
LINEAR ALGEBRA 
AND ITS 

APPLICATIONS 

ELSEVIER Linear Algebra and its Applications 277 (1998) 239-251 

Matrix sandwich problems 
Mart in  Charles  G o l u m b i c  1 

Department of Mathematics and Computer Science, Bar-llan University, Ramat-Gan, Israel 

Received 14 January 1997; accepted 29 September 1997 

Submitted by R. Brualdi 

Abstract 

The /7 Matrix Sandwich Problem (H-MSP) is introduced here as follows: Given a 
{0, 1,,} valued matrix A, where • is interpreted as "do not care", does there exist a 
fill-in of the asterisks • with 0s and ls such that the completed {0, 1} valued matrix 
M satisfies property/7? We study the computational complexity of this problem for sev- 
eral matrix properties including the Ferrers property, block decompositions and certain 
forbidden submatrices. Matrix sandwich problems are an important special case of ma- 
trix completion problems, the latter being generally defined over the real numbers rather 
than simply {0,1}. © 1998 Elsevier Science Inc. All rights reserved. 

Ke3,words." Matrix sandwich problems; Matrix completion problems: Ferrers diagrams: Block 
decomposition of matrices; Forbidden submatrix problems 

1. Introduction 

Let MI and M2 be {0, 1 }-valued m x n matrices. We say that M1 is dominated 
by M2 (M2 dominates M1), denoted by Mi C M2 if for all i , j  we have 

M,(i , j )  = 1 ~ Mz(i,j) = 1. 

Consider  the following problem: given M1 c_ M2 and a matrix proper ty  11, is 
there an m x n {0,1}-valued matrix M satisfying /7 such that  Mi C M C_ M2? 
This problem is called the 11 matrix sandwich problem and M is called a El-com- 
pletion of Ml in M2. 
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An alternate way of regarding a sandwich problem is to consider an m × n 
matrix A with entries {0, 1, ,}, and asking the question whether each , entry 
(interpreted as "do not care") can be filled in by a 0 or 1 such that the filled- 
in matrix M satisfies property H. We call M a H-completion of A. 

Graph sandwich problems [20] are precisely those for which the matrices are 
the adjacency matrices of a graph. H)~ergraph .sandwich problems [22] are pre- 
cisely those for which the matrices are the (hyperedges-versus-vertices) inci- 
dence matrices of a hypergraph. Sandwich problems that have been studied 
recently for graph properties include NP-complete sandwich results for interval 
graphs [19,21], chordal graphs [6,30], unit interval graphs [19], permutation 
and comparability graphs [20] and k-trees for general k [22], and polynomial 
sandwich algorithms for split graphs, threshold graphs, cographs [20], unit in- 
terval graphs with bounded clique size [25], k-trees for fixed k [22] and graphs 
containing a homogeneous set [9]. 

Matrix sandwich problems are an important special type of matrix comple- 
tion problems. The latter are generally defined over the real numbers, rather 
than simply {0,1 }, and the unspecified entries are to be filled in so as to achieve 
a matrix with a desired numerical property. For example, the positive definite 
and semi-definite matrix completion problem [2~,23], the Euclidean distance 
matrix completion problem [1], band matrix completions [11], Jordan and 
Hessenbery matrix completions [27], have been studied. See also [24]. 

1.1. Previous matrix sandwich results 

A {0, 1 } matrix has the consecutive ones property, if its columns can be per- 
muted so that the ones in each row are consecutive. Matrices with the consec- 
utive ones property correspond to interval hypergraphs and to the cliques of 
interval graphs [5,12,13,15,17,18,31]. The consecutive ones property also plays 
a central role in many applications such as databases [14], genetics [16,19], and 
through its close connection with interval graphs arises in many other practical 
problems including temporal reasoning [21], medical diagnosis [32], scheduling, 
circuit design, psychology and others [17,29]. 

A {0, 1 } matrix has the circular ones property if its columns can be permuted 
so that the ones in each row are circularly consecutive (as in wrapping the ma- 
trix around a cylinder). Matrices with the circular ones property correspond to 
circular-arc hypergraphs. A matrix can be tested for the consecutives ones or 
the circular ones property in linear time [7]. 

Golumbic and Wassermann [22] have shown the following intractibility 
result. 

Theorem 1. The consecutive ones matrix sandwich problem and the circular ones 
matrix sandwich problem are NP-eomplete. 
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In this paper we study the sandwich complexity for several other matrix 
properties. In Section 2 we give a linear time algorithm to solve the Ferrers ma- 
trix sandwich problem. In Section 3 we prove that the square block decompo- 
sition sandwich (SBDS) problem is NP-complete, but the rectangular block 
decomposition sandwich problem can be solved in linear time. Section 4 deals 
with some forbidden submatrix sandwich problems. 

2. The Ferrers matrix sandwich problem 

A {0, l } matrix has the Ferrers property if its rows and columns can be re- 
ordered so that that ls in each row and column appear consecutively with the 
rows left justified and the columns top justified. 

Matrices in this stepwise form are known as Ferrers diagrams, and are of in- 
terest in representation theory of finite groups, partially ordered sets [10] and 
graph theory [28]. 

Lemma 2. A {0, 1 } matrix M satisfying the Ferrers property must either have a 
row with all ls or a column with all Os. 

Proof. Let ri be the row of M which is reordered to the top row in the resulting 
Ferrers diagram, and let cJ be the column which is reordered to the last 
(rightmost) column. Clearly, either ri is all ls or C/is all 0s. [] 

Lemma 2 provides us a simple method for checking whether a {0,1 } matrix 
has the Ferrers property, namely, repeatedly delete an)' row having all ls or any 
column having all Os. It is easy to show that this process will end with the empty 
matrix if and only if the original matrix has the Ferrets property. Moreover, 
the Ferrers diagram D can be constructed at the same time, starting with an 
empty m × n matrix, by filling in the remainder of the next row with all 1 s when 
a row is deleted or the remainder of  the next rightmost column with all 0s when 
a column is deleted. In fact, all of  this can be done "virtually" by keeping a 
count of the row-sums as this elimination procedure is carried out. 

We now present the main result of this section. 

Theorem 3. The Ferrers matrix sandwich problem can be solved in O(mn) time. 

Proof. Our algorithm for solving the sandwich problem is the following 
elimination procedure: 

Let A be a {0, 1, ,}-valued matrix. Repeatedly apply rules (1) and (2) in any 
order until neither applies. 

(1) Delete any row containing only ls and *s. 
(2) Delete any column containing only 0s and ,s. 
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Claim 4. This process ends' with the empty matrix if and only ira has a Ferrers 
completion. Moreover, if in (1) each asterisk in the row is filled in by 1, and in (2) 
each asterisk in the column is filled in by O, then the resulting matrix M will have 
the Ferrers property. 

Suppose the process ends with the empty matrix, and let M be the comple- 
tion of  A as defined in Claim 4. Let D be the result of  reordering the rows and 
columns of M according to the order in which they were filled in (i.e., deleted 
from A), rows from top to bottom and columns from right to left. Clearly, D is 
a Ferrers diagram. 

Conversely, suppose the process stops with the non-empty submatrix A' (i.e., 
neither rule (1) nor (2) applies). It is well known, and easy to show that a 
{0, 1 }matrix has the Ferrers property iff each submatrix has the Ferrers prop- 
erty. Thus, if A' had a Ferrers completion M', then either M' would have an all 
ls row ri in which case row i of  A' would satisfy rule (1) or M' would have an all 
0s column cj and rule (2) would apply to column j of A', a contradiction. [] 

3. Block decomposition sandwich problems 

A {0, 1 } matrix M has a rectangular block decomposition if its rows and col- 
umns can be reordered so that the ls form rectangular blocks along a diagonal 
pattern as illustrated in Fig. I. This property has an easy interpretation on the 
bipartite graph B(M) whose vertices are {x~,... ,Xm} U {Yl,. -- ,Y,,} correspond- 
ing to the m rows and n columns of M with xi joined to Yi by an edge if an only 
if M(i,j)  = 1. Clearly, 

Remark 5. M has a rectangular block decomposition if and only if each 
connected component of B(M) is a complete bipartite graph. 

l~s 

] ' s  

O's 
% 

l ' s  

Fig. 1. A rectangular block pattern. 
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(A bipartite graph G = (X, Y, E) is complete if (x, y) ¢ E for every x E X and 
y E Y. The complete bipartite graph with I X I= m and I Y I :  n is commonly 
denoted by K, .... By convention, we also allow K~.0 and K0.~ as sets of indepen- 
dent vertices.) 

In this way, we will often refer to a rectangular block decomposition of a 
matrix M in terms of the disjoint union 

B(M)~K,, , , . , , ,  UK, , , . , ,U. . .UK, , ,~  ..... (3.1) 

where m -- ~ m i  and n = ~ n i .  
A {0.1} matrix M is said to have a square block decomposition if in (3.1) 

m~ : n, for all i. In such a case, the blocks of ls in Fig. l will be squares. 
Using elementary algorithmic graph theory, testing whether a {0,1 }-matrix 

has a rectangular or square block decomposition can be done in linear time in 
the size of the input, i.e., O(mn), simply by checking that each component of 
B(M) is complete for the rectangular case or complete and balanced for the 
square case. We will show in the remainder of this section that the Rectangular 
block sandwich problem is also linearly solvable but the Square Block sand- 
wich problem is NP-complete. 

3.1. Rectangular block sandwich problem 

Since rectangular block decompositions are equivalent to partitioning a bi- 
partite graph into disjoint complete bipartite subgraphs, we may solve the 
sandwich problem using the bipartite graph model. 

Let Gj = (X, Y, Et) and G2 = (X, Y, E2) be bipartite graphs on the same set 
of vertices satisfying El C_ E2. Let E0 E2 - E1 and E3 : (X x Y) - E2. The 
Rectangular Block decomposition sandwich problem is equivalent to determin- 
ing if there exists a bipartite graph G -- (X, Y, E) with E~ C E c E2 such that 
G ~ K,,,,,,~ U . . .  U K,,,~,,~, i.e., G is the disjoint union of complete bipartite 
graphs. We follow the usual interpretation where E~ corresponds to the re- 
quired edges (the ls in A), Eo to the optional edges (the .s  in A) and E~ to 
the forbidden edges (the 0s in A). 

We solve this sandwich problem as follows: Choose a vertex and generate its 
connected component C in G~, denoting the vertices spanned by C as Xc u Yc. 
If Xc U Yc has a forbidden edge (i.e., (Xc × Yc) N E3 :A ~b), then there is no 
sandwich; exit with failure. Otherwise, Xc u Yc is complete in Gz. Delete 
Xc. U Yc from the graphs and repeat the same process. If this procedure suc- 
ceeds in eliminating all vertices, exit with success. 

Given this algorithm, we obtain the following result, which is straightfor- 
ward. 

Theorem 6. The rectangular block decomposition sandwich problem can be soh~ed 
in O(mn) t#ne. 
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ProoL Clearly, each connected component in G~ must be filled in by optional 
edges (from E0 = E2 - El) if there is to be a sandwich solution. Moreover, if 
this is done for each component,  then the result will be a disjoint union of 
complete bipartite graphs and hence a sandwich solution. The complexity 
follows immediately. [] 

3.2. Square block sandwich problem 

Theorem 7. The SBDS problem is NP-complete. 

Proof. For  square blocks, we consider the following equivalent bipartitite 
graph version of the SBDS problem. 

Input: Bipartite graphs Gt = (X, Y, EI) and G2 = (X, Y, E2) with E~ C E2. 
Question: Does there exist a bipartite graph G = (X, Y, E) with E1 c E C E2 

such that G "~ Km,,m , U • "" U Kmk,m~ 9. 

The problem is clearly in NP since any potential sandwich can be generated 
and tested in polynomial time. We prove that the problem is NP-hard by a re- 
duction from the SET PARTITION problem. 

SET PARTITION 
Input: A collection . f  = {Si}~l of disjoint sets. 
Question: Can J ;  be partitioned into two equal parts, i.e., 

I =A UB, A NB = 4~ such that ~--~,cA IS, I = Z,c8 IS, I? 
Let ,9 ~ = {S,.}/cl be an instance of SET PARTITION,  and let 

IS, I= 2p, I I I = k, n, =1 s,  I and S, = {s,!,sZ,...,s;"}. (3 .2 )  

We construct an instance of the bipartite graph version of  the SBDS as 
follows: Let 

X = { a , b }  U { X l , . . . , X k }  U Usi, 
icl 

r =  {,',b'} u {y,,...,y,} u {w,,. . . ,  w,,} u {z,,...,zp}, 

where all these vertices are distinct, and further define 

E1 = Ea U Eh U UT, ,, 

where 

Ea= {(a ,a ' ) }U{(a ,w, ) l i=  1 . . . .  ,p}, 

Eb = {(b,b')} U {(b, zi) l i = 1 , . . . , p} ,  



and 
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T, = {(x,O.',)} u { (4 , .v , )  I / =  1 . . . .  , , , , }  

& = ( x  × Y) - { ( a , b ' ) , ( / , b ) } .  

245 

The construction is illustrated in Fig. 2. 
We observe the following. 
(i) I x  I=1 Y I = 2 + k + Z p  
(ii) Since (a, a'), (b, b') E E1 but (a', b), (a, b') ~ E2, any (potential) sandwich 

solution would have to put a and b into disjoint components.  
Suppose the SET P A R T I T I O N  instance has a solution 1 = A U B, A N B = ~/~ 

with p = ~ c A  I Si ]= ~icB I S, ]. Then G = GA LJ GB is a sandwich solution, 
where 

~ i  X 2  X k  

,ljl 

/j\ / 

(I t ~L~I 21] 2 U~ 3 "~U~ 

1..12 

\ 

21 z 2 z 3 zp b t 

Fig. 2. The edges of El, required in any sandwich solution. 
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× ({a'} u {y, I i EA} U {w,, . . . ,wp}) 

G'=( {B}U{x'IicB}uUS'),<8 
x ({b'}  U {;'~ l i ~ B} U {z , , . . .  ,z,,,}) 

since all edges of E1 are included, neither forbidden edge (a, b') nor (a', b) was 
added, and GA and G8 are disjoint balanced complete bipartite graphs since the 
cardinality of both sides of the Cartesian products are equal for GA and G,. 

Conversely, suppose the SBDS instance has a sandwich solution E. Then it 
must consist of exactly two disjoint components according to the following rea- 
soning. Let HA and H, denote the connected components of E which contain a 
and b, respectively. Define A - {i l Y, 6 HA} and B = {i ]y /6  He}. The number 
of vertices in H4 is 2 + 2 1 A  I+}-]i~A [ S i l + P  corresponding to 
{a,d}U{xi,Y~liEA}U{S;(liEA,j= 1,. . . ,n~}U{Wl,. . . ,Wp}, and since HA 
is balanced, we have p = ~i~A IS, I- Similarly, the number of vertices in H8 
is 2 + 2 I B I + }-~i~, [ S~ I +P, so p = }-~ice I S, [. Therefore, since all vertices 
are accounted for by (3.2), there are no other connected components, and A 
and B give a solution to the SET PARTITION problem. This concludes the 
proof of the theorem. [] 

4. Forbidden submatrix problems 

Klinz et al. [26] have studied a large number of matrix properties of the 
form, (4.1): permute the rows and columns so that the result does not contain 
as a submatrix any element of J ,  where ,~- is a specified set of"forbidden"  ma- 
trices, and by the term "submatrix" we mean "obtained by cancelling rows and 
columns", i.e., not necessarily a contiguous submatrix. 

Denote by ~.(/(,~) the family of {0, l}-valued matrices satisfying (4.1), and 
denote by 5f(~) the family of {0, 1, ,} -valued matrices which have a sandwich 
solution (a {0, 1}-valued completion) satisfying (4.1). For example, 

are precisely those matrices having the Ferrers property, and 

are those having a Ferrers matrix completion. 
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In [26] the computational complexity of the membership problem for many 
instances of ,~( ,~)  is investigated, and for similar versions for only column per- 
mutations ,Jt/c(,~ -) and for simultaneous row and column permutations on 
square matrices ,~#s(~). Our interest here is the membership problem for 
, ~ ( ~ )  which is, in fact, exactly the sandwich problem for permuted forbidden 
submatrices. For example, membership in ,9~((1,0, 1)) is equivalent to the con- 
secutive one's matrix sandwich problem since permuting rows is irrelevant. This 
problem we know to be NP-complete as opposed to the Ferrers sandwich prob- 
lena which is polynomial. We now present some other polynomial time cases. 

Proposition 8. The complexity of membership in 

1 1 ,)1 
is the same as the complexiO, of membership in 

1 1 

hence, polynomial time. 

Proof. We note that for this case, permutations of rows and columns are 
irrelevant. Given a {0, 1, ,}-valued matrix A, let B denote the completion of A 
with each asterisk • replaced by a zero. We claim that 

1 
B E ,t/( 1 

if and only if 

(1  
A E '9~( 1 

1) 
1 ) 

11) 1, 
that is, A has a {0, 1} completion in 

't/(( 11 11))" 
The "only if" implication is immediate. Suppose M is a completion of A with 
n o  

(, l 
submatrix. 
n e w  

1 
' )  

Then, changing any filled-in one to a zero instead, cannot create a 
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1 1 
( 1 , )  

submatrix, and will result in obtaining B. [] 

It is shown in [26] that the complexity of membership in 

1 1)) 
' t / ( (  1 1 

for an m × n matrix with f entries equal to one is O(mn + min{m 2, n2,f3/2}). 

Proposition 9. Membership in ,(/:((0, 1,1)) has complexity O(mn). 

Proof. Row permutations are irrelevant again in this case. Let A be a {0, 1, *}- 
valued matrix. The desired column permutations and fill-in of asterisks can be 
done in a greedy manner (similar to our solution for the Ferrets sandwich 
problem), applying the following three rules in any order until no rule applies: 

(1) Delete any column containing only ls and *s (permute it to the extreme 
left in the solution matrix and fill in each • with 1). 

(2) Delete any column containing only 0s and ,s  (permute it to the extreme 
right in the solution matrix and fill in each • with 0). 

(3) Delete any row containing at most one 1 (and fill in each • with 0 in the 
solution matrix). 

Claim 10. This process ends with the empty matrix if and only if A C ,~((0, 1, 1)). 

LetA' be the submatrix when the process stops (i.e., none of rules (1) (3) ap- 
plies). IrA' is empty, then the solution matrix we have filled in contains no sub- 
matrix (0,1,1). Conversely, the manner in which we fill in columns and rows in 
rules (1)-(3) insures that they cannot participate in any submatrix (0,1,1). Thus, 
it is sufficient to look at A', i.e., suppose A' ¢ J ( ( 0 ,  1, 1)) and let M' be a per- 
muted completion of A' which has no submatrix (0,1,1). By rule (1), the left- 
most column of M' contains an original 0 (i.e., not a filled-in 0), say in row 
i. By rule (3), row i contains at least two original ls, both to the right of  the 
0 entry. This is a contradiction and proves Claim 10. 

The complexity result follows immediately. [] 

5. Concluding remarks 

The matrix sandwich problems studied in this paper may be regarded as ex- 
istential completion problems over the domain {0,1 } since we ask if there exists 
an assignment for each asterisk from the possible values {0,1 } such that a de- 
sired property holds. In this way we interpret • as "do not care". A different 
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approach to working with missing values, not studied here, is to consider uni- 

versal  completion problems where one asks whether Jbr  all assignments of val- 
ues to the asterisks will the desired property hold. Yet another variation is to 
treat each asterisk as a variable with its own domain of possible values, and ask 
both existential and universal completion questions. This last approach is 
known in the artificial intelligence literature as constraint satisfaction, (see 
[21,32] and their references.) The special case of a missing value (variable) being 
designated simply "non-zero" is a completion problem commonly found in the 
matrix algebra literature. 

Joel Brawley (personal communication, Clemson University) has pointed 
out that the matrix sandwich problem of fixed (i.e., specified) row and column 
sums can be solved by linear programming. Let A be a {0, 1, ,}-valued n × m 
matrix, and let {rz} and {~/} (1 ~<i~<n, l<~j~<m) be integers. Let 0<~xi,/41 
be a constraint on the variable x i , / i f  position ai./ corresponds to an asterisk, 
and xi./ = a,, i otherwise. Consider the following linear program: 

Z x i . i = r i ,  Z x i , i = c / ,  0<~xi,i~<l. (5.1) 
i i 

By a classical theorem, if (5.1) has a solution, then it has an integer solution, 
hence, a {0,1 }-valued solution, and this will be a sandwich solution for the ma- 
trix. 

Another related topic is that of finding extensions of partially defined Bool- 
ean functions with missing data. Like other sandwich problems, these can oc- 
cur in classification and knowledge acquisition where positive and negative 
examples provide partial data to be generalized or clues to a hypothesis to 
be verified. Boros et al. [8] investigate the complexity of finding extensions of 
a desired type (positive, Horn, self-dual, threshold, etc.) providing polynomial 
algorithms in some cases and NP-hardness results in other cases. 
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