NOTE

BIPARTITIONAL POLYNOMIALS AND THEIR APPLICATIONS IN COMBINATORICS AND STATISTICS

Ch.A. CHARALAMBIDES
University of Athens, Athens, Greece

Received 17 February 1979
Revised 12 February 1980
Bipartitional polynomials are multivariable polynomials

$$
Y_{m n}=Y_{m n}\left(c y_{01}, c y_{10}, c y_{11}, \ldots, c y_{m n}\right), \quad c^{k} \equiv c_{k},
$$

defined by a sum over all partitions of the bipartite number (mn). Recurrence relations, generating functions and some basic properties of these polynomials are given. Applications in Combinatorics and Statistics are briefly indicated.

1. Introduction

Partition polynomials have been introduced and studied by Bell [1, 2]; they are multivariable polynomia's defined by a sum over all partitions of their indexes. Riordan [6, 7] called Bell polynomials the partition polynomials associated with the derivatives of a composite function; he discussed se veral applications of these polynomials in Combinatorics, Statistics and Number theory. Other properties and statistical applications have been discussed by the author [3]. Touchard [8] in his work on the cycles of permutations generalized the Bell polynomials in order to be able to study some problems of enumeration of the permutations when the cycles possess certain properties.

A natural generalization of the Bell partition polynomials are the bipartitional polynomials which are the subject of this paper. The idea of using bipartitional functions in Statistics goes back to R A. Fisher [4].

2. Bipartitional polynomials and their applications

The bipartitional polynomials, denoted by

$$
\mathbf{Y}_{m n}=\boldsymbol{Y}_{m n}\left(c y_{01}, c y_{10}, c y_{11}, \ldots, c y_{m n}\right), \quad c^{k} \equiv c_{k},
$$

are defined by the sum

$$
\begin{align*}
Y_{m n}= & \sum \frac{m!n!c_{k}}{k_{01}!k_{10}!k_{11}!\cdots k_{m n}!}\left(\frac{y_{01}}{0!1!}\right)^{k_{m 1}} \cdot\left(\frac{y_{10}}{1!0!}\right)^{k_{10}} \\
& \cdot\left(\frac{y_{11}}{1!1!}\right)^{k_{11}} \cdots\left(\frac{y_{m n}}{m!n!}\right)^{k_{m n}} \tag{2.1}
\end{align*}
$$

cver all partitions of the bipartite number (mn), th $^{\text {re }}$ is over all solutions in non-negative integers of the equations:

$$
\sum_{i=1}^{m} i \sum_{i=0}^{n} k_{i j}=m, \quad \sum_{i=1}^{n} j \sum_{i=0}^{m} k_{i j}=n ;
$$

k is the number of parts in the partition. Note hat by ubstituting $y_{r s}$ by y_{sr} in the expression of $Y_{m n}$ we get $Y_{n m}$.

Using the umbral calculus we may obtain from (2.1) the exponential generating, function of these polynomials

$$
\begin{align*}
Y(u, v) & =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} Y_{m n} \frac{u^{m}}{m!} \frac{v^{n}}{n!}=\exp [c\{y(u, v)-y(0,0)\}] \tag{2.2}\\
c^{k} & \equiv c_{k}, \quad y(u, v)=\sum_{s=0}^{\infty} \sum_{r=0}^{\infty} y_{r s} \frac{u^{r}}{r!} \frac{v^{s}}{s!},
\end{align*}
$$

from which we may easily deduce the recurrence relation

$$
\begin{equation*}
Y_{i n, n+1}=\sum_{s=0}^{n} \sum_{r=0}^{m}\binom{m}{r}\binom{n}{s} y_{r, s+1} c Y_{m-r, n-s}, \quad Y_{00}=1, \tag{2.3}
\end{equation*}
$$

and the following properties

$$
\begin{align*}
& Y_{m n}\left(c b y_{01}, c a y_{10}, c a b y_{11}, \ldots, c a^{m} b^{n} y_{m n}\right) \tag{2.4}\\
& =a^{m} b^{n} Y_{m n}\left(c y_{01}, c y_{10}, c y_{11}, \ldots, c y_{m n}\right), \\
& Y_{m n}\left(x_{01}+y_{01}, x_{10}+y_{10}, x_{11}+y_{11}, \ldots, x_{m n}+y_{m n}\right) \\
& =\sum_{r=0}^{m} \sum_{s-0}^{n}\binom{m}{r}\binom{n}{s} Y_{r s}\left(x_{01}, x_{10}, x_{11}, \ldots, x_{r s}\right) \\
& \quad \times Y_{m-r . n-s}\left(y_{01}, y_{i 0} y_{11}, \ldots, y_{m-r, n-s}\right), \tag{2.5}\\
& Y_{r, 1}(v)=\sum_{n=0}^{\sum_{m n}^{\infty}} \frac{Y^{n}}{n!}=Y_{m}\left(\alpha y_{1}(v), \alpha y_{s}(v), \ldots, \alpha y_{m}(v)\right), \quad \alpha^{k} \equiv \alpha_{k} \tag{2.6}
\end{align*}
$$

where

$$
\alpha_{k}=c^{k} \exp \left[c\left\{y_{0}(v)-y_{0}(0)\right\}\right], \quad y_{r}(v)=\sum_{s=0}^{\infty} y_{r s} \frac{v^{s}}{s!}
$$

and $Y_{r, n}=Y_{m}\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{m}\right), \alpha^{k} \equiv \alpha_{k}$, the Bell (unipartitional) polynomials.

The derivatives of the composite function $h(s, t)=f(g(s, t))$ expressed in terms of the derivatives of the component function: form a set of bipartitional polynomials, that is, with

$$
\begin{align*}
h_{m n} & =\frac{\partial^{n}}{\partial t^{n}} \frac{\partial^{m}}{\partial s^{m}} h(s, t), \quad g_{m n}=\frac{\partial^{n}}{\partial t^{n}} \frac{\partial^{m_{i}}}{\partial s^{m}} g(s, t), \\
f_{k} & =\left.\frac{d^{k}}{d u^{k}} f(u)\right|_{u=g(s . t}, \tag{2.7}
\end{align*}
$$

we have

$$
\begin{equation*}
h_{m n}=Y_{m n}\left(f g_{01}, f g_{10}, f g_{11}, \ldots, f g_{m n}\right), \quad f^{k} \equiv f_{k} \tag{2.8}
\end{equation*}
$$

The proof of (2.8) may be carried out by following Riordan's technique [6, pp. 34-37] with the necessary modifications.

This result has a direct use in Statistics in expressing the probabilities and moments of a generalized random variable (r.v) in terms of the probab-lities and moments of the generalizing r.v.'s; indeed, if Z and (X, Y) are incependent discrete r.v.'s with probability generating functions (p.g.f.'s) $f(u)$ and $g(s, t)$ respectively, then the r.v. (V, W) with p.g.f. $h(s, t)=f(g(s, t))$ is called a generalized r.v. The probability function of $\left(V, V^{\prime}\right)$ by ifferentiating h and using (2.8) may be obtained in the form

$$
\begin{align*}
& P_{m n}=P(V=m, W=n)=\frac{1}{m!n!} Y_{m n}\left(f p_{01}, f p_{10}, f p_{11}, \ldots, f m!n!\rho_{m n}\right), \tag{2.9}\\
& f^{k} \equiv f_{k}=\left.\frac{\mathrm{d}^{k}}{\mathrm{~d} u^{k}} f(u)\right|_{u=p_{00}}, \quad p_{k r}=P(X=k, Y=r), \quad P_{00}=f\left(p_{c 0}\right) .
\end{align*}
$$

The factorial moments $\mu_{(m n)}=E\left[(V)_{m} \cdot(W)_{n}\right]$ may be obtained as

$$
\begin{equation*}
\mu_{(m, n)}=Y_{m n}\left(\alpha \beta_{(0,1)}, \alpha \beta_{(1,0)}, \alpha \beta_{(1,1)}, \ldots, \alpha \beta_{(m, n)}\right), \quad \alpha^{k} \equiv \alpha_{(k)}, \tag{2.10}
\end{equation*}
$$

with $\alpha_{(k)}$ and $\beta_{(k, \cdot)}$ the factorial moments of ${ }_{2}^{\prime \prime}$ and (X, Y) respectively.
Two classes of bipartitional polynomiais, which are an important feature of many combinatorial and statistical problems, will be brietly discussed in the sequel. They are obtained from (2.1) by specifying the sequence $c_{k}, k=$ $0,1,2, \ldots$. Letting $c_{k}=1, k=0,1,2, \ldots$, the generating function (2.2) reduces to the exponential function $Y(u, v)=\exp \{y(u, v)-y(0,0)\}$ and the polynomials $Y_{m e n}\left(y_{01}, y_{10}, y_{11}, \ldots, y_{m n}\right)$ may be called expenential (bipartitional) polynomials. For $c_{0}=0, c_{k}=(-1)^{k-1}(k-1)!, k=1,2, \ldots$ the generating function (2.2) becomes a logarithmic function $L(u, v)=\log [1+\{y(u, v)-y(0,0)\}]$ and the corresponding polynomials $L_{m n}\left(y_{01}, y_{10}, y_{11}, \ldots, y_{m n}\right)$ may be called logarithr ic (bipartitional) polynomials. Note that $Y_{m n}$ and $L_{m n}$ are inverse polynomials.

Alter these remarks it will not be difficult to verify the following relations connecting the moments $\mu_{m n}^{\prime}$ and cumulants $\kappa_{m, 1}$ of a bivariate probability distribution (for the univariate case see Riordan [6, p 37])

$$
\begin{align*}
& \mu_{m n}^{\prime}==Y_{m n}\left(\kappa_{01}, \kappa_{10}, \kappa_{11}, \ldots \kappa_{m n}\right), \tag{2.11}\\
& \kappa_{m n}=L_{-m n}\left(\mu_{n 1}^{\prime}, \mu_{10}^{\prime}, \mu_{11}^{\prime}, \ldots, \mu_{m n}^{p}\right) .
\end{align*}
$$

The polynomials $Y_{m n}$ and $L_{m n}$ have also a direct use in combinatorics in expressing the elementary symmetric functions $a_{m n}$ and the homogeneous product sum symmetric functions $h_{m n}$ in terms of the power sum symmetric functions s_{m} and vice versa (c.f. MacMahon [5, p. 282-284, and Riordan [6, p. 47])

$$
\begin{align*}
(-1)^{m+n} m!n!a_{m n} & =Y_{m n}\left(-s_{01},-s_{10}-s_{11}, \ldots,-(m+n-1)!s_{m n}\right) \tag{2.12}\\
(m+n-1)!s_{m n} & =(-1)^{m+n-1} L_{m n}\left(a_{01} a_{10}, a_{11}, \ldots, m!n!a_{m n}\right) \\
m!n!h_{m n} & =Y_{m n}\left(s_{01}, s_{10}, s_{11}, \ldots,(m+n-1)!s_{m n}\right) \tag{2.13}\\
(m: n 1)!s_{m n} & =L_{m n}\left(h_{01}, h_{10}, h_{11}, \ldots, m!n!h_{m 1}\right)
\end{align*}
$$

Moreover, with

$$
\begin{align*}
& Z_{m n}\left(y_{01}, y_{10}, y_{11}, \ldots, y_{m n}\right)=Y_{m r}\left(c y_{01}, z y_{10}, c y_{11}, \ldots, c y_{m n}\right) \tag{2.14}\\
& c^{k} \equiv c_{k}=(-1)^{k} k!, \quad k=0,1, \ldots
\end{align*}
$$

we may casily show that

$$
\begin{align*}
& (-1)^{m+n} m!n!a_{m n}=Z_{m n}\left(h_{01}, h_{10}, h_{11}, \ldots m!n!h_{m n}\right), \tag{2.15}\\
& (-1)^{m+n} m!n!h_{m n}=Z_{m n}\left(a_{01}, a_{10}, a_{11}, \ldots, m!n!a_{m n}\right)
\end{align*}
$$

References

[1] E.T. Bell. Partition polynomials, Ann. Math. 24 (1927) 38-46.
[2] E.I. Bell. Exponential polynomials, Ant. Math. 35 (1934) 258-277.
|3| Ch.A. Charaldmbides. On the generalized discrete distributions and the ocll polynomials, Sankhya (Ser. B) 39 (19:7) 36-44.
$[4]$ R.A. Fisher. Moments and product moments of samplin: distiibutions, Poc. London Math. Soc. (Sur. 2) : 0 (1929) 199-238.
[5] P.A. MacMahon. Combinatory Analysis, Vols. 1 and 2 Chelsea. New York, 1960)
[6] J. Riordan. An Introduction to Combinatorial Analysis Wiley, New York, 1958).
17) 1. Riordas. Combinatorial Identities, (Wiley, New York. 1968).
(s)|| Toucharil. Sur ke ceveles des substitution, Acta Math. 70 (1939, 243-2\%9.

