
ar
X

iv
:1

10
4.

06
07

v1
 [

cs
.L

O
]

 4
 A

pr
 2

01
1

Complexity Results for Modal Dependence

Logic

Peter Lohmann∗, Heribert Vollmer∗

January 18, 2013

Modal dependence logic was introduced recently by Väänänen. It enhances the
basic modal language by an operator =(). For propositional variables p1, . . . , pn,
=(p1, . . . , pn−1, pn) intuitively states that the value of pn is determined by those of
p1, . . . , pn−1. Sevenster (J. Logic and Computation, 2009) showed that satisfiability
for modal dependence logic is complete for nondeterministic exponential time.

In this paper we consider fragments of modal dependence logic obtained by re-
stricting the set of allowed propositional connectives. We show that satisfibility for
poor man’s dependence logic, the language consisting of formulas built from literals
and dependence atoms using ∧, �, ♦ (i. e., disallowing disjunction), remains NEXP-
TIME-complete. If we only allow monotone formulas (without negation, but with
disjunction), the complexity drops to PSPACE-completeness.

We also extend Väänänen’s language by allowing classical disjunction besides
dependence disjunction and show that the satisfiability problem remains NEXP-
TIME-complete. If we then disallow both negation and dependence disjunction,
satistiability is complete for the second level of the polynomial hierarchy. Addi-
tionally we consider the restriction of modal dependence logic where the length of
each single dependence atom is bounded by a number that is fixed for the whole
logic. We show that the satisfiability problem for this bounded arity dependence
logic is PSPACE-complete and that the complexity drops to the third level of the
polynomial hierarchy if we then disallow disjunction.

In this way we completely classifiy the computational complexity of the satisfiabil-
ity problem for all restrictions of propositional and dependence operators considered
by Väänänen and Sevenster.

A short version of this was presented at CSL 2010 [LV10].

ACM Subject Classifiers: F.2.2 Complexity of proof procedures; F.4.1 Modal logic

Keywords: dependence logic, modal logic, satisfiability problem, computational com-
plexity, poor man’s logic

∗Leibniz University Hannover, Theoretical Computer Science, Appelstr. 4, 30167 Hannover, Germany,
{lohmann,vollmer}@thi.uni-hannover.de

This work was partly supported by the NTH Focused Research School for IT Ecosystems, by DFG VO 630/6-1,
and by a DAAD PPP grant.

http://arxiv.org/abs/1104.0607v1

1 Introduction

The concept of extending first-order logic with partially ordered quantifiers, and hence
expressing some form of independence between variables, was first introduced by Henkin
[Hen61]. Later, Hintikka and Sandu developed independence friendly logic [HS89] which
can be viewed as a generalization of Henkin’s logic. Recently, Jouko Väänänen intro-
duced the dual notion of functional dependence into the language of first-order logic
[Vää07]. In the case of first-order logic, the independence and the dependence variants
are expressively equivalent.

Dependence among values of variables occurs everywhere in computer science (data-
bases, software engineering, knowledge representation, AI) but also the social sciences
(human history, stock markets, etc.), and thus dependence logic is nowadays a much
discussed formalism in the area called logic for interaction. Functional dependence of
the value of a variable pn from the values of the variables p1, . . . , pn−1 states that there
is a function, say f , such that pn = f(p1, . . . , pn−1), i. e., the value of pn only depends
on those of p1, . . . , pn−1. We will denote this in this paper by =(p1, . . . , pn−1, pn).

Of course, dependence does not manifest itself in a single world, play, event or obser-
vation. Important for such a dependence to make sense is a collection of such worlds,
plays, events or observations. These collections are called teams. They are the basic
objects in the definition of semantics of dependence logic. A team can be a set of plays
in a game. Then =(p1, . . . , pn−1, pn) intuitively states that in each play, move pn is
determined by moves p1, . . . , pn−1. A team can be a database. Then =(p1, . . . , pn−1, pn)
intuitively states that in each line, the value of attribute pn is determined by the values
of attributes p1, . . . , pn−1, i. e., that pn is functionally dependent on p1, . . . , pn−1. In
first-order logic, a team formally is a set of assignments; and =(p1, . . . , pn−1, pn) states
that in each assignment, the value of pn is determined by the values of p1, . . . , pn−1.
Most important for this paper, in modal logic, a team is a set of worlds in a Kripke
structure; and =(p1, . . . , pn−1, pn) states that in each of these worlds, the value of the
propositional variable pn is determined by the values of p1, . . . , pn−1.

Dependence logic is defined by simply adding these dependence atoms to usual first-
order logic [Vää07]. Modal dependence logic (MDL) is defined by introducing these
dependence atoms to modal logic [Vää08, Sev09]. The semantics of MDL is defined
with respect to sets T of worlds in a frame (Kripke structure) W , for example W,T |=
=(p1, . . . , pn−1, pn) if for all worlds s, t ∈ T , if p1, . . . , pn−1 have the same values in both
s and t, then pn has the same value in s and t, and a formula

�=(p1, . . . , pn−1, pn)

is satisfied in a world w in a Kripke structure W , if in the team T consisting of all
successor worlds of w, W,T |= =(p1, . . . , pn−1, pn).

MDL was introduced in [Vää08]. Väänänen introduced besides the usual inductive
semantics an equivalent game-theoretic semantics. Sevenster [Sev09] considered the ex-
pressibility of MDL and proved, that on singleton teams T , there is a translation from
MDL to usual modal logic, while on arbitrary sets of teams there is no such translation.

2

Sevenster also initiated a complexity-theoretic study of modal dependence logic by prov-
ing that the satisfiability problem for MDL is complete for the class NEXPTIME of all
problems decidable nondeterministically in exponential time.

In this paper, we continue the work of Sevenster by presenting a more thorough study
on complexity questions related to modal dependence logic. A line of research going back
to Lewis [Lew79] and recently taken up in a number of papers [RW00, Hem01, HSS10,
MMTV08] has considered fragments of different propositional logics by restricting the
propositional and temporal operators allowed in the language. The rationale behind this
approach is that by systematically restricting the language, one might find a fragment
with efficient algorithms but still high enough expressibility in order to be interesting for
applications. This in turn might lead to better tools for model checking, verification, etc.
On the other hand, it is worthwhile to identify the sources of hardness: What exactly
makes satisfiability, model checking, or other problems so hard for certain languages?

We follow the same approach here. We consider all subsets of modal operators �,♦
and propositional operators ∧, ∨, · (atomic negation), ⊤,⊥ (the Boolean constants true
and false), i. e., we study exactly those operators considered by Väänänen [Vää08], and
examine the satisfiability problem for MDL restricted to the fragment given by these
operators. Additionally we consider a restricted version of the =() operator in which the
arity of the operator is no longer arbitrarily large but bounded by a constant that is fixed
for the considered logic. In each case we exactly determine the computational complexity
in terms of completeness for a complexity class such as NEXPTIME, PSPACE, coNP,
etc., or by showing that the satisfiability problem admits an efficient (polynomial-time)
solution. We also extend the logical language of [Vää08] by adding classical disjunction
(denoted here by ©∨) besides the dependence disjunction. Connective ©∨ was already
considered by Sevenster (he denoted it by •), but not from a complexity point of view.
In this way, we obtain a complexity analysis of the satisfiability problem for MDL for all
subsets of operators studied by Väänänen and Sevenster as well as the arity bounded
dependence operator.

Our results are summarized in Table 1 for dependence atoms of unbounded arity and
in Table 2 for dependence atoms whose arity is bounded by a fixed k ≥ 3. Here + denotes
presence and − denotes absence of an operator, and ∗ states that the complexity does not
depend on the operator. One of our main and technically most involved contributions
addresses a fragment that has been called Poor Man’s Logic in the literature on modal
logic [Hem01], i. e., the language without disjunction ∨. We show that for unbounded
arity dependence logic we still have full complexity (Theorem 3.5, first line of Table 1),
i. e., we show that Poor Man’s Dependence Logic is NEXPTIME-complete. If we also
forbid negation, then the complexity drops down to Σp

2(= NPNP); i. e., Monotone Poor
Man’s Dependence Logic is Σp

2-complete (Theorem 3.4, but note that we need ©∨ here).
And if we instead restrict the logic to only contain dependence atoms of arity less or
equal k for a fixed k ≥ 3 the complexity drops to Σp

3(= NPΣp

2); i. e., bounded arity Poor
Man’s Dependence Logic is Σp

3-complete (Corollary 3.10b).

3

� ♦ ∧ ∨ · ⊤ ⊥ =() ©∨ Complexity Reference

+ + + ∗ + ∗ ∗ + ∗ NEXPTIME Theorem 3.5
+ + + + + ∗ ∗ − ∗ PSPACE Corollary 3.3a
+ + + + − ∗ + ∗ ∗ PSPACE Corollary 3.3b
+ + + − + ∗ ∗ − + Σp

2 Theorem 3.4
+ + + − − ∗ + ∗ + Σp

2 Theorem 3.4
+ + + − + ∗ ∗ − − coNP [Lad77], [DLN+92]
+ + + − − ∗ + ∗ − coNP Corollary 3.3c

+ − + + + ∗ ∗ ∗ ∗ NP Corollary 3.7a
− + + + + ∗ ∗ ∗ ∗ NP Corollary 3.7a
+ − + − + ∗ ∗ ∗ + NP Corollary 3.7a
− + + − + ∗ ∗ ∗ + NP Corollary 3.7a
+ − + − + ∗ ∗ ∗ − P Corollary 3.7b
− + + − + ∗ ∗ ∗ − P Corollary 3.7b
+ − + ∗ − ∗ ∗ ∗ ∗ P Corollary 3.7c
− + + ∗ − ∗ ∗ ∗ ∗ P Corollary 3.7c
∗ ∗ − ∗ ∗ ∗ ∗ ∗ ∗ P Corollary 3.7d
∗ ∗ ∗ ∗ − ∗ − ∗ ∗ trivial Corollary 3.3d

− − + + + ∗ ∗ ∗ ∗ NP [Coo71]
− − + ∗ + ∗ ∗ ∗ + NP [Coo71], ©∨ ≡ ∨
− − ∗ − ∗ ∗ ∗ ∗ − P Corollary 3.3e
− − ∗ ∗ − ∗ ∗ ∗ ∗ P Corollary 3.3f

+ : operator present − : operator absent ∗ : complexity independent of operator

Table 1: Complete classification of complexity for fragments of MDL-SAT
All results are completeness results except for the P cases which are upper bounds.

2 Modal dependence logic

We will only briefly introduce the syntax and semantics of modal dependence logic here.
For a more profound overview consult Väänänen’s introduction [Vää08] or Sevenster’s
analysis [Sev09] which includes a self-contained introduction to MDL.

2.1 Syntax

The formulas of modal dependence logic (MDL) are built from a set AP of atomic propo-
sitions and the MDL operators �, ♦, ∧, ∨, · (also denoted ¬), ⊤, ⊥, =() and ©∨.

The set of MDL formulas is defined by the following grammar

ϕ ::= ⊤ | ⊥ | p | ¬p | =(p1, . . . , pn−1, pn) | ¬=(p1, . . . , pn−1, pn) |
ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ©∨ϕ | �ϕ | ♦ϕ,

where n ≥ 1.

4

� ♦ ∧ ∨ · ⊤ ⊥ =() ©∨ Complexity Reference

+ + + + + ∗ ∗ ∗ ∗ PSPACE Corollary 3.10a
+ + + + − ∗ + ∗ ∗ PSPACE Corollary 3.3b
+ + + − + ∗ ∗ + ∗ Σp

3 Corollary 3.10b
+ + + − + ∗ ∗ − + Σp

2 Theorem 3.4
+ + + − − ∗ + ∗ + Σp

2 Theorem 3.4
+ + + − + ∗ ∗ − − coNP [Lad77], [DLN+92]
+ + + − − ∗ + ∗ − coNP Corollary 3.3c

+ − + + + ∗ ∗ ∗ ∗ NP Corollary 3.7a
− + + + + ∗ ∗ ∗ ∗ NP Corollary 3.7a
+ − + − + ∗ ∗ ∗ + NP Corollary 3.7a
− + + − + ∗ ∗ ∗ + NP Corollary 3.7a
+ − + − + ∗ ∗ ∗ − P Corollary 3.7b
− + + − + ∗ ∗ ∗ − P Corollary 3.7b
+ − + ∗ − ∗ ∗ ∗ ∗ P Corollary 3.7c
− + + ∗ − ∗ ∗ ∗ ∗ P Corollary 3.7c
∗ ∗ − ∗ ∗ ∗ ∗ ∗ ∗ P Corollary 3.7d
∗ ∗ ∗ ∗ − ∗ − ∗ ∗ trivial Corollary 3.3d

− − + + + ∗ ∗ ∗ ∗ NP [Coo71]
− − + ∗ + ∗ ∗ ∗ + NP [Coo71], ©∨ ≡ ∨
− − ∗ − ∗ ∗ ∗ ∗ − P Corollary 3.3e
− − ∗ ∗ − ∗ ∗ ∗ ∗ P Corollary 3.3f

+ : operator present − : operator absent ∗ : complexity independent of operator

Table 2: Complete classification of complexity for fragments of MDLk-SAT for k ≥ 3
All results are completeness results except for the P cases which are upper bounds.

All formulas in the first row will sometimes be denoted as atomic formulas and formulas
of the form =(p1, . . . , pn−1, pn) as dependence atoms. The arity of a dependence atom
=(p1, . . . , pn−1, pn) is defined as n − 1 and with MDLk we denote the set of all MDL

formulas which do not contain dependence atoms of arity greater than k. We sometimes
write ∇k for ∇ . . .∇

︸ ︷︷ ︸

k times

(with ∇ ∈ {�,♦}, k ∈ N).

2.2 Semantics

A frame (or Kripke structure) is a tuple W = (S,R, π) where S is a non-empty set
of worlds, R ⊆ S × S is the accessibility relation and π : S → P(AP) is the labeling
function.

In contrast to usual modal logic, truth of a MDL formula is not defined with respect
to a single world of a frame but with respect to a set of worlds, as already pointed out
in the introduction. The truth of a MDL formula ϕ in an evaluation set T of worlds of

5

a frame W = (S,R, π) is denoted by W,T |= ϕ and is defined as follows:

i) W,T |= ⊤ always holds
ii) W,T |= ⊥ iff T = ∅
iii) W,T |= p iff p ∈ π(s) for all s ∈ T
iv) W,T |= ¬p iff p /∈ π(s) for all s ∈ T
v) W,T |= =(p1, . . . , pn−1, pn) iff for all s1, s2 ∈ T with

π(s1) ∩ {p1, . . . , pn−1} = π(s2) ∩ {p1, . . . , pn−1} :
pn ∈ π(s1) iff pn ∈ π(s2)

vi) W,T |= ¬=(p1, . . . , pn−1, pn) iff T = ∅
vii) W,T |= ϕ ∧ ψ iff W,T |= ϕ and W,T |= ψ
viii)W,T |= ϕ ∨ ψ iff there are sets T1, T2 with T = T1 ∪ T2,

W,T1 |= ϕ and W,T2 |= ψ
ix) W,T |= ϕ©∨ψ iff W,T |= ϕ or W,T |= ψ
x) W,T |= �ϕ iff W, {s′ | ∃s ∈ T with (s, s′) ∈ R} |= ϕ
xi) W,T |= ♦ϕ iff there is a set T ′ ⊆ S such that W,T ′ |=

ϕ and for all s ∈ T there is a s′ ∈ T ′

with (s, s′) ∈ R

Note the seemingly rather strange definition of vi). The rationale for this, given by
Väänänen [Vää07, p. 24], is the fact that if we negate v) and maintain the same duality
as between iii) and iv) we get the condition

∀s1, s2 ∈ T : π(s1) ∩ {p1, . . . , pn−1} = π(s2) ∩ {p1, . . . , pn−1}
and pn ∈ π(s1) iff pn /∈ π(s2),

and this is only true if T = ∅.
By ∨ we denote dependence disjunction instead of classical disjunction because the

semantics of dependence disjunction is an extension of the semantics of usual modal
logic disjunction and thus we preserve downward compatibility of our notation in this
way. However, we still call the ©∨ operator “classical” because in a higher level context –
where our sets of states are viewed as single objects themselves – it is indeed the usual
disjunction, cf. [AV09].

For each M ⊆ {�,♦,∧,∨, · ,⊤,⊥,=(),©∨} define the set of MDL(M) (MDLk(M))
formulas to be the set of MDL (resp. MDLk) formulas which are built from atomic
propositions using only operators and constants from M .

We are interested in the parameterized decision problemsMDL-SAT(M) andMDLk-

SAT(M):

Given A MDL(M) (resp. MDLk(M)) formula ϕ.

Question Is there a frameW and a non-empty set T of worlds inW such thatW,T |= ϕ?

Note that, as Väänänen already pointed out [Vää08, Lemma 4.2.1], the semantics of
MDL satisfies the downward closure property, i.e., if W,T |= ϕ, then W,T ′ |= ϕ for all
T ′ ⊆ T . Hence, to check satisfiability of a formula ϕ it is enough to check whether there
is a frame W and a single world w in W such that W, {w} |= ϕ.

6

As argued in [Vää07, Proposition 3.10], the downward closure property suits the intu-
ition that a true formula expressing dependence should not becoming false when making
the team smaller, since if dependence is true in a large set than it is even more so in a
smaller set.

3 Complexity results

To state the first lemma we need the following complexity operator. If C is an arbitrary
complexity class then ∃ · C denotes the class of all sets A for which there is a set B ∈ C
and a polynomial p such that for all x,

x ∈ A iff there is a y with |y| ≤ p(|x|) and 〈x, y〉 ∈ B.

Note that for every class C, ∃ ·C ⊆ NPC . However, the converse does not hold in general.
We will only need the following facts: ∃·coNP = Σp

2 , ∃·Π
p
2 = Σp

3 , ∃·PSPACE = PSPACE
and ∃ ·NEXPTIME = NEXPTIME.

Our first lemma concerns sets of operators including classical disjunction.

Lemma 3.1. Let M be a set of MDL operators. Then it holds:

a) Every MDL(M∪{©∨}) (MDLk(M∪{©∨})) formula ϕ is equivalent to a formula©∨
2|ϕ|

i=1 ψi

with ψi ∈ MDL(M) (resp. MDLk(M)) for all i ∈ {1, . . . , 2|ϕ|}.

b) If C is an arbitrary complexity class with P ⊆ C and MDL-SAT(M) ∈ C (MDLk-
SAT(M) ∈ C) then MDL-SAT(M ∪{©∨}) ∈ ∃·C (resp. MDLk-SAT(M ∪{©∨}) ∈ ∃·C).

Proof. a) follows from the distributivity of ©∨ with all other operators. More specifically
ϕ⋆(ψ©∨σ) ≡ (ϕ⋆ψ)©∨(ϕ⋆σ) for ⋆ ∈ {∧,∨} and ∇(ϕ©∨ψ) ≡ (∇ϕ)©∨(∇ϕ) for ∇ ∈ {♦,�}.1

b) follows from a) with the observation that ©∨
2|ϕ|

i=1 ψi is satisfiable if and only if there
is an i ∈ {1, . . . , 2|ϕ|} such that ψi is satisfiable. Note that given i ∈ {1, . . . , 2|ϕ|} the
formula ψi can be computed from the original formula ϕ in polynomial time by choosing
(for all j ∈ {1, . . . , |ϕ|}) from the jth subformula of the form ψ©∨σ the formula ψ if the
jth bit of i is 0 and σ if it is 1.

We need the following simple property of monotone MDL formulas.

Lemma 3.2. Let M be a set of MDL operators with · /∈M . Then an arbitrary MDL(M)
formula ϕ is satisfiable iff the formula generated from ϕ by replacing every dependence
atom and every atomic proposition with the same atomic proposition t is satisfiable.

Proof. If a frame W is a model for ϕ, so is the frame generated from W by setting all
atomic propositions in all worlds to true.

We are now able to classify some cases that can be easily reduced to known results.

1Interestingly, but not of relevance for our work, ϕ©∨(ψ ∨ σ) 6≡ (ϕ©∨ψ) ∨ (ϕ©∨σ).

7

Corollary 3.3. a) If {�,♦,∧,∨, · } ⊆M ⊆ {�,♦,∧,∨, · ,⊤,⊥,©∨} then MDL-SAT(M)
is PSPACE-complete.

b) If {�,♦,∧,∨,⊥} ⊆ M ⊆ {�,♦,∧,∨,⊤,⊥,=(),©∨} then MDL-SAT(M) and MDLk-
SAT(M) are PSPACE-complete for all k ≥ 0.

c) If {�,♦,∧,⊥} ⊆ M ⊆ {�,♦,∧,⊤,⊥,=()} then MDL-SAT(M) and MDLk-SAT(M)
are coNP-complete for all k ≥ 0.

d) If M ⊆ {�,♦,∧,∨,⊤,=(),©∨} then every MDL(M) formula is satisfiable.

e) If M ⊆ {∧, · ,⊤,⊥,=()} then MDL-SAT(M) is in P.

f) If M ⊆ {∧,∨,⊤,⊥,=(),©∨} then MDL-SAT(M) is in P.

Proof. The lower bound of a) was shown by Ladner [Lad77], who proves PSPACE-
completeness for the case of full ordinary modal logic. The upper bound follows from
this, Lemma 3.1 and ∃ · PSPACE = PSPACE. The lower bound for b) was shown by
Hemaspaandra [Hem01, Theorem 6.5] and the upper bound follows from a) together
with Lemma 3.2.

The lower bound for c) was shown by Donini et al. [DLN+92] who prove NP-hardness
of the problem to decide whether an ALE-concept is unsatisfiable. ALE is a description
logic which essentially is nothing else then MDL(�,♦,∧, · ,⊤,⊥) (· and ⊤ are not used
in the hardness proof). For the upper bound Ladner’s PSPACE-algorithm [Lad77] can
be used, as in the case without disjunction it is in fact a coNP-algorithm, together with
Lemma 3.2.

d) follows from Lemma 3.2 together with the fact that every MDL formula with t as the
only atomic subformula is satisfied in the transitive singleton, i.e. the frame consisting
of only one state which has itself as successor, in which t is true.

e) follows from the polynomial time complexity of deciding satisfiability of a 1CNF
formula. f) reduces to Boolean formula evaluation by Lemma 3.2. Note that for e) and f)
dependence atoms can be replaced by ⊤ because there we do not have any modality.

3.1 Poor man’s dependence logic

We now turn to the Σp
2-complete cases. These include monotone poor man’s logic, with

and without dependence atoms.

Theorem 3.4. If {�,♦,∧, · ,©∨} ⊆M ⊆ {�,♦,∧, · ,⊤,⊥,©∨} or {�,♦,∧,⊥,©∨} ⊆M ⊆
{�,♦,∧,⊤,⊥,=(),©∨} then MDL-SAT(M) and MDLk-SAT(M) are Σp

2-complete for all
k ≥ 0.

Proof. Proving the upper bound for the second case reduces to proving the upper bound
for the first case by Lemma 3.2. For the first case it holds with Lemma 3.1 that MDL-
SAT(�,♦,∧, · ,⊤,⊥,©∨) ∈ ∃·coNP = Σp

2 since MDL-SAT(�,♦,∧, · ,⊤,⊥) ∈ coNP. The
latter follows directly from Ladner’s PSPACE-algorithm for modal logic satisfiability
[Lad77] which is in fact a coNP-algorithm in the case without disjunction.

8

For the lower bound we consider the quantified constraint satisfaction problem QCSP2(
R1/3) shown to be Πp

2-complete by Bauland et al. [BBC+10]. This problem can be
reduced to the complement of MDL-SAT(�,♦,∧, · /⊥,©∨) in polynomial time.

An instance of QCSP2(R1/3) consists of universally quantified Boolean variables p1, . . . ,
pk, existentially quantified Boolean variables pk+1, . . . , pn and a set of clauses each
consisting of exactly three of those variables. QCSP2(R1/3) is the set of all those in-
stances for which for every truth assignment for p1, . . . , pk there is a truth assignment
for pk+1, . . . , pn such that in each clause exactly one variable evaluates to true.2

For the reduction from QCSP2(R1/3) to the complement of MDL-SAT(�,♦,∧, · /⊥,
©∨) we extend a technique from the coNP-hardness proof for MDL-SAT(�,♦,∧,⊥) by
Donini et al. [DLN+92, Theorem 3.3]. Let p1, . . . , pk be the universally quantified and
pk+1, . . . , pn the existentially quantified variables of a QCSP2(R1/3) instance and let
C1, . . . , Cm be its clauses (we assume w.l.o.g. that each variable occurs in at least one
clause). Then the corresponding MDL(�,♦,∧,⊥,©∨) formula is

ϕ :=
k∧

i=1

(
∇i1 . . .∇im ∇i1 . . .∇im �i−1♦�k−i p

©∨ �m �m �i−1♦�k−i p
)

∧
n∧

i=k+1

∇i1 . . .∇im ∇i1 . . .∇im �k p

∧ �m �m �k ⊥

where p is an arbitrary atomic proposition and ∇ij :=

{
♦ if pi ∈ Cj

� else
.

For the corresponding MDL(�,♦,∧, · ,©∨) formula replace every ⊥ with ¬p.
To prove the correctness of our reduction we will need two claims.

Claim 1. For r, s ≥ 0 a MDL(�,♦,∧, · ,⊤,⊥) formula ♦ϕ1∧· · ·∧♦ϕr ∧�ψ1∧· · · ∧�ψs

is unsatisfiable iff there is an i ∈ {1, . . . , r} such that ϕi ∧ ψ1 ∧ · · · ∧ ψs is unsatisfiable.
Proof of Claim 1. “⇐”: If ϕi ∧ψ1 ∧ · · · ∧ψs is unsatisfiable, so is ♦ϕi ∧�ψ1 ∧ · · · ∧�ψs

and even more ♦ϕ1 ∧ · · · ∧ ♦ϕr ∧�ψ1 ∧ · · · ∧�ψs.
“⇒: Suppose that ϕi ∧ ψ1 ∧ · · · ∧ ψs is satisfiable for all i ∈ {1, . . . , r}. Then ♦ϕ1 ∧

· · · ∧ ♦ϕr ∧ �ψ1 ∧ · · · ∧ �ψs is satisfiable in a frame that consists of a root state and
for each i ∈ {1, . . . , r} a separate branch, reachable from the root in one step, which
satisfies ϕi ∧ ψ1 ∧ · · · ∧ ψs. <<

Note that ♦ϕ1 ∧ · · · ∧ ♦ϕr ∧�ψ1 ∧ · · · ∧�ψs is always satisfiable if r = 0.
Definition. Let v : {p1, . . . , pk} → {0, 1} be a valuation of {p1, . . . , pk}. Then ϕv

2For our reduction it is necessary that in each clause the variables are pairwise different whereas in
QCSP2(R1/3) this need not be the case. However, the Πp

2-hardness proof can easily be adapted to
account for this.

9

denotes the MDL(�,♦,∧, · /⊥) formula
∧

i∈{1,...,k},
v(pi)=1

∇i1 . . .∇im ∇i1 . . .∇im �i−1♦�k−i p

∧
∧

i∈{1,...,k},
v(pi)=0

�m �m �i−1♦�k−i p

∧
n∧

i=k+1

∇i1 . . .∇im ∇i1 . . .∇im �k p

∧ �m �m �k ¬p /⊥

Claim 2. Let v : {p1, . . . , pk} → {0, 1} be a valuation. Then ϕv is unsatisfiable iff v can
be continued to a valuation v′ : {p1, . . . , pn} → {0, 1} such that in each of the clauses
{C1, . . . , Cm} exactly one variable evaluates to true under v′.
Proof of Claim 2. By iterated use of Claim 1, ϕv is unsatisfiable iff there are i1, . . . , i2m
with

ij ∈
{
i ∈ {1, . . . , n} | ∇ij′ = ♦

}
\
{
i ∈ {1, . . . , k} | v(pi) = 0

}

=
{
i ∈ {1, . . . , n} | pi ∈ Cj′

}
\
{
i ∈ {1, . . . , k} | v(pi) = 0

}
,

where j′ :=

{
j if j ≤ m
j −m else

, such that

ϕv(i1, . . . , i2m) :=
∧

i∈{1,...,k},
i∈{i1,...,i2m},

v(pi)=1

�i−1♦�k−i p

∧
∧

i∈{1,...,k},
v(pi)=0

�i−1♦�k−i p

∧
∧

i∈{k+1,...,n},
i∈{i1,...,i2m}

�k p

∧ �k ¬p /⊥

is unsatisfiable (i) and such that there are no a, b ∈ {1, . . . , 2m} with a < b, ∇iba′ =
∇ibb′ = ♦ (this is the case iff pib ∈ Ca′ and pib ∈ Cb′) and ia 6= ib (ii). The latter
condition is already implied by Claim 1 as it simply ensures that no subformula is
selected after it has already been discarded in an earlier step. Note that ϕv(i1, . . . , i2m)
is unsatisfiable iff for all i ∈ {1, . . . , k}: v(pi) = 1 and i ∈ {i1, . . . , i2m} or v(pi) = 0
(and i /∈ {i1, . . . , i2m}) (i′).

We are now able to prove the claim.
“⇐”: For j = 1, . . . , 2m choose ij ∈ {1, . . . , n} such that pij ∈ Cj′ and v′(pij) = 1.

By assumption, all ij exist and are uniquely determined. Hence, for all i ∈ {1, . . . , k}
we have that v(pi) = 0 (and then i /∈ {i1, . . . , i2m}) or v(pi) = 1 and there is a j such
that ij = i (because each variable occurs in at least one clause). Therefore condition
(i′) is satisfied. Now suppose there are a < b that violate condition (ii). By definition
of ib it holds that pib ∈ Cb′ and v′(pib) = 1. Analogously, pia ∈ Ca′ and v′(pia) = 1.
By the supposition pib ∈ Ca′ and pia 6= pib . But since v′(pia) = v′(pib) = 1, that is a
contradiction to the fact that in clause Ca′ only one variable evaluates to true.

10

“⇒”: If ϕv is unsatisfiable, there are i1, . . . , i2m such that (i′) and (ii) hold. Let the
valuation v′ : {p1, . . . , pn} → {0, 1} be defined by

v′(pi) :=

{
1 if i ∈ {i1, . . . , i2m}
0 else

.

Note that v′ is a continuation of v because (i′) holds.
We will now prove that in each of the clauses C1, . . . , Cm exactly one variable evaluates

to true under v′. Therefore let j ∈ {1, . . . ,m} be arbitrarily chosen.
By choice of ij it holds that pij ∈ Cj . It follows by definition of v′ that v′(pij) = 1.

Hence, there is at least one variable in Cj that evaluates to true.
Now suppose that besides pij another variable in Cj evaluates to true. Then by

definition of v′ it follows that there is a ℓ ∈ {1, . . . , 2m}, ℓ 6= j, such that this other
variable is piℓ . We now consider two cases.

Case j < ℓ: This is a contradiction to (ii) since, by definition of ℓ, piℓ is in Cj′ as well
as, by definition of iℓ, in Cℓ′ and ij 6= iℓ.

Case ℓ < j: Since j ∈ {1, . . . ,m} it follows that ℓ ≤ m. Since Cℓ′ = C(ℓ+m)′ it holds
that piℓ+m

∈ Cℓ′ and piℓ+m
∈ C(ℓ+m)′ . Furthermore ℓ < ℓ+m and thus, by condition (ii),

it must hold that iℓ = iℓ+m. Therefore piℓ+m
∈ Cj and v

′(piℓ+m
) = 1. Because j < ℓ+m

this is a contradiction to condition (ii) as in the first case. <<
The correctness of the reduction now follows with the observation that ϕ is equivalent

to
©∨

v:{p1,...,pk}→{0,1}

ϕv and that ϕ is unsatisfiable iff ϕv is unsatisfiable for all valuations

v : {p1, . . . , pk} → {0, 1}.
The QCSP2(R1/3) instance is true iff every valuation v : {p1, . . . , pk} → {0, 1} can

be continued to a valuation v′ : {p1, . . . , pn} → {0, 1} such that in each of the clauses
{C1, . . . , Cm} exactly one variable evaluates to true under v′ iff, by Claim 2, ϕv is unsatis-
fiable for all v : {p1, . . . , pk} → {0, 1} iff, by the above observation, ϕ is unsatisfiable.

Next we turn to (non-monotone) poor man’s logic.

Theorem 3.5. If {�,♦,∧, · ,=()} ⊆M then MDL-SAT(M) is NEXPTIME-complete.

Proof. Sevenster showed that the problem is in NEXPTIME in the case of©∨ /∈M [Sev09,
Lemma 14]. Together with Lemma 3.1 and the fact that ∃ ·NEXPTIME = NEXPTIME
the upper bound applies.

For the lower bound we reduce 3CNF-DQBF, which was shown to be NEXPTIME-
hard by Peterson et al. [PRA01, Lemma 5.2.2]3, to our problem.

An instance of 3CNF-DQBF consists of universally quantified Boolean variables p1,
. . . , pk, existentially quantified Boolean variables pk+1, . . . , pn, dependence constraints
Pk+1, . . . , Pn ⊆ {p1, . . . , pk} and a set of clauses each consisting of three (not necessarily

3Peterson et al. showed NEXPTIME-hardness for DQBF without the restriction that the formulae
must be in 3CNF. However, the restriction does not lower the complexity since every propositional
formula is satisfiability-equivalent to a formula in 3CNF whose size is bounded by a polynomial in
the size of the original formula.

11

distinct) literals. Here, Pi intuitively states that the value of pi only depends on the
values of the variables in Pi. Now, 3CNF-DQBF is the set of all those instances for
which there is a collection of functions fk+1, . . . , fn with fi : {0, 1}

Pi → {0, 1} such that
for every valuation v : {p1, . . . , pk} → {0, 1} there is at least one literal in each clause
that evaluates to true under the valuation v′ : {p1, . . . , pn} → {0, 1} defined by

v′(pi) :=

{
v(pi) if i ∈ {1, . . . , k}
fi(v ↾ Pi) if i ∈ {k + 1, . . . , n}

.

The functions fk+1, . . . , fn act as restricted existential quantifiers, i.e., for an i ∈
{k + 1, . . . , n} the variable pi can be assumed to be existentially quantified dependent
on all universally quantified variables in Pi (and, more importantly, independent of all
universally quantified variables not in Pi). Dependencies are thus explicitly specified
through the dependence constraints and can contain – but are not limited to – the
traditional sequential dependencies, e.g. the quantifier sequence ∀p1∃p2∀p3∃p4 can be
modeled by the dependence constraints P2 = {p1} and P4 = {p1, p3}.

For the reduction from 3CNF-DQBF to MDL-SAT(�,♦,∧, · ,=()) we use an idea from
Hemaspaandra [Hem01, Theorem 4.2]. There, PSPACE-hardness of MDL-SAT(�,♦,∧,
·) over the class F≤2 of all Kripke structures in which every world has at most two
successors is shown. The crucial point in the proof is to ensure that every Kripke
structure satisfying the constructed MDL(�,♦,∧, ·) formula adheres to the structure of
a complete binary tree and does not contain anything more than this tree. In the class
F≤2 this is automatically the case since in a complete binary tree all worlds already have
two successors.

Although in our case there is no such a priori restriction and therefore we cannot make
sure that every satisfying structure is not more than a binary tree, we are able to use
dependence atoms to ensure that everything in the structure that does not belong to the
tree is essentially nothing else than a copy of a subtree. This will be enough to show the
desired reducibility.

Let p1, . . . , pk be the universally quantified and pk+1, . . . , pn the existentially quantified
variables of a 3CNF-DQBF instance ϕ and let Pk+1, . . . , Pn be its dependence constraints
and {l11, l12, l13}, . . . , {lm1, lm2, lm3} its clauses. Then the corresponding MDL(�,♦,∧,
· ,=()) formula is

g(ϕ) :=
n∧

i=1
�i−1(♦�n−ipi ∧ ♦�n−ipi) (i)

∧
m∧

i=1
♦n(li1 ∧ li2 ∧ li3 ∧ fi) (ii)

∧
m∧

i=1
�n=(l′i1, l

′
i2, l

′
i3, fi) (iii)

∧ �k♦n−k
(
f1 ∧ · · · ∧ fm ∧

∧n
i=k+1=(Pi, pi)

)
(iv)

where p1, . . . , pn, f1, . . . , fm are atomic propositions and l′ij :=

{
p if lij = p
p if lij = p

.

Now if ϕ is valid, consider the frame which consists of a complete binary tree with n
levels (not counting the root) and where each of the 2n possible labelings of the atomic

12

propositions p1, . . . , pn occurs in exactly one leaf. Additionally, for each i ∈ {1, . . . ,m}
fi is labeled in exactly those leaves in which li1 ∨ li2 ∨ li3 is false. This frame obviously
satisfies (i), (ii) and (iii). And since the modalities in (iv) model the quantors of ϕ, fi
is true exactly in the leaves in which li1∨ li2∨ li3 is true and the =() atoms in (iv) model
the dependence constraints of ϕ, (iv) is also true and therefore g(ϕ) is satisfied in the
root of the tree.

As an example see Fig. 1 for a frame satisfying g(ϕ) if the first clause in ϕ is {p1, pn}.

...

p1
p2
...
pn

p1
p2
...
pn
f1

· · ·

p1
p2
...
pn

p1
p2
...
pn
f1

· · ·

p1

pn

pn
pn

pn

p2

p2

p1

Figure 1: Frame satisfying g(ϕ)

If, on the other hand, g(ϕ) is satisfiable, let W be a frame and t a world in W such
that W, {t} |= g(ϕ). Now (i) enforces W to contain a complete binary tree T with root
t such that each labeling of p1, . . . , pn occurs in a leaf of T .

We can further assume w.l.o.g. that W itself is a tree since in MDL different worlds
with identical proposition labelings are indistinguishable and therefore every frame can
simply be unwinded to become a tree. Since the modal depth of g(ϕ) is n we can assume
that the depth of W is at most n. And since (i) enforces that every path in W from t
to a leaf has a length of at least n, all leaves of W lie at levels greater or equal to n.
Altogether we can assume that W is a tree, that all its leaves lie at level n and that it
has the same root as T . The only difference is that the degree of W may be greater than
that of T .

But we can nonetheless assume that up to level k the degree of W is 2 (∗). This is
the case because if any world up to level k − 1 had more successors than the two lying
in T , the additional successors could be omitted and (i), (ii), (iii) and (iv) would still
be fulfilled. For (i), (ii) and (iii) this is clear and for (iv) it holds because (iv) begins
with �k.

We will now show that, although T may be a proper subframe of W , T is already

13

sufficient to fulfill g(ϕ). From this the validity of ϕ will follow immediately.
Claim. T, {t} |= g(ϕ).
Proof of Claim. We consider sets of leaves ofW that satisfy f1∧· · ·∧fm ∧

∧n
i=k+1=(Pi, pi)

and that can be reached from the set {t} by the modality sequence �k♦n−k. Let S be
such a set and let S be chosen so that there is no other such set that contains less worlds
outside of T than S does. Assume there is a s ∈ S that does not lie in T .

Let i ∈ {1, . . . ,m} and let s′ be the leaf in T that agrees with s on the labeling of
p1, . . . , pn. Then, with W, {s} |= fi and (iii), it follows that W, {s′} |= fi.

Let S′ := (S \ {s}) ∪ {s′}. Then it follows by the previous paragraph that W,S′ |=
f1 ∧ · · · ∧ fm. Since W,S |=

∧n
i=k+1=(Pi, pi) and s′ agrees with s on the propositions

p1, . . . , pn it follows that W,S′ |=
∧n

i=k+1=(Pi, pi). Hence, S′ satisfies f1 ∧ · · · ∧ fm ∧
∧n

i=k+1=(Pi, pi) and as it only differs from S by replacing s with s′ it can be reached

from {t} by �k♦n−k because s and s′ agree on p1, . . . , pk and, by (∗), W does not differ
from T up to level k. But this is a contradiction to the assumption since S′ contains
one world less than S outside of T . Thus, there is no s ∈ S that does not lie in T and
therefore (iv) is fulfilled in T . Since (i), (ii) and (iii) are obviously also fulfilled in T , it
follows that T, {t} |= g(ϕ). <<

(ii) ensures that for all i ∈ {1, . . . ,m} there is a leaf in W in which ¬(li1∨ li2∨ li3)∧fi
is true. This leaf can lie outside of T . However, (iii) ensures that all leaves that agree
on the labeling of li1, li2 and li3 also agree on the labeling of fi. And since there is a leaf
where ¬(li1 ∨ li2 ∨ li3)∧ fi is true, it follows that in all leaves, in which ¬(li1 ∨ li2 ∨ li3) is
true, fi is true. Conversely, if fi is true in an arbitrary leaf of W then so is li1 ∨ li2 ∨ li3
(∗∗).

The modality sequence �k♦n−k models the quantors of ϕ and
∧n

i=k+1=(Pi, pi) models
its dependence constraints. And so there is a bijective correspondence between sets of
worlds reachable in T by �k♦n−k from {t} and that satisfy

∧n
i=k+1=(Pi, pi) on the one

hand and truth assignments to p1, . . . , pn generated by the quantors of ϕ and satisfying its
dependence constraints on the other hand. Additionally, by (∗∗) follows that f1∧· · ·∧fm
implies

∧m
i=1(li1 ∨ li2 ∨ li3) and since T, {t} |= g(ϕ), ϕ is valid.

3.2 Cases with only one modality

We finally examine formulas with only one modality.

Theorem 3.6. Let M ⊆ {�,♦,∧,∨, · ,⊤,⊥,©∨} with � /∈ M or ♦ /∈ M . Then the
following hold:

a) MDL-SAT(M ∪ {=()}) ≤p
m MDL-SAT(M ∪ {⊤,⊥}), i.e., adding the =() operator

does not increase the complexity if we only have one modality.

b) For every MDL(M ∪ {=()}) formula ϕ it holds that ©∨ is equivalent to ∨, i.e., ϕ
is equivalent to every formula that is generated from ϕ by replacing some or all
occurrences of ©∨ by ∨ and vice versa.

14

Proof. Every negation ¬=() of a dependence atom is by definition always equivalent to

⊥ and can thus be replaced by the latter. For positive =() atoms and the ©∨ operator
we consider two cases.

Case ♦ /∈ M . If an arbitrary MDL(�,∧,∨, · ,⊤,⊥,=(),©∨) formula ϕ is satisfiable
then it is so in an intransitive singleton frame, i.e. a frame that only contains one world
which does not have a successor, because there every subformula that begins with a �

is automatically satisfied. In a singleton frame all =() atoms obviously hold and ©∨ is
equivalent to ∨. Therefore the (un-)satisfiability of ϕ is preserved when substituting
every =() atom in ϕ with ⊤ and every ©∨ with ∨ (or vice versa).

Case � /∈ M . If an arbitrary MDL(♦,∧,∨, · ,⊤,⊥,=(),©∨) formula ϕ is satisfiable
then, by the downward closure property, there is a frame W with a world s such that
W, {s} |= ϕ. Since there is no � in ϕ, every subformula of ϕ is also evaluated in a
singleton set (because a ♦ can never increase the cardinality of the evaluation set). And
as in the former case we can replace every =() atom with ⊤ and every ©∨ with ∨ (or vice
versa).

Thus we obtain the following consequences – note that with the preceding results this
takes care of all cases in Table 1.

Corollary 3.7. a) If {∧, · } ⊆ M ⊆ {�,♦,∧,∨, · ,⊤,⊥,=(),©∨}, M ∩ {∨,©∨} 6= ∅ and
|M ∩ {�,♦}| = 1 then MDL-SAT(M) and MDLk-SAT(M) are NP-complete for all
k ≥ 0.

b) If {∧, · } ⊆ M ⊆ {�,♦,∧, · ,⊤,⊥,=()} and |M ∩ {�,♦}| = 1 then MDL-SAT(M) ∈
P.

c) If {∧} ⊆M ⊆ {�,♦,∧,∨,⊤,⊥,=(),©∨} and |M ∩ {�,♦}| = 1 then MDL-SAT(M) ∈
P.

d) If ∧ /∈M then MDL-SAT(M) ∈ P.

Proof. a) without the =() and ©∨ operators is exactly [Hem01, Theorem 6.2(2)]. Theo-
rem 3.6a,b extends the result to the case with the new operators. b) is [Hem01, The-
orem 6.4(c,d)] together with Theorem 3.6a for the =() operator. c) is [Hem01, Theo-
rem 6.4(e,f)] together with Theorem 3.6a,b.

d) without =() and ©∨ is [Hem01, Theorem 6.4(b)]. The proof for the case with the
new operators is only slightly different: Let ϕ be an arbitrary MDL(M) formula. By
the same argument as in the proof of Theorem 3.6b we can replace all top-level (i.e. not
lying inside a modality) occurrences of ©∨ in ϕ with ∨ to get the equivalent formula ϕ′.
ϕ′ is of the form �ψ1 ∨ · · · ∨�ψk ∨♦σ1 ∨ · · · ∨♦σm ∨ a1 ∨ · · · ∨ as where every ψi and σi
is a MDL(M) formula and every ai is an atomic formula. If k > 0 or any ai is a literal,

⊤ or a dependence atom then ϕ′ is satisfiable. Otherwise it is satisfiable iff one of the
σi is satisfiable and this can be checked recursively in polynomial time.

15

3.3 Bounded arity dependence

Theorem 3.8. Let k ≥ 0. Then the following holds:

a) If M ⊆ {�,♦,∧,∨, · ,⊤,⊥,=()} then MDLk-SAT(M) ∈ PSPACE.

b) If M ⊆ {�,♦,∧, · ,⊤,⊥,=()} then MDLk-SAT(M) ∈ Σp
3.

Proof. a) Let ϕ ∈ MDLk(M). Then by [Sev09, Theorem 6] there is an ordinary modal
logic formula ϕT which is equivalent to ϕ on singleton sets of evaluation, i.e., for all
Kripke structures W and states w in W

W, {w} |= ϕ iff W,w |= ϕT .

Here ϕT is constructed from ϕ in the following way: Let =(pi1,1 , . . . , pi1,k1 , pi1,k1+1
), . . . ,

=(pin,1 , . . . , pin,kn
, pin,kn+1

) be all dependence atoms occurring inside ϕ (in an arbitrary
order and including multiple occurrences of the same atom in ϕ multiple times) and for
all j ≥ 0 let

Bj := {αf (p1, . . . , pj) | f : {⊤,⊥}j → {⊤,⊥} is a total Boolean function},

where αf (p1, . . . , pj) is the propositional encoding of f , i.e.,

αf (p1, . . . , pj) :=
∨

(i1,...,ij)∈f−1(⊤)

pi11 ∧ · · · ∧ p
ij
j ,

with pi :=

{
p if i = ⊤
¬p if i = ⊥

. Note that for all f : {⊤,⊥}j → {⊤,⊥} and all valuations

V : {p1, . . . , pj} → {⊤,⊥} it holds that V |= αf iff f(V (p1), . . . , V (pj)) = ⊤.
Then ϕT is defined as

∨

α1∈Bk1

· · ·
∨

αn∈Bkn

ϕ′(α1, . . . , αn),

where ϕ′(α1, . . . , αn) is generated from ϕ by replacing each dependence atom =(piℓ,1 , . . . ,
piℓ,kℓ , piℓ,kℓ+1

) with the propositional formula αℓ(piℓ,1 , . . . , piℓ,kℓ) ↔ piℓ,kℓ+1
. Note that for

all ℓ ∈ {1, . . . , n} we have that |αℓ| ∈ O(2kℓ) and |Bkℓ | = 22
kℓ . Therefore

|ϕT | ∈
∏

1≤ℓ≤n

22
kℓ · |ϕ| ·O(2kℓ) ⊆ O(

(

22
k
)n

· |ϕ|).

This means that ϕT is an exponentially (in the size of ϕ) large disjunction of terms of
linear size. ϕT is satisfiable if and only if at least one of its terms is satisfiable. Hence we
can nondeterministically guess in polynomial time which one of the exponentially many
terms should be satisfied and then check in deterministic polynomial space whether this
one is satisfiable. The latter is possible because ϕ′(α1, . . . , αn) is an ordinary modal logic
formula and the satisfiability problem for this logic is in PSPACE [Lad77]. Altogether
this leads to MDLk-SAT(M) ∈ ∃ · PSPACE = PSPACE.

16

b) In this case we cannot use the same argument as before without modifications
since that would only lead to a PSPACE upper bound again. The problem is that in
the contruction of ϕT we introduce the subformulas αℓ and these may contain the ∨ op-
erator. We can, however, salvage the construction by looking inside Ladner’s PSPACE
algorithm [Lad77, Theorem 5.1]. For convenience we restate the algorithm in List-
ing 1. It holds for all ordinary modal logic formulas ϕ that ϕ is satisfiable if and only if
satisfiable({ϕ}, ∅, ∅)= ⊤.

Listing 1: Algorithm satisfiable(T,A,E)

if T * Atomic then

choose ψ ∈ T \ Atomic // deterministically (but arbitrarily)

set T ′ := T \ {ψ}
if ψ = ψ1 ∧ ψ2 then

return satisfiable(T ′ ∪ {ψ1, ψ2}, A, E)

elseif ψ = ψ1 ∨ ψ2 then

nondeterministically existentially guess i ∈ {1, 2}
return satisfiable(T ′ ∪ {ψi}, A, E)

elseif ψ = �ψ1 then

return satisfiable(T ′, A ∪ {ψ1}, E)

elseif ψ = ♦ψ1 then

return satisfiable(T ′, A, E ∪ {ψ1})
end

else

if T is consistent then

if E 6= ∅
nondeterministically universally guess ψ ∈ E
return satisfiable(A ∪ {ψ}, ∅, ∅)

else

return ⊤
end

else

return ⊥
end

end

Here Atomic denotes the set of atomic propositions, their negations and the constants

⊤ and ⊥.

The algorithm works in a top-down manner and runs in alternating polynomial time.
It universally guesses when encountering a � operator and existentially guesses when
encountering a ∨ operator – in all other cases it is deterministic. Now, to check whether
ϕT is satisfiable we first existentially guess which of the exponentially many terms should
be satisfied and then check whether this term ϕ′(α1, . . . , αn) is satisfiable by invoking
satisfiable({ϕ′(α1, . . . , αn)}, ∅, ∅).

17

To see that this in fact gives us a Σp
3-algorithm note that ϕ does not contain any dis-

junctions. Hence also ϕ′(α1, . . . , αn) contains no disjunctions apart from the ones that
occur inside one of the subformulas α1, . . . , αn. Therefore the algorithm satisfiable

does not do any nondeterministic existential branching apart from when processing an αi.
But in the latter case it is impossible to later nondeterministically universally branch be-
cause univeral guessing only occurs when processing a � operator and these cannot occur
inside an αi, since these are purely propositional formulas. Therefore the satisfiable

algorithm, if run on a formula ϕ′(α1, . . . , αn) as input, is essentially a Πp
2 algorithm.

Together with the existential guessing of the term in the beginning we get that MDLk-
SAT(M) ∈ ∃ · Πp

2 = Σp
3 .

Theorem 3.9. If {�,♦,∧, · ,=()} ⊆M then MDL3-SAT(M) is Σp
3-hard.

Proof. We use the same construction as in the hardness proof for Theorem 3.5 to reduce
the problem 3CNF-QBF3, which was shown to be Σp

3-complete by Wrathall [Wra77,
Corollary 6], to our problem. 3CNF-QBF3 is the set of all propositional sentences of the
form

∃p1 . . . ∃pk∀pk+1 . . . ∀pℓ∃pℓ+1 . . . ∃pn

m∧

i=1

(li1 ∨ li2 ∨ li3),

where the lij are literals over p1, . . . , pn, which are valid.
Now let ϕ be a 3CNF-QBF3 instance, let p1, . . . , pn be its variables and let k, ℓ, m,

(lij)i=1,...,m
j=1,2,3

be as above. Then the corresponding MDL3(�,♦,∧, · ,=()) formula is

g(ϕ) :=
n∧

i=1
�i−1(♦�n−ipi ∧ ♦�n−ipi) (i)

∧
m∧

i=1
♦n(li1 ∧ li2 ∧ li3 ∧ fi) (ii)

∧
m∧

i=1
�n=(l′i1, l

′
i2, l

′
i3, fi) (iii)

∧ ♦k�ℓ−k♦n−ℓ(=(p1) ∧ · · · ∧=(pk) ∧ f1 ∧ · · · ∧ fm) (iv)

where p1, . . . , pn, f1, . . . , fm are atomic propositions and l′ij :=

{
p if lij = p
p if lij = p

.

The proof that g is a correct reduction is essentially the same as for Theorem 3.5.
The only difference is that there we had arbitrary dependence atoms in part (iv) of
g(ϕ) whereas here we only have 0-ary dependence atoms. This difference is due to the
fact that there we had to be able to express arbitrary dependencies because we were
reducing from 3CNF-DQBF whereas here we only have two kinds of dependencies for
the existentially quantified variables: either complete constancy (for the variables that
get quantified before any universal variables does) or complete freedom (for the variables
that get quantified after all universal variables are already quantified). The former can be
expressed by 0-ary dependence atoms and for the latter we simply omit any dependence
atoms.

Note that it might seem as if with the same construction even Σp
k-hardness for arbitrary

k could be proved by having more alternations between the two modalities in part (iv) of

18

g(ϕ). The reason that this does not work is that we do not really ensure that a structure
fulfilling g(ϕ) is not more than a binary tree, e.g. it can happen that the root node of
the tree has three successors: one in whose subtree all leaves on level n are labeled with
p1, one in whose subtree no leaves are labeled with p1 and one in whose subtree only
some leaves are labeled with p1. Now, the first diamond modality can branch into this
third subtree and then the value of p1 is not yet determined. Hence the modalities alone
are not enough to express alternating dependencies and hence we need the =(pi) atoms
in part (iv) to ensure constancy.

Corollary 3.10. a) Let k ≥ 0 and {�,♦,∧,∨, · } ⊆ M . Then MDLk-SAT(M) is
PSPACE-complete.

b) Let k ≥ 3 and {�,♦,∧, · ,=()} ⊆ M ⊆ {�,♦,∧, · ,⊤,⊥,=(),©∨}. Then MDLk-
SAT(M) is Σp

3-complete.

Proof. The lower bound for a) is due to the PSPACE-completeness of ordinary modal
logic satisfiability which was shown in [Lad77]. The upper bound follows from Theo-
rem 3.8a, Lemma 3.1b and the fact that ∃ · PSPACE = PSPACE.

The lower bound for b) is Theorem 3.9. The upper bound follows from Theorem 3.8b,
Lemma 3.1 and ∃ · Σp

3 = Σp
3 .

4 Conclusion

In this paper we completely classified the complexity of the satisfiability problem for
modal dependence logic for all fragments of the language defined by restricting the
modal and propositional operators to a subset of those considered by Väänänen and
Sevenster. Our results show a dichotomy for the =() operator; either the complexity
jumps to NEXPTIME-completeness when introducing =() or it does not increase at all
– and in the latter case the =() operator does not increase the expressiveness of the
logic. Intuitively, the NEXPTIME-completeness can be understood as the complexity
of guessing Boolean functions of unbounded arity.

In an earlier version [LV10] of this paper we formulated the question whether there
are natural fragments of modal dependence logic where adding the dependence operator
does not let the complexity of satisfiability testing jump up to NEXPTIME but still
increases the expressiveness of the logic. We can now give an answer to that question;
by restricting the arity of the =() operator. In this case the dependence becomes too
weak to increase the complexity beyond PSPACE. However, in the case of poor man’s
logic, i.e. only disjunctions are fobidden, the complexity increases to Σp

3 when introducing
dependence but it still is not as worse as for full modal logic. Intuitively, the complexity
drops below NEXPTIME because the Boolean functions which have to be guessed are
now of a bounded arity.

In a number of precursor papers, e. g., [Lew79] on propositional logic or [HSS10] on
modal logic, not only subsets of the classical operators {�,♦,∧,∨, · } were considered
but also propositional connectives given by arbitrary Boolean functions. The main result

19

of Lewis, e. g., can be succinctly summarized as follows: Propositional satisfiability is
NP-complete if and only if in the input formulas the connective ϕ ∧ ¬ψ is allowed (or
can be “implemented” with the allowed connectives).

We consider it interesting to initiate such a more general study for modal depen-
dence logic and determine the computational complexity of satisfiability if the allowed
connectives are taken from a fixed class in Post’s lattice. Contrary to propositional or
modal logic, however, the semantics of such generalized formulas is not clear a priori –
for instance, how should exclusive-or be defined in dependence logic? Even for simple
implication, there seem to be several reasonable definitions, cf. [AV09].

A further possibly interesting restriction of dependence logic might be to restrict the
type of functional dependence beyond simply restricting the arity. Right now, depen-
dence just means that there is some function whatsoever that determines the value of
a variable from the given values of certain other variables. Also here it might be inter-
esting to restrict the function to be taken from a fixed class in Post’s lattice, e. g., to be
monotone or self-dual.

Finally, it seems natural to investigate the possibility of enriching classical temporal
logics as LTL, CTL or CTL

∗ with dependence as some of them are extensions of clas-
sical modal logic. The questions here are of the same kind as for MDL: expressivity,
complexity, fragments, etc.

References

[AV09] Samson Abramsky and Jouko Väänänen. From IF to BI. Synthese,
167(2):207–230, 2009.

[BBC+10] Michael Bauland, Elmar Böhler, Nadia Creignou, Steffen Reith, Hen-
ning Schnoor, and Heribert Vollmer. The complexity of problems for
quantified constraints. Theory of Computing Systems, 47:454–490, 2010.
10.1007/s00224-009-9194-6.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC
’71: Proceedings of the third annual ACM symposium on Theory of comput-
ing, pages 151–158, New York, NY, USA, 1971. ACM.

[DLN+92] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Bernhard Hollun-
der, Werner Nutt, and Alberto Marchetti-Spaccamela. The complexity of
existential quantification in concept languages. Artif. Intell., 53(2-3):309–
327, 1992.

[Hem01] Edith Hemaspaandra. The complexity of poor man’s logic. Journal of Logic
and Computation, 11(4):609–622, 2001. Corrected version: [Hem05].

[Hem05] Edith Hemaspaandra. The complexity of poor man’s logic. CoRR,
cs.LO/9911014v2, 2005.

20

[Hen61] L. Henkin. Some remarks on infinitely long formulas. In Infinitistic Meth-
ods, Proceedings Symposium Foundations of Mathematics, pages 167–183,
Warsaw, 1961. Pergamon.

[HS89] J. Hintikka and G. Sandu. Informational independence as a semantical
phenomenon. In J. E. Fenstad, I. T. Frolov, and R. Hilpinen, editors, Logic,
Methodology and Philosophy of Science, volume 8, pages 571–589. Elsevier,
Amsterdam, 1989.

[HSS10] Edith Hemaspaandra, Henning Schnoor, and Ilka Schnoor. Generalized
modal satisfiability. J. Comput. Syst. Sci., 76(7):561–578, 2010.

[Lad77] Richard E. Ladner. The computational complexity of provability in systems
of modal propositional logic. Siam Journal on Computing, 6(3):467–480,
1977.

[Lew79] Harry Lewis. Satisfiability problems for propositional calculi. Mathematical
Systems Theory, 13:45–53, 1979.

[LV10] Peter Lohmann and Heribert Vollmer. Complexity results for modal de-
pendence logic. In Proceedings 19th Conference on Computer Science Logic,
volume 6247 of Lecture Notes in Computer Science, pages 411–425. Springer
Berlin / Heidelberg, 2010.

[MMTV08] Arne Meier, Martin Mundhenk, Michael Thomas, and Heribert Vollmer.
The complexity of satisfiability for fragments of CTL and CTL⋆. Electronic
Notes in Theoretical Computer Science, 223:201 – 213, 2008. Proceedings of
the Second Workshop on Reachability Problems in Computational Models
(RP 2008).

[PRA01] G. Peterson, J. Reif, and S. Azhar. Lower bounds for multiplayer noncoop-
erative games of incomplete information. Computers & Mathematics with
Applications, 41(7-8):957 – 992, 2001.

[RW00] Steffen Reith and Klaus W. Wagner. The complexity of problems defined
by boolean circuits. In Proceedings International Conference Mathematical
Foundation of Informatics, (MFI99), pages 25–28. World Science Publish-
ing, 2000.

[Sev09] Merlijn Sevenster. Model-theoretic and computational properties of modal
dependence logic. Journal of Logic and Computation, 19(6):1157–1173, 2009.

[Vää07] Jouko Väänänen. Dependence logic: A new approach to independence
friendly logic. Number 70 in London Mathematical Society student texts.
Cambridge University Press, 2007.

[Vää08] Jouko Väänänen. Modal dependence logic. In Krzysztof R. Apt and Robert
van Rooij, editors, New Perspectives on Games and Interaction, volume 4

21

of Texts in Logic and Games, pages 237–254. Amsterdam University Press,
2008.

[Wra77] Celia Wrathall. Complete sets and the polynomial-time hierarchy. Theoret-
ical Computer Science, 3(1):23 – 33, 1977.

22

	1 Introduction
	2 Modal dependence logic
	2.1 Syntax
	2.2 Semantics

	3 Complexity results
	3.1 Poor man's dependence logic
	3.2 Cases with only one modality
	3.3 Bounded arity dependence

	4 Conclusion
	References

