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Bipartitional polynomials are multivariable polynomials
Ymu = Ymn(CyGI’ Y10 Y115 - - -5 Cy"m)' Ck i

defined by a sum over all partitions of the b.partite number (mn). Recurrence relations,
generating functions and some basic properties of these polynomials are given. Applications in
Combinatorics and Statistics are briefly indicated.

1. Introduction

Partition polynomials have been introduced and studied by Bell [1, 2]; they are
multivariable polynomiais defined by a sum over all partiticns of their indexes.
Riordan [6, 7] called Bell polynomials the partition polynomials associated with
the derivatives of a composite function; he ciscussed several applications of these
polynomials in Combinatorics, Statistics and Number theory. Other properties
and statistical applications have been discussed by the author [3]. Touchard [8] in
his work on the cycles of permutations generalized the Bell polynomials in order
to be able to study some problems of enumeration of th< permutations when thie
cycles possess certain properties.

A natural generalization of the Bell partit.on polynomi:ls are the bipartitional
polynomials which are the subject of this paper. The idea of using bipartitional
functions in Statistics goes back to R A. Fisher [4].

2. Bipartitional polynomials and their applications

The bipartitional polynomials, denoted by
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ire defined by the sum
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cver all partitions of the bipartite number (mn), th~* is over all solutions in
non-negative integers of the equations:
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k is the number of parts in the partition. Note that by -ubstituting y,; by y,, in the
expression of Y,,, we get Y.

Using the umbral calculus we may obtain from (2.1) the exponential generating

function of these polynomiais
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from which we may easily deduce the recurrence relation
nom N
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and Y, = ¥ lax, ax,, ..., ax,), @ =aq, the Bzl (unipartitional) polynomials.
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The derivatives of the com

he composite function h(s, t) =,(g(s, 1)) expressed in terms
of the derivatives of the component functions form. a set of bipartitional pclyno
mials, that is, with : : e STy :
a“ m a“ a”i
hmn S amam h(s’ t)! 8mn = T nm g(s, t)a
ai" ds at" os
dk (2.7)
fk = u)luxg(s (3]
uu
we have
hmn = Ymn(ngIs fglm fglh e sfgmn), fk Efk- (28)

The proof of (2.8) may be carried out by following Riordan’s technique [6,

pp. 34-37] with the necessary modifications.

Thit result has a direct use in Statistics in ‘.xpressiﬁg
o

moments of a generalized random variable (t.v\ in terms of the prob.b-lities an
moments of the generalizing r.v.’s; indeed, if Z and (X, Y) are incependent
discrete r.v.’s with probability generating functions (p.g.f.’s) f(u) a1d g(s, 1)
respectively, then the r.v. (V, W) with p.gf. h(s, t)=f(g(s, 1)) is called a
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The factorial moments p,, ., = E[(V),, - (W), ] may be obtained as

k
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with ag, and B, ., the factorial moments of 27 and (X, Y) respectively.

Two classes of bipartitional polynomials, v'hich are an important feature of
many combinatorial and statistical problems. will be briefly discussed in the
sequel. They are obtained from (2.1) by specifying the sequence ck, k =

noa

0,1,2,.... Lettingcg. =1,k=0,1,2,..

2t

the g'eneratmg function (4 4} reduces io

1 n\_\.m OV2 and the nr\l\xnnm'
“, Yiv, Vg &l il eyl

y
(Vo1, . be called expcnential (bipartitional) polynomials.
For ¢, =0, ¢, =(—1)*" 1(k -1, k=1,2,... the generating fuuction (2.2) becomes
a logarithmlc function L(u, v) =log[1+{y(u, t)—y(0, 0)}] and the corresponding
polynomisls L,.,(Yo1, Y1io» Yi1s - - - » Ymn) May be cailled logarithr ic (bipartitional)
poiynomials. Note that Y,,, and L,,, are inverse pclynomials.
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After these remarks it will not be difticul! to verify the following relations
conpecting the moments /., and cumulants k,,, of a bivariate probability distribu-
tion (for the univariate case see Riordan [6,p 37))

r
Ko ™ mn(K()h Kigs Kygs oo ve Kmn)s

- ’ ’ ’ ’
Ky ™~ I—‘mn(“"‘:l’ Kygs 315« - “‘mn)'

(2.11)

The polynomials Y,, and L, have also a direct use in combinatorics in
expressing the elementary symmetric functions @, and the homogeneous product
sum symmetric functions h,,,, in terms of «ne power sum symmetric functions s,,,
and vice versa (c.f. MacMahon [5, p. 282-284 and Riordan [6, p. 47])
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m!n! hnm = nm(q()l S10+ Sty - (nl+n"1‘ nm . (2 13)
(m- =158, = Loaa(hg hyg hypeeooomtalh,, ),
Moreover, with
Zinn( y()lﬁ Ym- yl]ﬁ s y;nn) = Ymr (CY()I* 5«'Ym~ Cyll* LA (.)’,mn)° (2 14)
k===, k=01,
we may casily show that
(— nm "m!a! Uypn = mn(hul" hl()* hll* s m! n! hmn)~ (2 15)
(=™ "mtuth,, =2Z,.dy, Qo Ay, . ..mtnata,,)
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