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Abstract

Given an acyclic digraph D, the competition graph C(D) is defined to be the undirected graph with V (D) as its vertex set and
where vertices x and y are adjacent if there exists another vertex z such that the arcs (x, z) and (y, z) are both present in D. The
competition number k(G) for an undirected graph G is the least number r such that there exists an acyclic digraph F on |V (G)| + r

vertices where C(F) is G along with r isolated vertices. Kim and Roberts [The Elimination Procedure for the Competition Number,
Ars Combin. 50 (1998) 97–113] introduced an elimination procedure for the competition number, and asked whether the procedure
calculated the competition number for all graphs. We answer this question in the negative by demonstrating a graph where the
elimination procedure does not calculate the competition number. This graph also provides a negative answer to a similar question
about the related elimination procedure for the phylogeny number introduced by the current author in [S.G. Hartke, The Elimination
Procedure for the Phylogeny Number, Ars Combin. 75 (2005) 297–311].
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Given an acyclic digraph D, the competition graph C(D) is defined to be the undirected graph with V (D) as its
vertex set and where vertices x and y are adjacent if there exists another vertex z such that the arcs (x, z) and (y, z) are
both present in D. Competition graphs were introduced by Cohen [1] to study ecosystems. The vertices of an acyclic
digraph D, known as a food web, represent species, and the arc (x, z) indicates that z is a prey of x. An edge exists
between two vertices x and y in C(D) if and only if x and y have a common prey. In addition to ecology, competition
graphs have also found application in studying communication over noisy channels, interfering radio transmissions,
and models of complex economic and energy problems—see the discussions in Raychaudhuri and Roberts [10] and
Roberts [12]. Lundgren [7], Roberts [13], and Kim [4] survey the extensive literature of competition graphs.

In [11], Roberts noted that for any graph G, G along with r isolated vertices is the competition graph of some acyclic
digraph if r is sufficiently large. The competition number k(G) is defined to be the least such r. In general, determining

� Supported in part by a National Defense Science and Engineering Graduate Fellowship and National Science Foundation Grants EIA 0205116,
DBI 9982983, and SBR 9709134.

E-mail address: hartke@math.uiuc.edu.

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2005.11.009

http://www.elsevier.com/locate/dam
mailto:hartke@math.uiuc.edu


1634 Stephen G. Hartke / Discrete Applied Mathematics 154 (2006) 1633–1639

the competition number of a graph is difficult: Opsut [8] showed that this problem is NP-complete. Kim and Roberts in
[11,5] have determined the competition number of graphs with 0, 1, and 2 triangles, but for few other graph classes is
the competition number known. As another approach, Roberts considered using an elimination procedure to calculate
k(G). An elimination procedure takes as input G and an ordering O = v1, . . . , vn of the vertices of G and produces an
acyclic digraph D such that C(D) = G ∪ Ir ; that is, the competition graph of D is G along with r isolated vertices.
The procedure “eliminates” each vertex in order by ensuring that all of the edges incident on the vertex will appear in
C(D). The goal is to create an elimination procedure that for some ordering, O outputs an acyclic digraph D where
|V (D)\V (G)| = k(G).

Elimination procedures which seek to determine a graph-theoretical parameter through step-wise elimination of
vertices have various applications in graph theory. A common example are algorithms for determining if a graph is
chordal by finding perfect elimination orders such that each vertex is “simplicial” in the graph of remaining vertices.
Roberts [11] was led to consider an elimination procedure for the competition number through variants of perfect
elimination used by Parter [9], Rose [15], and Golumbic [2] in connection with numerical analysis. Here, elimination
procedures are used to find a good order for eliminating variables during Gaussian elimination of a matrix.

Opsut [8] found an example of a graph G where Roberts’ original elimination procedure does not calculate the
competition number k(G), thus giving a counterexample to Roberts’ conjecture that the procedure always calculates
k(G). Kim and Roberts [6] then modified the elimination procedure and asked whether their modified procedure works
for all graphs. They were able to show that the modified version calculates the competition number for a large class of
graphs, the so-called “kite-free” graphs.

In this work, we present a graph L where Kim and Roberts’ elimination procedure does not always calculate the
competition number, in the following sense: for each order O of vertices of L, the elimination procedure can produce
an acyclic digraph with more than k(L) additional vertices.

This graph also is a counterexample to a similar question about the related elimination procedure for the phylogeny
number. Given an acyclic digraph D, the phylogeny graph P(D) is defined to be the undirected graph with V (D) as
its vertex set and with adjacencies as follows: two vertices x and y are adjacent if one of the arcs (x, y) or (y, x) is
present in D, or if there exists another vertex z such that the arcs (x, z) and (y, z) are both present in D. Phylogeny
graphs were introduced by Roberts and Sheng [14] from an idealized model for reconstructing phylogenetic trees in
molecular biology. For a simple graph G, the phylogeny number p(G) is the least number r such that there exists an
acyclic digraph D on |V (G)| + r vertices where G is an induced subgraph of P(D). The current author introduced in
[3] an elimination procedure for the phylogeny number based on Kim and Roberts’ modified elimination procedure for
the competition number. It was also asked whether this procedure calculated the phylogeny number for all graphs. The
graph L shown in this paper also shows that the elimination procedure for the phylogeny number does not calculate the
phylogeny number for all graphs.

Note that the focus of creating elimination procedures is not on efficiency, since calculating the competition number or
the phylogeny number with an elimination procedure requires n! runs (one for each ordering of the vertices). In fact, cal-
culating both the competition number [8] and the phylogeny number [14] have been shown to be NP-complete. Instead,
the focus is on whether an elimination procedure could be created that exactly calculates the relevant number. This is
interesting both for historical reasons and because many of the practical examples are relatively small, exactness is some-
times more important than efficiency. Our result shows that this might be much more difficult than originally thought.

In this work, the graph G for which we wish to calculate the competition or phylogeny number need not be connected.
For convenience, we will sometimes also describe a subgraph H of a graph G only as “consisting of” certain edges of
G. It is understood that H has no isolated vertices: the vertices of H are only the endpoints of edges in H.

2. The elimination procedure for the competition number

We will first formalize our definitions and describe Kim and Roberts’ elimination procedure using our terminology;
however, its workings are the same as the elimination procedure described in [6].

Definition 1. Let D = (V , A) be an acyclic digraph. The competition graph C(D) is a simple graph with vertex set V
where two vertices x and y are adjacent in C(D) if there exists a vertex z such that both (x, z) and (y, z) are arcs in D.
From the ecological origins of competition graphs, z is known as a prey of x if (x, z) is an arc of D.
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Definition 2. For a simple graph G, the competition number k(G) is the least number r such that there exists an acyclic
digraph D on |V (G)| + r vertices where C(D) is G along with r isolated vertices.

We give an informal description of the elimination procedure for the competition number before presenting it formally.
Given a graph G and an ordering O=v1, . . . , vn of the vertices of G, we eliminate each vertex iteratively, in the process
building up an acyclic digraph D =Dn with the desired properties. When eliminating vertex vi , we “cover” every edge
incident to vi that has not been covered in a previous iteration. By “covering” an edge e, we mean that the appropriate
arcs and possibly vertices have been added to Di so that e is an edge in C(Di). Here, Di is the acyclic digraph built
up through the ith iteration. The subgraph Gi is a spanning subgraph of G that contains the edges of G that have not
been covered in an iteration prior to the ith iteration. The subgraph G′

i consists of the edges of Gi that are incident
on vi , and so the edges of G′

i must be covered in the ith iteration. Cliques are used to maximize the coverage of G′
i

using the least number of added vertices. If C is a clique, then by adding arcs in Di from the vertices of C to a common
vertex x, all of the edges in C appear in C(Di). Thus, all of the vertices in C are “preying” on the same “species” x, and
hence competing with each other. The set Si contains the vertices available as prey at the beginning of the ith iteration,
and a vertex x is chosen from Si for each clique C in the clique cover of G′

i . If not enough prey vertices are available
in Si , then additional new vertices are added to Di so that there are enough prey vertices among Si and these new
vertices.

Note that implementing the elimination procedure is not straightforward: in each iteration a minimum edge cover by
maximal cliques must be obtained, and this problem is already NP-complete. However, as discussed below, for each
order of the vertices there is a choice of edge clique covers where the elimination procedure attains the competition
number.

The improvement of Kim and Roberts’ modified elimination procedure over Roberts’ original procedure was in
recognizing that the edges in G′

i are the only edges that must be covered in the ith iteration. Roberts’ original procedure
required that all edges in the subgraph of Gi induced by NGi

[vi] be covered in the ith iteration. For choosing the
cliques, Kim and Roberts utilize the subgraph Hi consisting of the edges from vi to vertices of higher index. The
cliques covering G′

i are chosen from Hi , even though some of the edges in Hi might already be covered. By using
maximal cliques of Hi , the size of the clique cover may be smaller and more uncovered edges that are not in G′

i may
be covered.

Definition 3. Let EG(v) denote the subgraph of G with vertex set NG[v] and containing only those edges of G incident
to the vertex v.

The Kim–Roberts elimination procedure for the competition number.
Input: A graph G and an ordering O = v1, v2, . . . , vn of the vertices of G.
Output: An acyclic digraph D = Dn such that C(D) is G along with M additional isolated vertices.
Initialization: Set D0 to the digraph with vertex set V (G) and no arcs. Di is an acyclic digraph constructed during

the ith iteration.
Set G1 = G. Gi is a spanning subgraph of G that contains the edges of G that do not appear in C(Di−1).
Set S1 = ∅. Si is a set of vertices available as prey at the beginning of the ith iteration.
ith Iteration, i = 1, . . . , n: Set G′

i to EGi
(vi), and set Hi to the subgraph of G induced by {vi} ∪ {vj : j > i and

vj ∈ NG(vi)}. Let Ei = {C1, . . . , Cki
} be a minimum size edge covering of G′

i by maximal cliques of Hi , ordered
arbitrarily. Note that if vi is isolated in G′

i , then Ei is empty and ki = 0. Form Gi+1 from Gi by removing the edges of
Cj from Gi for j = 1, . . . , ki .

Form the digraph Di by adding vertices and arcs to Di−1 as follows: let �i = min(ki, |Si |). Pick �i distinct vertices
u1, . . . , u�i

from Si . If |Si | < ki , then add ki − |Si | additional vertices u�i+1, . . . , uki
to Di . For each clique Cj ∈ Ei ,

add the arcs (w, uj ) to Di for each w ∈ Cj .
Form Si+1 by Si+1 = (Si\{u1, . . . , uki

}) ∪ {vi}.

Definition 4. Given a graph G and an ordering O, let E = E(G,O) = {E1,E2, . . . ,En} be edge clique coverings
obtained during the Kim–Roberts elimination procedure. Of course, the notation is ambiguous since the way to choose
the clique covers Ei is not completely specified in the procedure. The elimination number M(G) is the minimum of
M(G,O,E) over all orders O and some E obtained when using O.
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Fig. 1. A kite. The solid edges must be present, the dotted edges cannot be present, and the edge xy may or may not be present.

Kim and Roberts showed that for certain classes of graphs, if M(G) is this minimum and is attained for O and some
E, then it is attained for the same O and any E corresponding to O. If this is the case, M(G) is unambiguously defined.

The determination of necessary and sufficient conditions for M(G) to be unambiguously defined is an interesting
open problem. Lemma 24 of [3] shows that there is always a “right” clique cover for each order such that the minimum
over vertex orders attains the competition number k(G). Kim and Roberts showed that there is a class of graphs, known
as the kite-free graphs, for which M(G) is unambiguously defined and equals k(G).

Definition 5. A kite is the configuration shown in Fig. 1. In a kite, the solid edges must be present, and the dotted
edges cannot be present. The edge between vertices x and y may or may not be present. A kite-free graph does not have
a kite as a configuration, meaning that neither of the two graphs on five vertices that are kites are present as induced
subgraphs.

Theorem 6 (Kim and Roberts [6]). For a kite-free graph G, the elimination number M(G) is unambiguously defined
and equals the competition number k(G).

The current author presented an alternate proof of Theorem 6 in [3].
Kim and Roberts asked if M(G) is unambiguously defined and equals k(G) for all graphs. However, in the next

section, we exhibit a graph L such that for each order O there is a choice of clique cover Ei in the Kim–Roberts
elimination procedure such that M(G,O,E) > k(G). This answers the Kim–Roberts question negatively.

3. The counterexample

By Theorem 6, any graph where the elimination procedure is not optimal must contain a kite. The graph L in Fig. 2
contains several kites, but we focus our attention on the kite with vertices {1, 2, 3, 10, 11}. When eliminating vertices
1 or 2 first, two different clique covers of two triangles each can be used to eliminate the incident edges. One of these
choices is a good choice for the edge clique cover, but one is a bad choice. Our effort in constructing the counterexample
is to force 1 or 2 to be eliminated first, so that a bad choice is made. When 1 or 2 is not eliminated first, then we will
show that no choices allow the elimination procedure to attain the competition number.

Proposition 7. For each ordering O of the vertices of the graph L in Fig. 2, there is a choice of edge clique coverings
E within the elimination procedure such that M(L,O,E) > 2.

Proof. Let O = v1, v2, . . . , v14 be an ordering of the vertices of L. We consider several cases:
Case 1: v1 = 1. We make the bad choice of the cliques {1, 2, 3} and {1, 10, 11}. Any choice for v2 other than vertex

2 cannot be eliminated without increasing the number of extra vertices added to D since its remaining incident edge
cannot be covered by a single clique. Thus, v2 must be vertex 2. But after vertex 2 is eliminated, no vertex has its
remaining incident edges coverable by a single clique. Thus, M(L,O,E) > 2 if v1 = 1.

Case 2: v1 = 2. We make the bad choice of the cliques {2, 1, 3} and {2, 6, 10}. Analogously to Case 1, vertex 1 is the
only vertex that can then be eliminated as v2 without increasing the number of added vertices, but after that no vertex
has its remaining incident edges coverable by a single clique.
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Fig. 2. The graph L.

Case 3: v1 = 3, 6, 10, 11, or 14. Each of these vertices requires at least three cliques to cover its incident edges.
Case 4: v1 = 4 or 5. One of these vertices can be eliminated using two cliques, and the other is then the only vertex

that can be eliminated without increasing the number of added vertices. But then no vertex has its remaining incident
edges coverable by a single clique.

Case 5: v1 = 7. Vertex 7 can be eliminated with two cliques. Then vertices 8 and 9 in that order are the only vertices
that can then be eliminated without increasing the number of added vertices. But after that no vertex has its remaining
incident edges coverable by a single clique.

Case 6: v1 = 8 or 9. One of these vertices can be eliminated using two cliques, and then the other vertex and vertex
7 are the only vertices that can then be eliminated without increasing the number of added vertices. Vertex 7 must be
eliminated after vertex 8 for this to be the case. But after that no vertex has its remaining incident edges coverable by
a single clique.

Case 7: v1 = 12 or 13. One of these vertices can be eliminated using two cliques, and the other is the only vertex
that can then be eliminated without increasing the number of added vertices. But after that no vertex has its remaining
incident edges coverable by a single clique.

Thus, there exists a choice E of clique cover such that M(L,O,E) > 2 for any order O. �

Proposition 8. The competition number of the graph L in Fig. 2 is 2.

Proof. First note that there is no vertex in L whose incident edges can be covered with one clique. Thus, k(L)�2.
But the elimination procedure using the order 1, 2, . . . , 14 and the good choice of cliques {1, 2, 10} and {1, 3, 11} for
vertex 1 produces an elimination number M(L,O,E) of 2. Thus, k(L) = 2. �

4. The elimination procedure for the phylogeny number is not optimal

Because of the similarities in the elimination procedures for the competition and phylogeny numbers, the same graph
L is also a counterexample to the optimality of the elimination procedure for the phylogeny number.

Definition 9. Let D = (V , A) be an acyclic digraph. The phylogeny graph P(D) is a simple undirected graph with
vertex set V and with adjacencies as follows: two vertices x and y are adjacent if one of the arcs (x, y) or (y, x) is
present in D, or if there exists another vertex z such that the arcs (x, z) and (y, z) are both present in D.

Definition 10. For a simple graph G, the phylogeny number p(G) is the least number r such that there exists an acyclic
digraph D on |V (G)| + r vertices where G is an induced subgraph of P(D).

The competition number problem is essentially a problem about minimum edge clique covers, where the “value”
of a cover is computed in a weighted manner. The phylogeny number problem is similar in this regard. Thus, we can



1638 Stephen G. Hartke / Discrete Applied Mathematics 154 (2006) 1633–1639

formulate an elimination procedure for the phylogeny number similar to that of the competition number and obtain
analogous results. The elimination procedure for the phylogeny number was introduced in [3]. Note that the only
difference from the elimination procedure for the competition number is how edges of G are “accounted for” in D.

The elimination procedure for the phylogeny number.
Input: A graph G and an ordering O = v1, v2, . . . , vn of the vertices of G.
Output: An acyclic digraph D = Dn such that G is an induced subgraph of P(D).
Initialization: Set D0 to the digraph with vertex set V (G) and no arcs. Di is an acyclic digraph constructed at the

ith iteration.
Set G1 = G. Gi is a spanning subgraph of G that contains the edges of G that do not appear in P(Di−1).
ith Iteration, i = 1, . . . , n: Set G′

i to EGi
(vi), and set Hi to the subgraph of G induced by {vi} ∪ {vj : j > i and

vj ∈ NG(vi)}. Let Ei = {C1, . . . , Cki
} be a minimum size edge covering of G′

i by maximal cliques of Hi , ordered
arbitrarily. Note that if vi is isolated in G′

i , then Ei is empty and ki = 0. Form Gi+1 from Gi by removing the edges of
Cj from Gi for all j.

Form the digraph Di by adding vertices and arcs to Di−1 as follows: add the arcs (w, vi) to Di for all vertices
w ∈ C1\{vi}. For each clique Cj ∈ Ei\{C1}, add a vertex bj to V (Di) and add the arcs (w, bj ) to Di for each w ∈ Cj .

Definition 11. Given a graph G and an ordering O, let E = E(G,O) = {E1,E2, . . . ,En} be edge clique coverings
obtained during the elimination procedure for the phylogeny number. Again, the notation is ambiguous since the way
to choose the clique covers Ei is not completely specified in the procedure. The phylogeny elimination number ep(G)

is the minimum of ep(G,O,E) over all orders O and some E obtained when using O.

As with M(G), the determination of necessary and sufficient conditions for ep(G) to be unambiguously defined is an
interesting open problem. Lemma 9 of [3] shows that there is always a “right” clique cover for each order such that the
minimum over orders attains the phylogeny number p(G). Analogous to Kim and Roberts’ result, the current author
showed that for the kite-free graphs ep(G) is unambiguously defined and equals p(G).

Theorem 12 (Hartke [3]). For a kite-free graph G, the phylogeny elimination number ep(G) is unambiguously defined
and equals the phylogeny number p(G).

Because of the similarities in the elimination procedures for the competition and phylogeny numbers, the same graph
L in Fig. 2 also shows that the elimination procedure for the phylogeny number does not always attain p(G). Both of
the following propositions are proved in a fashion similar to Propositions 7 and 8 above.

Proposition 13. For each ordering O of the vertices of the graph L in Fig. 2, there is a choice of edge clique coverings
Ei such that the number of added vertices by the elimination procedure for the phylogeny number is greater than 1.

Proposition 14. The phylogeny number of the graph L in Fig. 2 is 1.

5. Conclusion

Many questions still exist about the existence and efficacy of elimination procedures that calculate the competition
number or the phylogeny number of a graph. Despite the existence of the counterexample graph L, the Kim–Roberts
elimination procedure is still of interest, particularly in determining for which graphs the procedure calculates k(G).
For instance, is L the smallest graph where the elimination procedure fails, or is there a smaller example? Is there an
example with only one kite? In some graphs that contain kites there is no choice for the clique cover E(G,O). Is the
elimination procedure exact for these graphs? Can we characterize the graphs that contain kites but admit no choice of
clique cover? A complete characterization for all graphs of when the procedure is exact and when it is not is still open.

The existence of the graph L where both the Kim–Roberts elimination procedure and the elimination procedure for
the phylogeny number fail suggests a natural question: can a different elimination procedure be created that succeeds
for all graphs? To answer this question, a more strict definition of what constitutes an elimination procedure is needed.
One reasonable condition might be to restrict what portion of the graph the procedure may consider when eliminating
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a vertex v. For instance, the procedure might only be able to consider vertices that are a fixed distance from v. In such
instances where an elimination procedure can only consider local information, it seems unlikely that the procedure
will calculate k(G) or p(G) for all graphs, even with the power of taking a minimum over all vertex orders. One
indication supporting this view would be if it can be shown that the Kim–Roberts elimination procedure needs to solve
an NP-complete problem about cliques to guarantee producing the competition number, despite the extra power of the
minimum over orders. It might be possible to prove the NP-completeness using the “widgetlike” construction of the
graph L. Another reasonable condition is requiring that all computation for eliminating a vertex is done in polynomial
time. It seems in this case that examining factorial number of different vertex orders should give sufficient power to
exactly solve either problem. However, an explicit procedure that accomplishes this is still needed.

A more general study of elimination procedures might also give insight into what graph parameters could be effectively
calculated using elimination properties. Other parameters related to clique coverings are natural candidates, but perhaps
other parameters such as chromatic number could also be considered.
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