
 Procedia Computer Science 9 (2012) 1743 – 1752

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.04.192

International Conference on Computational Science, ICCS 2012

An Innovative Teaching Tool for the Verification of Abstract Data

Type Implementations from Formal Algebraic Specifications

Rafael del Vado Vı́rseda, Fernando Pérez Morente ∗

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain, Madrid, C.P. 28040

Abstract

This paper presents an educational tool for testing abstract data types implemented in C++ against formal algebraic

specifications written in Maude, a formal specification language based on rewriting logic that allows the specification

of abstract data types in a clear and concise manner. Maude specifications are executable, which provides two advan-

tages: firstly, we can test our specifications and, secondly, we can obtain the results of the test cases automatically. We

focus our test cases on the correctness of the obtained data values generated from the Maude specification based on the

data type constructors and the corresponding membership axioms. The observation of the implementation under test

is done for each abstract data type through explicit methods defined by the user. The teaching tool is fully integrated

in the Eclipse environment and is platform-independent. We have developed an Eclipse plug-in that calls the Maude
system to generate the test cases and translates them into a sequence of C++ instructions. The C++ instructions are

compiled and executed, and the results are compared with the results obtained from the formal algebraic specification.

This educational tool is being used during this academic year by the Computer Science students in a data types course.

They have tested typical abstract data type implementations, like complex numbers, stacks, lists, and binary search

trees, as well as other data types based on them.

Keywords: Tools to aid in teaching, Abstract data types, Formal algebraic specifications, Software testing tools

1. Introduction

The study of abstract data types and their formal algebraic specifications [5] constitutes one of the essential aspects

of the academic formation of every student in Computational Science. Nevertheless, the high level of abstraction

necessary to teach these topics occasionally difficults its understanding to students. There is little incentive and mo-

tivation for writing formal algebraic specifications unless they can be used to prove the correctness of their data type

implementations in a simple and friendly way. For this reason, the development of an educational tool in a inte-

grated programming environment, familiar to the students, in which they can define formal algebraic specifications,

write data types implementations in C++ or Java and prove them to correct their errors, can be useful in Computer

Science Education to show students the usefulness of formal methods and encouraging their use in future software

developments.

∗Corresponding authors

Email address: rdelvado@sip.ucm.es,fperezmo@fdi.ucm.es (Fernando Pérez Morente)

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

1744 Rafael del Vado VÌrseda and Fernando PÈrez Morente / Procedia Computer Science 9 (2012) 1743 – 1752

This paper presents an educational tool for testing abstract data type implementations against formal algebraic speci-

fications [6, 7]. Formal specifications are written in Maude [3], which is a formal specification language based on

rewriting logic that allows the specification of abstract data types in a clear and concise manner. Rewriting logic

can be parameterized by different equational logics; in the case of Maude the logic is membership equational logic.

This logic allows, in addition to equations, the statement of membership axioms characterizing the elements of a sort,

which is very useful to define data types such as sorted lists, search trees, etc., that require a complex characterization

of their properties beyond the definition of their constructors. In [8], Martı́ Oliet, Verdejo, and Palomino present equa-

tional specifications of a series of typical data structures in Maude including advanced ones such as AVL and 2-3-4
trees. Maude also provides several tools that helps in the analysis of the correctness of specifications, like the Maude
termination tool, the Church-Rosser checker, and the Maude debugger and testing tool [12, 13].

Our testing tool is designed for helping Computer Science students with the implementation of data structures. In

fact, it has been used during the academic year 2010-11 in a data type structures course, which motivated the use of the

C++ language as implementation language. The teaching tool is fully integrated in the Eclipse environment 1, which

is platform-independent and provides environments, defined by plugins, for Maude specifications and C++ implemen-

tations. The students can write, compile, and execute their formal algebraic specifications in the same environment

in which they implement the abstract data types, generate the test cases, and prove them. Algebraic specifications

define the abstract data type behavior using constructor functions, that create or initialize the data elements, and other

functions, that operate on the data types. Currently our testing tool requires at least one specification constructor to

be implemented by a C++ object constructor, while the other constructors may be implemented by public methods.

Methods are tested one by one, since we do not generate test cases that use more than one public method. The tool,

documentation, and examples are available at http://gpd.sip.ucm.es/Testing/ICCS2012/.

There has been much related work in the area of software testing tools based on algebraic specifications from the

80s and 90s. These approaches mainly use algebraic specifications to help on the generation of the test sets. They

focus on finding the conditions for constructing an ideal exhaustive test suite and on how to select practicable test

cases from it. A pioneering work by Gannon, McMullin, and Hamlet is reported in [5]. More recent studies have

focused on the so-called oracle problem, that is, whether a decision procedure can be defined for interpreting the

results of tests according to a formal specification [7]. Gaudel and Le Gall present a good compilation of the work

done so far in [6]. Our work has been inspired by the QuickCheck tool [2] designed by Claessen and Hughes, and

its re-implementation for Erlang 2. QuickCheck was first designed for testing Haskell programs, although its exten-

sion to Erlang allows testing C implementations from Erlang specifications. The QuickCheck test case generator is

random, while we build our testing cases incrementally from the abstract data type specification constructors. An-

other testing tool for algebraic specifications is HOL-TestGen, which is based on the Isabelle/HOL theorem prover [1].

The rest of the paper is organized as follows: Section 2 presents how to defined an algebraic specification in

Maude and how to use the Eclipse environment to compile and test it; Section 3 shows how to generate the test cases

and how to use them to test the abstract data type implementations in C++. Section 4 explains the design of the

educational testing tool, Section 5 summarizes the experience of the students in using the tool, and finally Section 6
concludes and explains the improvements to be made to the tool based on the students experience.

2. Abstract Data Type Specification in Maude

Abstract data types are formally specified in Maude as functional modules, which correspond to equational theories in

membership equational logic [3]. Specifically we use a Core Maude extension called Full Maude, since its syntax is

almost equal to that used in Core Maude and we found very convenient to keep the abstract data type modules in the

Full Maude database for the test cases generation. Figure 1 presents a specification of the abstract data type stack in

the module STACK. The module starts with the keywork fmod, followed by the module name, an optional parameter

1http://www.eclipse.org/
2http://www.quviq.com/

1745 Rafael del Vado VÌrseda and Fernando PÈrez Morente / Procedia Computer Science 9 (2012) 1743 – 1752

Figure 1: Abstract data type specification of a generic stack in Maude.

declaration (in our case by the theory TRIV, that we will explain below, with the parameter X), and the keywork is.

Then, other modules can be included. Types are declared by means of the keywords sort or sorts, as the declaration

for Stack{X} in the example. There is an inclusion relation between types, which is described by means of subsort

declarations, as shown in the example to specify that a nonempty stack, of type NeStack{X}, is a specific case of

stack, of type Stack{X}. Then, each operator, introduced by means of the keywork op, is declared together with the

sorts of its arguments and the sort of its results; for example, the operation pop in the example has an element of

type NeStack{X} and returns an element of type Stack{X}. Also note that we use the attribute ctor to designate the

constructors of the abstract data type; it is used to generate the test cases.

With typed variables and operators, we can build terms in the usual way. A given term can have many different

sorts, because of subsorting and overloading but, under some easy-to-satisfy requirements, a term has a least sort.

Terms are used to form membership assertions t : s, stating that the term t has sort s, and equations t = t ′ (intro-

duced with keyword eq), stating that t and t ′ are equal. Parameterized abstract data types use theories to specify

the requirements that the parameter must satisfy. The ones are defined by the user. Maude provides some prede-

fined theories that define typical requirements, like the existence of a total order over elements of a given sort, in the

STRICT-WEAK-ORDER theory, or just the existence of a sort, in the TRIV theory (see Figure 1)). This theory requires

the existence of a sort Elt, that is qualified with the name X of the parameter as X$Elt, and that is used to imple-

ment generic stacks. The way to express the instantiation of a parameterized module, and thus state the specific sort

mapped to Elt in our case, is by means of views. An integer instantiation of the STACK module is shown in module

INT-STACK of Figure 1. We refer the reader to [3] for the concrete syntax of Maude theories and views. The Maude
system is available for Linux and Mac OS X at http://maude.cs.uiuc.edu. It is also available for Windows at

http://moment.dsic.upv.es.

Maude specifications can be executed under Eclipse [9] by means of special plugins [11]. This environment facili-

tates the usage of Maude by integrating the text editor with the execution commands of the system. Figure 2 shows an

Eclipse window for a simple Maude specification of complex numbers: on the left the defined projects are displayed;

the central part shows the editor; below there is the control panel that shows the result of the action and below it the

command line. Other windows that allow the definition of different system options and debugging can be opened. The

user writes the specification in a Maude file using the Eclipse editor and saves it in an existing Eclipse project. Due

to testing restrictions, the file must contain all the user modules used in the specifications (the in Maude command

is allowed), and the instantiated module to be tested should be the last one. The specification is then executed by

opening the Maude console and initializing Maude by clicking on the right button on the console.

1746 Rafael del Vado VÌrseda and Fernando PÈrez Morente / Procedia Computer Science 9 (2012) 1743 – 1752

Figure 2: Maude specifications can be executed under the Eclipse environment.

When a Maude file is opened in the editor window, two buttons are displayed in the menu bar . The first one

is used to send the file to the Maude system. Once sent, the file is compiled and the system reports the syntax errors

in the Maude console. Then, the user can reduce terms by using the command line or by writing them on the file and

sending them with the second button (send selection) to the Maude system. Only instantiated terms can be reduced.

The results is shown in the Maude console.

As part of an ongoing work to test and debug Maude specifications, a declarative debugger that allows the user to

debug both wrong and missing answers has been implemented [13]. This debugger has been extended with a test-case

generator for Maude functional modules in [12], which allows the user to generate, following different strategies, a set

of test cases fulfilling a given coverage and whose correctness will be checked by the user, or to check the correctness

of a Maude specification against another specification, which is known to be correct. In this way, we could test the

functions of the complex numbers specification in Figure 2, and debug the errors found by the test-case generator with

the associated debugger by using it as a standard Maude file in the Eclipse environment. The source code of these

tools, documentation, and examples are available at http://maude.sip.ucm.es/debugging/.

3. Testing the Abstract Data Type Implementation

When the student is convinced of the algebraic specification correctness, she selects an appropriate representation for

the abstract data type and implements it in C++. He may use the Eclipse environment and defines the C++ files in the

same project that the Maude specification files (see Figure 3). The generation of test cases requires a mapping between

the sorts and function names of the Maude specification and the C++ implementation. This mapping is defined in a

text file and it should contain all the operations that may be tested, including those with the same identifier in Maude
and C++; see the testing tool manual for the concrete syntax of this file [10].

1747 Rafael del Vado VÌrseda and Fernando PÈrez Morente / Procedia Computer Science 9 (2012) 1743 – 1752

Figure 3: Students can use the integrated environment of Eclipse to write implementations in C++ and prove them in

the Maude console.

The student can now generate the test cases. First, he opens the specification file in the Eclipse editor window to

obtain the buttons that manage the test-case generation in the menu bar (see Figure 2). These buttons are:

(1) (init): It is used only once to initialize the testing tool.

(2) (exec): It generates a new test case.

(3) (stop): It ends the session.

The student starts the test-case generator with the init button. Then she clicks the exec button and automatically

the testing tool loads the specification file from the editor window. First, the tool will ask for the name of the map-

ping file. There can be several mapping files for one specification since there can be different implementations; for

example, for the STACK specification there can be a static implementation with arrays and a dynamic implementation

with linked lists. When the user selects the mapping file a new dialog box appears with the specified operations and

asks for the one to be tested (see Figure 4). The operations that can be tested are obtained from the mapping file. The

operations of the specification that do not appear in the mapping file, and therefore do not have an associated method

implemented in C++, are considered private operations of the specification. Then, the testing tool requires for the

number of test cases to be generated. Once all these steps are completed, the tool generates a C++ main program with

the test cases. The student can now compile and run this program in the usual way.

The testing tool shows a dot in the console for each test that passes (see Figure 6). When a test fails, the tool

finishes and writes in the console the specification term that fails, the result obtained from the execution of the spec-

ification, and the result obtained from the execution of the implementation (see Figure 5). No reduction is done on

1748 Rafael del Vado VÌrseda and Fernando PÈrez Morente / Procedia Computer Science 9 (2012) 1743 – 1752

Figure 4: A dialog box appears with the specified operations and asks for the one to be tested and the number of test

cases to be generated.

the failing case since the testing cases are obtained from the data type constructors in an incremental manner starting

with the most simple ones.

The testing tool checks that the data computed by the C++ implementation is similar to the one obtained from

the Maude specification. The notion of similarity is given for each abstract data type by the student by means of the

comparison operator defined for the abstract data type, which shall be appropriately overloaded. The user may also

overload the output operator that will show the implementation results in case of a failure. The more detailed the

implementation of these operators will get the user more information about program bugs.

The number of test cases that can be generated in a reasonable time depends mainly on the number of constructors

operations of the specification. For example, for the STACK specification it takes about 7 seconds to generate 500 test

cases and 25 seconds to generate 1000 cases on a PC. Concercing the execution of the test it takes few seconds to

compile and execute the main program for 300 test cases. However, for more test cases the main program cannot be

compiled due to lack of memory.

1749 Rafael del Vado VÌrseda and Fernando PÈrez Morente / Procedia Computer Science 9 (2012) 1743 – 1752

Figure 5: When a test fails, the tool finishes and writes in the Maude console the specification term that fails.

4. Testing Tool Design

The testing tool has a modular design to facilitate its evolution and the incorporation of new functionality (see Figure
7). It has four main modules:

• The front-end module is used to communicate with the user and enter the data. It obtains the specification code,

the mapping file, the operation to be tested, and the number of testing cases. It has been implemented in Java
under the Eclipse environment.

• The test case generator is implemented in Maude taking advantage of its reflective capabilities [4]. It uses Full
Maude to facilitate the setting of: the module to be tested, the number of test cases, and the operation to be

tested. The test-case generator looks in the module for the constructors and then uses them to generate terms

for the specified function [12]. Some test cases generated for the STACK specification are shown below. These

terms are later reduced in the metarepresented module to obtain the result.

• The module, implemented in Java, that transforms the Maude test cases into C++ instructions. Each test is a

shortlist of Maude terms, the first one represents the test case, the second one the result of reducing the test

1750 Rafael del Vado VÌrseda and Fernando PÈrez Morente / Procedia Computer Science 9 (2012) 1743 – 1752

Figure 6: The testing tool shows a dot in the Maude console for each test that passes.

case using the equations of the specification, and the third one the sort of the result term. The module generates

the C++ instructions that give rise to an object that represents the Maude term. It adds the execution of the

method on the created object, generates the sequence of instructions for the result term, and uses the comparison

operator implemented by the student on the abstract data type to compare the two generated objects.

• The Eclipse C++ compiler.

The integration with Eclipse is implemented as a plug-in. It uses the Maude APIs developed under the MOMENT
project [11] that allow the execution of Maude as a batch process to call to the test case generator. It is platform-

independent and has been used in Mac and Windows systems.

5. Student Experience

The software testing tool has been used during the academic year 2010-11, by the Computer Science students at the

Complutense University of Madrid in the “Data Structures” academic subject at the second year. They have tested

typical abstract data type implementations, like complex numbers, stacks, lists, binary search trees, and tables as well

as other data types based on them. Since the implementation of these abstract data types is well-known, the students

are required to specify and implement new operations over them in order to practice implementations with linked lists

or the usage of other abstract data types. Over 75 of 89 students have completed a total of five programming assign-

ments whose specification and implementation can be found at http://gpd.sip.ucm.es/Testing/ICCS2012/.

The experience has proved very useful as it allows students to test their implementations and correct their errors.

They have found not only implementation errors, but also specifications ones, since the testing tool detects that the

results of the specification and the implementation are different. More importantly, the testing tool has helped students

to find the usefulness of a formal algebraic specification. The following table shows the high number of students that

have passed each of the five programming assignments: complex numbers, stacks, lists, binary search trees, tables.

1751 Rafael del Vado VÌrseda and Fernando PÈrez Morente / Procedia Computer Science 9 (2012) 1743 – 1752

Figure 7: Design of the software testing tool: From the Maude specification to the C++ implementation.

In general, in this educational experience we have noted that the testing tool helps to find implementation errors

and to obtain correct results, but not to perform an efficient design of the algoritm.

6. Conclusions and Future Work

There is little incentive for writing formal software specifications unless they can be used to prove the correctness of

the implementation in a simple and friendly way. Our educational testing tool can help Computer Science students

to test their abstract data type implementations increasing their motivation to define formal algebraic specifications,

resulting in an improved software quality. The use of an integrated programming environment like Eclipse, familiar to

the Computer Science students, in which they can define formal algebraic specifications, write C++ implementations

and prove them, shows students the usefulness of formal methods, not demotivating them with long formal proofs,

but encouraging their use in future software developments.

As future work, we plan to improve the Maude test-case generator incorporating new strategies to generate the

test cases, such as narrowing [3], which would enhance the performance of the testing tool. Moreover, we are also

interested in generating test cases that, in addition to constructors, are built by using some other defined functions;

helping in finding other errors, like dangling pointers. We need also to improve the algorithm that builds the C++
objects from the Maude terms in order to consider some abstract data types that cannot be currently treated, like those

that do not have a relation between the specification constructors and the implementation constructors and introduce

cppunits to cope with more test cases.

1752 Rafael del Vado VÌrseda and Fernando PÈrez Morente / Procedia Computer Science 9 (2012) 1743 – 1752

Acknowledgments

The work of this author has been partially supported by the Spanish projects FAST-STAMP (TIN2008-06622-C03-

01), PROMETIDOS-CM (S2009TIC-1465), GPD (UCM-BSCH-GR58/08-910502), and PIMCD no150 2011/2012

(Project for the Innovation and Improvement of the Educational Quality).

I am grateful to Isabel Pita, Adrián Riesco, Alberto Verdejo and Narciso Martı́ for their ideas and comments about

new ways to generate test cases and tool interface improvements.

References

[1] A. Brucker and B. Wolff. Symbolic test case generation for primitive recursive functions. In J. Grabowski and B. Nielsen, editors, Formal
Approaches to Software Testing, LNCS 3395, pages 16-32. Springer, 2005.

[2] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random testing of Haskell programs. In ACM SIGPLAN Notices, pages

268-279. ACM Press, 2000.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott. All About Maude: A High-Performance Logical
Framework, LNCS 4350. Springer, 2007.

[4] M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational logic, many-sorted equational logic, Horn logic with equality,

and rewriting logic. Theoretical Computer Science, 373 (1-2): 70-91, 2007.

[5] J. Gannon, P. McMullin, and R. Hamlet. Data abstraction, implementation, specification, and testing. ACM Transactions on Programming
Languages and Systems, 3: 211-223, July 1981.

[6] M.C. Gaudel and P. Le Gall. Testing data types implementations from algebraic specifications. In R. M. Hierons, J. P. Bowen, and M. Harman,

editors, Formal methods and testing, pages 209-239. Springer, Berlin, Heidelberg, 2008.

[7] P. D. L. Machado. Testing from structured algebraic specifications. In T. Rus, editor, Proceedings of the 8th International Conference on
Algebraic Methodology and Software Technology, AMAST 2000, LNCS 1816, pages 529-544. Springer, 2000.

[8] N. Martı́-Oliet, M. Palominio, and A. Verdejo. A tutorial on specifying data structures in Maude. In S. Lucas, editor, Proceedings of the
Fourth Spanish Conference on Programming and Computer Languages, PROLE 2004, ENTCS 137 (1), pages 105-132. Elsevier, 2005.

[9] I. Pita. Guı́a rápida sobre ejecución de especificaciones algebraicas en Maude bajo el entorno Eclipse para estudiantes de estructuras de datos.

Technical Report 5/11, Departamento de Sistemas Informáticos y Computación, 2001. http://gpd.sip.ucm.es/Testing/ICCS2012/.

[10] I. Pita. Manual para realizar testing de TADs especificados en Maude e implementados en C++. Technical Report 6/11, Departamento de

Sistemas Informáticos y Computación, 2011. http://gpd.sip.ucm.es/Testing/ICCS2012/.

[11] I. Ramos, J.A.C. Cubel, A. Boronat, and A. Gómez. MOMENT: A framework for MOdel manageMENT. http://moment.dsic.upv.es/.

[12] A. Riesco. Test-case generation for Maude functional modules. In Proceedings of the 20th International Workshop on Algebraic Development
Techniques, WADT 2010, Lecture Notes in Computer Science. Springer, 2011. To appear.

[13] A. Riesco, A. Verdejo, N. Martı́-Oliet, and R. Caballero. Declarative debugging of rewriting logic specifications. Journal of Logic and
Algebraic Programming, 2011. To appear.

