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Abstract

The factorizations of an n-cycle of the symmetric group Sn into m permutations with pre-
scribed cycle types �1; : : : ; �m describe topological equivalence classes of one pole meromorphic
functions on Riemann surfaces. This is one of the motivations for a vast literature on counting
such factorizations. Their number, denoted by c(n)�1 ;:::;�m , is also known as a connection coe3cient
of the center of the algebra of the symmetric group, whose multiplicative structure it describes.
The relation to Riemann surfaces induces the de4nition of a genus for factorizations. It turns
out that this genus is fully determined by the cycle types �1; : : : ; �m, and that it has a deter-
minant in6uence on the complexity of computing connection coe3cients. In this article, a new
formula for c(n)�1 ;:::;�m is given, that makes this in6uence of the genus explicit. Moreover, our for-
mula is cancellation-free, thus contrasting with known formulae in terms of characters of the
symmetric group. This feature allows us to derive non-trivial asymptotic estimates. Our results
rely on combining classical methods of the theory of characters of the symmetric group with a
combinatorial approach that was 4rst introduced in the much simpler case m=2 by Goupil and
Schae)er. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. De2nitions and notations

Let us 4rst recall some notations. Let n and k be positive integers; a partition of n
into k parts is a non-increasing k-tuple of positive integers �=(�1; : : : ; �k) such that
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�1 + · · · + �k = n. Let |�| denote the weight n of �, and ‘(�) its length k.
We also write � � n. The rank r(�) of � is de4ned by r(�) + ‘(�)= |�|. If bi is the
number of parts of � equal to i, then the exponential notation � = 1b1 : : : nbn will
be used as well. The cycle type of a permutation ∈Sn is the partition of n
whose parts are the lengths of the cycles in the representation in disjoint cycles of .
The permutations of Sn of given cycle type � form a conjugacy class denoted
by C�.
Let n and m be positive integers, �1; : : : ; �m and � be m + 1 partitions of n. For

convenience’s sake, we shall consistently use the notations ‘i and ri instead of ‘(�i)
and r(�i). Denote by c�

�1 ; :::; �m the number of m-tuples of permutations in Sn of respective
cycle type �1; �2; : : : ; �m whose product is equal to a given permutation of cycle type
�. In other terms, for any permutation � of cycle type �,

c�
�1 ; :::; �m = |{(1; : : : ; m)∈C�1× · · ·×C�m |1 · · · m = �}|:

The formal sums C� =
∑

∈C�
 for �� n belong to the group algebra of the symmetric

group Sn and, more precisely, form a basis of its centre Zn. Thus, the (multiplicative)
structure constants c�

�1 ; :::; �m can equivalently be de4ned by the following linearization
relations in Zn:

C�1 · · ·C�m =
∑
��n

c�
�1 ; :::; �mC�;

from which they got their name.

1.2. Context and motivations

It was already known by Hurwitz that factorizations in the symmetric group have
a topological interpretation. We refer to [7,14,17] for a description of this connection
and simply indicate—somewhat loosely—that factorizations represent topological equiv-
alence classes of meromorphic functions on Riemann surfaces, up to homeomorphisms
of the domain. As only connected surfaces are usually considered, the corresponding
factorizations must satisfy the additional transitivity condition that their factors should
generate a group acting transitively on {1; : : : ; n}. In this case, up to labelling the sheets
over a regular point, the correspondence can be made one-to-one. Factorizations are
used in practice to conduct the experimental topological classi4cation of functions, and,
in this context, enumerative results like ours are used to check for exhausion of the
search space [6].
A remarkable feature of the above-mentioned correspondence is that it de4nes a

genus of transitive factorizations, which turns out to have a simple combinatorial de-
scription in terms of the cycle type of factors: the genus g of a transitive factorization of
a permutation of cycle type � into m permutations of respective cycle types �1; : : : ; �m
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is given by

m∑
i=1

ri = ‘(�) + n− 2 + 2g:

The fact that g has to be a non-negative integer so that such factorizations exist is im-
mediate from its topological interpretation, but can also be proved inductively directly
from its combinatorial de4nition (see e.g. [5]). The topological intuition suggests that
the situation should become more and more involved as the genus increases, and one
would expect this to show on enumerative result. As a 4rst result, Hurwitz gave a
remarkable formula for the number of genus zero transitive factorizations in transposi-
tions ([14], see also [1,5,10,24] for recent development).
In the general case, the classical expression for the structure constants c�

�1 ; :::; �m is
a summation over products of evaluations of irreducible characters of the symmetric
group (see Proposition 4). Unfortunately, huge cancellations often occur in these sum-
mations, hiding the in6uence of the genus and precluding any prediction of the order
of magnitude of the constants. Moreover, the evaluation of characters is usually done
via Murnaghan–Nakayama rule so that these formulae are more properly described as
evaluation algorithms, from which in4nite families of constants cannot be evaluated
simultaneously.

1.3. The particular case of n-cycles

It was observed in [9,16] that the formula expressing structure constants in terms of
characters translates into a remarkably simple expression of their generating function
in terms of Schur functions. However, extracting coe3cients in these generating func-
tions also involves alternating sign summations and, unsurprisingly, are more or less
equivalent to the direct computations via characters. Factorizations of an n-cycle are
somewhat less involved because the character generating function is simpler, but, even
in this case, large cancellations occur.
However, besides Hurwitz’ transpositions, a few other families of structure constants

are known to be given by simple explicit formulae, the most intriguing of which may
be c�(n); (n−1;1) = 2(n − 2)! if permutations of cycle type � are odd, and 0 otherwise.
Several results of this type have been obtained in the early 1980s, by Walkup [25],
Boccara [4], Bertram and Wei [3] or Stanley [23], and later by Jackson [15], Goulden
[8], Goupil [12] or Jones [18]. Almost all these results concern decompositions of an
n-cycle into very restricted families of factors, and they do not rely on any kind of
topological intuition.
Observe that factorizations of an n-cycle are necessarily transitive, since the factor-

ized cycle belongs to the group generated by the factors. Hence, the genus of such a
factorization is well-de4ned and satis4es:

m∑
i=1

ri = n− 1 + 2g:
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2. Main theorem

2.1. Two former results

An important progress was made for the study of such factorizations with Goulden
and Jackson’s formula in the minimal genus case [2,9,28,27]: for all partitions �1; : : : ; �m

of n such that r1 + · · ·+ rm = n− 1,

c(n)�1 ; :::; �m = nm−1
m∏
i=1

1
‘i

(
‘i

ai;1; : : : ; ai; n

)
= nm−1

m∏
i=1

(‘i − 1)!
Aut(�i)

in which, for any partition �=(�1; : : : ; �‘)= 1b1 : : : nbn ; Aut(�)= b1! · · · bn! is the num-
ber of permutations  in S‘ such that �(i) = �i for all i in <1; ‘ = (notation bor-
rowed from [27]). Remark that this formula generalizes the classical Cayley formula
c(n)(1n−22)n−1 = nn−2.
Then, a detailed case analysis of low genera led Goupil to introduce the following

symmetric polynomials for all non-negative g and ‘:

Sg(x1; : : : ; x‘)=
∑

p1+···+p‘=g

‘∏
j=1

1
xj

(
xj

2pj + 1

)
:

They have a simple generating function:

∑
g¿0

Sg(x1; : : : ; x‘)t2g =
‘∏

j=1

1
xjt

∑
p¿0

(
xj

2p+ 1

)
t2p+1

=
‘∏

j=1

(1 + t)xj − (1− t)xj

2xjt
:

Using these symmetric polynomials, Goupil and Schae)er were able in [13] to extend
Goulden and Jackson’s result in the special case m=2: for all partitions �1 and �2
of n,

c(n)�1 ; �2 =
n
22g

2∏
i=1

(‘i − 1)!
Aut(�i)

∑
g1+g2=g

2∏
i=1

‘(2gi)i Sgi(�i);

where g= 1
2(n− 1− r1 − r2) and x(k) is the raising factorial x(x + 1) · · · (x + k − 1).

2.2. Statement of the main theorem

In view of Goulden and Jackson’s and Goupil and Schae)er’s formulae, it is natural
to conjecture an immediate extension of the latter to m¿2. However, this extension
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turns out to be false because of the existence of a factor P trivial for m62. In order
to de4ne this factor, let us 4x some notations. Recall that the elementary symmetric
functions are de4ned by e� = e�1 : : : e�‘ for any partition �=(�1; : : : ; �‘), where for
each k ∈N:

ek =
∑

16j1¡j2¡···¡jk

xj1xj2 · · · xjk :

Falling factorial powers are de4ned by (x)k = x(x − 1) · · · (x − k + 1) for any integer
k, and the mapping D : xk 	→ (x)k can be extended multiplicatively to monomials in
distinct variables and then linearly to symmetric functions. Finally, for �=1m1 : : : nmn ,
the partition 3m15m2 : : : (2n+ 1)mn is denoted by 2� + 1.
With these notations, we de4ne symmetric functions Pg by setting P0 = 1, and for

all positive g:

Pg =
∑
��g

D(e2�+1)
Aut(�)

:

The main result of the present article can now be stated as follows:

Theorem 1. Let n be a positive integer, and �1; : : : ; �m be partitions of n, with,
for all i; �i =1ai; 1 : : : nai; n , ‘(�i)= ‘i and r(�i)= ri. Let the genus g be de2ned by∑

i ri = n− 1 + 2g. Then:

c(n)�1 ;:::;�m =
nm−1

22g

m∏
i=1

(‘i − 1)!
Aut(�i)

∑
g0+···+gm=g

(
Pg0 (r− 2g)

m∏
i=1

‘(2gi)i Sgi(�i)

)
(1)

where r− 2g=(r1 − 2g1; : : : ; rm − 2gm).

2.3. A discussion of the main theorem

Let us point out some properties of Formula (1).

• First of all, it is a summation over positive contributions. This is certainly not the case
of character theoretic formulae, and a substantial part of our proof is directed towards
the construction of a sign reversing involution to eliminate negative contributions.
This allows us to derive asymptotic results for di)erent kinds of limit at 4xed genus
(see below).

• The symmetric polynomial Pg(x1; : : : ; xm) has degree 3g, so that the number of terms
involved in its summation is a polynomial in m of degree 3g. First few values of
Pg and Sg are given in the appendix.

• The symmetric polynomial Sg(x1; : : : ; x‘) has degree 2g and the number of terms in
its summation is ( ‘+2g−1

2g ), i.e. a polynomial in ‘ of degree 2g. Since Sg(x1; : : : ; x‘)
is equal to any Sg(x1; : : : ; x‘; 1; : : : ; 1; 0; : : : ; 0), the evaluation Sg(�i) only depends on
the partition �i =2ai; 2 : : : kai; k . (In fact it does not depend on parts equal to 2 either.)
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• The higher genus correction to Goulden and Jackson’s formula

∑
g0+···+gm=g

Pg(r− 2g)
m∏
i=1

‘(2gi)i Sgi(�i)

is a polynomial in the parts �i; j (for 4xed g, m, n and ‘i). In other words, besides
Aut(�i), there is no further dependence on the multiplicities ai; j, i.e. on the fact that
some parts may be equal. Moreover, in terms of reduced partitions �i =2ai; 2 : : : kai; k

(i.e. withdrawing parts equal to 1), the correction reads, using the equalities
‘i =(

∑
j �=i rj) + 1− 2g, and r(�i)= r(�i),

∑
g0+···+gm=g

Pg(r− 2g)
m∏
i=1

∑
j �=i

r(�j) + 1− 2g

(2gi) Sgi(�i);

and is, for 4xed g, m and ‘(�i) but independantly of n, a polynomial of total degree
4g in the parts of the reduced partitions.

To sum up, Theorem 1 shows that the genus g has a determining in6uence on the
complexity of connection coe3cients computing: as mentioned above, the number of
terms in the summation is polynomial for 4xed g, but increases exponentially with g.
Similar phenomena are observed in related results of Goulden et al. [10,11, and refer-
ences therein]. These authors consider transitive factorizations of a permutation of type
� into transpositions. Their expression overlaps with ours when �= n (our restriction)
and �i =1n−22 (their restriction).

2.4. Some asymptotic corollaries

Asymptotic results for structure constants were mainly considered in the limit where
n is 4xed and m goes to in4nity. In particular, this implies that the genus goes as well
to in4nity. While this is natural in the study of random walks in the symmetric group
(see [19]), it is also of interest to obtain asymptotic results at 4xed genus in view of
the connection with topological interpretations. In this context, parts of length one are
not interesting (since they correspond to regular points as opposed to critical points),
so that it is more natural to stress the genus and reduced cycle types in notations: for
�1; : : : ; �m being reduced partitions (i.e. without parts equal to 1), let

fg
�1 ;:::;�m =

{
c(n)1a1�1 ;:::;1am �m if n ¿ maxi(|�i|);
0 otherwise;

where n=
∑

i ri + 1 − 2g and ai = n − |�i|. In other terms, fg
�1 ; :::; �m is the number of

factorizations of genus g of a maximal cycle into m permutations of respective reduced
cycle types �1; : : : ; �m.
Formula 1 is useful to give asymptotic estimate for connection coe3cients in

the limit where g is 4xed and n goes to in4nity. As an illustration, we prove in
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Section 6 the following two corollaries. (Throughout this article, f(x) ∼
x→∞ g(x) means

limx→∞ f(x)=g(x)= 1.)

Corollary 2 (Large number of factors). Let g be a non-negative integer, and �=
2a2 : : : k ak a partition (without parts equal to 1) of rank r and length ‘. Then
there exists a constant c(g; �) (given in the proof ) such that, for m going to in-
2nity,

fg
(�)m ∼

m→∞ c(g; �)
(‘ − 1)!m

Aut(�)m
(mr)m‘−1+3g:

In particular, for �1; : : : ; �m being transpositions, this yields a generalized Cayley
formula

fg
(2)m ∼

m→∞
mm−1+3g

24gg!
:

This latter formula nicely extends either to involutions with k-cycles:

fg
(2k )m ∼

m→∞
(km)km−1+3g

km24gg!
;

or to k-cycles:

fg
(k)m ∼

m→∞ c(g; k)((k − 1)m)m−1+3g:

Corollary 3 (Large factors). Let g be a non-negative integer, and consider m parti-
tions �i =1ai; 1 : : : kai; k . Let x · �i denote the partition xai; 1 : : : (kx)ai; k . For x
going to in2nity, there exists a constant c(g; �1; : : : ; �m) (given in the proof ) such
that:

fg
x·�1 ; :::; x·�m ∼

x→∞ c(g; �1; : : : ; �m) x4g−1+
∑

i ‘i :

Considering this homothetic limit was suggested to us by Dimitri Zvonkine.

2.5. Outline of the proof

Let us mention that structure constants have an interpretation in terms of some 2-cell
embeddings of graphs, called cacti, maps or more generally constellations. This inter-
pretation is intermediate between factorizations and meromorphic functions (see [5]).
This allows to work with discrete, combinatorial objets, without completely loosing the
topological intuition. In this context, the special case m=2; �2 = 2n=2 was known to
Walsh and Lehman [26]. But unlike Goulden and Jackson in [9], and although we also
use some graphical interpretations in the course of the proof, we were unable to use
constellations. Such a relation would be very interesting to 4nd in so far as it could
provide a constructive proof of our result: in the present state, our derivation starts
from the (non-constructive) character theoretic formula and we are unable to present
a reasonable algorithm to list all the factorizations counted by c(n)�1 ; :::; �m .
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The proof relies on the same approach that was successfully applied to the much
simpler case m=2 in [13]. In Section 3, the formula given by character theory is
interpreted as a weighted sum over some combinatorial objects. This 4rst interpretation
is closely related to the one used by Goulden in [8] and similar to that of [13]. Then,
in Section 4, a new interpretation in terms of starry graphs is developed. These graphs
are the key ingredient allowing us to proceed in a formal analogy with the case m=2,
although the objects and details are more involved. An involution principle is applied
to cancel negative contributions and to obtain a weighted sum involving cyclomatic
numbers of graphs (Theorem 15). In Section 5, this weighted sum is 4nally related to
the number of orientations of graphs and explicitly computed.

3. A combinatorial interpretation of the character theoretic formula

Character theory provides an expression for c(n)�1 ; :::; �m . For any partition � of n, the car-
dinality z� of the centralizer of any permutation in C� is equal to 1b1b1!2b2b2! : : : nbnbn!.
For convenience, we consistently use the notation zi for z�i . If, moreover, we denote by
� the irreducible character of Sn indexed by the partition  , its evaluation at the con-
jugacy class C� by � 

�, and its degree by f , then Frobenius formula can be expressed
as (see e.g. [21, p. 68]):

Proposition 4. Let �1; : : : ; �m and � be partitions of n∈N. Then

c�
�1 ; :::; �m =

n!m−1

z1 · · · zm
∑
 �n

� 
�1 · · · � 

�m

(f )m−1 � 
�:

This formula motivates the search for a convenient expression for evaluations of
irreducible characters of Sn. We 4rst recall a classical rule for computing them using
Ferrers diagrams, and then seek for simpli4cations that occur in the particular case
�=(n).

3.1. Murnaghan–Nakayama rule

Let � and � be two partitions of a positive integer n. A rim hook tableau of type
(�; �) is a Ferrers diagram of shape � 4lled with positive integers such that, for all
i ∈ <1; ‘(�)=,
• the cells 4lled with integers i to ‘(�) form a Ferrers diagram of weight

�i + · · · + �‘(�),
• the �i cells 4lled with i form a rim hook, i.e. a connected set that contains no pattern

of the type:

This means that a rim hook tableau of type (�; �) can be regarded as a diagram of
shape � 4lled with the rows of �, in such a way that each row of � forms a rim hook
of �. The weight W (T ) of a rim hook tableau T is the number of patterns in it.
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Example. A rim hook tableau of type ((5; 4; 3; 1); (6; 4; 3)):

Its three rim hooks have respective contributions 2, 2
and 0, hence its weight is 4.

With these de4nitions, the following rule allows to compute evaluations of irreducible
characters of Sn (see [20]):

Proposition 5 (Murnaghan–Nakayama rule). Let � and � be two partitions of a pos-
itive integer n. Then

��
� =
∑
T

(−1)W (T )

where the sum runs over all rim hook tableaux of type (�; �).

Evaluations of the irreducible characters of Sn at the class of the n-cycles can be
immediately deduced from this rule, since no diagram can be 4lled with a single-rim
hook unless it is itself a hook:

Proposition 6.

� 
(n) =

{
(−1)r if there exists r ∈ <0; n− 1= such that  =1r(n− r);

0 otherwise:

This reduces the summation in Proposition 4 to a summation over hook diagrams.
Moreover, we obtain from Murnaghan–Nakayama rule the value of f when  is a
hook:

∀r ∈ <0; n− 1=; f1r(n−r) = �1
r(n−r)

1n =
(

n− 1
r

)
:

Hence Proposition 4 can be rewritten into

c(n)�1 ; :::; �m =
n!m−1

z1 : : : zm

n−1∑
r=0

(
n− 1

r

)1−m

(−1)r�1
r(n−r)

�1 : : : �1
r(n−r)

�m : (2)

3.2. Quasi-painted diagrams

In order to give a combinatorial interpretation of Formula (2), we derive from
Murnaghan–Nakayama rule another expression of characters involved in it. Let us
de4ne a painted diagram of shape � as a Ferrers diagram whose cells are painted in
black (•) or white (◦), such that each row is monochrome. A quasi-painted diagram
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is such that all cells are black or white but one which contains a cross, and all rows
are monochrome but the last one which has the form:

i.e. •p ×◦q for some p¿0, q¿0. Let �̂ be a quasi-painted diagram of shape �; |�̂|•
denote the number of its black cells, and ‘•(�̂) the number of its black rows (in
particular the last row, which contains the cross, does not count).

Proposition 7. Let r ∈ <0; n− 1= and �=(�1; : : : ; �‘)� n. Then the rim hook tableaux
of type (1r(n−r); �) are in one-to-one correspondence with the quasi-painted diagrams
of shape � with r black cells.

Proof. White cells of � are those that 4ll the horizontal part of the hook 1r(n − r),
black ones 4ll the vertical part, and the crossed cell corresponds to the position of the
corner cell of 1r(n− r).

Example. A rim hook tableau of type (1712; (7; 6; 6)) and the associated quasi-painting
of (7; 6; 6):

Hence, we get the following reformulation of Murnaghan–Nakayama rule in terms of
quasi-paintings, in the special case of �1

r(n−r)
� :

Proposition 8. Let r ∈ <0; n− 1= and �=(�1; : : : ; �‘)� n. Then:

�1
r(n−r)

� =
∑
�̂

(−1)r−‘•(�̂);

where the sum runs over the quasi-paintings �̂ of � with r black cells.

3.3. Painted heightened diagrams

In this section, we derive from Proposition 8 an expression for characters �1
r(n−r)

�

that involves painted diagrams instead of quasi-painted ones.
Let {•; ◦}p denote the set of words of length p over the alphabet {•; ◦}, and S(•p◦q)

the set of words of length p+ q with exactly p letters • and q letters ◦.
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With these notations, the following lemma is straightforward:

Lemma 9 (shuSe lemma). Let p and q be positive integers. De2ne:

’ : {•; ◦}p+q+1 →{•; ◦}∗ ×{•; ◦}∗
u 	→ (v; w)

where vw= u and |v| is maximal with respect to the conditions: |v|•6p and |v|◦6q.
Then ’ maps {•; ◦}p+q+1 bijectively onto

p⋃
i=1

(S(•i◦q)× ◦ {•; ◦}p−i)∪
q⋃

j=1

(S(•p◦ j)× •{•; ◦}q−j):

Let �=(�1; : : : ; �‘) be a partition of an integer n¿1. For any k in <0; �‘ −1=, its kth
heightened partition �k is the partition of n− 1 de4ned as follows:

�0 = (�1; : : : ; �‘−1; 1; : : : ; 1︸ ︷︷ ︸
�‘−1 times

)

and for all integer 16k¡�‘,

�k = (�1; : : : ; �‘−1; k; 1; : : : ; 1︸ ︷︷ ︸
�‘−1−k times

):

The partition (�1; : : : ; �‘−1) is denoted by �∗, and the partition 1�‘−1−kk is called a
heightened hook of �; 1�‘−1−k is its vertical part and k (if k �=0) its horizontal part.

Example. Let us consider the partition �=(7; 6; 6)=

Then �∗ = and the heightenings of � are

where cells of the vertical part of the heightened hook are marked with a M, and those
of its horizontal part with a ..
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With these notations and Lemma 8, Proposition 8 becomes

Proposition 10. Let r ∈ <0; n− 1= and �=(�1; : : : ; �‘)� n. Then:

�1
r(n−r)

� =
�‘−1∑
k=0

2‘−‘(�k )−1
∑
�̂k

(−1)r−‘•(�̂∗);

where the inner sum runs over all painted diagrams �̂k of shape �k with r black cells.

Remark that any painting �̂k induces a painting �̂∗ of �∗; in particular, ‘•(�̂∗) is
well de4ned and equal to ‘•(�̂k).

Proof. The summation in Proposition 8 can be rewritten as follows:

�1
r(n−r)

� =
1
2�‘

∑
�̂

∑
u∈{•;◦}�‘

(−1)r−‘•(�̂)

=
1
2�‘

∑
�̂

∑
u∈{•;◦}�‘

(−1)r−‘•(�̂∗):

Let us de4ne a one-to-one correspondence between couples (�̂; u) consisting of a quasi-
painting of � and a word u in {•; ◦}�‘ , and triples (k; �̂k ; w′) consisting of a non-
negative integer k¡�‘, a painting of �k and a word of length k+,0

k , where ,0
k denotes

Kronecker’s symbol.
For any painting �̂ of �, let p and q be such that its last row is •p ×◦q. For any

word u, let (v; w)=’(u) de4ned as in the shuSe lemma, and k = |w| − 1. Then the
corresponding painting �̂k of the heightened diagram �k is de4ned as follows:

• the painting of rows �1; : : : ; �‘−1 of � induces a painting of the same rows in �k .
• the colour of the horizontal part of the heightened hook, if any, i.e. if k �=0, is not
the 4rst letter of w.

• the colour of the remaining cells is given by the word v.

Moreover, we take w′ to be w if k =0 and w without its 4rst letter otherwise.
The mapping �̂ 	→ (k; �̂k ; w′) is one-to-one and preserves the number of black cells,

so that:

�1
r(n−r)

� =
1
2�‘

�‘−1∑
k=0

∑
�̂k

∑
w′∈{•;◦}k+,0k

(−1)r−‘•(�̂∗)

=
�‘−1∑
k=0

2−�‘+k+,0
k

∑
�̂k

(−1)r−‘•(�̂∗);

where the internal sum runs over the painted diagrams of shape �k with r black cells.
Since 1 + ‘(�k)− ‘= �‘ − k − ,0

k , the proof is complete.
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Example. Consider the painting �̂= then p=1 and q=4. Let u=

◦••◦◦•∈ {•; ◦}6, then ’(u)= (◦•; •◦◦•); k =3, and the corresponding painting of �3

is

4. A graphical summation

For any m-tuple a = (�1; : : : ; �m) of partitions �i =(�i;1; : : : ; �i; ‘i) of n, let Ia denote
the set <0; �1; ‘1 −1=× · · · × <0; �m; ‘m −1=. Then, for any k=(k1; : : : ; km)∈ Ia, the m-tuple
(�k1

1 ; : : : ; �km
m ) is denoted by ak. Last, let ‘ki = ‘(�ki

i ).
We are now able to derive from Formula (2) a new expression for connection coef-

4cient c(n)�1 ; :::; �m . Each evaluation of a character uses a summation over painted diagrams
with r black cells. Expanding these summations leads to summing over con4gurations
of m painted diagrams with the same number r of black cells:

nm−1

z1 · · · zm
n−1∑
r=0

∑
k∈Ia

∑
âk

(
m∏
i=1

2‘i−‘ki −1(−1)r−‘•(�̂∗i )

)
(−1)r[r!(n− 1− r)!]m−1;

(3)

where the innermost summation runs over paintings âk of ak with r black cells in each
diagram �ki

i .

4.1. Painted starry graphs

The factor [r!(n−1−r)!]m−1 in Expression (3) can easily be interpreted. In order to
give a natural description for other factors as well, we introduce the following model:
Let �1; : : : ; �m be partitions of a positive integer p, with �i =(�i;1; : : : ; �i; ‘i) for all

i∈ <1; m=. A starry graph of type a=(�1; : : : ; �m) is a bipartite graph . satisfying the
following conditions:

• its two kinds of vertices are, on the one hand, ‘1 + · · ·+ ‘m row vertices, and on the
other hand p star vertices,

• row vertices correspond bijectively to rows of the diagrams,
• for any 16i6m; 16j6‘i, the row vertex (i; j) has degree �ij,
• star vertices are unlabelled and have degree m,
• edges incident to row vertex (i; j) are labelled 1 to �i;j,
• for any star vertex, and any i∈ <1; m=, there is exactly one index j∈ <1; ‘i= such that

row vertex (i; j) is adjacent to the given star vertex.

A starry graph .̂ is painted if its vertices are painted black or white in such a way
that any two adjacent vertices have the same colour. If the colour of its row vertices
is given by the colour of the rows of â; .̂ is said to be of type â. The set of starry
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graphs of type a is denoted by G(a) and the set of painted starry graphs whose type
is a painting of a by Ĝ(a).

Example. Let us consider the partitions �1 = 14; �2 = 122; �3 = 1 3. The diagram below
represents a painted starry graph on (�1; �2; �3).

Let us consider m painted diagrams with p black and q white cells each. Any starry
graph on them has p black and q white undistinguishable star vertices. Each black (re-
spectively, white) cell of a given diagram is adjacent to a di)erent black (respectively,
white) star, hence the number of starry graphs on these diagrams is 1=p!q!(p!q!)m.

Proposition 11. Let a be a m-tuple of partitions of n, and âk a painted heightening
of a with r black cells in each diagram. Then the number of painted starry graphs
of type âk is [r!(n− 1− r)!]m−1.

This gives an interpretation of factor [r!(n− 1− r)!]m−1 in Expression (3) in terms
of painted starry graphs of type âk. Let us rewrite Expression (3) in these terms. The
summation over r leads to a summation over all paintings, so that we obtain:

Proposition 12.

c(n)�1 ; :::; �m =
nm−1

z1 : : : zm22g
∑
k∈Ia

∑
.̂∈Ĝ(ak)

2/(.)−c(.)(−1)(m−1)0(.)−∑i ‘•(�̂
∗
i ) (4)

in which 0(.) denotes the number of black stars of ., and /(.) its cyclomatic
number, i:e: e(.)− v(.) + c(.), with e(.); v(.) and c(.) denoting respectively the
numbers of its edges, vertices and connected components.

Proof. Remark that 0(.) corresponds to r, so that to derive Formula (4) from For-
mula (3), we only have to prove:

m∏
i=1

2‘i−‘ki −1 = 2/(.)−c(.)−2g:
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According to the de4nition of g, we have
∑m

i=1(‘i − 1)= (m − 1)(n − 1) − 2g. The
number r(.) of row vertices of . is

∑m
i=1 ‘

k
i , the number s(.) of star vertices is n−1

and the number of edges is m(n− 1), so that:

m∑
i=1

‘i − ‘ki − 1 = [(m− 1)(n− 1)− 2g]−
m∑
i=1

‘ki

= [e(.)− s(.)− 2g]− r(.)

= /(.)− c(.)− 2g:

4.2. Connected components and evenness

Let . be a starry graph of type ak=(�k1
1 ; : : : ; �km

m ), and .(1) � · · · �.(c(.)) its split-
ting in connected components. It induces a splitting of each partition �ki

i .
The following proposition is straightforward from the de4nition of painted starry

graphs:

Proposition 13. Let .̂ be a painted starry graph. Then each connected component
of . is monochrome. In other words, painted starry graphs .̂ are in bijection with
couples made of a (non-painted) starry graph . and a subset B of the set C(.) of
its components—the black ones.

Hence we can derive from Proposition 13 a new formulation of the innermost sum-
mation in Eq. (4):∑

.∈G(ak)

2/(.)−c(.)
∑

B⊂C(.)

(−1)1(B);

in which 1(B) is de4ned as follows: let e(.(c)); s(.(c)); r(.(c)) and h(.(c)) denote,
respectively, the numbers of edges, star vertices, row vertices and heightened row
vertices in the component .(c); we associate to each connected component the following
parameter:

1(.(c)) = (m− 1)s(.(c))−
m∑
i=1

‘(�∗i
(c))

= [e(.(c))− s(.(c))]− [r(.(c))− h(.(c))]

= /(.(c))− 1 + h(.(c))

and this notation is extended to subsets of C(.):

∀B ⊂ C(.); 1(B) =
∑
c∈B

1(.(c)):

A starry graph is said totally even if 1(.(c)) is even for all c∈C(.). We denote by
E(ak) the set of totally even starry graphs of type ak.
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4.3. A sign-reversing involution

Lemma 14. Let .∈G(ak). Then∑
B⊂C(.)

(−1)1(B) =
{
2c(.) if . is totally even;
0 otherwise:

Proof. First case is obvious. In the other case, let c be the lowest index such that
1(.(c)) is odd. Consider the involution # of the set of subsets C(.) mapping B⊂C(.)
on the symmetric di)erence B�{c}. Then # is an involution without 4xed point, and
for all B⊂C(.); 1(B) �≡ 1(#(B))mod 2, so that the contributions of all subsets cancel
two by two.

Hence the contribution of a starry graph is 2/(.) if it is totally even and 0 otherwise,
which proves the following theorem:

Theorem 15. Let a be a m-tuple of partitions of n. Then

c(n)�1 ; :::; �m =
nm−1

z1 : : : zm22g
∑
k∈Ia

∑
.∈E(ak)

2/(.):

Some particular cases can be directly deduced from this 4rst expression of our
theorem. Observe that, for any starry graph . built on any heightening of a,

∑
c∈C(.)

1(.(c)) = (m− 1)s(.)−
m∑
i=1

(‘i − 1)

= (m− 1)(n− 1)− [(m− 1)(n− 1)− 2g]

= 2g:

Remark that this supplies a proof that c(n)a = 0 unless g is an integer: if it is not, no
totally even starry graph can be built on a heightening of a, hence the summation is
empty.
Let us now assume that a is such that g is an integer, and consider a connected

starry graph . in G(ak). Then its cyclomatic number only depends on ak:

/(.)= 1(.) + 1− h(.) = 2g+ 1 +
m∑
i=1

(ki + ,0
ki − �i; ‘i):

Suppose that a is such that any starry graph on any heightening ak is connected.
According to Theorem 15,

c(n)�1 ; :::; �m =
2nm−1

z1 : : : zm

∑
k∈Ia

card(G(ak)) 2ki+,0
ki
−�i; ‘i :
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Now, card(G(ak))= (n−1)!m−1, and for any integer p,
∑p−1

k=0 2k+,0
k =2p. This proves

the following:

Corollary 16. If (�1; : : : ; �m) is such that any starry graph on any of its heightenings
is connected, then either c(n)�1 ; :::; �m =0 or

c(n)�1 ; :::; �m =
2
n!

m∏
i=1

card(C�i):

(Recall that C�i is the conjugacy class of permutations of type �i:)

In particular, this connectedness condition is satis4ed if one of the partitions is equal
to (n − 1; 1). Hence, this formula generalizes the well-known result that for any odd
partition � c�(n);(n−1;1) = 2(n− 2)!.

5. Orientability and explicit enumeration

5.1. Evenness function and orientability

Let . be a graph, V its set of vertices. Let us call evenness function on . any
mapping ’ :V→{0; 1}. The cardinality of ’−1(0) is called its weight and denoted by
w(’). An orientation of edges of . is said ’-compatible if for each vertex v; ’(v)
and its outdegree have the same evenness. A graph . which has such an orientation
is said ’-orientable.

Proposition 17. A connected graph . is ’-orientable if and only if

/(.) �≡w(’)mod 2:

In this case, it has exactly 2/(.) ’-compatible orientations.

Proof. First suppose that /(.)= 0, i.e. that . is a tree. We prove the result inductively
on the number of vertices of .. The case where . has only one vertex (and hence no
edge) is obvious: . is ’-orientable if and only if w(’)= 1, i.e. if w(’) �≡ /(.)mod 2.
In this case, there is only possible orientation — the void one. Otherwise, . has a leaf
‘ adjacent to a vertex a. Let .′ be the graph obtained by deleting ‘ in .. We de4ne
the following evenness function on .′:

’′ : v 	→
{

’(v) if v �= a
’(a) + ’(‘) + 1 if v= a:

. is ’-orientable if and only if .′ is ’′-orientable, and each compatible orientation
of . corresponds to exactly one orientation of .′. Moreover, w(’′)≡w(’)mod 2,
hence by induction . is ’-orientable if and only if w(’)≡ 1mod 2, and has only one
compatible orientation. This proves the case /(.)= 0.
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Let us prove the proposition inductively on /(.). Suppose that /(.)¿1, then .
has a simple cycle (v1; : : : ; vk), with k¿3. Let (v1; v2) be an edge of the cycle. Let .′

be obtained from . by deleting (v1; v2). Let us consider the ’-compatible orientations
of . in which (v1; v2) is oriented from v1 to v2, and denote by ’′ be the evenness
function on .′ de4ned by

’ : v 	→
{

’(v) if v �= v1
’(v1) + 1 if v= v1:

Then the restrictions to .′ of these orientations are exactly its ’′-compatible orienta-
tions. Since /(.′)= /(.) − 1, by induction /(.′) �≡w(’′)mod 2 and the number of
these orientations is 2/(.

′). Since w(’′) �≡w(’)mod 2, there exists ’-compatible orien-
tations of . in which (v1; v2) is oriented from v1 to v2 if and only if /(.) �≡w(’)mod 2.
In this case the number of such orientations is 2/(.)−1, and . has also 2/(.)−1 ’-
compatible orientations in which (v1; v2) is oriented from v2 to v1, which concludes the
proof.

5.2. Last enumeration

We use the latter results on starry graphs with a judicious choice of evenness func-
tion: let a be a m-tuple of partitions of n, ak a heightening of a and . a starry graph
in G(ak). We de4ne the evenness function ’ by ’(v)= 0 if v is a row vertex taken
from a heightened hook and ’(v)= 1 otherwise. We denote by ’(c) the restriction of
’ to the connected component .(c) of ..

Proposition 18. . is totally even if and only if it is ’-orientable.

Proof. A starry graph . is totally even if and only if, for all connected component
.(c); 1(.(c))≡ 0mod 2, and it is ’-orientable if and only if, for all .(c); /(.(c)) �≡
w(’(c))mod 2. But w(’(c)) is by de4nition the number of rows of the heightened hook
that belong to the cth component, i.e. h(.(c)). Since 1(.(c))= /(.(c)) − 1 + h(.(c)),
this ends the proof.

The set of ’-compatible orientations of graphs in G(ak) is denoted by G̃(ak). We
can immediately derive the following equality from Lemma 14 and Propositions 17
and 18:∑

.∈E(ak)

2/(.) = card(G̃(ak)):

Hence Theorem 15 becomes

Theorem 19.

c(n)�1 ; :::; �m =
nm−1

z1 : : : zm22g
∑
k∈Ia

card(G̃(ak)):
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So we have reduced the problem to counting the elements of G̃(ak). Let us now par-
tition G̃(ak) through the following criteria: the partition �̂ composed of the outdegrees
of the star vertices, and the map  that associates to each row vertex �ij its outdegree
 ij. We consider �̂ as a partition because the star vertices are not labelled, unlike row
vertices. Then

G̃(ak)=
⋃
( ;�̂)

G̃(ak;  ; �̂):

Proposition 20. By construction,  and �̂ satisfy the following properties.

• Since ’(v)= 1 on any star vertex v, the partition �̂ has no even part. Hence
|�̂|¿n − 1 and |�̂| ≡ n − 1mod 2. Star vertices with outdegree 1 are said simple,
the others, i.e. those whose outdegree is at least 3, are said complex.

• For all i∈ <1; m=, exactly ‘i − 1 indices j are such that row vertex (i; j) satis2es
’(i; j)= 1; hence

∑
j¿1  ij¿‘i − 1 and

∑
j¿1  ij ≡ ‘i − 1mod 2.

• Each edge of the graph contributes exactly once to the outdegree of a vertex,
hence: |�̂|+∑16i6m

∑
j¿1  ij =m(n− 1).

For any i¿1, let mi denote the number of parts of size 2i + 1 in �̂, and consider
the partition �=1m12m2 : : : ; let g0 = |�|, i.e. half the number of extra outgoing edges
of star vertices, and for all i∈ <1; m=, let gi be half the number of extra outgoing edges
of row vertices taken from diagram i. In other terms,

|�̂|= n− 1 + 2g0 and ∀i∈ <1; m=;
∑
j¿1

 ij = ‘i − 1 + 2gi:

Let us 4rst compute card(G̃(ak;  ; �̂)) for given  and �. We have to choose for each
row �ij the position of the  ij outgoing edges. These give raise to∏

j¿1

(
�ij

 ij

)
possible choices for each diagram.
We next have to choose which of the other cells are linked to the complex star

vertices and how. Using the notations described in the introduction, this gives

(D(e2�+1))(n− 1−∑j  1j; : : : ; n− 1−∑j  mj)

Aut(�)

possible choices, i.e.

(D(e2�+1))(r1 − 2g1; : : : ; rm − 2gm)
Aut(�)

:

Linking the last incoming cells to the simple star vertices, which are not indexed,
yields no further choice, so it remains only to link the outgoing cells to star vertices
in such a way that each diagram is adjacent to each star. This gives (

∑
j  ij)! choices

for diagram �i.
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Hence card(G̃(ak;  ; �̂)) is equal to

∏
i; j

(
�ij

 ij

)∏
i

(∑
j

 ij

)
!
(D(e2�+1))(r− 2g)

Aut(�)
:

Let us now sum over  with a prescribed m-tuple (g1; : : : ; gm). Since  ij is odd if and
only if j¡‘i, we obtain:

(D(e2�+1))(r− 2g)
Aut(�)

m∏
i=1

(‘i − 1 + 2gi)!
∑

p1+···+p‘i=gi

(
ki
2p‘i

) ‘i−1∏
j=1

(
�ij

2pj + 1

) :

Summing over (g1; : : : ; gm) and � leads to card(G̃(ak)):

∑
g0+···+gm=g

Pg0 (r− 2g)
m∏
i=1

(‘i − 1 + 2gi)!
∑

p1+···+p‘i=gi

(
ki
2p‘i

) ‘i−1∏
j=1

(
�ij

2pj + 1

) :

Following Theorem 19, we now have to sum over k, but the identity

�i‘i−1∑
ki=0

(
ki
2p‘i

)
=
(

�i‘i
2p‘i + 1

)
;

yields the following expression for c(n)�1 ; :::; �m , which is equivalent to Theorem 1:

nm−1

z1 : : : zm22g
∑

g0+···+gm=g

Pg0 (r− 2g)

m∏
i=1

(‘i + 2gi − 1)!
∑

p1+···+p‘i=gi

‘i∏
j=1

(
�ij

2pj + 1

) :

6. Asymptotic results

Formula (1) allows to catch non-trivial asymptotic results at 4xed genus. We shall
here consider two di)erent limits, both with the weight n of involved partitions going
to in4nity.

6.1. Large number of identical factors

First we let m go to in4nity together with n, with identical factors. The simpler
particular case is that of transpositions: let T =1n−22, and �i =T for 16i6m. Then
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m= n− 1 + 2g and

c(n)Tn−1+2g =
nn−2+2g

22g
Pg(1; : : : ; 1)

=
nn−2+2g

22g
∑
��g

1
Aut(�)

(
n− 1 + 2g
‘(�) + 2g

)(
‘(�) + 2g

2�1 + 1; : : : ; 2�‘(�) + 1

)

=
nn−2+2g

22g

g∑
‘=0

(
n− 1 + 2g
‘ + 2g

) ∑
��g

‘(�)=‘

1
Aut(�)

(
‘ + 2g

2�1 + 1; : : : ; 2�‘ + 1

)
;

so that c(n)Tn−1+2g is a polynomial of degree n−2+5g in n. Note the surprising fact that the
coe3cient of ( n−1+2g

‘+2g ) is the number of set partitions of {1; : : : ; ‘+2g} into ‘ subsets
of cardinality odd and at least three. It would be interesting to have a combinatorial
interpretation of this fact. Observe that this cancellation–free result could have been
obtained after some algebra from those of [8,22], that give the following formulation:

c(n)Tn−1+2g =
1
n!

n−1∑
i=0

(−1)i
(

n− 1
i

)[(
n
2

)
− ni

]n−1+2g

: (5)

Remark that to compute large exact values, an e3cient approach is to determine the
g coe3cients of the polynomial using the g 4rst evaluations of Goulden’s formula (5),
and then to use our expression.
Asymptotically, the dominant contribution is clearly obtained from our expression for

�=1g, so that the number of factorizations of genus g into m= n−1+2g transpositions
is estimated by

c(n)Tn−1+2g ∼
n→∞

nn−2+5g

24g g!
; or equivalently c(n)Tm ∼

m→∞
mm−1+3g

24g g!
:

More generally, let us consider factorizations of genus g in m factors of type 1p�,
where �=2a2 : : : kak is a partition of an integer n0 without trivial parts, with length
‘ and rank r. The relation mr= n0 + p − 1 + 2g gives the number of 4x points
p=mr − n0 + 1− 2g, so that such factorizations exist as soon as m¿(n0 + 2g− 1)=r.

Then, since Sgi(1
p�)= Sgi(�),

c(n0+p)
(1p�)m =

nm−1

22g
(p+ ‘ − 1)!m

(p! Aut(�))m
∑

g0+···+gm=g

Pg0 (r− 2g)
m∏
i=1

(‘ + p)(2gi)Sgi(�);

where r − 2g=(r − 2g1; : : : ; r − 2gm). Summands corresponding to compositions
(g1; : : : ; gm) with same underlying partitions 5 are equal, and the factors of the product
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only contribute for gi¿0. Hence:

c(n0+p)
(1p�)m =

nm−1

22g
(p+ ‘ − 1)!m

(p! Aut(�))m

×
∑

{
(g0 ;5)�g
5=1n1 :::gng

(
m

‘(5)

)(
‘(5)

n1; : : : ; ng

)
Pg0 (r− 25)

‘(5)∏
i=1

(‘ + p)(25i)S5i(�);

where r− 25 is the m-uple (r − 251; : : : ; r − 25‘(5); r; : : : ; r).
Let us 4rst consider Pg0 (r− 25). For m going to in4nity, the dominating term is the

term of degree 3g0 of D(e3g0 )=g0!:

g0!Pg0 (r− 25)∼ r3g0
(

m− ‘(5)
3g0

)(
3g0

3; : : : ; 3

)
∼ (mr)3g0

3!g0
:

Indeed it is the contribution of largest degree in m among a 4nite number of terms.
In the summation at 4xed g0, the product contributes with a polynomial in p whose

degree is 2(g − g0), i.e. does not depend on 5. Hence the largest contribution is de-
termined by the degree of ( m

‘(5) ) and given by 5=1g−g0 . Therefore, since n∼p∼mr,
we obtain the following equivalent:

c(n0+p)
(1p�)m ∼

m;p→∞
pm‘−1

22g
(‘ − 1)!m

Aut(�)m
∑

g0+g1=g

mg1

g1!
(mr)3g0

6g0g0!
p2g1S1(�)g1

∼
m;p→∞ (mr)m‘−1+3g (‘ − 1)!m

Aut(�)m
∑

g0+g1=g

S1(�)g1

rg1 4g 6g0 g0! g1!
:

This yields Corollary 2. Observe that S1(�)= 1
6

∑
i (�i − 1)(�i − 2), so the constant

c(g; a) can also be expressed as:

1
24g

∑
g0+g1=g

1
rg1g0! g1!

‘∑
i=1

(�i − 1)(�i − 2):

The special cases are obtained as follows: for involutions with k-cycles, we have
�=2k ; r= ‘= k; p= k(m− 2) + 1− 2g, and S1(�)= 0; thus we obtain:

c(2k+p)
(1p2k )m ∼

m→∞
(km)km−1+3g

km24g g!
:

For k-cycles, the result is straightforward. For instance, in the particular case of 3-
cycles, we have �=3; r=2, and ‘=1, hence we obtain more precisely:

c(3+p)
(1p3)m ∼

m→∞
(2m)m−1+3g

24g

g∑
g0=0

1
g0!(g− g0)!

∼
m→∞

(2m)m−1+3g

12g g!
:
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6.2. Large factors

A second kind of limit was suggested to us by Dimitri Zvonkine: we 4x m and let
non-trivial parts go to in4nity homothetically. In order to do that, let us choose our m
original partitions �i =1ai; 12ai; 2 : : : kai; k with respective weights ni. We shall denote by
x · �i the partition xai; 1 : : : (kx)ai; k and consider the number of factorizations of genus
g in permutations of respective reduced cycle type x · �1; : : : ; x · �m, when x goes to
in4nity. According to the genus relation, these permutations must have additional 4x
points so that the total number n of elements on which they act satis4es the equality:

n=
m∑
i=1

r(x · �i) + 1− 2g;

where r(x · �i)= xni − ‘i. Hence, if we denote n0 = n1 + · · ·+ nm and ‘0 = ‘1 + · · ·+ ‘m,
n must satisfy:

n= xn0 − ‘0 + 1− 2g:

Let us 4rst consider the behavior of polynomials Sg(x · �) for any given partition �
and integer g: 4x points of x · � do not interfere, so that

Sg(x · �)=
∑

p1+···+p‘=g

‘∏
j=1

1
x�j

(
x�j

2pj + 1

)
∼

x→∞ x2gsg(�);

where

sg(�)=
∑

p1+···+p‘=g

‘∏
j=1

�2pj
j

(2pj + 1)!
:

Now turn to Pg0 (r − 2g): since, for any i∈ <1; m=; r(x · �i)∼ xni, the contribution is
again dominated by the largest degree term D(e3g0 )=g0!. Thus:

g0!Pg0 (r− 2g) ∼
x→∞ (D(e3g0 ))(xn1; : : : ; xnm)

∼
x→∞ e3g0 (xn1; : : : ; xnm)

∼
x→∞ x3g0 e3g0 (n1; : : : ; nm):

Finally, for any i∈ <1; m=, denote by pi the number of 4x points needed for �i. Then
pi = n− xni ∼ x(n0 − ni), and

(‘(x · �i) + 2gi − 1)!
Aut(x · �i)

=
(pi + ‘i + 2gi − 1)!

pi! Aut(�i)
∼

x→∞
p‘i+2gi−1

i

Aut(�i)
:
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Hence:

22g

nm−1 c
(n)
x·�1 ; :::; x·�m

∼
x→∞

∑
g0+···+gm=g

x3g0e3g0 (n1; : : : ; nm)
g0!

m∏
i=1

[x(n0 − ni)]‘i+2gi−1

Aut(�i)
x2gi sgi(�i):

This yields Corollary 3, since the dominating term is obtained for g0 = 0:

c(n)x·�1 ; :::; x·�m ∼
x→∞

(
nm−1
0

22g
∑

g1+···+gm=g

m∏
i=1

(n0 − ni)‘i+2gi−1sgi(�i)
Aut(�i)

)
x‘0+4g−1:

Appendix A. First values

First values of the polynomials Sg (i.e. for small g):

S0(x1; : : : ; x‘)= 1;

S1(x1; : : : ; x‘)=
1
3!

‘∑
i=1

(xi − 1)2;

S2(x1; : : : ; x‘)=
1
5!

‘∑
i=1

(xi − 1)4 +
1

(3!)2
∑

16i¡j6‘

(xi − 1)2(xj − 1)2:

First values of Pg:

P0 = 1;

P1 =D(e3)=
∑

i1¡i2¡i3

xi1xi2xi3 ;

P2 =D(e5) +
1
2
D(e32);

=
∑

i1¡···¡i5

xi1 · · · xi5 +
1
2
D

( ∑
i1¡i2¡i3

xi1xi2xi3

)2 ;

=
∑

i1¡···¡i5

xi1 · · · xi5 + 10
∑

j1¡···¡j6

xj1 · · · xj6 + 3
∑

i; j1¡···¡j4

(xi)2xj1 · · · xj4

+
∑

i1¡i2 ; j1¡j2

(xi1 )2(xi2 )2xj1xj2 +
1
2

∑
i1¡i2¡i3

(xi1 )2(xi2 )2(xi3 )2:
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The next case after Goupil and Schae)er’s formula, i.e. m=3, reads:

c(n)�1 ; �2 ; �3 =
n2

22g

3∏
i=1

(‘i − 1)!
Aut(�i)

∑
g0+···+g3=g

1
g0!

3∏
i=1

(ri − 2gi)g0‘
(2gi)
i Sgi(�i):

For g=1, this reduces to

n2

4

3∏
i=1

(‘i − 1)!
Aut(�i)

(
r1r2r3 +

3∑
i=1

‘i(‘i + 1)S1(�i)

)

with ‘1 = r2 + r3 − 1, and ri = r(�i) so that the correction is indeed seen to be a
polynomial of degree 4 in the parts of �i.
For g=2, we obtain, with ‘1 = r2 + r3 − 3,

n2

16

3∏
i=1

(‘i − 1)!
Aut(�i)

(
1
2
(r1)2(r2)2(r3)2 + r1r2r3

3∑
i=1

‘(2)i S1(�i)
ri − 2
ri

+
∑

16i¡j63

‘(2)i ‘(2)j S1(�i)S1(�j) +
3∑

i=1

‘(4)i S2(�i)

)
:
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