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1. Introduction

Metrized graphs are finite graphs equipped with a distance function on their edges. For a metrized
graph I', the tau constant t (/") is an invariant which plays important roles in both harmonic analysis
on metrized graphs and arithmetic of curves.

Chinburg and Rumely [7] introduced a canonical measure fi.q, of total mass 1 on a metrized graph
I". The diagonal values of the Arakelov-Green’s function g, (X, x) associated with (i, are constant
on I". Baker and Rumely called this constant “the tau constant” of a metrized graph I', and denoted it
by t(I").In[2, Conjecture 14.5], they posed a conjecture concerning the existence of a universal lower
bound for (™). We call it Baker and Rumely’s lower bound conjecture.

Baker and Rumely [2] introduced a measure valued Laplacian operator A which extends Laplacian
operators studied earlier in [7,20]. This Laplacian operator combines the “discrete” Laplacian on a
finite graph and the “continuous” Laplacian —f”(x)dx on R. In terms of spectral theory, the tau
constant 7 (I') is the trace of the inverse operator of A with respect to i, when I" has total length 1.

The results in [21], [8, Chapter 4] and [9] indicate that the tau constant has important applications
in arithmetic of curves such as its connection to the Effective Bogomolov Conjecture over function
fields.

In the article [10], various formulas for t(I") are given, and Baker and Rumely’s lower bound
conjecture is verified for a number of large families of graphs. It is shown in the article [11] that this
conjecture holds for metrized graphs with edge connectivity more than 4; and that proving it for cubic
graphs is sufficient to show that it holds for all graphs.
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Verifying the Baker and Rumely’s lower bound conjecture in the remaining cases or showing a
counter example to this conjecture, and finding metrized graphs with minimal tau constants, are
interesting and subtle problems. However, except for some special cases, computing the tau constant
for metrized graphs with large number of vertices is not an easy task. In this paper, we will give a
formula for the tau constant of I" in terms of the discrete Laplacian matrix L of I" and its pseudo-
inverse L. In particular, this formula leads to an algorithm for computing 7 (I") whose complexity is
at the order of matrix inversion.

In Section 2, we recall several facts about the metrized graphs, the Laplacian operator A, the
canonical measure p., and the tau constant t(I"). In particular, we note that metrized graphs can
be interpreted as electric circuits: circuit reduction theory plays an important role in this paper. At
the end of Section 2, we give several formulas for the tau constant. In Section 3, we introduce the
discrete Laplacian matrix L of a metrized graph. We recall some of the properties of L and L. We
start Section 4 with a remarkable relation between the resistance on I" and the pseudo-inverse of the
discrete Laplacian on I" [3]. We then derive several new identities by combining this relation with
results from Sections 2 and 3. Finally, we express the canonical measure in terms of L and L™, and
obtain our main result which is the following theorem.

Theorem 1.1. Let L = (Ipq)yx, be the discrete Laplacian matrix of a metrized graph I', and let Lt =
(l;q)vxv be its pseudo-inverse. Suppose p; and q; are the end points of edge e; of I" foreachi = 1,2, ... ¢,
where e is the number of edges in I". Then we have

1 1 21 1
() == > g (l— o A R l;ql) +3 D sl ld + — trace (L),
Pidi

e;eE(I") q,seV(I")

Up to now, the tau constant has been known for only a few graphs (see [2, pg 273] for a summary
of the results from [16]). Theorem 1.1 yields a much faster algorithm for computing the tau constant
as compared with the one used in [16].

We prove Theorem 1.1 at the end of Section 4. In Section 5, we give two explicit examples for the
computations of 7 (I") and ¢¢qn, and compute the tau constant for several classes of molecular graphs.
We used Mathematica [19] for these computations.

Note that there is a 1-1 correspondence between the equivalence classes of finite connected
weighted graphs, the metrized graphs, and the resistive electric circuits. If an edge e; of a metrized
graph has length L;, then we have that the resistance along e; is L; in the corresponding resistive
electric circuit, and that the weight of e; is ;- in the corresponding weighted graph. The identities

that we establish for metrized graphs in thls paper are also valid for electric circuits, and they have
equivalent forms for weighted graphs.
The results in this paper are improved versions of those given in [8, Sections 5.1, 5.2, 5.3 and 5.4].

2. The tau constant of a metrized graph

A metrized graph I' is a finite connected graph whose edges are equipped with a distinguished
parametrization. In particular, I" is a one-dimensional manifold except at finitely many “branch
points”. One can find other definitions of metrized graphs in [17,7,2,20,1].

A metrized graph can have multiple edges and self-loops. For any given p € I, the number of
directions emanating from p will be called the valence of p, and will be denoted by v (p). By definition,
there can be only finitely many p € I" with v(p) # 2.

A vertex set for a metrized graph I" is a finite set of points V(") in I" which contains all the points
with v(p) # 2.1t is possible to enlarge a given vertex set by adjoining additional points of valence 2
as vertices.

Given a metrized graph I with vertex set V(I'), the set of edges of I" is the set of closed line
segments with end points in V(I7). We will denote the set of edges of I" by E(I"). However, we will
denote the graph obtained from I" by deletion of the interior points of an edge e; € E(I") by I — e;.

We denote #(V(I')) and #(E(I")) by v and e, respectively. We denote the length of an edge
e; € E(I') by L;. The total length of I", which will be denoted by ¢(I"), is given by £(I") = Z; 1 Li.
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Let Zh(I") be the set of all continuous functions f : I — C such that for some vertex set V(I"),
fis@?on "\ V(I')and f”(x) € L'(I"). Baker and Rumely [2] defined the following measure valued
Laplacian on a given metrized graph. For a function f € Zh(I"),

M) = ~f"Gdx— [Z daf(p)} 8 (x)- (1)
peV(I') Lvatp

See [2] for details and for a description of the largest class of functions for which a measure valued

Laplacian can be defined.

In [7], a kernel j,(x, y) giving a fundamental solution of the Laplacian is defined and studied as a
function of x, y, z € I'.For fixed z and y it has the following physical interpretation: when I is viewed
as a resistive electric circuit with terminals at z and y, with the resistance in each edge given by its
length, then j, (x, ) is the voltage difference between x and z, when unit current enters at y and exits
at z (with reference voltage 0 at z).

For any x, y, z in I', the voltage function j,(x, y) on I" is a symmetric function in x and y, which
satisfies jy(x,y) = 0and j,(y,y) = r(x,y), where r(x, y) is the resistance function on I". For each
vertex set V(I"), j,(x,y) is continuous on /" as a function of all three variables. As the physical
interpretation suggests, j,(x,y) > 0 for all x, y, z in I'. For proofs of these facts, see [7], [2, sec. 1.5
and sec. 6], and [20, Appendix]. The voltage function j,(x, y) and the resistance function r(x, y) on a
metrized graph were also studied in [1,10].

For any real-valued, signed Borel measure p on I with u(I") = 1 and |u|(I") < oo, define
the function j,(x,y) = frj(; (x,y)du(¢). Clearly j, (x, y) is symmetric, and is jointly continuous in
x and y. Chinburg and Rumely [7] discovered that there is a unique real-valued, signed Borel measure
W = [ean such that j,(x, x) is constant on I". The measure [iq, is called the canonical measure.
Baker and Rumely [2] called the constant %j,l (x, x) the tau constant of I and denoted it by t(I").

The Arakelov-Green’s function g, (X, y) equals j,, (x, y) — % Jju (%, x), so this definition coincides with
the one in the introduction.
The following theorem gives an explicit description of the canonical measure ficqp.

Theorem 2.1 ([7, Theorem 2.11]). Let I" be a metrized graph. Suppose that L; is the length of edge e; and
R; is the effective resistance between the end points of e; in the graph I’ — e;. Then

1 dx
Hean() = Y (1—2v(p)> 5+ Y TR’

peV(I) e;eE(I")

where 8, (x) is the Dirac measure.
Here is a function-theoretic expression for ¢ (I").

Lemma 2.2 ([2, Corollary 14.3]). Let {\1, X2, A3, ...} be the set of eigenvalues of the Laplacian A with
respect to the canonical measure [.qn, that is, the set of eigenvalues of A acting on the space of piecewise
C? functions f satisfying [, fdjtcan = 0. Then
o0
Lry-t(ry=

n=1

rﬂ .
In particular, if £(I") = 1, then T(I") is the trace of the inverse operator to A with respect to ficqn.
Here is another expression for t(I").

Lemma 2.3 ([16]). Given a metrized graph I', if r(x, y) is its resistance function, then for eachx € I"
1
(M) =< / r(x, Y)dpcan ().
2Jr

Yet another description of 7 (I") is as follows.

Lemma 2.4 ([2, Lemma 14.4]). For any fixed p € I", we have T(I") = %fr(f—xr(x, p))2dx.
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Pi &

Rayyp #= Jp,

Fig. 1. Circuit reduction of I — e; with reference to p;, g; and p.

Remark 2.5. Let I" be any metrized graph with resistance function r(x, y). If we enlarge V(I") by
adjoining additional points p € I" with v(p) = 2, the resistance function does not change, and thus
t(I") does not change by Lemma 2.4.

Note that 7(I") is an invariant of the metrized graph I, which depends only on the topology and
the lengths of the edges of I".

Let I — e; be a connected graph for an edge e; € E(I") of length L;. Suppose p; and g; are the end
points of ;, and p € I — e;. By applying circuit reductions, we can transform I — e; into a Y-shaped
graph with the same resistances between p;, q;, and p as in I — e;. More details on this can be found
in [10, Section 2]. Since I" — e; has such a circuit reduction, I" has the circuit reduction as illustrated in
Fig. 1 with the corresponding voltage values on each segment, where Jx(y z) is the voltage functlon in
I —e;. Throughout this paper, we will use the following notation: Ry, , := ]p, (D, @), Ry, p == ]ql (pi» D),
Rep = ]p(p,, qi), and R; is the resistance between p; and q; in I — e;. Note that R, , + Ry, , = R; for
eachp € I'.When I" — e; is not connected, if p belongs to the component of I" — e; containing p; we
set Ry, p = Ri = oo and R, , = 0, while if p belongs to the component of I" — e; containing q; we set
Ryp =Ri=o00andRy, , =0.

By computing the integral in Lemma 2.4, one obtains the following formula for the tau constant.

Proposition 2.6 ([16]). Let I" be a metrized graph, and let L; be the length of the edge e;, for i €

{1, 2, ..., e}. Using the notation above, if we fix a vertex p we have
()= g 3 (e,
12 ey (Li + Ri)?

Here, if I' — e; is not connected, i.e. R; is infinite, the summand corresponding to e; should be replaced by
3L;, its limit as Ry —> oo.

The proof of Proposition 2.6 can be found in [ 10, Proposition 2.9]. We will use the following remark
in Section 4.

Li(Rg;, p—Rp,; p)?

TRTAY isindependent
1 1

Remark 2.7. It follows from Lemma 2.4 and Proposition 2.6 that 3, .-,
of the chosen vertex p € V(I).

Let p; and g; be the end points of the edge e; as in Fig. 1. It follows from parallel and series circuit
reductions that

(Li + Rbi,p)Rai,p
Li+R;

(Li + Rai,p)Rbi,p

r(pi, p) =
(i p) L+R;

+Rep. and 1(gi.p) = + Re,p- 2)
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Li(Rui,p_Rbi,p)

LR and so

Therefore, r(p;, p) — r(qi, p) =

Li(Ra,-,p - Rb,-,p)2 _ (T(pi, p) - r(Qi’ p))2
2 Li+R)? 2 L '

(3)
ejc E(I") e;c E(I)
Proposition 2.8. Let I" be a metrized graph with the resistance function r(x,y), and for each edge
e; € E(I'), let e; be parametrized by a segment [0, L;], under its arc-length parametrization. Then for
anyp € V(I'),

1 Li
r(p, x)dx.
L +R; /0 ®.x

Proof. We have t(I") = % fr r(p, X)dican (%), by Lemma 2.3. Hence by Theorem 2.1,

1 1 1 Li
HOEE > (1—5U(p)>/rr(p,x)8q(x)+ > Li+Ri/0 r(p, X)dx.

qev(I) e €E(I)

1 1
== > w@-2re.0+5

qeV(I") eEeE()

This gives the result. O

Lemma 2.9. Let p; and q; be end points of e; € E(I"). Foranyp € V(I"),

Y B Rl s b @ - Y 0@ - 2r 6.0
e;cE(I") (Li +Ri) e;cE(I") i +Ri qev(r)

(X+Rai,p)(Li_x+Rbi,p)
Li+R;
J-(Lr(x, y))*dx. Integrating by parts, we obtain

d
ey =)y (r(m) : &r(p,x)>

e;cE(I")

Proof. We first note that r(x,p) = + R;p if x € e. By Lemma 24, 4t(I") =

Li

L; dz
- Z /0 r(p,x)@r(p,x)dx. (4)

e;cE(I")

=2

ince 4% _
Since (51(p, X) = %

if x € e;, the result follows from Proposition 2.8 and Egs. (2) and (4). O
Chinburg and Rumely [7, page 26] showed that

L;
Li+R;

=e—v+1. (5)
)

3. The discrete Laplacian matrix L and its pseudo-inverse L*

Throughout this paper, all matrices will have entries in R. To have a well-defined discrete Laplacian
matrix L for a metrized graph I", we first choose a vertex set V(I") for I" in such a way that there are
no self-loops, and no multiple edges connecting any two vertices. This can be done by enlarging the
vertex set by considering additional valence 2 points as vertices whenever needed. We will call such
a vertex set V(I") adequate. If distinct vertices p and q are the end points of an edge, we call them
adjacent vertices.

Given a matrix M, let M", tr(M) and M~! be the transpose, trace and inverse of M, respectively.
Let I, be the v x v identity matrix, and let O be the zero matrix (with the appropriate size if it is not
specified). Let ] be the v x v matrix whose entries are all 1’s.

A matrix M is called doubly centered, if both row and column sums are 0. That is, M is doubly
centered iff MY = O and Y'M = O, whereY = [1, 1, ..., 1] .

Let I" be a metrized graph with e edges and with an adequate vertex set V (/") containing v vertices.
Fix an ordering of the vertices in V(I"). Let {L1, L,, . . ., L.} be alabeling of the edge lengths. The matrix
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A = (apq)vxv given by
0 if p = g, or p and g are not adjacent

=11
Upq T if p # g, and p and q are connected by an edge of length L;
k

is called the adjacency matrix of I'. Let D = diag(d,y) be the v x v diagonal matrix given by
dpp = Y scv(r) ps- Then L := D — Ais called the discrete Laplacian matrix of I'". That is, L = (Ipg)uxv
where

0 if p # q, and p and q are not adjacent
1
lg = Ly

— Z s ifp=gq.
seV(I)—{p}

if p # g, and p and q are connected by an edge of length L;

The discrete Laplacian matrix is also known as the generalized (or the weighted) Laplacian matrix in
the literature.

Example 3.1 ([9, Remark 3.1]). For any metrized graph I', the discrete Laplacian matrix L is symmetric
and doubly centered. That is, ZpeV(r) g = 0foreachq e V(I'),and I,y = Iy, foreachp,q € V(I').

In our case, I" is connected by definition. Thus, the discrete Laplacian matrix L of I" is a (v X v)
matrix of rank v — 1 if the adequate vertex set V(I") has v vertices. The null space of L is the
one-dimensional space spanned by [1, 1, ..., 1]". Since L is a real symmetric matrix, it has real
eigenvalues. Moreover, L is positive semi-definite. More precisely, one of the eigenvalues of L is 0 and
the others are positive. Thus, L is not invertible. However, it has generalized inverses. In particular, it
has the pseudo-inverse L, also known as the Moore-Penrose generalized inverse, which is uniquely
determined by the following properties:

() LLYL =L, (iii) (LLH)T = LLY,

(i) LYLLY = L*,  (iv) LTD)T = L*L.
A v x v matrix M is called an EP matrix if MTM = MM™. A necessary and sufficient condition
for M to be an EP matrix is that Mu = Au iff MTu = ATu, for each eigenvector u of M. Another
characterization of an EP matrix M is that MX = O iff M"X = O, where X is also v x v. Any symmetric

matrix is an EP matrix [6, pg 253].
The matrix L has the following properties:

(i) Land L™ are symmetric, (ili) Land L* are EP matrices,
(ii) Land L™ are doubly centered, (iv) Land L are positive semi-definite.

For a discrete Laplacian matrix L of size v x v, we have the following formula for L* (see [15, ch

10]):
-1
Lt = <L—1J> +1J (6)
v v

where ] is of size v x v and has all entries 1.

= 0, foreachq € V(I'). Also, IJr = [ foreach

Remark 3.2. Since L* is doubly centered, > v’

p,qe V().

We use the following lemma and its corollary, Corollary 3.4, frequently in the rest of this article.

pev(I) pq

Lemma 3.3 ([13, Equation 2.9]). Let ] be of size v x v as above and let L be the discrete Laplacian of a
graph (not necessarily having equal edge lengths). Then LLT = L*L=1— %J.
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Lemma 3.3 was obtained by Gutman and Xiao (see [12, Lemma 3]) when L arises from a graph
having edges of equal length 1.

Corollary 3.4. Let I" be a metrized graph and let L be the corresponding discrete Laplacian matrix of size
v X v. Then for any p,q € V(I'),

1
—— ifp#q

Z pslsa = v—l

seV(I')

ifp=aq.
See [15], [6, ch 10], [4,14] for more information about L and L*.

4. The discrete Laplacian, the resistance function, and the tau constant

In this section, we will obtain a formula (see Theorem 4.10) for the tau constant in terms of the
entries of L and L. Our main tools will be a remarkable relation between the resistance and the
pseudo-inverse Lt (Lemma 4.1 below), properties of L and L* given in Section 3, the results from
Section 1 concerning metrized graphs, and the circuit reduction theory.

Lemma 4.1 ([3,5],[13, Theorem A]). Suppose I" is a graph with the discrete Laplacian L and the resistance
function r(x, y). Let H be a generalized inverse of L (i.e, LHL = L). Then we have

r(p,q) =Hpp —Hpg —Hgp +Hyq, foranyp,qe V(D).
In particular, for the pseudo-inverse Lt we have

r(p,q) =If, — 20 + 17, foranyp,qe V(I).

Lemma 4.1 shows that the pseudo-inverses can be used to compute the resistance r(p, q) between
any p, q in I'. Namely, we choose an adequate vertex set V(I") containing p and q. Then we compute
the corresponding pseudo-inverse, and apply Lemma 4.1. Similarly, the following lemma shows that
the pseudo-inverses can be used to compute the voltage j,(q, s) forany p,qandsin I".

Lemma 4.2 ([9, Lemma 3.5]). Let I" be a graph with the discrete Laplacian L and the voltage function
Jjx(¥, z). Then forany p, q, sin V(I"),
Jp(@.5) =L — L — I+ 1

Corollary 4.3. Let I" be a graph with the discrete Laplacian matrix L having the pseudo-inverse L™. Then
foranyp,q e V(I'), we have I} > If..

Proof. By Remark 3.2 and Lemma 4.2, ZseV(F)jP q,s)=v- (lJr - l+) for any p and q in V(I'). Thus
the result follows from the fact that j,(q,s) > Oforanyp,q,s € I'. O

Recall that we use L; for the length of edge e; € E(I") and R; for the resistance between the end
points of e; in the graph I" — e;. The following lemma expresses an important term for computing
(") interms of Land L.

Lemma 4.4. Let L be the discrete Laplacian matrix of size v x v for a graph I'. Let p; and q; be the end
points of edge e; for any given e; € E(I"). Then

LiR? 4(v—1) n +
2 Garr = o T D eyl =2 3 b’

e;jeE(I") p.qeV () p.qev(I)
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Proof. First, we use Example 3.1 to obtain

D el = > <’v+p)2< > lpq> =0 (7)

p.qev (") pev(l’) qev(r)
Using Corollary 3.4,
v—1
> b= 2 (T k) = e ®
p.qev (") pev(I') qev(r)
Then

LiRl'Z Z 1 2 . Ll'R,'
y = —(r(pi,a))>,  since r(pi, q) = :
e eE(I) (Li +Rp)? eicE(l) L Li+ R

= Y g, + Iy, — 2 )%, by Lemma 4.1
eicE(I")

1
=—= Z bg(L, + I, — 2I1)*,  as I,y = 0if p, g are not adjacent

p.qeV(I)
1
=2 Y b+ +2 Y (g + D — b))
p.qeV(I") p.qeV(I")
== Y byl 4+ Y (@l — 20 (1)), by Eq. (7).
p.qeV(I") p,qeV(I")

Thus, the result follows from Eq. (8). O

Next, we will have several lemmas concerning identities involving the entries of L and L.

Lemma 4.5. Let L be the discrete Laplacian matrix of a graph I". Then for any p € V(I"),
D RO A TUNES RS T B N M

q,seV(I") q,seV(I")

Proof. By using Example 3.1, forany p € V(I"),

q,s€V(I") seV(I)

> lqsl;qlgl‘3 = > l;ql‘; ( > lqs) =0. (9)
qev ()
Using Example 3.1 and Eq. (9) for the second equality,

D @ =D, =15 = > Ul — Ll I — 5L + L)
q,seV(I") q,seV(I")

== > (gl + I3 L.
q,seV(I")

This is equivalent to what we wanted. O

Lemma 4.6. Let L be the discrete Laplacian matrix of size v x v for a graph I', and let p;, q; be the end
points of e; € E(I"). Then forany p € V(I"),

1 L;
- _ + it +
bp = ;tr(L )+ Z L+R bpp; + lpg) — Z V(@
e;€E(I") qeV(I")

1 R

T = (L) — § : Lt 1),

pp ) .\ Ppi pqi
v e;eE(I") Li+Ri
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Proof. We use Lemma 2.9 for the first equality below and Lemma 4.1 for the second equality below.
Foranyp € V(I"),

Li(Ry; p — Ry, p)?
> Lap = Ropy _ >, I +R<r<pl,p)+r(ql,p)>— > W@ —2re,q

. )2
e;eE(IN) (Li + R) e;eE(I") qev(I)

L;
Z l+ + l+ (l+ + l+ _ l+ ))

o 2E ) Ll +R1 bipi
— Y W@ =20 = 20 + 1)
qeV(I")
=20 + Z L ;pl+l+ =205 + 1)
e;eE(I") L
- Y (@ =l + 2v@k)
qev(I)
by Eq. (5) and the fact that )  (u(q) — 2) = 2e — 2v. (10)

qev(r)

If we sum equation (10) over all vertices and apply Example 3.1, we obtain

Li(Rg s — Ry, 5)?
EiRos — Rovs)” ”;S) =2-rMH+v- Y.
(Li +Ry) e eE )

ve Y W@ -2, (11)

qev(r)

(+ ++

L +R Pipi ‘h‘h)

seV(I') e;eE(I")

On the other hand, by Remark 2.7,

Li(Rs;; , — R Li(R; s — R
Z 1( a;j,p b;p) - Z Z ( a;,s b;s) ) (12)
e;cE(IN) (Li +Ri) seV(F) e;cE(I") (Li + Ri)

Hence the first equality in the lemma follows from Eqs. (10)-(12). Then the second equality in the
lemma follows from the first equality and the fact that

Yo v@he= Y (G + 1) O

qev(I) e;cE(I")

Lemma 4.7. Let L be the discrete Laplacian matrix of a graph I'. Let p; and q; be end points of e; € E(I").

Then
1
Y i =5 > el —1P= ) L~ 1) 2 0.

q.seV(I") q.seV(I") e;eE(IN) Li

Proof. By Eq. (7), X"y sever las(y — 15)7 = =23, ccv ) lasldy 1i:- This gives the first equality in the

lemma. Then the second equality is obtained by using the definition of L. O

Theorem 4.8 below expresses the first term in the formula for 7 (I") from Proposition 2.6 in terms
of the entries of L and L. This theorem combines the technical lemmas above, and it will be used in
the proof of Theorem 4.10.

Theorem 4.8. Let L be the discrete Laplacian matrix of size v x v for a metrized graph I'. Let p; and q; be
end points of edge e; € E(I"), and let R;, Ry, ,, Ry, , and L; be as defined before. Then

Li(RbivP ax P) 4 + 1 + +12
Z W *t (L )— 5 Z Iqs(qu - ISS) .

e;eE(I") q,seV(I")
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Proof. Note that for each p € V(I'), the following equality follows from Example 3.1:
D sl = D (15)" D s =0,
q,seV(I") qev(I") seV(I')
By Corollary 3.4, for eachp € V(I'),
1
++ gt +
D sl =, — ~er L),
q,seV(I")
Similarly, by Corollary 3.4 and Remark 3.2, for any p € V(") we have
D Ldhl =1
q,seV(I")
Hence for eachp € V(I),

Li(Rp, p — Ra: p)? 1
> % = Y —((.p) —r@ p)* byEq(3)

e;cE(IN) ejeE(r)
= — > lpg (=205 + 1+ 20 — [T )%, byLemma4.l
e;cE(I")
1
== ) (=28 1+ 21 — 1)
q,seV(I")
1
=0 D Il =P +2 3 el — D, — )
q,seV(I") q,seV(I")
—2 )l — )
q,seV(I")
1
=— I RO Ao R S S P i
q,seV(I") q,seV(I")
-2 Z ls(li — I5)?, by Lemma 4.5
q,seV(I")
1
=5 D el =17 =4 3 Ll
q,seV(I") q.seV(I")
+4 ) Il byEq.(13).
q,seV(I")
1 1
= > sl -1 -4 (l;p — ;tr(L+)> +4(1}),
q,seV(I")

by Egs. (14) and (15).

This gives the result. O

(13)

(14)

(15)

Lemma 4.9 below expresses the second term in the formula for 7 (I") from Proposition 2.6 in terms

of the entries of Land L.

Lemma 4.9. Let L be the discrete Laplacian matrix of a metrized graph I". Suppose p; and q; are end points

of edge e;. Then

3 L7 1

_— = E fL,_l+ _|_21+ —l+ )2'
. )2 ( i DiDi Didi i

e;eE(I) (Ll + Rl) eicE(l) Ll i iqi iqi
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Fig. 2. I" with V(I") = {1, 2, 3} and with an adequate vertex set {1, 2, 3,4, 5, 6, 7}.

(o e at g
P A g S e

Fig. 3. Fusene graphs.

Proof. Since L-Lfié- — r(pi. q) for each ; € E(I"), we have
L} 1 LR \?2 1
7i: — L - 11\ — —(Li — 1 _’_2.
Z (Li + Ri)? Z L; < " L+R Z L-( i — 1(Pi, 4i)

e;eE(I") e;cE(IN) e;cE(In)
Then the result follows from Lemma 4.1. O

Our main result is the following formula for t (I").

Theorem 4.10. Let L be the discrete Laplacian matrix of size v x v for a metrized graph I", and let L* be
its Moore—-Penrose pseudo-inverse. Suppose p; and q; are end points of e; € E(I"). Then we have

1 1 z 1
() = 12 Z g <7 + by = 2+ qqf) T2 Z loslaglss + ;tr(L*),

e;cE(I") lp,-q,- q,seV(I')
1 1 2 1
_ + + + + + 42 +
o) = 12 Z lpia (17 + by — 2hpg + quqi> T2 Z lpiai (pip; — lgiqy)™ + —r(L7).
ei€E(l) Pidi eieE(l) v

Proof. By Proposition 2.6, forany p € V(I")

1 5 1 Li(Ry, p — Ry p)?
G P P
eieE(T) (Li + Ro) eieE(T) (Li + Ri)
Thus the first equality in the theorem follows from Lemma 4.9, Theorem 4.8 and Lemma 4.7. Then the
second equality follows from Lemma 4.7. O

Corollary 4.11. Let L be the discrete Laplacian matrix of size v x v for a graph I'. Then we have
() > 1r(Lh).
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Fig. 4. Sierpinski graphs.

Table 1

The tau constants for the fusene graphs listed in Fig. 3.
Mathematica name Vertex Edge Genus Tau constant
{Cycle, 6} 6 6 1 & =0.0833333
(Fusene, {2, 1}} 10 11 2 & =0.0725108
{Fusene, {3, 1}} 13 15 3 . = 0.0608844
{Fusene, {3, 2}} 14 16 3 S~ 0.0685253
{Fusene, {3, 3}} 14 16 3 S = 0.0685253
{Fusene, {4, 1}} 16 19 4 B 20.0545434
(Fusene, {4, 3}} 17 20 4 27 = 0.0606924
{Fusene, {4,2}} 18 21 4 . = 0.0664391
{Fusene, {4, 4}} 18 21 4 22 20.0664983
{Fusene, {4, 5}} 18 21 4 . = 0.0664391
{Fusene, {4, 6}} 18 21 4 . = 0.0664391
{Fusene, {4, 7}} 18 21 4 . = 0.0664391

Table 2

The tau constants for the Sierpinski graphs listed in Fig. 4.
Mathematica name Vertex Edge Genus Tau constant
{Sierpinski, 2} 6 9 4 % = 0.058642
{Sierpinski, 3} 15 27 13 225~ (.0428669
{Sierpinski, 4} 42 81 40 9aT. = 0.0336147
{Sierpinski, 5} 123 243 121 2003107 == 0.0283197

Next, we will express [tqq, in terms of the discrete Laplacian matrix and its pseudo-inverse.

Proposition 4.12. For a given metrized graph I', let L be its discrete Laplacian, and let L™ be the
corresponding pseudo-inverse. Suppose p; and q; denote the end points of e; € E(I"). Then we have

1
Hean (X) = Z (1 B EV (p)) (SP(X) o Z (lpiqi + lﬁi‘li(l;;l’i - 21;1_[“ + I;;ql‘))dx'

peVv(I) e;€E(I")

Proof. The result follows from Theorem 2.1, Lemma 4.1, and the fact that r(p;, g;) =
e €E(IN). O

LiR;
s for each

Theorem 1.1 (equivalently Theorem 4.10) and Eq. (6) yield an algorithm for computing (/") and
Ican Whose computational complexity and memory consumption are at the level of a matrix inversion.
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Table 3

The tau constants for the fullerene graphs listed in Fig. 5.
Mathematica name Vertex Edge Genus Tau constant
{Fullerene, {26, 1}} 26 39 14 S & 0.0236921
{Fullerene, {30, 1}} 30 45 16 Sl69668299 . =~ 0.0224719
{Fullerene, {36, 1}} 36 54 19 8767 =~ 0.0206872
(Fullerene, {36, 5}} 36 54 19 aTU03301309 = 0.0208183
(Fullerene, {40, 19}} 40 60 21 s = 0.0198409
{Fullerene, {42, 29}} 42 63 22 e, = 0.0197106
{Fullerene, {42, 39}} 42 63 22 SIBIATT. ~ 0,0194485
{Fullerene, {44, 37}} 44 66 23 093l = 0.0192069
{Fullerene, {44, 62}} 44 66 23 8901 = 0.0197097
{Fullerene, {44, 63}} 44 66 23 IS =0.0192391
{Fullerene, {44, 66}} 44 66 23 o = 0.0192855
{Fullerene, {44, 75}} 44 66 23 TS 0 = 0.0191466
{Fullerene, {60, 1}} 60 90 31 306820207359384351 - == 0.0183761
{Fullerene, {70, 4085}} 70 105 36 STI19B23897247737 = 0.0161201
(Fullerene, {80, 6877}} 80 120 41 A2 = 0.0154253

Table 4

The tau constants for the Archimedean graphs listed in Fig. 6.
Mathematica name Vertex Edge Genus Tau constant
CuboctahedralGraph 12 24 13 79 = 0.0351563
SmallRhombicuboctahedralGraph 24 48 25 o5 = 0.0294537
SnubCubicalGraph 24 60 37 2B = 0.0358405
TruncatedCubicalGraph 24 36 13 % = 0.0280671
TruncatedOctahedralGraph 24 36 13 % = 0.0249664
IcosidodecahedralGraph 30 60 31 SOkl = 0.0282454
SmallRhombicosidodecahedralGraph 60 120 61 ST = 0.0251656
TruncatedDodecahedralGraph 60 90 31 St = 0.0200136
TruncatedlcosahedralGraph 60 90 31 o207 = 0.0169751

5. Examples

In this section, we compute the tau constant and the canonical measure for some metrized graphs.
First we give two explicit examples.

1

Example 5.1. Let I" be a complete graph on five vertices where each edge length is equal to 15, and

so £(I") = 1.Then I" has the following discrete Laplacian matrix and pseudo-inverse:

40 -10 -—-10 -10 -10

-10 40 -10 —-10 -10
L=|-10 —-10 40 -—-10 -10 and

-10 -10 —-10 40 -10

—-10 —-10 —-10 —-10 40
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Fig. 5. Fullerene graphs.

Table 5
The tau constants for the zero-symmetric graphs listed in Fig. 7.

Mathematica name Vertex Edge Genus Tau constant
{CubicTransitive, 41} 24 36 13 R = 0.0246968
{CubicTransitive, 47} 26 39 14 275018035 = 0.0233619
{CubicTransitive, 51} 28 42 15 1769 = 0.022062
{CubicTransitive, 52} 28 42 15 T =0.022786
GreatRhombicuboctahedralGraph 48 72 25 s = 0.0191339
GreatRhombicosidodecahedralGraph 120 180 61 S STTS Le88 =~ 0.0143893
-2 1 1 1 1 4
125 250 250 250 250
1 2 1 1 1
250 125 250 250 250
o o2 1 1
250 250 125 250 250
1 1 1 2 1
250 250 250 125 250
1 1 1 1 2
- 250 250 250 250 125 -
23

Thus, we obtain 7(I") =

500

Mean(X) = — Z SP(X)+6 Z dx.

by applying Theorem 4.10. Moreover, by Proposition 4.12,

peVv(I) e;€E(I")

Example 5.2. Let I" be a metrized graph illustrated as the first graph in Fig. 2, where the edge lengths
are also shown. Note that £(I") = 1. Since I" with the set of vertices V(I") = {1, 2,3} has a
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Fig. 6. Archimedean graphs.

self-loop and two multiple edges, we need to work with an adequate vertex set to have the associated
discrete Laplacian matrix. This can be done by adjoining two additional points on each self-loop, and
one additional point on each multiple edge, to the vertex set. The new metrized graph is illustrated by
the second graph in Fig. 2. As we know by Remark 2.5 that the new length distribution for the self-loop
and the multiple edges will not change t(I"). Now, I" has the following discrete Laplacian matrix L

and pseudo-inverse L respectively:

27 0
0 27
-9 -9
0 0
0 0
-9 -9

-9 -9

-9
-9
36
-9
-9
0
0

0
0
-9
18
-9
0
0

0
0
-9
-9
18
0
0

-9
-9

0

0

0
18
0

-9
-9

0
0
0
0
18

and
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Fig. 7. Zero-symmetric graphs.

- 47 2 1 10 10 4 4 -
1323 1323 147 441 411 411 441
2 47 1 10 10 4 4
1323 1323 147 441 441 441 441
1 1 11 4 4 13 13
147 147 441 441 441 882 882
10 10 4 89 40 3 3
441 441 441 1323 1323 98 98
10 10 4 40 89 3 3
441 441 441 1323 1323 98 98
4 4 13 3 3 25 1
441 441 882 98 98 441 882
4 4 13 3 3 1 25
- 441 441 882 98 98 882 441 -

Finally, applying Theorem 4.10 gives  (I") = %. By Proposition 4.12, we have the following canonical

measure for I': fican (X) = — 38, (X) — 28p, (X) — 8, (X) + 3 > eicrar X

In the rest of this section, we use Mathematica’s GraphData function [18] to obtain the plots and
adjacency matrix of several classes of graphs having various topologies and symmetries. We compute
the tau constant by implementing Theorem 1.1 in Mathematica [19]. From now on, we consider
metrized graphs with total length 1, and we assume that each graph has equal edge lengths.

Some fusene graphs, planar 2-connected graphs whose bounded faces are hexagons, are considered
in Table 1 and Fig. 3.

Some Sierpinski graphs are considered in Table 2 and in Fig. 4.

Some fullerene graphs, planar cubic graphs whose bounded faces pentagons or hexagons, are
considered in Table 3 and in Fig. 5.
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Some Archimedean graphs, skeletons of one of the 13 Archimedean solids, are considered in Table 4
and Fig. 6.

Some zero-symmetric graphs, vertex-transitive cubic graphs with edges partitioned into three
orbits, are considered in Table 5 and in Fig. 7.

Since the tau constant is an invariant of metrized graphs, it becomes an invariant of molecular
graphs. It would be interesting to understand the relation between the tau constant and other graph
invariants.
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