
JOURNAL OF COMPUTER’AND SYSTEM SCIENCES 32, 97-104 (1986)

“During” Cannot Be Expressed by “After”

PAWEE URZYCZYN

Institute of Mathematics, University of Warsaw, PKiN, 00-901 Warsaw, Poland

Received October 10, 1984; revised May 11, 1985

We prove that the operator i (“during”) is not expressible in first-order logics of programs
based on the operator () (“after”), but it is expressible with the help of array assignments or
rich tests. From this we deduce that array assignments add to the power of logics based on
nondeterministic effective tree-schemes and that rich tests add to the power of logics based on
flowcharts. The proof of the main theorem is based on a result of Furst, Saxe, and Sipser (in
“Proc. 22nd Found. of Comput. Sci.,” 1981). Then it shows an example of how the Boolean
circuit complexity theory may be applied to logics of programs. (3 1986 Academic Press, Inc.

1. INTR~OU~TI~N

In the present paper we discuss the expressive power of three “non-standard”
constructs used in first-order logics of programs. These constructs are: temporal
operators, array assignments, and rich tests. Although the use of rich tests is
treated, e.g., by Hare1 [2], as a basic property of dynamic logic, it is more natural,
in the author’s opinion, to consider programs with quantifier-free and program-free
tests only. It follows from results of Meyer and Parikh [4] that rich tests enrich the
power of logics based on recursively enumerable programs. We prove (Corollary 9)
that the same holds for regular (flowchart) programs.

Logics with array assignments considered in the paper are defined in the spirit of
[2], i.e., a name of an array occurring in a program scheme P may also occur in a
formula CI in the context (P) CI. That is, some information about the behaviour of P
may be transmitted “outside of P” in the formula. It was proved by Meyer and
Tiuryn [S] that array assignments do not change the power of logics based on
deterministic r.e. programs. However, as we prove below (Corollary 8), it is not true
in the nondeterministic case.

Both the above mentioned results follow from Theorem 7, which states that a
temporal operator I (“during”) adds to the power of logics of programs based on
nondeterministic flowcharts, as well as nondeterministic tree-schemes. The operator
I, introduced by Pratt [8], has the following meaning: we read P 1 c1 as “in every
computation of P there is a state satisfying a.” As a tool to prove Theorem 7 we use
a theorem of Furst, Saxe, and Sipser who proved [l] that no sequence of circuits of
constant depth and polynomially bounded sizes may define the language of all the
words containing an even number of occurrences of “1.” (We restate this result here

97
0022-0000/86 $3.00

Copyrrght 0 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

98 PAWEE URZYCZYN

as Lemma 5.) There are two other temporal operators considered below, namely
LU (“throughout”) and 1 (“preserves”), but those turn out to be expressible in
logics with input-output semantics (Theorems 1 and 2). All the three operators
were proved to be expressible in algorithmic logic, but with the use of rich tests
(Mirkowska and Stapp [7]).

The formalism of our consideration differs from that of [2]. The latter was orien-
ted for the input-output semantics, while allowing temporal operators requires con-
sidering programs as objects defining computations. Especially, in case of r.e.
programs, Harel’s definition only allows those “infinite computations” whose initial
segments are also initial segments of finite seq’s. In addition, this definition leads to
a quite unnatural effect: unbounded (even infinite) nondeterminism. Thus, we
choose the notions of a flowchart scheme and an effective tree-scheme for our pur-
poses. However, with respect to the input-output behaviour, our schemes are
equivalent to regular and r.e. programs in [2].

2. DEFINITIONS

Throughout the paper, we assume that there is a fixed signature 6, i.e., a finite
sequence of function and relation symbols (including =, always interpreted as
equality). A flowchart scheme (over 6) is a finite directed graph with all nodes
(except the only initial (input) node and the final (output) nodes) labelled by
assignments, tests and “or” instructions. If not defined otherwise, all tests are
assumed to be quantilier-free formulas of classical logic. Assignments take the form
x:= t, where x is a variable and t is a term over 6. The nodes labelled by “or”
instructions, representing nondeterministic choices, are assumed to be of outdegree
2, as well as those labelled by tests. For any test-labelled node, the outgoing edges
represent the two possible answers to the test: “yes” and “no.” Assignment-labelled
nodes are of outdegree 1. A generalization of the notion of a flowchart is the notion
of an effective tree scheme, which is a (potentially) infinite tree of nodes labelled as
described above, such that an effective procedure is able to determine the label of a
given node, as well as all its neighbours. For simplicity, we assume that only a finite
number of variables may occur in an effective tree scheme. (This does not cause any
confusion, since arbitrary terms are allowed in assignments.) A program scheme is
deterministic if it does not contain the instruction “or.” The class of all flowcharts
(all effective tree-schemes) we denote by FC (ET), while the subclasses of deter-
ministic schemes are denoted by DFC (DET). Clearly, unwinding the loops of a
given flowchart provides an effective tree, whence we may assume that FC c ET
and DFC c DET. It is a routine observation that effective trees correspond to
“informal algorithms,” defined in [3] by Kfoury, and thus are equivalent to
flowcharts with counters and recursion (or stack).

A computation of a program scheme P on an input a in a S-structure A is a
sequence of states, i.e., valuations of variables, such that a is the initial state and the
other are obtained by executing the instructions along a maximal path in P, the

“DURING” CANNOT BE EXPRESSED BY “AFTER” 99

answers to tests of which are satisfied by the successive valuations. An output (if
defined) is the last state of a computation. Thus, a scheme P defines in a d-structure
A a binary input-output relation on states, denoted P,. It is easily seen that the
class of all relations definable by FC- (ET-) schemes coincides with the class of
relations definable by regular (r.e.) programs in the sense of [2], with the restric-
tion that only quantifier-free tests are allowed.

If K is a class of program schemes then the logic of programs over K, denoted
L(K), is built up, in a standard way, from first-order connectives and program
schemes in K, with help of the dynamic construct (), as in [2]. The semantics of
() is given by the following condition:

A, a b (P) c1 iff there is b, with (a, b) E P, and A, b k u.

For two logics, L, and Lz, we write L, <L, iff, for every formula of L,, there is
an equivalent formula in L,. L, = L, stands for “L, < L, and L, 3 L,.” Using the
notation of [2, 51, we may write: L(FC) = QDLCYf’, L(DFC) z det-QDL’Y,f’,
L(ET) s QDLgff’ = DL-w/o-array, L(DET) = det-QDLgf) = DDL-w/o-array.

We are going to extend the notion of logic of programs in three ways. First, we
may allow rich tests to occur in programs, i.e., define a class of rich-test program
schemes and the corresponding logic by simultaneous induction. For a class K of
program schemes, we put K,, = K, L, = L(K). Then K,, , is obtained by allowing K-
schemes to contain tests from Lj, and L, + , is defined as L(K,+ 1). Finally, L,(K) =
u{ Li: iE N}. Clearly, we have e.g., L,(FC) = QDL. We also consider program
schemes with program-free, but not necessarily quantifier-free, formulas in tests. We
use the notation L,(K) to denote the appropriate subset of the formulas in L,(K).

Another way to enrich logics of programs is to consider array assignments, i.e.,
assignments of the form F(x): = t, and x: = t, for a finite number of function sym-
bols F, not occurring in 6 and terms containing these symbols. The meaning of
F(x): = t is that the value of F(x) is defined to be the value of t after the assignment.
Similarly, we allow assignments R(x): = true (or false) for relation symbols R not in
the signature. For a class K of schemes, let AK be obtained from K by allowing
array assignments. Then L(AK) is defined in the usual way, but in the construct
(P)a, the formula a may contain symbols not in 6, provided they occur in the
scheme P.

At last, consider the temporal operators LU (“throughout”), I (“during”), and
J (“preserves”), defined as follows:

A,akPua iff a is true of each state in every
computation of P on a;

A,akPIa iff a is true of some state in
every computation of P on a;

A,al=PPa iff whenever a is true in some state
in a computation then it is true
in all following states.

100 PAWEELJRZYCZYN

We may allow one or more of these operators to occur in formulas of L(K),
obtaining new logics like, e.g., L,(K), L, I(K), or L, I I(K).

We end up with a notion needed for Lemma 5. A Boolean circuit is a finite net
built up from input gates and gates for conjunction, disjunction, and negation. An
assignment of Boolean values to input gates determines an output value assigned to
a distinguished output gate in an obvious way. A circuit with n inputs xi ,..., x,
accepts a word w = a, ,..., a,, E (0, 1 }” iff the output value is 1 provided the input
values assigned to xi ,..., x, are a, ,..., a,, respectively. The size of a circuit is the total
number of its gates, and the depth of it is the length of the longest path from an
input gate to the output gate. A sequence C,,, Ci C2,..., of circuits such that each Ci
has i input gates accepts a language L c { 0, 1 } * iff, for each word w E { 0, 1) *, C, ,,,,
accepts w iff w E L. Such a sequence is said to be of constant depth and polynomial
size iff there are a constant d and a polynomial p(n) such that each C, is of depth at
most d and size at at most p(n).

3. RESULTS

We start with showing that, in the deterministic case, the temporal operators do
not add to the power of basic logics of programs.

THEOREM 1. L Lu I r(DFC) = L(DFC) and L, I .(DET) = L(DET).

Proof: For a given scheme P(x), with the variables x, consider new schemes
P,(x, y) and P,(x, y, z) such that:

-P, converges for the input a, b iff b is a state in the computation of P on a;
-P, converges for a, b, c iff b and c are states in the computation of P on a

and some occurrence of b precedes some occurence of c.

Then we have

~PPacce*\Jy((Pl(x,y))trueja(y));
i=P 1 a++3y (<Pl(x, Y)> true * My));
~PPacrv/yz(((P,(x,y,z))true * NY))+a(z)). I

In the nondeterministic case, the operators u-1 and J may be still eliminated.

THEOREM 2. L Lu J(FC) E L(FC) and L, l(ET) = L(ET).

Proof: Let P(x) be given, and let PI(x) denote a new scheme, obtained from
P(x) by adding a possibility to stop in an arbitrary (nondeterministically chosen)
state of any computation. Then

where [] abbreviates -I ()l.

“DURING” CANNOT BE EXPRESSED BY “AFTER” 101

The operator 1 is expressed the same way as in the deterministic case. The only
difference is that one must replace “the computation” by “a computation” in the
description of P,. 1

Before we discuss the power of I , we observe that array assignments and rich
tests are at least as expressive as I .

THEOREM 3. L,(K)<L(AK)andL,(K)fL,(K)jior KE {FC,ET}.

Proof: Let P(x) E ET and let R(x) be a relation symbol not in 6. Construct a
program scheme P,(x) E AET to compute the following algorithm. First, P, guesses
a natural number n, then it successively simulates all the initial fragments of com-
putations of P (on a given input a) of length not exceeding n. Each simulation is
interrupted in a nondeterministically chosen state and then R(x): = true is executed.
Now, consider the tree built up from all the computations of P on a. If a + P I a
holds then, by Konig’s lemma, there is n such that a state satisfying a can be found
in the first n steps of any computation, since the tree is finitely branching. Thus we
have

I= p 1 a4+ (PI > Vy(NY) -+ a(Y)).

It remains to explain the use of natural numbers in P,, since ET-schemes do not
explicitly perform arithmetical operations. However, any arithmetical operation
may be encoded into the recursively enumerable control of an effective tree, and we
may assume that the algorithm of it is able to simulate the use of counters. Another
possibility is to consider P, as a flowchart with counters and recursion, and then
translate it into an informal algorithm (see [3]) presented as an effective tree.

The case of PE FC is a bit more difficult, since AFC-schemes cannot in general
simulate operations on integers. However, we may distinguish between two
situations: when the input generates infinitely or finitely many elements, and apply
a technique similar to that used in [9]. In the former case, an AFC-scheme P', may
behave exactly like P, above, since it is able to simulate counters with help of an
infinite chain of elements generated by the input. Otherwise, Pi is able to recognize
that the number of elements accessible from the input is finite, say m. Thus, for
some k, each computation of P must stop or loop (by repeating the same states)
after at most mk steps. (To be more precise, it may happen that a computation
needs more than mk steps to generate a value, but this is possible only if the com-
putation visits twice the same state, executing a number of “superfluous” instruc-
tions. Hence, there is another computation, producing the same values within mk
steps, and it suffices to consider the shorter one.) The scheme Pi can simulate all
initial segments of computations of P of length mk, using an additional k-ary array
as an auxiliary memory composed from mk cells, each containing one among m
elements. It is a routine to verify that this amount of memory is sufficient to control
the simulation.

102 PAWECURZYCZYN

To prove L,(K) G L,(K), consider a new rich test scheme P, which simulates P
and stops when it reaches a state satisfying a. We have

P I a iff there is no infinite computation of P,.
Since looping is expressible in L,(K) (see Meyer and Winklmann, [6]), we are
done. 1

Now we observe that “during” can express first-order tests in deterministic
flowcharts.

LEMMA 4. L,(DFC) 6 L,(FC).

ProoJ It suffices to prove that, for any PEDFC, there is a formula in L,(FC),
equivalent to (P)true (see [9]). Let P(x)EDFC. We construct a new scheme
P, E FC to simulate P as follows. For each test a(x) occurring in P (note that there
is only a finite number of tests in P), whenever P tests a(x), P, nondeterministically
guesses an answer. A guess “yes” (“no”) is announced by assigning equal values to
auxiliary variables z: and z; (u; and 0;) which are initially assigned different values.
The variables are immediately (before proceeding to the next step of the simulation)
assigned different values again. Thus, for each state of the computation tested for cc,
exactly one of the equations zy = z;, u”; = u; is true in exactly one state of the
simulation. A simulation will be thus faithful if all its states satisfy

a, : zy = z; + a(x),

and

P, uses two special variables y1 and y, to indicate the end of simulation. They are
assigned different values at the beginning and y i : = y, is executed when P reaches
its final state. Now, let cp be a conjunction of all formulas of the form ~1~ A a2 for c(
being a test in P. The reader may verify that (P)true is equivalent to P, 11
(cp A Yl = Y2).

Note that the above holds under the assumption that there are at least two
elements accessible from the input to P. Let two(x) be a first-order formula
expressing this property, and let y be equivalent to (P)true over all one-element
structures. Then, for all x, (P)true is equivalent to

(two(x) * Pl 1 l(V * Yl = Yd) ” (1tw4x) A 7). I

For the proof of our main negative results we need the following fact. Let
Purity = {w E (0, l}*: the number of l’s in w is even}.

LEMMA 5 (Furst, Saxe, and Sipser, [11). No sequence of Boolean circuits of
constant depth and polynomial size can accept Parity.

The next theorem demonstrates the power of first-order tests.

“DURING" CANNOT BE EXPRESSED BY “AFTER" 103

THEOREM 6. L,(DFC) & L(ET).

Proof For WE (0, l}*, 1 WI =n, let A, = (D,,f, r) be the structure with the
domain D, = {(i, j): i = 0, 1; j = l,..., n} and such that

f(L A = (13 i) for all j;

f(O,j)=(O,j+l) for j<n;

= (0, n) for j=n;

r((i, j), (k, l))=true iff i=O, k= 1, j= 1,

and the jth symbol in w is 1.

It is an easy exercise to write a deterministic rich-test flowchart scheme P, such
that if the input a assigns (0, 1) to all variables then A,, a k (P) true iff the num-
ber of l’s in w is even, i.e., iff w E Parity. For this, P tests the formula 3y(r(x, y)),
once for each x = (0, i), i = l,..., n. It remains to prove that no formula cp of L(ET)
has the property. Suppose the contrary and assume that cp is in a prenex normal
form

Q,x~...Q,x,$(x, xl,..., xk),

where I,G is an open formula of L(ET).
Let I w1 1 = I w2 I = n and let a, ,..., uk E D, be an arbitrary assignment to x1 ,..., xk.

Assume that, for all i, j, if a, = (1, j) then the jth symbols in w1 and w2 coincide.
The reader may easily prove that in this case,

Aw,, al,-, ak k ti iff A,v2, aI ,“., ak b *.

In other words, the Boolean value of +(a, a i ,..., a,), for a fixed n = 1 w 1 and fixed
a,,..., ak ED, is fully determined by the truth of 3x(r(x, a,)) in cases when the left
coordinate of a, is 1. Thus, t&a, a, ,..., ak) is a Boolean function on w, which
depends on at most k of its symbols, and hence can be computed by a Boolean cir-
cuit of size at most 2k. In particular, the size and also the depth of such a circuit
does not depend on n.

Now, for any n, we may easily build up a Boolean circuit C, computing the value
of cp(a) as a function in w. Each quantifier correspond to a level of A - or v -gates,
whence the depth of our circuit depends only on k, but not on n. In addition, the
number of gates will be of order nk-thus, polynomial in n. Clearly, the sequence
C,, C1, C2,..., accepts Parity, what contradicts Lemma 5. 1

The result announced in the title of the paper is an immediate consequence of
Lemma 4 and Theorem 6.

THEOREM 7. L(FC) < LJFC) and L(ET) < L,(ET).

The following two facts follow from Lemma 4 and Theorems 3 and 6.

104 PAWEE URZYCZYN

COROLLARY 8. L(ET) < L(AET) and L(FC) < L(AFC).

COROLLARY 9. L(K) < L,(K), L,(K) for all K in (FC, DFC, ET, DET}.

Remark 1. It was known that L(ET)<L,(ET) (see [4]), as well as that
L((D)FC) < L(A(D)FC) (see [9]). However, by [S], L(DET) - L(ADET).

Remark 2. Consider the operator Is, defined by

A, a = P I ,tl iff a is true of some state in every finite computation of P on a.

It was observed by Stolboushkin [lo] that

L I,JFC) = L,(FC).

It is not known whether the above holds for I or not.

ACKNOWLEDGMENTS

Thanks are due to Damian Niwinski, for turning my attention to the paper [11, also for A. J. Kfoury
and two anonymous referees for their critical comments.

REFERENCES

1. M. FURST, J. B. SAX, AND M. SIPSER, Parity, circuits and the polynomial time hierarchy, Math.
Systems Theory 17 (1984) 13-27.

2. D. HAREL, Dynamic logic, in “Handbook of Philosophical Logic,” Reidel, Dordrecht, 1983.
3. A. J. KFOURY, Definability by programs in first-order structures, Theoret. Compur. Sci. 25 (1983)

l-66.
4. A. R. MEYER AND R. PARIKH, Definability in dynamic logic, J. Comput. System Sci. 23 (1981)

279-298.
5. A. R. MEYER AND J. TIURYN, Equivalences among logics of programs, J. Compul. S.ystem Sci. 29,

No. 2 (1984), l-170.
6. A. R. ME~R AND K. WINKLMANN, Expressing program looping in regular dynamic logic, Theoref.

Comput. Sci. 18 (1982) 301-323.
7. G. MIRKOWSKA AND L. STAPP, AL can express progressive behaviour of programs, manuscript, 1982.
8. V. R. PRATT, Process logic, in “Proc. 6th ACM Sympos. on Principles of Programming Languages,”

1979.
9. J. TIURYN AND P. URZYCZYN, Some relationships between logics of programs and complexity

theory, in “Proc. 24th Found. of Comput. Sci.,” 1983.
10. A. P. STOLBOUSHKIN, private letter, 1984.

