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Abstract
An enhanced version of a stochastic SParse Approximate Inverse (SPAI) preconditioner for
general matrices is presented. This method is used in contrast to the standard deterministic
preconditioners computed by the deterministic SPAI, and its further optimized parallel variant-
Modified SParse Approximate Inverse Preconditioner (MSPAI). Thus we present a Monte Carlo
preconditioner that relies on the use of Markov Chain Monte Carlo (MCMC) methods to com-
pute a rough matrix inverse first, which is further optimized by an iterative filter process and
a parallel refinement, to enhance the accuracy of the preconditioner. Monte Carlo methods
quantify the uncertainties by enabling us to estimate the non-zero elements of the inverse ma-
trix with a given precision and certain probability. The advantage of this approach is that we
use sparse Monte Carlo matrix inversion whose computational complexity is linear of the size
of the matrix. The behaviour of the proposed algorithm is studied, its performance measured
and compared with MSPAI.

Keywords:

1 Introduction

Solving systems of linear algebraic equations (SLAE) in the form of Ax = b or inverting a real
matrix A is of unquestionable importance in many scientific and engineering applications. They
can be found in digital signal processing, stochastic modelling or communications, and many
physical problems involving partial differential equations.

Iterative solvers are used widely to compute the solutions of these systems and such ap-
proaches are often the method of choice due to their predictability and reliability when consid-
ering accuracy and speed. They are, however, prohibitive for large-scale problems as they can
be very time consuming to compute. These methods are dependent on the size of the matrix
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and so the computational effort grows with the problem size. The complexity of these methods
is O(kn2) for dense matrices in the iterative case and O(n3) for direct methods with dense
matrices while solving SLAE if common elimination or annihilation schemes (e.g. Gaussian
elimination, Gauss-Jordan methods) are employed [18].

Therefore, these algorithms often rely on preconditioners to speed up the computations
and/or to ensure faster convergence.

Monte Carlo (MC) methods on the other hand can quickly yield a rough estimate of the
solution. This is done by performing random sampling of a certain variable whose mathemat-
ical expectation is the desired solution. For some problems an estimate is sufficient or even
favourable, due to the accuracy of the underlying data. For example we would not need to
process data with a higher precision than the one of the input data. In addition, Monte Carlo
methods help to qualify the uncertainties while performing matrix inversion. For example,
Monte Carlo approaches enable us to estimate the non-zero elements of the inverse matrix with
a given precision, and with certain probability, and also enables us to estimate the structure
of the inverse matrix. Therefore, we concentrate on Monte Carlo methods for matrix inversion
(MI) that only require O(NL) steps to find a single element or a row of the inverse matrix. Here
N is the number of Markov chains and L is an estimate of the chain length in the stochastic
process. These computations are independent of the matrix size n and also inherently paral-
lel. Note that in order to find the inverse matrix or the full solution vector in the serial case,
O(nNL) steps are required.

For this reason we concentrate on Monte Carlo methods to solve SLAE or to find the inverse
of matrices. These algorithms are further able to produce a rough solution in cases where direct
or iterative methods are too costly to implement and do not provide a feasible way to find a
solution.

The class of Monte Carlo algorithms in our focus have to be able to

• be scalable and fault-tolerant, and

• run efficiently on various advanced architectures

Solving systems of linear equations is a well-known problem in engineering and sciences.
Using iterative or direct methods to solve these systems may be a costly approach in both time
and computational effort for certain classes of problems. One option of reducing the effort of
solving these systems is to apply preconditioners before using an iterative method. Depending
on the method used to compute the preconditioner, the savings and end-results vary. A very
sparse preconditioner is computed quickly, but it is unlikely to improve the quality of the
solution. On the other hand, computing a rather dense preconditioner is computationally
expensive and might be time or cost prohibitive. Therefore, finding a good preconditioner
that is computationally efficient, while still providing substantial improvement to the iterative
solution process, is a worthwhile research topic.

The next section gives and overview of related work. Monte Carlo methods, and the spe-
cific matrix inversion algorithm that is discussed as a SPAI preconditioner, are presented in
Section 3. Section 4 provides background information on the underlying computing systems
and the experimental set ups. Results and findings from experiments with matrices of varying
sizes and sparsity, as well as outcomes from running the iterative solver algorithm on SPAI
preconditioned matrices, are discussed in Section 5. The last section concludes and gives an
outlook on the future work.
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2 Related Work

Research efforts in the past have been directed towards optimizing the approach of sparse
approximate inverse preconditioners. Improvements to the Frobenius norm have been proposed
for example by concentrating on sparse pattern selection strategies [10], or building a symmetric
preconditioner by averaging off-diagonal entries [11]. Further, it has been shown that the sparse
approximate inverse preconditioning approach is also a viable course of action on large-scale
dense linear systems [3]. This is of special interest to us, as the Monte Carlo code we are
proposing in this paper is part of a bigger family. It includes serial and parallel Monte Carlo
algorithms for the inversion of sparse, as well as dense matrices, and their solution in systems
of linear algebraic equations. The proposed Monte Carlo algorithm has been developed and
enhanced upon in the last decades, and several key advances in serial and parallel Monte Carlo
methods for solving such problems have been made [1, 2, 8, 13, 14, 16]. There is an increased
research interest in parallel Monte Carlo methods for Linear Algebra in the past year, and
recent example is the Monte Carlo Synthetic Acceleration (MCSA)developed through MCREX
project at ORNL[15]. Future work that deals with a parallel implementation of the presented
algorithm is being considered in Section 2.

In the past there have been differing approaches and advances towards a parallelisation of
the SPAI preconditioner. The method that is used to compute the preconditioner provides the
opportunity to be implemented in a parallel fashion. In recent years the class of Frobenius
norm minimizations that has been used in the original SPAI implementation [4] was modified
and is provided in a parallel SPAI software package. One implementation of it, by the original
authors of SPAI, is the Modified SParse Approximate Inverse (MSPAI [22]).

This version provides a class of modified preconditioners such as MILU (modified ILU),
interface probing techniques and probing constraints to the original SPAI, apart from a more
efficient, parallel Frobenius norm minimization. Further, this package also provides two novel
optimization techniques. One option is using a dictionary in order to avoid redundant calcu-
lations, and to serve as a lookup table. The second option is using an option in the program
to switch to a less computational intensive, sparse QR decomposition whenever possible. This
optimized code runs in parallel, together with a dynamic load balancing.

Further discussion of additional advances, which are building upon the SPAI software suite,
will be presented in the next section.

2.1 SParse Approximate Inverse Preconditioner (SPAI)

The SPAI algorithm [19] is used to compute a sparse approximate inverse matrix M for a given
sparse input matrix B. This is done by minimizing ||BM − I|| in the Frobenius norm. The
algorithm explicitly computes the approximate inverse, which is intended to be applied as a
preconditioner of an iterative method. The SPAI application provides the option to fix the
sparsity pattern of the approximate inverse a priori or capture it automatically.

Since the introduction of the original SPAI in 1996, several advances, building upon the ini-
tial implementation, have been made. Two newer implementations are provided by the original
authors, the before mentioned MSPAI, and the highly scalable Factorized SParse Approximate
Inverse (FSPAI [21]). The intended use of both differs depending on the problem at hand.

Whereas MSPAI is used as a preconditioner for large sparse and ill-conditioned systems of
linear equations, FSPAI is applicable only to symmetric positive definite systems of this kind.
FSPAI is based around an inherently parallel implementation, generating the approximate
inverse of the Cholesky factorization for the input matrix. MSPAI on the other hand is using
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an extension of the well-known Frobenius norm minimization that has been introduced in the
original SPAI.

2.2 Solving Systems of Linear Equations

For solving systems of linear equations, the SPAI application provides a preconditioner, employ-
ing minimization of the Frobenius norm, and a solver that is based on the biconjugate gradient
stabilized method (BiCGSTAB). The algorithm, introduced in [24], is an iterative method to
solve non-symmetric linear systems by finding a numerical solution. The BiCGSTAB solver is
an extended and optimized version of the biconjugate gradient method (BiCG) [17], enabling a
quicker and smoother convergence. It is one of the best known Krylov subspace methods [20].

The idea of using a Frobenius norm minimization as a direct preconditioner is based on
computing a sparse approximate inverse as a matrix M , minimizing ||I −MA||. Within this
process it is possible to split the problem into n independent linear least-squares problems,
with n being the number of columns of M . These problems can then be solved, for example,
by using a dense QR decomposition.

The algorithm attempts to solve a system of linear equations of the form Bx = b for the
variable x. Its input is a sparse, square coefficient matrix B. The solution vector b can either
be provided by the user, or is arbitrarily defined by the software implementation. In the case of
the SPAI application suite, if no right hand side vector is handed to the algorithm, it constructs
one by multiplying matrix B with a vector consisting of all ones.

In a general case, an input matrixB is passed to SPAI as a file. The program then computes a
preconditioner using the Frobenius norm, afterwards it uses this intermediate result as an input
to the BiCGSTAB solver.

3 Monte Carlo Approach

Monte Carlo methods are probabilistic methods, that use random numbers to either simulate
a stochastic behaviour or to estimate the solution of a problem. They are good candidates
for parallelisation because of the fact that many independent samples are used to estimate the
solution. These samples can be calculated in parallel, thereby speeding up the solution finding
process. We design and develop parallel Monte Carlo methods with the following main generic
properties:

• efficient distribution of the compute data

• minimum communication during the computation

• increased precision achieved by adding extra refinement computations

Consideration of all these properties naturally leads to scalable algorithms.

3.1 Algorithm

The following procedure has been presented in [7] and allows to extend the Monte Carlo algo-
rithm for processing diagonally dominant matrices, that is used as the foundation for this work
(compare [23]), to the case of general matrices.

For this, assume the general case where ‖B‖ > 1 and consider the splitting

B = B̂ − C, (1)
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where the off-diagonal elements of B̂ are the same as those of B, and the diagonal elements of
B̂ are defined as b̂ii = bii + αi||B||, choosing in most cases αi > 1 for i = 1, 2, ..., n. For the
simplicity of the algorithm it is often easier to fix α rather than altering it over the rows of the
matrix ([6, 9, 16]).

In the general case, ‖B‖ > 1, make the initial split B = B̂ − C. From this compute
A = B−1

1 B2, which satisfies ‖A‖ < 1. Further, by careful choice, of B̂, it is possible to make

‖A‖ < 1
2 , which gives faster convergence of the MC. Then generate the inverse of B̂ by

m
(−1)
rr′ ≈ 1

N

N∑
s=1

⎡
⎣ ∑
(j|sj=r′)

Wj

⎤
⎦ , (2)

where (j|sj = r′) means that only

Wj =
ars1as1s2 . . . asj−1sj

prs1ps1s2 . . . psj−1sj

,

for which sj = r′ are included in the sum (2). Calculating ‖B‖ can be an expensive operation
and, so, any a priori information allowing for a reasonable estimate here is useful. From this
it is then necessary to work back and recover B−1 from B̂−1. To do this an iterative process
(k = n− 1, n− 2, . . . , 0) is used on B̂−1:

B−1
k = B−1

k+1 +
B−1

k+1Sk+1B
−1
k+1

1− trace
(
B−1

k+1Sk+1

) , (3)

where B−1
n = B̂−1 and Si is all zero except for the {ii}th component, which is from the matrix

S = B̂ −B. Then B−1
0 = B−1.

The make up of matrix S means that while (3) looks complicated it is, in fact, reasonably
simple. This means that it is not as computationally complex and when transferred to code
there are obvious simplifications possible to make sure that many multiplications by zero are
not performed. This method of splitting and recovery leads to Algorithm 1, which details a
MC algorithm for inverting general matrices.

Algorithm 1. Monte Carlo Algorithm for Inverting General Matrices

Step 1. Read in matrix B

1: Input matrix B, parameters ε and δ

Step 1. Calculate intermediate matrices (B̂, B1, B2)

1: Split B = B̂ − (B̂ −B), where B̂ is a diagonally dominant matrix

Step 1. Apply the algorithm for inverting diagonally dominant matrices from [23] with B =
B̂ to obtain B̂−1

Step 1. Recovery of B−1 from B̂−1

1: Compute S = B̂ −B

1.1: Let Si for i = 1, 2, . . . , n where each Si has just one of the
non-zero elements of the matrix S

1.1: Set B−1
n = B̂−1
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1.1: Apply B−1
i−1 = B−1

i +
B−1

i SiB
−1
i

1−trace(B−1
i Si)

for i = n, n− 1, . . . , 1

1: Then B−1 = B−1
0

Through the use of the enhancement the algorithm is able to generate rough inverses of
input matrices efficiently. This result can then be used directly as a preconditioner for solving
a system of linear algebraic equations or further improved. We propose the use of an iterative
refinement process, a parallel filter, or a combination of the two to further enhance the quality of
the preconditioner. The decision if those additional steps are taken is based upon the required
accuracy and can be freely selected, depending on user requirements. The parameters to control
the behaviour of the algorithm can be passed to the applications as command line arguments.

For the experimental setup it was necessary to modify and enhance the SPAI software
application, allowing for measurements to be taken, as well as run-time information to be
gathered. The existing source code was modified in order to apply the Monte Carlo generated
matrix inverse as a stochastic preconditioner to the BiCGSTAB solver that is provided by SPAI.

4 Experiments

In earlier work it has been shown that our proposed Monte Carlo algorithm is well suited for
calculating preconditioners for SLAE solvers. In this paper we focus on the extended version
of our algorithm that works on general matrices. Several test cases from differing matrix sets
have been selected and will exemplary presented to show the validity of our approach for this
class of matrices. In particular we focus on non-diagonally dominant, non-symmetric matrices
as input data.

We compared matrices from different sets that have been obtained from two collections - The
Matrix Market [5] and The University of Florida Sparse Matrix Collection [12]. These matrices
are used as inputs to both the MSPAI and our Monte Carlo based application to compute
preconditioners. The results from those calculations are two intermediate matrices MSPAI and
MMCSPAI , one for each type of preconditioner. In the last step these preconditioners are used
as an input to the BiCGSTAB solver that is provided by the SPAI application.

To analyse a system of linear equation solutions, the implementation of BiCGSTAB in
SPAI offers an arbitrary right hand side (RHS) vector. If no solution vector b is provided, the
BiCGSTAB algorithm will use A× τ as a RHS, where τ is a vector consisting of all ones. Due
to the selection of different matrices, not all originate from systems of linear equations that
provide a RHS. To provide a better reproducibility, all RHS vectors for the chosen matrices
have been configured to be arbitrarily generated in this way.

Numerical experiments have been executed on the MareNostrum supercomputer, located
at the Barcelona Supercomputing Center (BSC). It currently consists of 3056 compute nodes
that are each equipped with 2 Intel Xeon 8-core processors, 64GB RAM and are connected
via an InfiniBand FDR-10 communication network. The experiments have been run multiple
times to account for possible external influences on the results. The computation times for both
the preconditioner calculated by MSPAI, as well as our Monte Carlo based result, have been
noted. While conducting the experiments, we configured the parameters for probable errors
in both programs to produce preconditioners with similar properties and therefore producing
residuals within similar ranges when used as preconditioners for BiCGSTAB. A random starting
pattern has been chosen in MSPAI for best analogy to the stochastic nature of the Monte Carlo
approach.
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Figure 1: Run times and residuals for preconditioning psmigr 3
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Figure 2: Run times and residuals for preconditioning Appu

The latest MSPAI application version 1.2 has been slightly modified to allow for time mea-
surements. Also we used a modified version of SPAI 3.2 to allow for inclusion of our Monte Carlo
based preconditioner. To test the quality of the computed preconditioner, the BiCGSTAB im-
plementation in SPAI has been used to solve systems of linear algebraic equations by generating
the right hand side vector from the input matrices. MSPAI has been set up with the default
configuration parameters and was linked to local mathematical libraries, such as LAPACK,
BLAST and ATLAS.

The matrices used as a test set are from the Psmigr set from the Harwell-Boeing Collection
and the Simon group from the UF Sparse Matrix Collection. They are non-diagonally dominant,
non-symmetric and the data is stored in real data type. Psmigr 3 is a 3140x3140 matrix with
543162 non-zero entries, depicting data from US inter-county migration. Whereas Appu is a
14, 000x14, 000 matrix with 1, 853, 104 nonzeros from NASAs app benchmark set.

The number of compute cores used to calculate the preconditioners has been selected to
match the problem size and provide meaningful comparisons between the two differing ap-
proaches. For the small test set experiments have been run on 6 to 30 cores of the compute
system. The larger example was calculated from 32 up to 256 cores to show the differing scaling
of the deterministic method and our stochastic algorithm.
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5 Evaluation

Experiments have been run with on a selected number of square matrices of varying sizes and
sparsity. The matrices have been successfully preconditioned using the enhanced version of the
original SParse Approximate Inverse, MSPAI, and our proposed Monte Carlo approach. The
resulting preconditioner matrices M from the computations have then been used as an input
for the BiCGSTAB solver provided by SPAI. The remainder residual from the solver as well as
the computation time of the preconditioners have been noted.

The resulting residuals for both the MSPAI and Monte Carlo based preconditioners are
presented in Figure 1 for the Psmigr 3 matrix and Figure 2 for the Appu matrix. It is worth
mentioning that the obtained values for the residuals are quite different between two compared
approaches. The MSPAI based deterministic algorithm produces the same result for all compu-
tational runs whereas the Monte Carlo approach, due to its stochastic nature, generates unique
preconditioners of a varying quality within the same preconfigured range every time they are
recomputed.

From the results it can be seen that our proposed stochastic Monte Carlo approach is
able to generate preconditioners of a good quality and within the same margin of error as
the deterministic approach taken by MSPAI. When comparing the time needed to compute a
preconditioner it is noticeable in the case of Psmigr 3 that both algorithms follow roughly the
same scaling pattern. The Monte Carlo approach is significantly faster in computing, especially
in the case of fewer processors used.

When considering the larger test case of the Appu matrix a very interesting and differing
behaviour in scalability of both applications can be noticed. The Monte Carlo algorithm out-
performs the MSPAI approach quite significantly. Throughout the range of researched test
cases it is able to return a successfully calculated preconditioner within a shorter time frame
than the MSPAI application. Both approaches make use of more available processor cores, with
the deterministic MSPAI calculations taking noticeably longer to complete than our proposed
stochastic approach.

During the experiments it was noted that the quality of the calculated Monte Carlo pre-
conditioners was already high enough when parameters of the Monte Carlo preconditioner have
been selected with the resulting quality of the rough inverse matrix in mind. They are there-
fore producing preconditioners that produce residuals in the following solving process with
BiCGSTAB that are in the same order of magnitude that the results obtained with the SPAI
Frobenius norm preconditioner. Due to this the additional refinement procedures, using the
optional iterative filter process and parallel refinement method, could be omitted.

6 Conclusions and Future Work

An Monte Carlo based preconditioner for general matrices has been proposed as an alterna-
tive to the MSPAI algorithm and its applicability demonstrated. It has been shown that the
stochastic Monte Carlo approach is able to produce preconditioners of comparable quality to the
deterministic approach used in MSPAI. Our approach has been demonstrated to generate pre-
conditioners in less time and that its scaling probabilities are outperforming the deterministic
approach, especially for larger problem sizes. Our extended approach works for non-diagonally
dominant, non-symmetrical sparse matrices and can also be applied to dense matrices. When
compared to an improved version of SPAI, in the form of MSPAI, it has been shown that the
execution time of the algorithms is quite similar for smaller problem sizes.

The algorithm we propose is able to generate good quality preconditioners by generating a
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rough inverse using Markov Chain Monte Carlo methods. Advanced improvement techniques
to refine the accuracy of the preconditioner even further are discussed. Through numerical
experiments it has been shown that even without those optimization options the proposed
algorithm is able to generate preconditioners of a high standard.

The findings and results depicted in this effort have been gathered as a trial and to prove the
usefulness and validity of our approach. It has been shown that traditional methods are subject
to restrictions when it comes to execution times, especially for larger problem sizes. One possible
optimization has been demonstrated, using the proposed Monte Carlo based preconditioner to
speed up the computation of the preconditioned matrix M . The main advantage of our method
is a less costly (e.g. more computationally efficient) preconditioner that can be computed
in a fraction of the time of the deterministic approach, and thus producing fast and efficient
hybrid algorithms. This saving could be traded off for enhanced accuracy of the preconditioner,
therefore leading to even better convergence of the algorithms.

For growing problem sizes, new restrains are foreseeable. With an increased size of the
input data, handling this information in the main memory of a computer will be a challenge.
To overcome these limitations, and with the inherent parallelism in Monte Carlo methods in
mind, a parallel data replication approach for even larger matrices is worth investigating, yet
out of the scope of this paper. Parallel approaches are usually applied for larger matrices. Due
to the increasing availability of multi-core and many-core processors, as well as general purpose
graphics cards (GPGPUs) with hundreds of cores each, parallel computing is becoming common
practice. This also holds true for the class of work that has been presented in this paper.
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