We compute
the tau constant by implementing Theorem 1.1 in Mathematica [19]. From now on, we consider
metrized graphs with total length 1, and we assume that each graph has equal edge lengths.

Some fusene graphs, planar 2-connected graphswhose bounded faces are hexagons, are considered
in Table 1 and Fig. 3.

Some Sierpinski graphs are considered in Table 2 and in Fig. 4.
Some fullerene graphs, planar cubic graphs whose bounded faces pentagons or hexagons, are

considered in Table 3 and in Fig. 5.
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SomeArchimedean graphs, skeletons of one of the 13Archimedean solids, are considered in Table 4
and Fig. 6.

Some zero-symmetric graphs, vertex-transitive cubic graphs with edges partitioned into three
orbits, are considered in Table 5 and in Fig. 7.

Since the tau constant is an invariant of metrized graphs, it becomes an invariant of molecular
graphs. It would be interesting to understand the relation between the tau constant and other graph
invariants.

Acknowledgement

I would like to thank Dr. Robert Rumely for his continued support and discussions about this paper.

References

[1] M. Baker, X. Faber, Metrized graphs, Laplacian operators, and electrical networks, in: G. Berkolaiko, R. Carlson, S.A. Fulling,
P. Kuchment (Eds.), Proceedings of the Joint Summer Research Conference on QuantumGraphs and Their Applications, in:
Contemporary Mathematics, vol. 415, Snowbird Utah, 2006, pp. 15–33.

[2] M. Baker, R. Rumely, Harmonic analysis on metrized graphs, Canad. J. Math. 59 (2) (2007) 225–275.
[3] R.B. Bapat, Resistance matrix of a weighted graph, MATCH Commun. Math. Comput. Chem. 50 (2004) 73–82.
[4] R.B. Bapat, The Laplacian matrix of a graph, Math. Student 65 (1996) 214–223.
[5] R.B. Bapat, Resistance distance in graphs, The Mathematics Student 68 (1999) 87–98.
[6] S. Barnett, Matrices Methods and Applications, Clarendon Press, Oxford, 1990.
[7] T. Chinburg, R. Rumely, The capacity pairing, J. Reine Angew. Math. 434 (1993) 1–44.
[8] Z. Cinkir, The Tau Constant of Metrized Graphs, Thesis at University of Georgia, Athens, GA. 2007.
[9] Z. Cinkir, Generalized Foster’s identities, Int. J. Quantum Chem., published online March 2010 doi:10.1002/qua.22521.

[10] Z. Cinkir, The tau constant of a metrized graph and its behavior under graph operations, Available at
http://arxiv.org/abs/0901.0407v3 (submitted for publication).

[11] Z. Cinkir, The tau constant and the edge connectivity of a metrized graph, Available at http://arxiv.org/abs/0901.1481v2
(submitted for publication).

[12] I. Gutman, W. Xiao, Bulletin T.CXXIX de l’Académie serbe des sciences et des arts — 2004 Classe des sciences
mathématiques et naturelles sciences mathématiques, No. 29, 2004.

[13] D.J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81–95.
[14] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197, 198 (1994) 143–176.
[15] C. Rao, S. Mitra, Generalized Inverse of Matrices and its Applications, John Wiley and Sons, 1971.
[16] Summer 2003 Research Experience for Undergraduates (REU) on metrized graphs at the University of Georgia.
[17] R. Rumely, Capacity Theory on Algebraic Curves, in: Lecture Notes in Mathematics, vol. 1378, Springer-Verlag, Berlin,

Heidelberg, New York, 1989.
[18] Wolfram Research, Inc., Mathematica Documentation Center, Version 7.0, Champaign, IL, 2008, Available at

http://reference.wolfram.com/mathematica/ref/GraphData.html.
[19] Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL, 2008.
[20] S. Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993) 171–193.
[21] S. Zhang, Gross–Schoen cycles and dualising sheaves, Invent. Math. 179 (2010) 1–73.

http://dx.doi.org/doi:10.1002/qua.22521
http://arxiv.org/0901.0407v3
http://arxiv.org/0901.1481v2
http://reference.wolfram.com/mathematica/ref/GraphData.html

	The tau constant and the discrete Laplacian matrix of a metrized graph
	Introduction
	The tau constant of a metrized graph
	The discrete Laplacian matrix  L  and its pseudo-inverse  L+ 
	The discrete Laplacian, the resistance function, and the tau constant
	Examples
	Acknowledgement
	References


